JPH11280150A - Earthquake resisting type column beam joint construction - Google Patents

Earthquake resisting type column beam joint construction

Info

Publication number
JPH11280150A
JPH11280150A JP10084256A JP8425698A JPH11280150A JP H11280150 A JPH11280150 A JP H11280150A JP 10084256 A JP10084256 A JP 10084256A JP 8425698 A JP8425698 A JP 8425698A JP H11280150 A JPH11280150 A JP H11280150A
Authority
JP
Japan
Prior art keywords
flange
column
plastic deformation
joint structure
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10084256A
Other languages
Japanese (ja)
Inventor
Yasuhide Mochida
泰秀 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP10084256A priority Critical patent/JPH11280150A/en
Publication of JPH11280150A publication Critical patent/JPH11280150A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake resisting column and beam construction capable of improving earthquake resistance of a building, simplifying joint construction, rationalizing welding and reducing the weight of steel frame. SOLUTION: An earthquake resisting type column and beam joint construction tries to enlarge the plastic region by setting the plastic deformation point for the base material of beam and making the joint strength as same as the strength of base metal at the plastic deformation point in a beam basically formed by a H-section steel. And for actually achieving this, the width of a flange 9 of a beam end portion 7 is enlarged in a predetermined range or enlarged toward a beam end portion by installing a stiffening plate having the same material as a roll material for base metal; also, it is considered to enlarge the width of flange 9 with a built material provided at the end portion of the base metal. In addition, a slope is provided at the base metal side of the flange 5 a with the width increased, or a strain stopper for flange attached only to the web is provided between the upper and lower flanges 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐震型柱・梁接合
構造に関し、特に、塑性変形点を梁母材に設定し仕口耐
力を塑性変形点における母材耐力と同一にすることで塑
性変形能力、塑性耐力を大きくさせて耐震性の向上を図
り、併せて接合構造の簡素化、溶接の合理化及び鉄骨重
量の削減をも達成する耐震型柱・梁接合構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant column-beam joint structure, and more particularly, to a plastic deformation by setting a plastic deformation point on a beam base material and making the joint strength the same as the base material strength at the plastic deformation point. The present invention relates to an earthquake-resistant column / beam joint structure that increases deformation capacity and plastic strength to improve earthquake resistance, and at the same time, simplifies the joint structure, streamlines welding, and achieves a reduction in steel frame weight.

【0002】[0002]

【従来の技術】大震災の被害状況を見ると、大震災でも
充分に耐えられると言われていた従来の耐震設計で構築
されている建物においても大きな被害を受けている。そ
の中でも、鉄骨造建物の柱・梁接合部の塑性変形能力が
充分に発揮されないために、建物に大きな被害を与えて
いる事例が多く見受けられる。その要因としては、柱・
梁仕口部の耐力不足、接合部の形状から来る応力集中に
よる脆性破壊等が挙げられ、柱・梁仕口部の充分な塑性
変形能力の確保について多くの指摘がなされている。従
来の柱・梁接合部は、図8に見られるように構成されて
おり、設計上仕口部を塑性変形点にしている。従って、
大梁30は、中央部材31がロール材のH鋼で構成さ
れ、両端部32には仕口部の耐力を向上させるために、
工場等で別途に溶接加工されたビルト材33を溶接して
一体化してある。仕口部34の耐力は、柱に設けたダイ
ヤフラムとビルト材のフランジ35とを溶接処理した構
造として計算され、耐力的にはフランジ部分のみで計算
されておりウエブ部の結合強度は考慮されていない。こ
のため、ビルト材のフランジ35は母材のものより厚い
材料が使われていることが多い。しかし、一方では溶接
部に対する信頼性の点からこれを補完するために、実際
にはウエブ部分の接合も入念に実施される。このため、
柱にはシャープレート36が溶接されており、柱と梁は
大梁端部32とシャープレート36とを高力ボルト37
で接合することで一体化されている。従って、鉄骨単価
が高くなり、大梁部材の鉄骨数量やシャープレート・ボ
ルトの数量も多くなって曲げ応力の伝達を生じてしまっ
ていた。
2. Description of the Related Art Looking at the situation of damage caused by a great earthquake, even buildings built with conventional seismic design, which is said to be sufficiently resistant to a great earthquake, are severely damaged. In particular, there are many cases where the column-beam joints of steel-framed buildings do not sufficiently exert their plastic deformation capacity, causing severe damage to the buildings. The main factors are
Insufficient proof stress of beam joints, brittle fracture due to stress concentration coming from the shape of the joints, etc., have been pointed out, and much has been pointed out about securing sufficient plastic deformation capacity of column / beam joints. The conventional column / beam joint is configured as shown in FIG. 8, and the joint is set at a plastic deformation point in design. Therefore,
In the girder 30, the central member 31 is formed of H steel as a roll material, and at both ends 32, in order to improve the strength of the joint,
A built material 33 separately welded at a factory or the like is integrated by welding. The proof strength of the connection part 34 is calculated as a structure in which the diaphragm provided on the column and the flange 35 of the built-in material are welded, and the proof strength is calculated only at the flange part, and the bonding strength of the web part is taken into consideration. Absent. For this reason, the flange 35 of the built material is often made of a material thicker than that of the base material. However, on the other hand, in order to complement this from the viewpoint of the reliability of the welded portion, in practice, the joining of the web portion is also carefully performed. For this reason,
A shear plate 36 is welded to the pillar, and the pillar and the beam are connected to the large beam end 32 and the shear plate 36 by a high-strength bolt 37.
It is integrated by joining with. Therefore, the unit cost of the steel frame has become high, and the number of steel frames and the number of shear plates and bolts of the girder members have also increased, causing the transmission of bending stress.

【0003】[0003]

【発明が解決しようとする課題】本発明は、建物の耐震
性の向上を図ることを目的にしており、加えて接合構造
の簡素化、溶接の合理化及び鉄骨重量の削減を図る耐震
型柱・梁接合構造を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the seismic resistance of a building. In addition, the present invention aims to improve the seismic resistance of a building. It is intended to provide a beam joint structure.

【0004】[0004]

【課題を解決するための手段】本発明による耐震型柱・
梁接合構造は、基本的にH形鋼で形成される梁におい
て、塑性変形点を梁母材に設定し仕口耐力を塑性変形点
における母材耐力と同一にして塑性域の拡大を図るもの
であり、これを具体的に達成するために、梁端部のフラ
ンジ幅を母材のロール材と同一材質の補強板を設置する
ことで所定の範囲で拡大もしくは梁端部に向かって拡大
させるようにし、又、フランジ幅の拡大を母材の端部に
設けるビルト材で行うことを考慮している。さらに、幅
を拡大したフランジの母材側に傾斜を設けたり、上下の
フランジ間にウエブのみに付設したフランジの歪み止め
を設けることも特徴にしている。
According to the present invention, there is provided an earthquake-resistant column according to the present invention.
The beam-jointed structure is to expand the plastic region by setting the plastic deformation point on the beam base material and making the joint strength the same as the base material strength at the plastic deformation point in a beam basically made of H-section steel. In order to achieve this concretely, the flange width at the beam end is expanded in a predetermined range or expanded toward the beam end by installing a reinforcing plate of the same material as the roll material of the base material. Also, it is considered that the width of the flange is increased by using a built-in material provided at the end of the base material. Further, the present invention is characterized in that an inclined flange is provided on the base material side of the flange having an increased width, and a flange is provided between the upper and lower flanges to prevent distortion of the flange provided only on the web.

【0005】[0005]

【発明の実施の形態】図1は、本発明による耐震型柱・
梁接合構造を説明するための平面図と側面図である。図
において、1はCFTの柱であり、2は大梁である。柱
1には、ダイヤフラム3とシャープレート4が取付けて
ある。大梁2はフランジ5を有するロール材のH鋼であ
り、その母材に設定した塑性変形点6の位置から端部7
まで、フランジ5に補強材8を溶接付けしてある。補強
材8の取り付けは、随時行うことができるもので特別の
制限はないものの、溶接による熱応力等を加味した製品
精度の観点からは、管理の行き届いた工場等での溶接加
工が推奨される。溶接方法としては、突き合わせ溶接、
部分溶け込み溶接等が用いられるが、突き合わせ溶接は
熱容量が大きく、鋼材を変質させて硬くなり割れやすく
なるので、後述の端部フランジの溶接も含めて部分溶け
込み溶接の採用が望ましい。
FIG. 1 shows an earthquake-resistant column according to the present invention.
It is the top view and side view for demonstrating a beam joining structure. In the figure, 1 is a column of CFT and 2 is a girder. A diaphragm 3 and a shear plate 4 are attached to the column 1. The girder 2 is a rolled H steel having a flange 5 and extends from the position of the plastic deformation point 6 set in the base material to the end 7.
Up to now, the reinforcing member 8 is welded to the flange 5. The attachment of the reinforcing member 8 can be performed at any time and there is no particular limitation. However, from the viewpoint of product accuracy in consideration of thermal stress due to welding, welding at a well-managed factory is recommended. . Welding methods include butt welding,
Partial penetration welding or the like is used, but butt welding has a large heat capacity and changes the quality of the steel material, making it harder and easier to crack. Therefore, it is desirable to employ partial penetration welding including welding of an end flange described later.

【0006】柱1と大梁2は、柱のダイヤフラム3と幅
が広く形成された端部フランジ9との溶接及びシャープ
レート4と梁ウエブとの高力ボルト結合10で一体化し
ているが、仕口部における塑性耐力は、端部フランジ9
の接合部のみで設計されている。その結果、シャープレ
ート4と梁ウエブとの高力ボルト結合10は、お互いの
結合関係を維持する程度の強度で充分であるから、従来
の結合構造と比較して極めて簡潔に構成されている。
The pillar 1 and the girder 2 are integrated by welding the diaphragm 3 of the pillar and the end flange 9 having a wide width and the high-strength bolt connection 10 between the shear plate 4 and the beam web. The plastic strength at the mouth is determined by the end flange 9
It is designed with only the joints. As a result, the high-strength bolted joint 10 between the shear plate 4 and the beam web is sufficiently simple enough to maintain the mutual connection relationship, and thus is configured very simply as compared with the conventional jointed structure.

【0007】仕口部の強度は、母材に設定した塑性変形
点6における塑性変形耐力を設定してから、これと同一
の値に梁端部の塑性変形耐力を設定している。従って、
地震力等が建物に加えられた時には、柱・梁仕口部と塑
性変形点を設定した大梁の母材部分とは同一で広範囲の
塑性変形域を形成することになり、塑性変形域の拡大は
柱・梁の塑性変形能力を向上させることになることか
ら、耐震対策として有効な手段といえる。図1では、補
強材8の形状を梁の端部に向かって暫時拡大させるテー
パー状にして、塑性モーメントに対応させてあるが、補
強材8の形状は決してこれに限定されるものでなく、母
材に設定した塑性変形点における塑性変形耐力と梁端部
の塑性変形耐力を同一に設定するという本発明の趣旨を
外れない範囲であれば矩形等の他の形状であっても当然
に採用可能である。
For the strength of the joint, the plastic deformation resistance at the plastic deformation point 6 set on the base material is set, and then the plastic deformation resistance of the beam end is set to the same value. Therefore,
When seismic force or the like is applied to the building, the column / beam joint and the base material of the girder with the plastic deformation point set are the same, forming a wide range of plastic deformation area, expanding the plastic deformation area. Can improve the plastic deformation capacity of columns and beams. In FIG. 1, the shape of the reinforcing member 8 is tapered so as to temporarily expand toward the end of the beam to correspond to the plastic moment. However, the shape of the reinforcing member 8 is not limited to this. Other shapes such as rectangles are naturally adopted as long as they do not deviate from the gist of the present invention that the plastic deformation strength at the plastic deformation point set in the base material and the plastic deformation strength at the beam end are set to be the same. It is possible.

【0008】図2、3は、従来の大梁と同様にロール材
の中央部11の両端にビルト材の端部12を接合した大
梁の平面図であり、他の部分は図1の場合と同様であ
る。図2の形態は、上述の幅が広く形成された端部フラ
ンジ9をビルト材の端部12に形成するものであり、ビ
ルト材の加工時にフランジ部の鋼板を予め段差13を付
けて切断加工しておいたものを組立溶接することで製造
している。ただし、従来の場合と異なっていることは、
上述のように塑性変形点を仕口部におかず、かつ母材の
塑性変形耐力と仕口部のそれとを同一にしているので、
フランジ部の鋼板厚さは中央部のフランジとあまり違わ
ない厚さの鋼板で充分である点である。
FIGS. 2 and 3 are plan views of a girder formed by joining ends 12 of a built-in material to both ends of a center portion 11 of a roll material in the same manner as a conventional girder, and other portions are the same as those in FIG. It is. In the embodiment shown in FIG. 2, the end flange 9 having the above-mentioned wide width is formed at the end 12 of the built material, and the steel plate of the flange is cut with a step 13 in advance when the built material is processed. It is manufactured by assembling and welding what has been done. However, what is different from the conventional case is that
As described above, the plastic deformation point is not applied to the joint, and since the plastic deformation resistance of the base material and that of the joint are the same,
The thickness of the steel plate at the flange portion is sufficient because a steel plate having a thickness not so different from the central flange is sufficient.

【0009】図2の場合の塑性変形点6は、当然のこと
ながら段差13を作ったビルト材の範囲に形成されるも
のであるから、段差13での耐力と仕口耐力とは設定が
し易く、別途に形成した補強材を溶接するような別立て
作業をする必要がなくなるので、製造面での効率化とコ
ストの削減が可能になる。
Since the plastic deformation point 6 in the case of FIG. 2 is naturally formed in the range of the built material having the step 13, the proof strength at the step 13 and the joint proof strength are set. Since it is not necessary to perform a separate operation such as welding a separately formed reinforcing material, it is possible to increase efficiency in manufacturing and reduce costs.

【0010】図3の形態は、幅が広く形成された端部フ
ランジ9をビルト材全体に形成するものであり、ビルト
材としてはロール材の中央部と同等厚のフランジ部の鋼
板を用いて端部H形鋼14として組立溶接することで製
造する。大梁は、ロール材の中央部11の両端にビルト
材の端部H形鋼14を接合して形成するから、フランジ
の補強部分はロール材とビルト材との接合部から始ま
る。従って、母材に設定した塑性変形点6の塑性耐力と
仕口部における塑性耐力とは溶接部同士の設定になる。
いずれの塑性耐力も、その溶接に対する信頼性の問題が
根底にあるとしても、設計値としての比較設定において
は同様の性状を踏まえて行うことになり、期待する母材
における塑性域の拡大には有効な形態といえる。
In the embodiment shown in FIG. 3, the end flange 9 having a large width is formed on the entire built material. As the built material, a steel plate having a flange portion having the same thickness as the central portion of the roll material is used. It is manufactured by assembling and welding as an end H-shaped steel 14. Since the girder is formed by joining end portions H of the built-in material to both ends of the center portion 11 of the roll material, the reinforcing portion of the flange starts from the joint portion between the roll material and the built material. Therefore, the plastic proof stress at the plastic deformation point 6 set in the base material and the plastic proof stress at the joint portion are set for the welded portions.
Regardless of the plastic proof stress, even if the problem of the reliability of the welding is at the root, in the comparison setting as the design value, it will be performed based on the same properties, and it is necessary to expand the plastic range in the expected base material. It can be said to be an effective form.

【0011】図4(a)、(b)に示す形態は、フラン
ジ補強の他の形態を示す平面図及び側面図である。上記
実施の形態では、梁の母材部分に塑性変形点を設定し柱
・梁仕口部の塑性耐力は塑性モーメント勾配に従って母
材部分の値より高いものにするために、梁端部のフラン
ジ幅を拡大するように補強して対応してきた。このこと
は、基本的に仕口部におけるフランジの断面積を拡大す
ることであるから、図4に示すように梁2の端部にフラ
ンジ5と平行に補助フランジ15を設けてフランジを2
重にして実質的に断面積を拡大するものである。この際
には、柱側にも新規にダイヤフラム16を設けて補助フ
ランジ15と溶接接合ができるようにする。
FIGS. 4 (a) and 4 (b) are a plan view and a side view showing another form of flange reinforcement. In the above embodiment, in order to set the plastic deformation point in the base material portion of the beam and to make the plastic strength of the column / beam joint higher than the value of the base material portion in accordance with the plastic moment gradient, the flange at the beam end is used. We have responded by reinforcing it to increase its width. This basically means to increase the cross-sectional area of the flange at the joint, so that an auxiliary flange 15 is provided at the end of the beam 2 in parallel with the flange 5 as shown in FIG.
Weight to substantially increase the cross-sectional area. In this case, a new diaphragm 16 is provided also on the column side so that the auxiliary flange 15 can be welded and joined.

【0012】補強材8はフランジ5に溶接付け17され
ており、その形状は図1に示すようにテーパー状のもの
も考えられるが、矩形状の場合には図5(a)、(b)
に示すように塑性変形点側の端部18を加工するのも効
果的である。図5(a)に示す例は、端部18を45度
の角度で切欠面19を形成するものであり、これによっ
て溶接時の熱応力が補強材全体に分布されて均一な品質
を確保することができる。なお、図5(a)では切欠面
19の形状を直線面として表示しているが、同面はこの
形状に限定されるものでなく、所定の曲率を持った切り
欠き形状であっても良い。図5(b)の例は、切欠面1
9に加えてフランジ5に接する端部をグラインダー等で
円形20に加工するものであり、端部に集中する応力を
分散させるのに効果的である。実験によれば、これらの
加工成形によって梁に応力が加えられた時に、溶接端の
フランジ5に亀裂が生じるのを防止できることが確認で
きている。
The reinforcing member 8 is welded 17 to the flange 5, and its shape may be tapered as shown in FIG. 1, but if it is rectangular, it is shown in FIGS. 5 (a) and 5 (b).
It is also effective to process the end portion 18 on the plastic deformation point side as shown in FIG. In the example shown in FIG. 5 (a), a notch 19 is formed at the end portion 18 at an angle of 45 degrees, whereby the thermal stress at the time of welding is distributed over the entire reinforcing material to ensure uniform quality. be able to. In FIG. 5A, the shape of the cutout surface 19 is displayed as a straight surface, but the shape is not limited to this shape, and may be a cutout shape having a predetermined curvature. . The example of FIG.
In addition to 9, the end in contact with the flange 5 is machined into a circle 20 by a grinder or the like, which is effective in dispersing the stress concentrated on the end. According to experiments, it has been confirmed that when a stress is applied to the beam by these workings, it is possible to prevent the occurrence of cracks in the flange 5 at the weld end.

【0013】図6は、本発明による耐震型柱・梁接合構
造の梁に付設したフランジ補強材を説明するための側面
図であり、図7は、図6のイーイ断面図である。上述の
ように、本発明による耐震型柱・梁接合構造は梁母材に
先行する塑性変形点を設定するものであるから、従来の
梁よりも中央部のフランジに大きな応力が加えられるこ
とになる。このために、フランジが部分的に歪んで座屈
するような現象が起こる。
FIG. 6 is a side view for explaining a flange reinforcing member attached to a beam having an earthquake-resistant column / beam joint structure according to the present invention, and FIG. 7 is a sectional view taken along the line II in FIG. As described above, since the seismic column / beam joint structure according to the present invention sets the plastic deformation point preceding the beam base material, a greater stress is applied to the flange at the center than the conventional beam. Become. For this reason, a phenomenon occurs in which the flange is partially distorted and buckled.

【0014】そこで、中央部の梁母材にフランジの座屈
を押さえるためのフランジ補強材21を付設しておくと
効果的である。フランジ補強材21の付設状態は、図7
に示す梁2の断面図で明らかなように、梁のウエブ部分
22にフランジ補強材21を溶接23によって取り付け
るもので、上下のフランジ5とは接合していない。 従
って、梁自体の剛性には全く影響がない状態でフランジ
5の座屈時の移動のみを押さえているから、本発明によ
る耐震型柱・梁接合構造のメリットをさらに向上させる
ことになる。
Therefore, it is effective to provide a flange reinforcing member 21 for suppressing the buckling of the flange on the beam base material at the center. The attached state of the flange reinforcing member 21 is shown in FIG.
As is apparent from the cross-sectional view of the beam 2 shown in FIG. 1, the flange reinforcing member 21 is attached to the web portion 22 of the beam by welding 23, and is not joined to the upper and lower flanges 5. Therefore, only the movement of the flange 5 during buckling is suppressed in a state where the rigidity of the beam itself is not affected at all, so that the merit of the seismic column / beam joint structure according to the present invention is further improved.

【0015】[0015]

【発明の効果】本発明による耐震型柱梁接合構造は、基
本的にH形鋼で形成される梁において、塑性変形点を梁
母材に設定し仕口耐力を塑性変形点における母材耐力と
同一にして塑性域の拡大を図るものであり、これを具体
的に達成するために、梁端部のフランジ幅を母材のロー
ル材と同一材質の補強板を設置することで所定の範囲で
拡大もしくは梁端部に向かって拡大させるようにし、
又、フランジ幅の拡大を母材の端部に設けるビルト材で
行うことを考慮している。さらに、幅を拡大したフラン
ジの母材側に傾斜を設けたり、上下のフランジ間にウエ
ブのみに付設したフランジの歪み止めを設けることも特
徴にしているから、塑性変形能力、塑性耐力を大きくさ
せて耐震性の向上を図ることができると共に、鉄骨単価
の低減を図ることができ、大梁部材の鉄骨数量の低減と
シャープレート・ボルト数量の低減が図れ、結果として
柱・梁接合部での応力の伝達が回避される効果を奏す
る。
According to the seismic column-beam joint structure of the present invention, in a beam basically formed of an H-section steel, a plastic deformation point is set to a beam base material and a joint strength is set at a base material strength at a plastic deformation point. In order to achieve this concretely, the flange width at the end of the beam is set to a predetermined range by installing a reinforcing plate of the same material as the roll material of the base material. So that it expands toward the beam end or
Also, it is considered that the flange width is increased by using a built-in material provided at the end of the base material. In addition, it is also characterized by providing a slope on the base material side of the flange whose width has been increased, or providing a strain stop for the flange attached only to the web between the upper and lower flanges, so as to increase the plastic deformation capacity and plastic proof stress. In addition to improving the earthquake resistance, the unit price of steel frames can be reduced, and the number of steel frames for large beams and the number of shear plates and bolts can be reduced. This has the effect of avoiding the transmission of information.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による耐震型柱・梁接合構造を示す平面
図と側面図
FIG. 1 is a plan view and a side view showing an earthquake-resistant column / beam joint structure according to the present invention.

【図2】本発明による耐震型柱・梁接合構造の他の例を
示す平面図
FIG. 2 is a plan view showing another example of the earthquake-resistant column / beam joint structure according to the present invention.

【図3】本発明による耐震型柱・梁接合構造の他の例を
示す平面図
FIG. 3 is a plan view showing another example of the earthquake-resistant column / beam joint structure according to the present invention.

【図4】本発明による耐震型柱・梁接合構造の他の例を
示す平面図と側面図
FIG. 4 is a plan view and a side view showing another example of the earthquake-resistant column / beam joint structure according to the present invention.

【図5】補強材の加工を示す平面図FIG. 5 is a plan view showing processing of a reinforcing material.

【図6】フランジ補強材を適用した耐震型柱・梁接合構
造の側面図
FIG. 6 is a side view of an earthquake-resistant column / beam joint structure using a flange reinforcing material.

【図7】フランジ補強材を適用した梁の断面図FIG. 7 is a sectional view of a beam to which a flange reinforcing material is applied.

【図8】従来の柱梁接合構造の平面図と側面図FIG. 8 is a plan view and a side view of a conventional beam-column joint structure.

【符号の説明】[Explanation of symbols]

1 柱 16
ダイヤフラム 2 大梁 17
溶接付け 3 ダイヤフラム 18
塑性変形点側端部 4 シャープレート 19
切欠面 5 フランジ 20
円形切削 6 塑性変形点 21
フランジ補強材 7 端部 22
梁のウエブ部分 8 補強材 30
大梁 9 端部フランジ 31
中央部材 10 高力ボルト結合 32
梁端部 11 中央部 33
ビルト材 12 ビルト材端部 34
仕口部 13 段差 35
ビルト材のフランジ 14 端部H形鋼 36
シャープレート 15 補助フランジ 37
高力ボルト
1 pillar 16
Diaphragm 2 Large beam 17
Welding 3 Diaphragm 18
Plastic deformation point side end 4 Shear plate 19
Notch 5 Flange 20
Circular cutting 6 Plastic deformation point 21
Flange reinforcement 7 End 22
Web part of beam 8 Reinforcement 30
Giant beam 9 End flange 31
Central member 10 High strength bolt connection 32
Beam end 11 Central part 33
Built material 12 Built material end 34
Connection 13 Step 35
Built-in flange 14 H-section steel 36
Shear plate 15 Auxiliary flange 37
High strength bolt

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 H形鋼で形成される梁において、塑性変
形点を梁母材に設定し仕口耐力を塑性変形点における母
材耐力と同一にする耐震型柱・梁接合構造
1. An earthquake-resistant column / beam joint structure for a beam formed of an H-section steel, in which a plastic deformation point is set on a beam base material and a joint strength is equal to the base material strength at the plastic deformation point.
【請求項2】 梁端部のフランジ幅を所定の範囲で拡大
することを特徴とする請求項1に記載の耐震型柱・梁接
合構造。
2. The seismic column / beam joint structure according to claim 1, wherein the flange width at the beam end is enlarged within a predetermined range.
【請求項3】 梁端部のフランジ幅を梁端部に向かって
拡大させることを特徴とする請求項1に記載の耐震型柱
・梁接合構造。
3. The seismic column / beam joint structure according to claim 1, wherein the flange width at the beam end is increased toward the beam end.
【請求項4】 フランジ幅の拡大を補強板の設置で行う
ことを特徴とする請求項2、3に記載の耐震型柱・梁接
合構造。
4. The seismic column / beam joint structure according to claim 2, wherein the flange width is increased by installing a reinforcing plate.
【請求項5】 同一の材質で構成することを特徴とする
請求項2〜4のいずれかに記載の耐震型柱・梁接合構
造。
5. The seismic column-beam joint structure according to claim 2, wherein the same material is used.
【請求項6】 フランジ幅の拡大をビルト材で行うこと
を特徴とする請求項2、3に記載の耐震型柱・梁接合構
造。
6. An earthquake-resistant column / beam joint structure according to claim 2, wherein the width of the flange is increased by a built-in material.
【請求項7】 ビルト材の端部部分で行うことを特徴と
する請求項6に記載の耐震型柱・梁接合構造。
7. The seismic column / beam joint structure according to claim 6, wherein the joint is performed at an end portion of the built material.
【請求項8】 幅を拡大したフランジの母材側に傾斜を
設けたことを特徴とする請求項1〜7のいずれかに記載
の耐震型柱・梁接合構造。
8. The seismic column / beam joint structure according to claim 1, wherein an inclination is provided on a base material side of the flange having an increased width.
【請求項9】 上下のフランジ間にウエブのみに付設し
たフランジの歪み止めを設けたことを特徴とする請求項
1〜8のいずれかに記載の耐震型柱・梁接合構造。
9. The seismic column / beam joint structure according to claim 1, wherein a flange is provided between the upper and lower flanges to prevent distortion of the flange attached only to the web.
JP10084256A 1998-03-30 1998-03-30 Earthquake resisting type column beam joint construction Pending JPH11280150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10084256A JPH11280150A (en) 1998-03-30 1998-03-30 Earthquake resisting type column beam joint construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10084256A JPH11280150A (en) 1998-03-30 1998-03-30 Earthquake resisting type column beam joint construction

Publications (1)

Publication Number Publication Date
JPH11280150A true JPH11280150A (en) 1999-10-12

Family

ID=13825385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10084256A Pending JPH11280150A (en) 1998-03-30 1998-03-30 Earthquake resisting type column beam joint construction

Country Status (1)

Country Link
JP (1) JPH11280150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852246A (en) * 2012-09-17 2013-01-02 同济大学 One-directional limiting performance-based joint of steel structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338116U (en) * 1977-09-22 1978-04-04
JPS59165744A (en) * 1983-03-10 1984-09-19 株式会社 構建設計研究所 Pillar and beam connecting apparatus
JPH0288833A (en) * 1988-08-24 1990-03-29 Arbed Sa Earthquakeproof steel structure
JPH05331963A (en) * 1992-05-29 1993-12-14 Toshiro Suzuki Lateral buckling-reinforcing structure for structural part
JPH0617507A (en) * 1992-06-30 1994-01-25 Toshiro Suzuki Reinforcing structure and metal for structure member
JPH06313334A (en) * 1993-04-30 1994-11-08 Kajima Corp Steel column and connection structure of beam
JPH09291594A (en) * 1996-04-25 1997-11-11 Kajima Corp Connection structure of circular steel pipe column and h-shaped steel beam
JPH09302774A (en) * 1996-05-14 1997-11-25 Kajima Corp Connection structure of circular steel-pipe column and h-steel beam
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338116U (en) * 1977-09-22 1978-04-04
JPS59165744A (en) * 1983-03-10 1984-09-19 株式会社 構建設計研究所 Pillar and beam connecting apparatus
JPH0288833A (en) * 1988-08-24 1990-03-29 Arbed Sa Earthquakeproof steel structure
JPH05331963A (en) * 1992-05-29 1993-12-14 Toshiro Suzuki Lateral buckling-reinforcing structure for structural part
JPH0617507A (en) * 1992-06-30 1994-01-25 Toshiro Suzuki Reinforcing structure and metal for structure member
JPH06313334A (en) * 1993-04-30 1994-11-08 Kajima Corp Steel column and connection structure of beam
JPH09291594A (en) * 1996-04-25 1997-11-11 Kajima Corp Connection structure of circular steel pipe column and h-shaped steel beam
JPH09302774A (en) * 1996-05-14 1997-11-25 Kajima Corp Connection structure of circular steel-pipe column and h-steel beam
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852246A (en) * 2012-09-17 2013-01-02 同济大学 One-directional limiting performance-based joint of steel structure

Similar Documents

Publication Publication Date Title
US4905436A (en) Column/beam joint structure
JP5401018B2 (en) Steel structure truss frame
JP3890515B2 (en) Earthquake-resistant column / beam joint structure
JP5754262B2 (en) Beam-column joint structure
JP4576899B2 (en) Method for manufacturing column-beam joint structure and column-beam joint structure
JP5577676B2 (en) Column and beam welded joint structure
JP5069335B2 (en) Direct connection method of beam and inner diaphragm of steel structure column beam joint
JP5237401B2 (en) Welding method for H-section steel
JP3796984B2 (en) Beam joint structure of H-shaped steel column
JPH11280150A (en) Earthquake resisting type column beam joint construction
JPH11280147A (en) Earthquake resisting type column and beam joint construction
JP4398782B2 (en) Manufacturing method of building steel structure
JP3346364B2 (en) Beam-column joint structure
KR102366228B1 (en) Method for manufacturing a column-beam joint structure and a column-beam joint structure
JP3987470B2 (en) Integration method for steel beam-column joints
JP4966673B2 (en) Column and beam joint structure
JP4571432B2 (en) Direct connection method of beam and inner diaphragm of steel structure column beam joint
WO2003072885A1 (en) Column-to-beam connection part integration work method for structural steelwork
JP7138460B2 (en) Steel beam reinforcement method and steel beam
JP3402312B2 (en) Column-beam joint, rolled H-section steel for column and method of manufacturing the same
JP2000309981A (en) Structure for earthquake-resisting beam-column connection and beam composed of h-sectional member
JP4892045B2 (en) Manufacturing method of building steel structure
KR102505657B1 (en) Reinforcing structure of beam and reinforcing method of beam
JP2001081863A (en) Diaphragm and post-beam joint structure
JP2023094940A (en) beam joint structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20040820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130