WO2003070755A2 - Composes et compositions pour le transport de la cyclosporine a travers la barriere hemato-encephalique - Google Patents

Composes et compositions pour le transport de la cyclosporine a travers la barriere hemato-encephalique Download PDF

Info

Publication number
WO2003070755A2
WO2003070755A2 PCT/FR2003/000591 FR0300591W WO03070755A2 WO 2003070755 A2 WO2003070755 A2 WO 2003070755A2 FR 0300591 W FR0300591 W FR 0300591W WO 03070755 A2 WO03070755 A2 WO 03070755A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound according
μmol
cyclosporine
peptide
cyclosporin
Prior art date
Application number
PCT/FR2003/000591
Other languages
English (en)
Other versions
WO2003070755A3 (fr
Inventor
Patrick Mouchet
Anthony R. Rees
Eskil Elmer
Marcus Floyd Keep
Original Assignee
Synt:Em
Maas Biolab, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synt:Em, Maas Biolab, Llc filed Critical Synt:Em
Priority to AU2003229835A priority Critical patent/AU2003229835A1/en
Publication of WO2003070755A2 publication Critical patent/WO2003070755A2/fr
Publication of WO2003070755A3 publication Critical patent/WO2003070755A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • C07K7/645Cyclosporins; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to the use of vector peptides for the transport of cyclosporine molecules across the blood-brain barrier (BBB) as well as to the use of said compounds for the preparation of medicaments useful for brain diseases including trauma. cerebral, spinal cord damage, stroke, and neurodegenerative diseases including Alzheimer's, Par inson, Huntington's and Charcot's disease (amyotrophic lateral sclerosis) as well as multiple sclerosis.
  • BBB blood-brain barrier
  • Cyclosporine A is an immunosuppressive drug.
  • the medical treatment described below has already been described, in American Patent No. 4,117,118 and many others, which relate its production, its formulation and its immunosuppressive properties.
  • Cyclosporin A is produced by the fungus Tolypocladium Inflation Gams. It is a cyclic polyamino acid, made up of 11 amino acids. One of these amino acids, a ⁇ -hydroxyamino acid called butenylmethyl-threonine (MeBmt) exists only in cyclosporine A. The molecular weight is 1202.6 and the chemical composition is C 62.H1,, 11N11012
  • the molecule is highly lipophilic, and therefore sparingly soluble in water.
  • the drug is transported in the blood for 58% inside the red cells, for approximately 10-20% in leukocytes, and 33% binds to plasma proteins.
  • cyclosporine A is linked to high molecular weight (HDL), low molecular weight (LDL), very low molecular weight (VHDL) lipoproteins and a small albumin fraction.
  • HDL high molecular weight
  • LDL low molecular weight
  • VHDL very low molecular weight
  • a very small fraction is free in the plasma.
  • the molecule is metabolized, mainly in the liver by cytochrome P450.
  • There are at least 40 known metabolites of cyclosporin A with various chemical modifications, such as hydroxylations, demethylations, oxidations and epoxide formations.
  • cyclosporin A differing for example by an amino acid, which have similar pharmacological properties. Cyclosporine A and most of its metabolites do not normally cross the blood-brain barrier (Begley et al., 1990; Lensmeyer et al., 1991). When the glycoprotein-P transporter is inactive or the blood brain barrier is broken, cyclosporine can pass through and come into contact with neurons. Several cyclosporine analogues can easily cross the blood-brain barrier. Several cyclosporine analogs are not immunosuppressive. There is a subset of cyclosporine analogs which can both easily cross the blood brain barrier and which are not immunosuppressive.
  • the P-glycoprotein transporter is related to MDR or "multi-drug resistance".
  • the MDR protein is found in various tumor cells and is responsible for the active transport to the outside of other effective chemotherapeutic drugs. The presence of MDR gives tumor cells resistance to these chemotherapeutic drugs and prevents the desired anti-tumor effect.
  • Cyclosporine is an MDR inhibitor, and allows therapeutic molecules to enter tumor cells, causing a better anti-tumor effect.
  • the cyclosporin family includes cyclosporins A to Z, including cyclosporin C, cyclosporin D, cyclosporin G and cyclosporin 0.
  • Some of the known metabolites of cyclosporin A include: (according to the nomenclature "Hawk's Cay") AMI, AM9 , AMlc, AM4N, AM19, AMlc9, AMlc4N9, AM1A, AM1A4N, AMlAc, AM1AL, AMlld, AM69, AM4N9, AM14N, AM14N9, AM4N69, AM99N, Dihydro-CsA, Dihydro-CsC, Dihydro-CsD, Dihydro-CsD Di , AMlc-GLC, cyclosporine sulphate conjugate, BHlla, BH15a, B, G, E, 0 (and overlapping with Hawk's nomenclature above, according to Maurer's nomenclature) Ml, M2, M3, M4, M5 , M6, M7, M8, M9, M10, Mil, M12, M13, M14, M15, M16,
  • Certain cyclosporin G metabolites include GMl, GM9, GM4N, GMlc, GMlc9, and GM19.
  • the modified cyclosporins include the amino acid analogs modified at C-9, the amino acid analogs modified at position 8, the analogs modified at position 6 containing residues MeAla or MeAbu, and SDZ-209-313, SDZ-205 -549, SDZ-033-243, and SDZ-PCS-833.
  • Other modified cyclosporins include partially and completely deuterated or tritiated variants, as well as other substituted isotopes include carbon, nitrogen and oxygen. Cyclosporins made soluble by the addition of phosphate or other hydrophilic groups are included.
  • cyclosporin or “cyclosporin” will denote this entire family of cyclosporins as described above, including cyclosporin A, all cyclosporin derivatives, variants, amino acid variants, isotopes, metabolites, including mono- derivatives, di- and trihydroxylated, N- demethylated, aldehydes, carboxyls, conjugates, sulphates, glucuronides, phosphates, intramolecular cyclizations and the variants not having any cyclic structure such as shorter peptides and amino acids and their derivatives and salts with or without immunosuppressive properties capable or not of crossing the blood-brain barrier. Cyclosporins are highly lipophilic and generally poorly soluble in water.
  • Cyclosporine has proven to be the most effective neuroprotective molecule ever found for a large number of neurological diseases, as indicated in US patent 5,972,924 and numerous scientific articles (Borlongan et al., 2000; Friberg et al., 1998 ; Keep et al., 2001; Leventhal et al., 2000; Li et al., 1997; Okonkwo et al., 1999; Okonkwo and Povlishock, 1999; Petersen et al., 2000; Scheff and Sullivan, 1999; Sullivan and al., 2000a; Sullivan et al., 2000b; Sullivan et al., 1999; Uchino et al., 1998; Uchino et al., 1995; Yoshimoto and Siesjô, 1999).
  • Cyclosporine is also useful in the treatment of brain tumors as a selective neuronal radioprotective authorizing increasing rates of treatment and reducing the psychological disorders induced by radiation, as indicated in patent application PCT / US98 / 20040. Cyclosporine has been suggested to limit brain damage by multiple important mechanisms. Cyclosporine binds and inhibits cyclophilin, a peptidyl-prolyl isomerase which is involved in normal and abnormal protein folding, and which appears to be involved in neuroprotection and neurodegeneration.
  • the cyclosporine-cyclophilin complex both inhibits the phosphatase activity (Liu et al., 1991) of calcineurin (a calcium phosphate-dependent phosphatase of the well-known serine / threonine radicals), and prevents the activation of calcium enzyme cascades -dependent potentially neurotoxic. Inhibition of calcineurin also blocks nitric oxide synthase and the production of nitric oxide, reducing destructive intracellular free radicals. Cyclosporine also has the effect of stabilizing the mitochondria. In addition, cyclosporine prevents the loss of the mitochondrial proton gradient, thereby preserving the production of vital energy (ATP).
  • ATP vital energy
  • cyclosporine prevents the appearance of the mitochondrial permeability transition phenomenon preventing the release of proteins such as Apoptosis Inducing Factor (AIF), cytochrome c and procaspase 9 which, when present in the cytosol, induces the cascade of caspases and other lethal pathways leading to neuronal cell death (Bernardi, 1996; Bernardi et al., 1998).
  • AIF Apoptosis Inducing Factor
  • cytochrome c cytochrome c
  • procaspase 9 proteins
  • cyclosporine is neuroprotective thanks to an influence on the transcription of nerve cell genes, for example by affecting the transcription of the “brain-derived neurotrophic factor” (BDNF) gene (Miyata et al., 2001).
  • cyclosporin This combination of neural effects gives cyclosporin its powerful neuroprotective action in a large number of neurological diseases which may include, but not be limited to, brain damage resulting from trauma, concussion, infection, radiation and neurodegenerative diseases, as described below.
  • Brain trauma includes damage caused by acceleration or deceleration phenomena, sectioning of an axon, and both visible and invisible damage to the brain parenchyma and vessels. The initial damage is followed by a cascade of events that extend brain damage day after day. Traumatic brain injury can result in concussion, amnesia, lethargy, personality changes, loss of sensorimotor, cognitive, memory function and poor concentration, coma or death.
  • the trauma of forceps birth can cause bruising and elongation of the brachial plexus.
  • Neurosurgical procedures or brain surgery damage the healthy brain through pressure, section, direct trauma, axotomy and ischemia.
  • Some neurosurgical procedures include craniotomy and trephine, as well as the cavities pierced through the skull in order to perform a lobectomy, resection of brain tissue, biopsy, tumor resection, clipping of an aneurysm, removal of a vascular malformation, reconstructions and trauma.
  • Brain neurosurgical implants include ventricular or cerebrospinal shunts and devices to access pumps or reservoirs, subarachnoid or intracerebral intraparenchymal pressure devices, cerebral temperature or oxygen dialysis devices, deep electrodes, grids cortices, cyberneural electrodes, electronic chips or computer interfaces or implants, fetal scalp monitors, deep brain stimulators and intracerebral transplants of artificial and neurons or cell production factors or vectors viral.
  • Implants and prostheses include the retina, optic nerve, brainstem, thalamic or occipital cortex, cochlear, vestibular implants, auditory nerve, brainstem, and thalamic or temporal lobe implants, and implants or cortical grids and prosthetic devices, spinal systems and other sensorimotor systems.
  • Neurosurgery and orthopedic spinal surgeries can damage the spinal cord by compression, pressure, elongation, laceration, contusion, section, axotomy, hemorrhage, and ischemia.
  • the procedures include discectomy, fusion, laminectomy, instrumentation and cervical, thoracic or lumbar reconstruction, for herniated discs, strictures, tumors, infections, vascular malformations, fractures and bone dislocations, as well that malformations, growth and scoliosis of bones and soft tissues.
  • Spinal implants include catheters, pumps, spinal cord stimulators and cyberneural devices, as do biological transplants including fetal cells, stem cells and manipulated cells or viral vectors.
  • Stroke includes focal ischemic stroke, global ischemic stroke, and hemorrhagic stroke. Cerebral embolism blocks all or almost all of the blood flow to a specific region of the brain. The loss of oxygen and nutrients quickly causes neurons to lose their hemostasis, and the latter die. The cells in the penumbra zone around the embolism zone, and the cells re-perfused in the ischemic penumbra and the nucleus, can be saved by a neuroprotective molecule.
  • the global ischemic stroke occurs during a period of reduced blood or oxygen supply to the entire brain. Certain cells are more favorable to global ischemia, more particularly the hippocampal neurons associated with memory and certain cortical neurons.
  • Hemorrhagic stroke is an infiltration of blood into the brain, or spaces of cerebrospinal fluid from arteries, veins, aneurysm or vascular malformations.
  • the damage is caused by direct pressure on the brain, causing local brain damage and trauma, ischemia, spasm of a vessel and the production of toxic blood breakdown products.
  • the embolic stroke may be spontaneous, may be of cardiac, septic, atheromatous, tumor, having as source lipids, marrow and air. It is known that the embolism comes from variable procedures including the deviation of the coronary artery, the carotid endarterectomy, the angiography, the coronary angioplasty, the coronary, carotid and vertebral procedures including the stenting.
  • the global stroke is an ischemia of the entire brain and can result from cardiac arrest, drowning, asphyxia, shock, hypotension, spasm of a vessel , arrhythmia, electromechanical dissociation of the heart, asthma attack, hypotension caused by surgery, blood loss, anaphylaxis and neonatal asphyxia.
  • Hemorrhagic strokes include hypertensive hemorrhage, congenital angiopathy, premature intracerebroventricular hemorrhage, ruptured aneurysm and vessel spasm and arteriovenous malformations and other vascular malformations. This also includes venous sinus thrombosis or cortical drainage vein thrombosis causing venous infarction, heat shock and pressure trauma or decompression sickness and increased intracranial pressure.
  • Metabolic disorders including hepatic and uremic encephalopathies.
  • Metabolic disorders can disturb brain function and structure temporarily or permanently. These include epileptic states, diabetic coma (hypoglycemic or hyperosmolar), eclampsia, pre-eclampsia, hepatic encephalopathy, uremic encephalopathy and kernicerus or jaundice of the newborn. - Toxins. Neurotoxins and toxins damage or disrupt either specific neuron populations, or the whole brain.
  • aminoglycosides include aminoglycosides, chlorinated hydrocarbons, organophosphates, insecticides, herbicides, paraquat, Agent Orange, innervating gases, MPTP, rotenone, cyanide, carbon monoxide, methanol, l ethanol, mercury, arsenic and chemotherapeutic agents including methotrexate, mercaptopurine, fluoroacil, nitrosureas, hydroxyurea, cisplatinum, carboplatinum, daunorubicin, doxorubicin, ectoposide, vincristine, vinblastine, taxol and its derivatives, cyclophosphamide, and corticosteroids.
  • - Viruses, bacteria, prions and infectious agents include methotrexate, mercaptopurine, fluoroacil, nitrosureas, hydroxyurea, cisplatinum, carboplatinum, daunorubicin, doxor
  • Viruses, bacteria, prions and infectious agents can cause mild or severe damage to the whole brain, or to specific parts of it. Examples are herpes encephalitis which mainly affects the temporal lobes and the polio virus which affects only the spinal motor neurons. Other infectious agents that damage or destroy the brain are herpes zos ter, rabies virus, HIV (causing AIDS dementia, AIDS myelopathy, AIDS neuropathy, tropical paraparesis), prion diseases like typical and atypical Creutzfelt-Jacob disease, Kuru, scrapie and bovine spongiform encephalopathy.
  • viral encephalias and meningitis such as Equine, Japanese, Dengue, Nile meningitis, measles and multifocal progressive post-vaccination leukoencephalopathy (JC virus) and sclerosing subacute panencephalitis (measles reactivation virus) .
  • infectious agents affecting brains include malaria, Lyme disease and neurosyphilis.
  • Ionizing radiation produces free radicals and directly damages DNA. These also kill cells, including neurons. Rapidly dividing cells, such as tumor cells, are more vulnerable, but the level of radiation that can be tolerated by the brain or the spine is limited by the lethal effect on neurons.
  • Radioactive isotopes Medical radiation is administered via a linear accelerator, cobalt residues or an implant of radioactive isotopes. Radiation or directed beams of radiation acting on the whole or part of the brain destroy the neurons causing dementia, and induce necrosis of the healthy brain. The protection of healthy neurons makes it possible to inflict stronger radiation on tumors or vascular malformations, which results in a better percentage of healing, and reduces complications in the healthy brain.
  • Radiation of various origins including nuclear reactors, disassembly of nuclear devices, from direct exposure to nuclear radiation, or contaminated residues can kill neurons and damage the brain.
  • neuronal cell death is induced by abnormal toxic proteins such as amyloid beta, or tau, presenilin, alpha-nucleuclein, huntingtin, or abnormal SOD.
  • abnormal toxic proteins such as amyloid beta, or tau, presenilin, alpha-nucleuclein, huntingtin, or abnormal SOD.
  • Neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, Huntington's disease, Down syndrome, Charcot's disease, spinal muscular atrophy, bulbar paralysis, schizophrenia, Tourette's syndrome, diffuse cortical atrophy of the brain, dementia with Lewy bodies, mesolimbocortical dementia, thalamic degeneration, Pick's disease, ultisystem atrophy, cortico-striato-spinal degeneration, Shy-Drager syndrome, Richardson syndrome Steele-Olzewski, the Prakinson-ALS-Guam Dementia complex, postpolio syndrome, olivocerebellar atrophy, Friedreich's ataxia, aneoplastic tick syndrome, chronic traumatic encephalopathy (pugilistic dementia), Ilson disease, Menke's disease, Tay-Sachs gangliosidosis and Krabbe's disease, peripheral neuropathy, diabetic neuropathy and aging.
  • Chronic neurological diseases suspected of being immune in nature include multiple sclerosis, Guillain-Barré syndrome,
  • Visual structures are part of the brain. These include the retina, the optic nerve, the chiasma and the tract, but also projections to the brainstem, the thalamus and the occipital cortex.
  • the retina and optic nerve neurons are vulnerable to trauma, ischemia, pressure, radiation, photons, metabolic disorders, and neurodegeneration. Under certain conditions including the glaucoma, ischemia of the optic nerve, macular degeneration, retinitis, optic neuritis, retinal detachment, retinal hemorrhage, radiation-induced blindness, methanol blindness, trauma and increased trauma intracranial pressure.
  • the blood-brain barrier is made up of endothelial cells which, in different ways, form an obstacle to the molecules that try to cross them. First of all, they form a physical barrier consisting of tight junctions connected to each other and preventing any passage via the paracellular route, at least while the endocytosis activity on site is weak. All of this contributes to greatly limiting the passage of plasma molecules to the extracellular brain space.
  • ATP-dependent transport systems within the cerebral capillary endothelium which actively exclude lipophilic drugs such as cyclosporin from the brain.
  • the P-glycoprotein a transport system, has been identified as an active exporter of cyclosporine outside the cerebral capillary endothelium, and represents an important part of blocking the blood-brain barrier with regard to entry of cyclosporine into the brain (Sakata et al., 1994; Tsuji et al.; 1993).
  • peptide vectors for example linear peptides derived from natural peptides such as Protégrine and Tachyplésine (Kokryakov et al., 1993; Tamura et al., 1993 ) transport active molecules across the blood-brain barrier.
  • Protégrine and Tachyplésine are natural peptides with a hairpin-like structure formed by disulfide bridges. These bridges play an important role in the cytolytic activity observed in human cells.
  • the present invention provides methods for the transport of cyclosporine across the blood-brain barrier (BBB) using peptide vectors to do this.
  • BBB blood-brain barrier
  • the invention relates first of all to compounds which comprise at least one cyclosporine molecule and at least one peptide vector capable of transporting said molecules across the blood-brain barrier.
  • the molecules of cyclosporine, and more particularly of cyclosporine A are described above.
  • the invention considers cyclosporine and its derivatives as having a similar biological effect but which, as such, do not make it possible to cross the blood-brain barrier.
  • the peptide vector capable of transporting the cyclosporine molecule across the blood-brain barrier is a linear peptide derived from the families Protégrine and Tachyplésine.
  • peptide derived from the Protégrine family is meant any peptide corresponding to the following formula I:
  • BX (X OR B) BXXXXBBBXXXXXXB (I) and by peptide derived from the Tachyplesin family means any peptide corresponding to the following formula II:
  • the groups B which are identical or different, represent a residue of an amino acid whose side chain carries a basic group
  • the groups X which are identical or different, represent a residue of an aliphatic or aromatic amino acid, or said peptides of formula (I) or (II), in their retro form, formed from amino acids having a configuration D and / or L, or a fragment formed from a sequence of at least 5 and preferably 7 successive amino acids of the peptides having the formula (I) or (II).
  • peptide derived from the Protégrine family is meant any peptide corresponding to the following formula I:
  • BX (X OR B) BXXXXBBBXXXXXXB (I) and by peptide derived from the Tachyplesin family means any peptide corresponding to the following formula II: BXXXBXXXBXXXXBBXB (II), in which :
  • - B is chosen from arginine, lysine, diaminoacetic acid, diaminobutiric acid, diaminopropionic acid, ornithine.
  • - X is chosen from glycine, alanine, valine, norleucine, isoleucine, leucine, cysteine, mAb cysteine, penicillamine, methionine, serine, threonine, asparagine, glutamine , phenylalanine, histidine, tryptophan, tyrosine, proline, amino-butyric acid (Abu), amino-1- cyclohexane carboxylic acid, amino-isobutyric acid (Aib), carboxylic 2 -aminotetralin, 4-bromophenylalanine, tert-Leucine, 4-chlorophenylalanine, beta-cyclohexylalanine, 3, 4-dichlorophenylalanine, 4- f l
  • the cyclosporine molecule can be linked directly or indirectly to the peptide vector at its N-terminal or C-terminal end or by one of its side chains.
  • the cyclosporine molecule can be linked directly or indirectly to the peptide vector via a functional group which is naturally present or inserted either in the vector or in the molecule, or in both.
  • Functional groups such as —OH, -SH, - COOH, -C (O) H, -C (O) -, -NH 2 may be present naturally or may be inserted into the vector or into the cyclosporine molecule or into both.
  • the coupling between the peptide vector and the cyclosporine molecule can be carried out using any acceptable coupling method taking into account the chemical nature of both the vector and the cyclosporine.
  • the bond between the cyclosporine molecule and the peptide vector can be chosen from the groups comprising a covalent bond, a hydrophobic bond, an ionic bond, a linker which is cleavable or non-cleavable in physiological medium or inside cells. If the coupling is carried out indirectly, a linker is preferably used.
  • linking agent which can be used coming within the scope of our invention, we can mention bi- or multifunctional agents containing an alkyl, aryl, alkylaryl or peptide groups, esters, amides, amines, alkyl or aryl or alkylaryl aldehydes or acids, anhydrides, sulfhydriles or carboxyl groups such as derivatives of maleymil benzoic acid, maleymil propionic acid and succinimidyl derivatives, groups derived from bromide or cyanogen chloride, carbonyldiimidazole, esters, phosgene, esters of succinimide or sulfonic acid halides.
  • a specific group of linkers comprises the structure having the following formulas:
  • R ⁇ is H, OR 6 , N (R 6 ) R 7 , an alkyl, an aryl, an alkylaryl, an acyl or an allyl,
  • R 2 and R 3 are alkyls, at least one of which is branched by one or two or a combination of alkyl, aryl, alkylaryl, acyl, allyl) or any other branched alkyl which may carry heteroatomic groups,
  • R 4 , R 5 and R 8 are, independently, linear (CH 2 ) n or branched alkyls with one or two or a combination of alkyl, aryl, alkylaryl, acyl, allyl or any other branched alkyl which may carry heteroatomic groups ,
  • R 6 and R 7 are, independently H, an alkyl, an aryl, an alkylaryl, an acyl or an allyl
  • Hyp-0 represents a hydroxyproline residue where the hydroxy group is in position 2, or 3, or 4 of proline, the binding to the rest of the linking arm being carried out by means of the oxygen of the hydroxy group of the hydroxyproline
  • the asymmetric carbons present in the groups R 1 R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 or Hyp-0 can be of R or S configuration.
  • the present invention also relates to the linking agents (or linkers) as described above, whatever the active substance and whatever the vector that said linker is capable of coupling together, and this, indirectly. Consequently, the present invention relates to a binding agent corresponding to one of the following formulas: -C (0) -R 4 -NR 1 -C (0) - (CH 2 ) n -NH- (CH 2 ) m -C (0) - (III) -C (O) -R 4 -NR X -C (O) -R 2 -NH-R 3 -C (O) - (IV) -C (0) -R i -m> 1 -E ⁇ p-0- C (0) -R 5 -C (0) - (V) -C (O) -R.-NR j -C (O) -CH (NH 2 ) -R 5 -0-C (O) -R 8 -C (O) - (VI) -C (O
  • R x is H, OR 6 , N (R 6 ) R 7 , an alkyl, an aryl, an alkylaryl, an acyl or an allyl,
  • R 2 and R 3 are alkyls, at least one of which is branched by one or two or a combination of alkyl, aryl, alkylaryl, acyl, allyl) or any other branched alkyl which may carry heteroatomic groups,
  • R 4 , R 5 and R 8 are, independently, linear (CH 2 ) n or branched alkyls with one or two or a combination of alkyl, aryl, alkylaryl, acyl, allyl or any other branched alkyl which may carry heteroatomic groups ,
  • R 6 and R 7 are, independently H, an alkyl, an aryl, an alkylaryl, an acyl or an allyl,
  • Hyp-0 represents a hydroxyproline residue where the hydroxy group is in position 2, or 3, or 4 of proline, the binding to the rest of the binding arm being made via the oxygen of the hydroxy group of
  • the asymmetric carbons present in the groups R lr R 2 , R 3 , R 4 , R 5 , R 6 R 7 , R 8 or Hyp-0 can be of configuration R or S.
  • Linkers involving at least one disulfide bridge are preferred because of their stability in plasma after injection of the compound. Once the compounds are subject to the invention passed through the blood brain barrier, said disulfide bridge is reduced, releasing the active cyclosporine molecule.
  • the coupling can be carried out at any site of the peptide vector or of the cyclosporine molecule.
  • a preferred embodiment of the invention relates to a compound consisting of a conjugate comprising a cyclosporin molecule, a peptide vector and a linker as defined above. Additional embodiments of the invention provide compounds comprising a cyclosporin molecule linked to multiple peptide vectors or to several cyclosporin molecules linked to a peptide vector. The invention mentions polymers of such compounds.
  • the invention also provides a pharmaceutical composition comprising at least one of the compounds mentioned above.
  • Another subject of the present invention is the use of the said compound for the creation of a pharmaceutical composition for the treatment or prevention of a disease chosen from the group comprising cerebral trauma, trauma medulla, cerebrovascular accident, Alzheimer's, Parkinson's, Huntington's, Charcot's diseases as well as diseases caused by neurological disorders, including but not limited to HIV dementia, multiple sclerosis, prion diseases and encephalopathies of infectious origin , toxic and metabolic.
  • a disease chosen from the group comprising cerebral trauma, trauma medulla, cerebrovascular accident, Alzheimer's, Parkinson's, Huntington's, Charcot's diseases as well as diseases caused by neurological disorders, including but not limited to HIV dementia, multiple sclerosis, prion diseases and encephalopathies of infectious origin , toxic and metabolic.
  • the pharmaceutical composition is in a form suitable for administration via any suitable route including the oral, sublingual, buccal, nasal, inhalation, parenteral route (including the intraperitoneal route, intratissular, subcutaneous, intradermal, intramuscular, intra-articular, venous (central, hepatic and peripheral), lymphatic, cardiac, arterial, including a selective or supraselective arterial cerebral pathway, retrograde perfusion through the cerebral venous system, via a catheter in brain parenchyma or ventricles), direct or pressurized exposure to or through the brain or spinal tissue, or any of the cerebrospinal fluid, ventricles, subarachnoid injections, cisternal, subdural brain spaces or epidural, via the cerebral ventricles or a lumbar puncture, an intra- and peri-ocular instillation including application by injection around the eye, inside the eyeball, in its structures and layers, as well as by enteral, intestinal, rectal, vaginal, urethral, or bladder bladder bladder bladder
  • the preferred route may vary depending on the patient's condition.
  • This invention includes the possibility of managing the duration and the sequence of delivery of the drug treatments to include a pre-treatment and a post-treatment, simultaneously with the treatment.
  • the cyclosporins vectorized according to the present invention are used in patients who require neuroprotection against neurological diseases of acute to chronic nature including stroke, cerebral hemorrhage, cerebral and spinal trauma, ionizing radiation, chemotherapy, neurotoxicity to structures vestibulocochlear, retinal takeoff and neurodegeneration including amyotrophic lateral sclerosis, Parkinson's and Alzheimer's disease.
  • Vectorized cyclosporins are used in patients who require both neuroprotection against a neurological disease and a state of central immunosuppression, such as in the case of neural transplantation, neural xenotransplantation, multiple sclerosis, HIV neuropathy, lupus erythematosus and Guillain-Barré syndrome.
  • Vectorized cyclosporins are used in patients requiring their non-immunity, as in the case of organ and tissue transplantation and autoimmune diseases such as rheumatoid arthritis.
  • Vectorized cyclosporins are used in patients requiring a state of non-immunity of the skin in the case of diseases such as psoriasis, eczema and alopecia.
  • another subject of the invention is a method for treating traumatic brain injuries, spinal cord injuries, strokes, Alzheimer's, Parkinson's, Huntington's, Charcot's diseases as well as Timely diseases due to neurological diseases including, but not limited to, HIV dementia, multiple sclerosis, prion diseases and encephalopathies of infectious, toxic and metabolic origin consisting in administering to a patient a pharmaceutical composition containing at least one vector compound formed of a cyclosporin molecule (the term "cyclosporins" as defined above) coupled to a peptide vector, said peptide vector being a derivative of the family of Protein or of the family of Tachyplesin.
  • cyclosporins the term "cyclosporins" as defined above
  • Figures 1 to 13 show reaction schemes for the preparation of a compound according to the invention comprising cyclosporin and different peptide vectors using different linkers.
  • FIG. 14 represents the concentration in the brain of products tested following an intravenous injection at 2 mg / kg (cyclosporine equivalent), the products tested being cyclosporine alone, cyclosporine linked to the peptide vector SynB3 by linker 1 and cyclosporine linked to the peptide vector SynBl by linker 1.
  • the sequences of the peptide vectors SynBl, SynB3 and of linker 1 are provided below.
  • FIG. 1 in the appendix which schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • R 4 is an alkyl group (CH 2 ) and R : is an alkylaryl (CH 2 Ph).
  • FIG. 2 schematically represents the chemical synthesis of a vectorized compound of cyclosporine. 1. Synthesis of the vector peptide and of (2-benzylamino-acetyl) -cyclosporin.
  • SynB3 L / D peptide of sequence RRLSYSrrrf (SEQ ID NO: 2) is identical to that of the peptide SynB3; the synthesis of (2-benzylaminoacetyl) -cyclosporin has been described previously.
  • FIG. 3 schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • FIG. 4 schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • Linker 4 is a linker of general formula VII as defined above in which R 4 , R 5 and R 8 are identical alkyl groups (CH 2 ) and Rj is an alkylaryl (CH 2 Ph).
  • Linker 5 is a general formula linker
  • R 4 and R 2 are identical linear alkyl groups (CH 2 ), R is an alkylaryl (CH 2 Ph) and R 3 is an alkyl group branched by two alkyls -C (CH 3 ) 2 .
  • FIG. 7 schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • Linker 6 is a linker of general formula IV as defined above in which R 4 and R 3 are identical linear alkyl groups (CH 2 ), R 1 is an alkylaryl (CH 2 Ph) and R 2 is a branched alkyl group with an alkyl -C (CH 3 ) 2 .
  • FIG. 8 schematically represents the chemical synthesis of a vectorized compound of cyclosporine. 1. Synthesis of the vector peptide and of (2-benzylamino-acetyl) -cyclosporin.
  • FIG. 9 schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • R 4 and R 2 are identical linear alkyl groups (CH 2 ), R ⁇ is an alkylaryl (CH 2 Ph) and R 3 is an alkyl group branched by an alkyl -CH (CH 3 ) .
  • FIG. 9 schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • the linker 10 is a linker of general formula VI as defined above in which R 4 and R 5 are identical linear alkyl groups (CH 2 ), R 8 is a linear alkyl group (CH 2 ) 2 , R x is an alkylaryl (CH 2 Ph).
  • FIG. 11 schematically represents the chemical synthesis of a vectorized compound of cyclosporine. 1. Synthesis of the vector peptide and of (2-benzylamino-acetyl) -cyclosporin.
  • the linker 11 is a linker of general formula V as defined above in which R 4 is a linear alkyl group (CH 2 ), R 5 is a linear alkyl group (CH 2 ) 2 and R x is an alkylaryl (CH 2 Ph ).
  • FIG. 12 schematically represents the chemical structure of the vectorized compound of cyclosporine.
  • FIG. 12 schematically represents the chemical structure of the vectorized compound of cyclosporine.
  • Linkers 12 to 14 are stereoisomers of linker 11 described above.
  • FIG. 9 schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • FIG. 13 schematically represents the chemical synthesis of a vectorized compound of cyclosporine.
  • the CsA (100 mg - 83.2 ⁇ mol) is dissolved in 16 ml of a 20% phosgene solution in toluene and the mixture is stirred at room temperature for 4 days.
  • the reaction medium is concentrated on a rotary evaporator and then the solid residue is dissolved in 2 ml of DMF.
  • the peptide derivative Cya-MP-SynB3 is added (0.81 eq. - 152 mg - 68 ⁇ mol), DIEA (1.4 eq. -20 ⁇ l - 116 ⁇ mol) and stirred at room temperature for 3 h.
  • Linker 15 is a phosgene derivative with an alkyl group including a disulfide bridge.
  • the conjugates tested release cyclosporin A with rates which differ depending on the linker present in the conjugate.
  • the choice of the linker therefore allows to modulate the rate of release of cyclosporin A in an aqueous buffer close to a biological medium.
  • mice (20-25 g, Iffa-Credo; l'Arbresle, France) are anesthetized.
  • the right external carotid artery is linked to the level of bifurcation with the internal carotid artery and the common carotid artery is linked between the heart and the catheter implantation site (polyethylene catheter, ID: 0.76).
  • This, previously filled with a heparin solution (100 units / ml) is inserted into the common carotid.
  • mice are perfused with the perfusion buffer (128 mM NaCl, 24 mM NaHC0 3 , 4.2 mM KC1, 2.4 mM NaH 2 P0 4 , 1.5 mM CaCl 2 , 0.9 mM MgS0 4 , and 9 mM D-glucose).
  • This buffer is filtered and then bubble by a mixture containing 95% 0 2 /5% C0 2 in order to maintain the pH close to 7.4 and to supply the brain with oxygen during the infusion.
  • the mice are perfused with the buffer containing free cyclosporin A or vectorized cyclosporin A. Cyclosporin A is labeled with 3H tritium (specific activity 20 Ci / mol).
  • the heart is stopped by section of the ventricles, in order to avoid reflux of the perf perf during the infusion.
  • the right hemisphere is then perfused at a rate of 2.5 ml / min for 60 seconds after which the mouse is decapitated.
  • the amount of radioactivity in the right hemisphere is then measured and the brain penetration (Kin) is calculated.
  • Free cyclosporin A and vectorized cyclosporin A are then infused into the mouse brain. After 60 seconds of infusion in the buffer, the penetration of the products is estimated by the influx constant or Kin in ⁇ l / sec / g.
  • Table 4 shows that the vectorization of cyclosporin A by the vectors increases its passage in the brain by approximately 2 to 4 times after a 60 second infusion in buffer.
  • SEM indicates the value of "standard error mean" and n indicates the number of animals tested.
  • the cerebral perfusion allows measurements over very short times.
  • Intravenous injection allows a global evaluation of pharmacokinetics in animals over long periods of time.
  • the radioactive molecule is introduced into the bloodstream and is distributed in the body. A certain quantity of this molecule enters the brain where its concentration is measured at determined times.
  • mice are injected intravenously with the compound at a dose of 0.7 mg / kg (equivalent to Cyclosporine A). Cyclosporine A is labeled with tritium (specific activity 20 Ci / mol).
  • mice After 5.30 and 120 minutes, the mice are sacrificed. We used 3 mice per time. The organs are then removed and counted. The amount of radioactivity in each organ is then expressed in amount of product (cyclosporine equivalent) per gram of organ. The amounts of product measured in the brain are shown in Table 5 below.
  • mice are injected intravenously with the compound at a dose of 2 mg / kg (equivalent to Cyclosporin A). Cyclosporine A is labeled with tritium (specific activity 5 Ci / mol). The amounts of product measured in the brain are shown in Table 6 below.
  • Protegrins leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. Febs Let. 327, 231-236 Leventhal, L., Sortwell, C. E., Hanbury, R.,
  • Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807-15.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Neurosurgery (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention concerne un composé qui comprend au moins une molécule de cyclosporine et au moins un vecteur peptidique capable de transporter ladite molécule à travers la barrière hémato-encéphalique. L'invention concerne aussi l'utilisation dudit composé pour la préparation de compositions pharmaceutiques destinées notamment au traitement ou à la prévention de maladie du système nerveux central.

Description

COMPOSES, COMPOSITIONS ET METHODE POUR LE TRANSPORT DES MOLECULES DE CYCLOSPORINE A TRAVERS LA BARRIERE HEMATO-ENCEPHALIQUE
DOMAINE DE L'INVENTION
La présente invention se rapporte à l'utilisation de peptides vecteurs pour le transport des molécules de Cyclosporine à travers la barrière hématoencéphalique (BHE) ainsi qu'à l'utilisation desdits composés pour la préparation de médicaments utiles pour les maladies cérébrales comprenant les traumatis es cérébraux, les dommages de la moelle épinière, l'accident vasculaire cérébral, et les maladies neurodégénératives incluant la maladie d'Alzheimer, de Par inson, de Huntington et de Charcot (sclérose amyotrophique latérale) aussi bien que les scléroses multiples.
LA CYCLOSPORINE.
La cyclosporine A est un médicament immunosuppresseur. Le traitement médical décrit ci-dessous a déjà été décrit, dans le Brevet Américain No. 4,117,118 et de nombreux autres, qui relatent sa production, sa formulation et ses propriétés immunosuppressives.
La cyclosporine A est produite par le champignon Tolypocladium Inflation Gams . C'est un poly- aminoacide cyclique, constitué de 11 acides aminés. L'un de ces acides aminés, un β-hydroxyaminoacide appelé butényl- méthyl-thréonine (MeBmt) existe uniquement dans la cyclosporine A. Le poids moléculaire est de 1202,6 et la composition chimique est C 62.H1,,11N11012
La molécule est hautement lipophile, et donc peu soluble dans l'eau. Le médicament est transporté dans le sang pour 58% à l'intérieur des hématies, pour approximativement 10-20% dans les leucocytes, et 33% se lie aux protéines plasmatiques. Dans le plasma, la cyclosporine A est liée aux lipoprotéines de haut poids moléculaire (HDL), de faible poids moléculaire (LDL), très faible poids moléculaire (VHDL) et une petite fraction à l'albumine. Une très petite fraction est libre dans le plasma. La molécule est métabolisée, principalement dans le foie par le cytochrome P450. Il existe au moins 40 métabolites connus de la cyclosporine A, avec diverses modifications chimiques, comme des hydroxylations, des déméthylations, des oxydations et des formations d'époxide. il existe de nombreux variants de la cyclosporine A, différant par exemple par un acide aminé, qui ont des propriétés pharmacologiques similaires. Normalement, la cyclosporine A ainsi que la plupart de ses métabolites ne passent pas la barrière hémato-encéphalique (Begley et al., 1990 ; Lensmeyer et al., 1991). Quand le transporteur glycoprotéine—P est inactif ou que la barrière hématoencéphalique est rompue, la cyclosporine peut passer à travers et entrer en contact avec les neurones. Plusieurs analogues de la cyclosporine peuvent facilement traverser la barrière hémato-encéphalique. Plusieurs analogues de la cyclosporine ne sont pas immunosuppresseurs. Il y a un sous-ensemble d'analogues de la cyclosporine qui peuvent à la fois passer facilement la barrière hémato-encéphalique et qui ne sont pas immunosuppresseurs. Le transporteur glycoprotéine-P est apparenté au MDR ou « résistance multi-drogues ». On trouve la protéine MDR dans diverses cellules tumorales et elle est responsable du transport actif vers l'extérieur d'autres médicaments chimiothérapeutiques efficaces. La présence du MDR confère aux cellules tumorales la résistance à ces médicaments chimiothérapeutiques et empêche l'effet antitumoral recherché. La cyclosporine est un inhibiteur du MDR, et permet aux molécules thérapeutiques de pénétrer dans les cellules tumorales, provoquant un meilleur effet anti-tumoral. La famille des cyclosporines comprend les cyclosporines A à Z, incluant la cyclosporine C, la cyclosporine D, la cyclosporine G et la cyclosporine 0. Certains des métabolites connus de la cyclosporine A comprennent : (selon la nomenclature « Hawk's Cay ») AMI, AM9, AMlc, AM4N, AM19, AMlc9, AMlc4N9, AM1A, AM1A4N, AMlAc, AM1AL, AMlld, AM69, AM4N9 , AM14N, AM14N9, AM4N69, AM99N, Dihydro-CsA, Dihydro-CsC, Dihydro-CsD, Dihydro-CsG, M17, AMlc-GLC, conjugué sulphate de cyclosporine, BHlla, BH15a, B, G, E, 0 (et venant se chevaucher avec la nomenclature de Hawk's ci-dessus, selon la nomenclature de Maurer) Ml, M2, M3, M4, M5, M6, M7 , M8, M9 , M10, Mil, M12, M13, M14, M15, M16, M17, M18, M19, M20, M21, M22, M23, M24, M25, M26, MUNDFl and MeBMT. Certains métabolites de la cyclosporine G comprennent GMl, GM9, GM4N, GMlc, GMlc9, et GM19. Les cyclosporines modifiées incluent les analogues d'acides aminés modifiés en C-9, les analogues d'acides aminés modifiés en position 8, les analogues modifiés en position 6 contenant des résidus MeAla ou MeAbu, et SDZ-209-313, SDZ-205-549, SDZ-033-243, et SDZ-PCS-833. D'autres cyclosporines modifiées comprennent des variants partiellement et complètement deutérés ou tritiés, de même que d'autres isotopes substitués comprennent le carbone, l'azote et l'oxygène. On inclut des cyclosporines rendues solubles par l'addition de phosphate ou d'autres groupes hydrophiles.
On désignera ci-après par les termes cyclosporine ou cyclosporines cette famille entière de cyclosporines comme décrite ci-dessus, incluant la cyclosporine A, tous les dérivés de cyclosporine, variants, variants en acides aminés, isotopes, métabolites, comprenant des dérivés mono-, di- et trihydroxylés, N- déméthylés, aldéhydes, carboxyles, conjugués, sulphates, glucuronides, phosphates, cyclisations intramoléculaire et les variants ne comportant pas de structure cyclique tout comme les peptides plus courts et les acides aminés et leurs dérivés et sels avec ou sans propriétés immunosuppressives capables ou non de traverser la barrière hémato-encéphalique. Les cyclosporines sont hautement lipophiles et généralement peu solubles dans l'eau. Elles nécessitent en général un émulsifiant, comme le cremophore ou le Labrafil pour rester en phase aqueuse. Des réactions anaphylactiques et neurotoxiques ont été décrites après l'emploi de ces émulsifiants (notamment le cremophore, une huile de ricin éthylée). Le besoin d'une formulation améliorée qui aurait une meilleure solubilité dans l'eau et traverserait mieux la barrière hémato-encéphalique et ne serait ni anaphylactique ni neurotoxique est important.
LES MECANISMES D'ACTION DE LA CYCLOSPORINE EN
TANT QUE NEUROPROTECTEUR.
La cyclosporine s'est avérée être la molécule neuroprotectrice la plus efficace jamais trouvée pour un grand nombre de maladies neurologiques, comme l'indique le brevet américain 5,972.924 et de nombreux articles scientifiques (Borlongan et al . , 2000 ; Friberg et al . , 1998; Keep et al . , 2001; Leventhal et al . , 2000; Li et al . , 1997; Okonkwo et al . , 1999; Okonkwo and Povlishock, 1999; Petersen et al . , 2000; Scheff and Sullivan, 1999; Sullivan et al . , 2000a; Sullivan et al . , 2000b; Sullivan et al . , 1999; Uchino et al . , 1998; Uchino et al . , 1995; Yoshimoto and Siesjô, 1999). La cyclosporine est aussi utile dans le traitement de tumeurs cérébrales en tant que radioprotecteur neuronal sélectif autorisant des taux croissants de traitement et amenuisant les troubles psychologiques induits par les radiations, comme indiqué dans la demande de brevet PCT/US98/20040. On a suggéré que la cyclosporine limitait les dégâts cérébraux par de multiples mécanismes importants. La cyclosporine se lie et inhibe la cyclophiline, une peptidyl-prolyl isomérase qui est impliquée dans le repliement normal et anormal des protéines, et qui apparaît être impliquée dans la neuroprotection et la neurodégénération. Le complexe cyclosporine-cyclophiline inhibe à la fois l'activité phosphatase (Liu et al . , 1991) de la calcineurine (une phosphatase calcium-dépendante des radicaux sérine/thréonine des protéines bien connue), et prévient l'activation de cascades enzymatiques calcium-dépendantes potentiellement neurotoxiques. L'inhibition de la calcineurine bloque aussi l'oxyde nitrique synthase et la production d'oxyde nitrique, réduisant les radicaux libres intracellulaires destructeurs. La cyclosporine a aussi pour effet de stabiliser les mitochondries . En outre, la cyclosporine empêche la perte du gradient de protons mitochondrial, préservant ainsi la production d'énergie vitale (ATP). De plus, la cyclosporine empêche l'apparition du phénomène de transition de perméabilité mitochondriale prévenant le relargage de protéines telles que l'Apoptosis Inducing Factor (AIF), le cytochrome c et la procaspase 9 qui, lorsqu'elle est présente dans le cytosol, induit la cascade des caspases et des autres voies léthales menant à la mort cellulaire neuronale (Bernardi, 1996; Bernardi et al . , 1998). Enfin, la cyclosporine est neuroprotectrice grâce à une influence sur la transcription des gènes des cellules nerveuses, par exemple en affectant la transcription du gène « brain-derived neurotrophic factor » (BDNF) (Miyata et al., 2001). Cette combinaison d'effets neuronaux confère à la cyclosporine sa puissante action neuroprotectrice dans un grand nombre de maladies neurologiques pouvant inclure de manière non exhaustive les dégâts cérébraux issus d'un traumatisme, d'une commotion, d'une infection, de radiations et de maladies neurodégénératives, comme décrit ci-dessous. CYCLOSPORINE ET MALADIES NEURODEGENERATIVES. La cyclosporine est la molécule neuroprotectrice la plus efficace connue, même si elle est administrée à posteriori du traumatisme cérébral. La cyclosporine, via les voies décrites ci-dessus, prévient la mort neuronale induite par les dommages issus d'un traumatisme, d'une ischémie ou d'un déséquilibre métabolique, des toxines ou une neurodégénérescence. Les conditions dans lesquelles la cyclosporine est efficace sont inventoriées ci-dessous.
- Les trau atismes cérébraux et médullaires, comprenant les interventions neurochirurgicales .
Les traumatismes cérébraux comprennent les dommages causés par des phénomènes d'accélération ou de décélération, de section d'un axone, et les dommages à la fois visibles ou non visibles causés au parenchyme cérébral et aux vaisseaux. Le dégât initial est suivi par une cascade d'événements qui étendent les dommages cérébraux jours après jours. Les traumatismes cérébraux peuvent avoir pour conséquence une commotion, une amnésie, une léthargie, des changements de la personnalité, une perte des fonctions sensorimotrice, cognitive, mnésique et des déficits de concentration, le coma ou la mort.
Un traumatisme cérébral ou médullaire peut résulter d'un traumatisme par contusion ou par perforation comprenant les accidents de la route, la pratique de sports, les chutes, un coup, un projectile ou une balle, et de différentes sources d'énergie incluant l'électricité, la chaleur et l'onde de choc. Le traumatisme dû à la naissance par forceps peut causer des contusions cérébrales et l'élongation du plexus brachial.
Les procédés neurochirurgicaux ou la chirurgie cérébrale endommagent le cerveau sain par la pression, la section, le traumatisme direct, l'axotomie et l'ischémie. Certains procédés neurochirurgicaux incluent une craniotomie et tréphine, ainsi que les cavités percées à travers le crâne dans le but d'effectuer une lobectomie, une résection du tissus cérébral, une biopsie, une résection tumorale, le clippage d'un anévrisme, le retrait d'une malformation vasculaire, des reconstructions et des traumatismes. Les implants neurochirurgicaux cérébraux incluent des shunts ventriculaires ou cérébrospinaux et des appareils d'accès à des pompes ou des réservoirs, des dispositifs de pression subarachnoïde ou intraparenchymateuse intracérébrale, des dispositifs de dialyse cérébrale de température ou d'oxygène, des électrodes profondes, des grilles corticales, des électrodes cyberneurales, des puces électroniques ou des interfaces ou des implants d'ordinateur, des moniteurs de scalp fœtal, des stimulateurs profonds du cerveau et des transplantations intracérébrales de neurones et de neurones artificiels ou de facteurs de production cellulaire ou encore de vecteurs viraux. Les implants et les prothèses comprennent la rétine, le nerf optique, le tronc cérébral, le cortex thalamique ou occipital, des implants cochléaires, vestibulaires, du nerf auditif, du tronc cérébral, et des implants du lobe thalamique ou temporal, et des implants ou des grilles corticales et des appareils prosthétiques, des systèmes spinaux et autres systèmes sensorimoteurs .
La neurochirurgie et les chirurgies orthopédique spinale peuvent endommager la moelle épinière par compression, pression, élongation, lacération, contusion, section, axotomie, hémorragie, et ischémie. Les procédés incluent la discectomie, la fusion, la laminectomie, l'instrumentation et la reconstruction cervicale, thoracique ou lombaire, pour les hernies discales, les sténoses, les tumeurs, les infections, les malformations vasculaires, les fractures et les dislocations osseuses, ainsi que les malformations, la croissance et la scoliose des os et des tissus mous. Les implants spinaux incluent les cathéters, les pompes, les stimulateurs de la moelle épinière et les appareils cyberneuraux, tout comme les greffes biologiques incluant les cellules fœtales, les cellules souches et les cellules manipulées ou les vecteurs viraux.
- Accident vasculaire cérébral.
L'accident vasculaire cérébral inclut l'accident vasculaire cérébral ischémique focal, l'accident vasculaire cérébral ischémique global et l'accident vasculaire cérébral hémorragique. L'embolie cérébrale bloque la totalité ou la quasi-totalité du flux sanguin d'une région spécifique du cerveau. La perte d'oxygène et de nutriments cause rapidement aux neurones la perte de leur hémostase, et ces derniers meurent. Les cellules se trouvant dans la zone de pénombre autour de la zone d'embolie, et les cellules re-perfusées dans la pénombre ischémique et le noyau, peuvent être sauvées par une molécule neuroprotectrice. L'accident vasculaire cérébral ischémique global advient durant une période de réduction de l'apport de sang ou d'oxygène à la totalité du cerveau. Certaines cellules sont plus propices à l'ischémie globale, plus particulièrement les neurones de l'hippocampe associés à la mémoire et certains neurones corticaux.
L'accident vasculaire cérébral hémorragique est une infiltration de sang dans le cerveau, ou des espaces de fluide cérébro-spinal provenant des artères, des veines, des malformations de type anévrisme ou vasculaire. Le dommage est causé par une pression directe sur le cerveau, causant une lésion cérébrale locale et un traumatisme, une ischémie, le spasme d'un vaisseau et la fabrication de produits toxiques de décomposition de sang.
L'accident vasculaire cérébral embolique peut être spontané, peut être d'origine cardiaque, septique, athéromateux, tumoral, avoir comme source les lipides, la moelle et l'air. On sait que l'embolie provient de procédés variables incluant la déviation d'artère coronaire, 1 ' endarterectomie carotidienne , l'angiographie, l'angioplastie coronarienne, les procédés coronariens, carotidiens et vertébraux incluant le stenting.
L'accident vasculaire cérébral global est une ischémie de la totalité du cerveau et peut être issu d'un arrêt cardiaque, d'une noyade, d'une asphyxie, d'un choc, d'une hypotension, du spasme d'un vaisseau, d'une arythmie, d'une dissociation électromécanique cardiaque, d'une crise d'asthme, d'une hypotension causée par un acte de chirurgie, d'une perte de sang, d'une anaphylaxie et d'une asphyxie néonatale. Les accidents vasculaires cérébraux hémorragiques incluent une hémorragie hypertensive, une angiopathie congophile, une hémorragie intracérébroventriculaire de prématurité, une rupture d' anévrisme et le spasme de vaisseau et les malformations artérioveineuses et autres malformations vasculaires. Ceci inclut aussi la thrombose du sinus veineux ou une thrombose de la veine de drainage cortical causant un infarctus veineux, un choc thermique et un traumatisme dû à la pression ou une maladie due à la décompression et à l'augmentation de la pression intracrânienne.
- Les désordres métaboliques incluant les encéphalopathies hépatique et urémique.
Les désordres métaboliques peuvent troubler la fonction et la structure cérébrales de manière temporaire ou permanente. Ceux-ci incluent les états epileptiques, le coma diabétique (hypoglycémique ou hyperosmolaire) , l'éclampsie, la pré-écla psie, l'encéphalopathie hépatique, l'encéphalopathie urémique et le kernicerus ou l'ictère du nouveau-né. - Toxines. Les neurotoxines et les toxines endommagent ou désorganisent soit des populations de neurones spécifiques, ou le cerveau entier. Celles-ci comprennent les aminoglycosides , les hydrocarbures chlorés, les organophosphates, les insecticides, les herbicides, le paraquat, l'Agent Orange, les gaz innervant, le MPTP, la roténone, le cyanide, le monoxyde de carbone, le méthanol, l'éthanol, le mercure, l'arsenic et les agents chimiothérapeutiques incluant le méthotréxate, la mercaptopurine , le fluoroacil, les nitrosurées, 1 'hydroxyurée, le cisplatinum, le carboplatinum, la daunorubicine , la doxorubicine , l 'ectoposide , la vincristine, la vinblastine, le taxol et ses dérivés, le cyclophosphamide, et les corticostéroïdes. - Virus, bactéries, prions et agents infectieux.
Les virus, les bactéries, les prions et les agents infectieux peuvent causer des dommages légers ou sévères au cerveau entier, ou à des parties spécifiques de ce dernier. Les exemples en sont herpès encephalitis qui affecte surtout les lobes temporaux et le virus de la poliomyélite qui affecte seulement les neurones moteurs spinaux. D'autres agents infectieux qui endommagent ou détruisent le cerveau sont herpès zos ter , le virus rabbique, le VIH (causant la démence du SIDA, la myélopathie du SIDA, la neuropathie du SIDA, la paraparésie tropicale), les maladies à prion comme la maladie de Creutzfelt-Jacob typique et atypique, le Kuru, la scrapie et l'encéphalopathie bovine spongiforme. Pour exemples supplémentaires, nous avons les encéphalies virales et les méningites telles les méningites Equine, Japonaise, Dengue, Nile, la rougeole et la leukoencéphalopathie post- vaccinatoire progressive multifocale (virus JC) et la panencéphalite subaiguë sclérosante (virus de réactivation de la rougeole). D'autres agents infectieux affectant le cerveau incluent la malaria, la maladie de Lyme et la neurosyphilis .
- Irradiation du cerveau.
Les radiations ionisantes produisent des radicaux libres et endommagent l'ADN de manière directe. Celles-ci tuent aussi les cellules, dont les neurones. Les cellules à division rapide, telles que les cellules tumorales, sont plus vulnérables, mais le taux de radiation qui peut être toléré par le cerveau ou la colonne vertébrale est limité par l'effet létal sur les neurones.
Les radiations médicales sont administrées via un accélérateur linéaire, des résidus de cobalt ou un implant d'isotopes radioactifs. Les radiations ou les faisceaux orientés de radiations agissant sur la totalité ou partie du cerveau détruisent les neurones causant la démence, et induisent la nécrose du cerveau sain. La protection des neurones sains permet d'infliger de plus fortes radiations aux tumeurs ou aux malformations vasculaires, ce qui a pour résultat un meilleur pourcentage de guérison, et réduit les complications dans le cerveau sain.
Des radiations d'origines variées, incluant les réacteurs nucléaires, le désassemblage d'appareils nucléaire, provenant de l'exposition directe à un rayonnement nucléaire, ou de résidus contaminés peuvent tuer les neurones et endommager le cerveau.
Indications chroniques ; les maladies neurodégénératives .
On pense que dans beaucoup de maladies neurodégénératives, la mort cellulaire neuronale est induite par des protéines toxiques anormales telles que l'amyloïde bêta, ou tau, la preseniline, l'alpha- synucleine, le huntingtine ou le SOD anormal.
Ces protéines anormales détruisent des populations de neurones sélectionnées en induisant un stress métabolique et la production de radicaux libres. La mort cellulaire par neurodégénérescence advient via la voie mitochondriale finale commune. La cyclosporine empêche cette voie de mort mitochondriale finale commune et prévient la mort neuronale.
Les maladies neurodégénératives incluent la maladie d'Alzheimer, la maladie de Parkinson, la maladie de Huntington, le syndrome de Down, la maladie de Charcot, l'atrophie spinale musculaire, la paralysie bulbaire, la schizophrénie, le syndrome de Tourette, l'atrophie cérébrale corticale diffuse, la démence à corps de Lewy, la démence mésolimbocorticale, la dégénérescence thalamique, la maladie de Pick, l'atrophie ultisystème, la dégénérescence cortico-striato-spinale, le syndrome de Shy- Drager, le syndrome de Richardson-Steele-Olzewski, le complexe Prakinson-SLA-Démence de Guam, le syndrome postpolio, l'atrophie olivocérébelleuse , l'ataxie de Friedreich, le syndrome par anéoplas tique , l'encéphalopathie traumatique chronique (Démence pugilistique) , la maladie de ilson, la maladie de Menke, la gangliosidose Tay-Sachs et la maladie de Krabbe, la neuropathie périphérique, la neuropathie diabétique et le vieillissement. Les maladies neurologiques chroniques suspectées être de nature immune comprennent les scléroses multiples, le syndrome de Guillain-Barré, et le lupus éry thémateux .
- Vision.
Les structures visuelles font partie du cerveau. Celles-ci comprennent la rétine, le nerf optique, le chiasma et le tractus, mais aussi les projections au tronc cérébral, le thalamus et le cortex occipital. La rétine et les neurones du nerf optique sont vulnérables aux traumatismes, à l'ischémie, à la pression, aux radiations, aux photons , aux troubles métaboliques et à la neurodégénérescence. Sous certaines conditions incluant le glaucome, l'ischémie du nerf optique, la dégénérescence maculaire, les rétinites, les neurites optiques, le détachement rétinien, l'hémorragie rétinienne, la cécité provoquée par le rayonnement, la cécité due au méthanol, les traumatismes traumatiques et l'augmentation de pression intracrâniale .
LA BARRIERE HEMATO-ENCEPHALIQUE.
La barrière hémato-encéphalique est formée de cellules endothéliales qui, de différentes manières, forment un obstacle aux molécules qui tentent de les traverser. Tout d'abord, elles forment une barrière physique consistant en des jonctions serrées connectées les unes aux autres et prévenant tout passage via la voie paracellulaire, tout du moins pendant que l'activité d'endocytose sur place est faible. Tout cela contribue à limiter fortement le passage de molécules plasmatiques vers l'espace cérébral extracellulaire.
De plus, il existe des systèmes de transport ATP-dépendant à l'intérieur de l'endothélium capillaire cérébral qui exclut activement du cerveau les médicaments lipophiles tels que la cyclosporine. En particulier, la glycoprotéine-P, un système de transport, a été identifiée comme étant un exportateur actif de la cyclosporine hors de l'endothélium capillaire cérébral, et représente une part importante de blocage de la barrière hémato-encéphalique en ce qui concerne l'entrée de la cyclosporine dans le cerveau (Sakata et al . , 1994; Tsuji et al . ; 1993).
Ainsi, dans le cadre de ses travaux de recherche, la Demanderesse a démontré que des vecteurs peptidiques, par exemple des peptides linéaires dérivés de peptides naturels tels que la Protégrine et la Tachyplésine (Kokryakov et al . , 1993; Tamura et al . , 1993) transportent des molécules actives à travers la barrière hémato- encéphalique. La Protégrine et la Tachyplésine sont des peptides naturels avec une structure de type épingle à cheveux formée par des ponts disulfure. Ces ponts jouent un rôle important dans l'activité cytolytique observée dans les cellules humaines. La réduction irréversible de ces ponts rend possible le fait d'obtenir des peptides linéaires, non cytotoxiques , capables de traverser rapidement les membranes des cellules de mammifères par des moyens qui ne nécessitent pas d'utiliser un récepteur membranaire (Temsamani et al., 2000; 2001; Rousselle et al., 2000; 2001 a & b; Mazel et al., 2001).
Le travail et ses résultats concernant ces peptides linéaires et leur utilisation en tant que peptide vecteur pour le passage de molécules actives à travers la barrière hémato-encéphalique ont été décrits dans la demande de brevet français N° 98/15074 déposée le 30 Novembre 1998 et la demande de brevet français N° 99/02938 déposée le 26 Novembre 1999.
DESCRIPTION DE L'INVENTION La présente invention fournit des méthodes pour le transport de la cyclosporine à travers la barrière hémato-encéphalique (BHE) utilisant pour ce faire des vecteurs peptidiques. Ainsi, l'invention se rapporte tout d'abord à des composés qui comprennent au moins une molécule de cyclosporine et au moins un vecteur peptidique capable de transporter lesdites molécules à travers la barrière hémato-encéphalique .
Les molécules de cyclosporine, et plus particulièrement de cyclosporine A, sont décrites ci- dessus. Par l'intermédiaire d'un exemple non restrictif concernant le médicament, l'invention considère la cyclosporine et ses dérivés comme ayant un effet biologique similaire mais qui, tels quels, ne permettent pas de traverser la barrière hémato-encéphalique. Suivant un mode de réalisation préféré, le vecteur peptidique capable de transporter la molécule de cyclosporine à travers la barrière hémato-encéphalique est un peptide linéaire dérivé des familles Protégrine et Tachyplésine.
Par peptide dérivé de la famille Protégrine, on entend tout peptide correspondant à la formule I suivante :
BX(X OU B)BXXXXBBBXXXXXXB (I) et par peptide dérivé de la famille Tachyplésine on entend tout peptide correspondant à la formule II suivante :
BXXXBXXXBXXXXBBXB (II), dans lesquelles :
- les groupes B, identiques ou différents, représentent un résidu d'un acide aminé dont la chaîne latérale porte un groupement basique, et
- les groupes X, identiques ou différents, représentent un résidu d'un acide aminé aliphatique ou aromatique, ou lesdits peptides de formule (I) ou (II), dans leur forme rétro, formés des acides aminés ayant une configuration D et/ou L, ou un fragment formé d'une séquence d'au moins 5 et préférentiellement 7 acides aminés successifs des peptides ayant la formule (I) ou (II).
Dans une seconde forme de mise en œuvre de la présente invention, par peptide dérivé de la famille Protégrine, on entend tout peptide correspondant à la formule I suivante :
BX(X OU B)BXXXXBBBXXXXXXB (I) et par peptide dérivé de la famille Tachyplésine on entend tout peptide correspondant à la formule II suivante : BXXXBXXXBXXXXBBXB (II), dans lesquelles :
- B est choisi parmi l'arginine, la lysine, l'acide diaminoacétique, l'acide diaminobutirique, l'acide diaminopropionique, l'ornithine. - X est choisi parmi la glycine, l'alanine, la valine, la norleucine, 1 ' isoleucine , la leucine, la cystéine, la Acmcystéine, la pénicillamine, la méthionine, la serine, la thréonine, l'asparagine, la glutamine, la phénylalanine, l'histidine, le tryptophane, la tyrosine, la proline, l'acide amino-butyrique (Abu), l'acide amino-1- cyclohexane carboxylique, l'acide amino-isobutyrique (Aib), le carboxylic 2-aminotétraline, le 4-bromophénylalanine, la tert-Leucine, la 4-chlorophénylalanine , la beta- cyclohexylalanine, la 3, 4-dichlorophénylalanine, la 4- f luorophenylalanine, l 'homoleucine, la beta-homoleucine, 1 ' omophényalanine , la 4-methylphénylalanine, la 1-naphtyl- alanine, la 2-naphtylalanine, la 4-nitrophenylalanine, la 3-nitrotyrosine, la norvaline, la phenylglycine, la 3- pyridylalanine, la [2-thienyl]alanine, ou lesdits peptides de formule (I) ou (II), dans leur forme rétro, formés des acides aminés ayant une configuration D et/ou L, ou un fragment formé d'une séquence d'au moins 5 et préférentiellement 7 acides aminés successifs des peptides ayant la formule (I) ou (II).
La molécule de cyclosporine peut être liée directement ou indirectement au vecteur peptidique en son extrémité N-terminale ou C-terminale ou par l'une de ses chaînes latérales. La molécule de cyclosporine peut être liée directement ou indirectement au vecteur peptidique par l'intermédiaire d'un groupe fonctionnel qui est présent naturellement ou inséré soit dans le vecteur soit dans la molécule, ou dans les deux. Les groupes fonctionnels tels que —OH, -SH, - COOH, -C(0)H, -C(O)-, -NH2 peuvent être présents naturellement ou peuvent être insérés dans le vecteur ou dans la molécule de cyclosporine ou dans les deux. Le couplage entre le vecteur peptidique et la molécule de cyclosporine peut être effectué en utilisant toute méthode de couplage acceptable en tenant compte de la nature chimique à la fois du vecteur et de la cyclosporine. Ainsi la liaison entre la molécule de cyclosporine et le vecteur peptidique peut être choisie parmi les groupes comprenant une liaison covalente, une liaison hydrophobe, une liaison ionique, un linker qui est clivable ou non clivable en milieu physiologique ou à l'intérieur des cellules. Si le couplage est conduit de manière indirecte, un linker (agent de liaison) est utilisé avantageusement. Comme exemples non exhaustifs d'agent de liaison pouvant être utilisés entrant dans la portée de notre invention, nous pouvons mentionner les agents bi- ou multifonctionnels contenant un alkyl, aryl, alkylaryl ou des groupes peptidiques, esters, amides, aminés, alkyl ou aryl ou alkylaryl aldéhydes ou acides, anhydrides, sulfhydriles ou des groupes carboxyles tels que les dérivés d' acide maleymil benzoique, d'acide maleymil propionique et les dérivés succinimidyles, groupes dérivés de bromure ou chlorure de cyanogène, carbonyldiimidazole, esters, phosgène, esters de succinimide ou halogénures d'acides sulfoniques.
Un groupe spécifique de linkers comprend la structure ayant les formules suivantes :
-C(0)-R4-NR1-C(0)-(CH2)n-NH-(CH2)m-C(0)- (III) -C(0)- 4-NR!-C(O) -R2-NH-R3-C(0)- ( IV) -CfOÎ-R^NR^Hyp-O-CfOÏ-Rs-C O)- (V) -C ( 0) -R4-NR!-C ( O ) -CH (NH2 ) -R5-0-C ( 0 ) -R8-C ( 0 ) - (VI ) -C(0)-R4-NR1-C(0)-R5-NH-0-R8-C(0)- (VII) -C(0)-R4-NR1-C(0)-R5-0-NH-R8-C(0)- (VIII) -C (O) -R4-NR!-C (O) -R5-NR7-NR6-R8-C ( O) - ( IX) -C(0)-R4-NH-R5-C(0)- (X) dans lesquelles : n et m sont des entiers indépendants supérieurs ou égaux à 1,
Rλ est H, OR6, N(R6)R7, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl,
R2 et R3 sont des alkyls dont au moins un est ramifié par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl) ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques ,
R4, R5 et R8 sont, indépendamment, des alkyls linéaires (CH2)n ou ramifiés par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques ,
R6 et R7 sont, indépendamment H, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl, Hyp-0 représente un résidu hydroxyproline où le groupe hydroxy est en position 2, ou 3, ou 4 de la proline, la liaison au reste du bras de liaison se faisant par l'intermédiaire de l'oxygène du groupe hydroxy de 1 ' hydroxyproline, les carbones asymétriques présents dans les groupes Rl R2, R3, R4, R5, R6, R7, R8 ou Hyp-0 pouvant être de configuration R ou S.
La présente invention concerne également les agents de liaison (ou linkers) tels que décrits ci-dessus quelle que soit la substance active et quel que le vecteur que ledit linker est capable de coupler entre eux et ce, de façon indirecte. Par conséquent, la présente invention concerne un agent de liaison répondant à l'une des formules suivantes : -C(0)-R4-NR1-C(0)-(CH2)n-NH-(CH2)m-C(0)- (III) -C (O) -R4-NRX-C (O) -R2-NH-R3-C (O) - ( IV) -C ( 0) -Ri-m>1-Eγp-0-C (0) -R5-C ( 0) - (V) -C ( O) -R.-NRj-C ( O) -CH (NH2 ) -R5-0-C ( O) -R8-C ( O) - (VI ) -C ( O ) - 4-NR!-C ( O ) -R5-NH-0-R8-C ( O ) - (VII ) -C(0)-R4-NR1-C(0)-R5-0-NH-R8-C(0)- (VIII)
-C ( O ) -R.-NRj-C ( O ) -R5-NR7-NR6-R8-C ( O) - ( IX ) -C(0)-R4-NH-R5-C(0)- (X) dans lesquelles : n et m sont des entiers indépendants supérieurs ou égaux à 1,
Rx est H, OR6, N(R6)R7, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl,
R2 et R3 sont des alkyls dont au moins un est ramifié par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl) ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques,
R4, R5 et R8 sont, indépendamment, des alkyls linéaires (CH2)n ou ramifiés par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques ,
R6 et R7 sont, indépendamment H, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl,
Hyp-0 représente un résidu hydroxyproline où le groupe hydroxy est en position 2, ou 3, ou 4 de la proline, la liaison au reste du bras de liaison se faisant par l'intermédiaire de l'oxygène du groupe hydroxy de
1 ' hydroxyproline, les carbones asymétriques présents dans les groupes Rl r R2, R3, R4, R5, R6 R7, R8 ou Hyp-0 pouvant être de configuration R ou S.
On préfère les linkers impliquant au moins un pont disulfure en raison de leur stabilité dans le plasma après injection du composé. Une fois les composés objet de l'invention passés à travers la barrière hématoencéphalique, ledit pont disulfure est réduit, libérant la molécule de cyclosporine active. Le couplage peut être effectué à n'importe quel site du vecteur peptidique ou de la molécule de cyclosporine.
Ainsi, un mode de réalisation préféré de l'invention concerne un composé consistant en un conjugué comprenant une molécule de cyclosporine, un vecteur peptidique et un linker tel que défini ci-dessus. Des modes de réalisation additionnels de l'invention fournissent des composés comprenant une molécule de cyclosporine liée à plusieurs vecteurs peptidiques ou à plusieurs molécules de cyclosporine liées à un vecteur peptidique. L'invention mentionne des polymères de tels composés.
L'invention fournit aussi une composition pharmaceutique comprenant au moins un des composés cités ci-dessus.
Un autre sujet de la présente invention est l'utilisation dudit composé pour la création d'une composition pharmaceutique pour le traitement ou la prévention d'une maladie choisie dans le groupe comprenant le traumatisme cérébral, le traumatisme médulaire, l'accident vasculaire cérébral, les maladies d'Alzheimer, de Parkinson, de Huntington, de Charcot de même que les maladies ayant pour cause des désordres neurologiques incluant de manière non exhaustive la démence VIH, la sclérose en plaque, les maladies à prion et les encéphalopathies d'origine infectieuse, toxique et métabolique.
De manière préférentielle, la composition pharmaceutique est de forme appropriée pour l'administration via toute voie convenable incluant la voie orale, sublinguale, buccale, nasale, inhalation, parentérale (incluant la voie intrapéritonéale , intratissulaire, subcutanée, intradermale, intramusculaire, intra-articulaire, veineuse (centrale, hépatique et périphérique), lymphatique, cardiaque, artérielle, incluant une voie cérébrale artérielle sélective ou suprasélective, la perfusion rétrograde à travers le système veineux cérébral, via un cathéter dans le parenchyme cérébral ou les ventricules), l'exposition directe ou sous pression sur ou à travers le cerveau ou le tissu spinal, ou l'un quelconque du fluide cérébrospinal, des ventricules, des injections dans le subarachnoïde, les espaces cérébraux cisternaux, subduraux ou épiduraux, via les ventricules cérébraux ou une ponction lombaire, une instillation intra et péri-oculaire incluant l'application par injection autour de l'œil , à l'intérieur du globe oculaire, dans ses structures et ses couches, de même que par voie entérale, intestinale, rectale, vaginale, uréthrale, ou la vessie vésicale. Pour les indications in utero et périnatale, les injections dans la vascularisation maternelle, ou à travers ou dans les organes maternels, et dans l'embryon, le fœtus, les tissus neonataux et les annexes associées telles que le sac amniotique, le cordon ombilical, l'artère ou les ombilicales et le placenta, la voie parentérale étant la voie préférée. La voie préférée peut varier selon l'état du patient. Cette invention inclut la possibilité de gérer la durée et la séquence de délivrance des traitements médicamenteux pour y inclure un pré-traitement et un posttraitement, de manière simultanée avec le traitement.
Les cyclosporines vectorisées selon la présente invention sont utilisées chez des patients qui nécessitent une neuroprotection contre des maladies neurologiques de nature aiguë à chronique incluant l'accident vasculaire cérébral, l'hémorragie cérébrale, les traumatismes cérébraux et spinaux, les radiations ionisantes, la chimiothérapie, la neurotoxicité aux structures vestibulocochléaires, le décollage rétinien et la neurodégénérescence comprenant la sclérose latérale amyotrophique, les maladies de Parkinson et d'Alzheimer.
Les cyclosporines vectorisées sont utilisées chez des patients qui nécessitent à la fois une neuroprotection contre une maladie neurologique et un état d' immuno-dépression centrale, tel que dans le cas de transplantation neurale, xénotransplantation neurale, sclérose en plaque, neuropathie VIH, lupus érythémateux et du syndrome de Guillain-Barré.
Les cyclosporines vectorisées sont utilisées chez les patients nécessitant qu'ils soient en état de non- immunité, comme dans le cas de transplantation d'organes et de tissus et de maladies autoimmunes telles que l'arthrite rhumatoïde.
Les cyclosporines vectorisées sont utilisées chez les patients nécessitant un état de non-immunité de la peau dans le cas de maladies telles que le psoriasis, l'eczéma et l'alopécie. De plus, un autre objet de l'invention est une méthode pour traiter les lésions cérébrales traumatiques , les lésions de la moelle épinière, les accidents vasculaires cérébraux, les maladies d'Alzheimer, de Parkinson, de Huntington, de Charcot de même que les maladies opportunes dues à des maladies neurologiques incluant de façon non exhaustive la démence VIH, les scléroses multiples, les maladies à prion et les encéphalopathies d'origine infectieuse, toxique et métabolique consistant à administrer à un patient une composition pharmaceutique contenant au moins un composé vectorisé formé d'une molécule de cyclosporine (le terme « cyclosporines » tel que défini ci-dessus) couplé à un vecteur peptidique, ledit vecteur peptidique étant un dérivé de la famille de la Protégrine ou de la famille de la Tachyplésine. DESCRIPTION DES FIGURES ET EXEMPLES
La présente invention sera mieux comprise en lisant la description du travail expérimental accompli dans le cadre de ses travaux de recherche par la Demanderesse, qui ne doit pas être interprété comme étant de nature restrictive.
Les figures 1 à 13 représentent des schémas réactionnels pour la préparation d'un composé selon l'invention comprenant la cyclosporine et différents vecteurs peptidiques mettant en œuvre différents linkers.
La figure 14 représente la concentration dans le cerveau de produits testés suite à une injection intraveineuse à 2 mg/kg (équivalent en cyclosporine), les produits testés étant la cyclosporine seule, la cyclosporine liée au vecteur peptidique SynB3 par le linker 1 et la cyclosporine liée au vecteur peptidique SynBl par le linker 1. Les séquences des vecteurs peptidiques SynBl, SynB3 et du linker 1 sont fournis ci-après.
A. SYNTHESE CHIMIQUE DES CONJUGUES. I . Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerl-SynB3.
Il sera fait référence à la figure 1 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur. Le peptide SynB3 de séquence RRLSYSRRRF (SEQ ID NO : 1) est assemblé sur phase solide selon une stratégie Fmoc/tBu, clivé et déprotégé par l'acide trifluoroacétique, puis purifié par chromatographie liquide haute pression (HPLC) préparative en phase inverse et lyophilisé. Sa pureté (>95%) et son identité sont confirmées par HPLC analytique et par spectrométrie de masse. 2. Synthèse du conjugué de Cyclosporine A. De la Cyclosporine A (414 mg - n = 344 μmol) et de l'anhydride d'acide chloroacétique (m = 500 mg) sont mélangés dans 1 ml de pyridine. Chauffé 3h à 50°C, le mélange obtenu est étendu par 6 ml d'eau. Après extraction à Et20, la phase organique est lavée par une solution de NaHC03 saturée puis à l'eau. La phase éthérée séchée sur Na2S04, est concentrée sur évaporateur rotatif donnant 441 mg de cristaux jaunes de chloroacétyl-cyclosporine (M+H 1+ = 1279 - Rdt brut = 100%) qui sont solubilisés dans 1 ml d'acétonitrile.
Après agitation pendant 14h à 40°C, en présence de chlorhydrate de benzylamine (2 éq. - m = 98 mg - 680 μmol), de diisopropyléthylamine (3 éq. - 177 μl - 1,02 mmol) et de Nal (0,5 éq. - m = 25 mg - 170 μmol), le mélange réactionnel est ensuite concentré sur évaporateur rotatif puis étendu par 7 ml de DMSO et purifié par HPLC préparative pour donner 416 mg de poudre jaune de (2- benzylamino-acétyl) -cyclosporine (M+H 1+ = 1351 - Msel TFA = 1464 - Rdt = 82%). Un mélange d'acide N-Boc-iminodiacétique (m =
11,9 mg - 51,1 μmol), de diisopropycarbodiimide (1 éq. - 7,9 μl - 51,1 μmol) dans 400 μl de dichlorométhane et 100 μl de DMF est agité à température ambiante pendant 30 minutes. Transféré sur une solution de (2-benzylamino- acétyl) -cyclosporine (68 mg - 46,4 μmol), de DIEA (3 éq. - 23ul - 139 μmol) dans 300 μl de DMF le produit est agité à température ambiante pendant 3h. On purifie par HPLC préparative et on obtient 62 mg de poudre blanche d'intermédiaire Boc de la cyclosporine (M+H 1+ = 1566 - Rdt = 85%) .
3. Couplage de la Cyclosporine A sur SynB3.
Une solution d'intermédiaire Boc de la cyclosporine précédent (62 mg - 36,9 μmol), de peptide
SynB3 (1,1 éq. - 84 mg - 40,6 μmol), de PyBOP (1,1 éq. - 21,1 mg - 40,6 μmol), DIEA (2 éq.- 11,5 μl - 73,8 μmol) dans 2 ml de DMF est agité à température ambiante pendant 2h. Le conjugué est purifié par HPLC préparative. On obtient 89,5 mg du conjugué Boc de cyclosporine A (M+H 1+ = 2941 - MselτFA= 3510 - Rdt = 67%). Le conjugué Boc (61,5 mg - 17,5 μmol) est solubilisé dans 540 μl de HCl 4N dans du dioxane et 54ul de DMF, agité 30 minutes à température ambiante puis purifié par HPLC préparative. On obtient 49 mg de conjugué CsA- linkerl-SynB3 (M+H 1+ = 2841 - Msel TFA ≈ 3524 - Rdt = 80%). Le linker 1 correspond a un linker de formule
III telle que définie précédemment dans laquelle n et m sont égaux à 1, R4 est un groupe alkyl (CH2) et R: est un alkylaryl (CH2Ph).
II. Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerl-SynB3 L/D.
Il sera fait référence à la figure 2 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine. 1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl ) -cyclosporine.
La méthode de synthèse du peptide SynB3 L/D de séquence RRLSYSrrrf (SEQ ID NO : 2) est identique à celle du peptide SynB3 ; la synthèse de la ( 2-benzylamino- acétyl)-cyclosporine a été décrite précédemment.
2. Couplage de la Cyclosporine A sur SynB L/D.
Un mélange d'acide N-Boc-iminodiacétique (m = 11,9 mg - 51,1 μmol), de diisopropycarbodiimide (1 éq. - 7,9 μl - 51,1 μmol) dans 400 μl de dichlorométhane et 100 μl de DMF est agité à température ambiante pendant 30 minutes. Transféré sur une solution de (2-benzylamino- acétyl)-cyclosporine (68 mg - 46,4 μmol), de DIEA (3 éq. — 23 μl - 139 μmol) dans 300 μl de DMF le produit est agité à température ambiante pendant 3h. Le peptide SynB3 L/D (1,1 éq. - 106 mg - 50,9 μmol) mélangé à du PyBOP (1,1 éq. - 26.5 mg - 50,9 μmol), de la DIEA (4 éq.- 29 μl - 204 μmol) et 2,5 ml de DMF est ajouté au mélange précédent puis agité à température ambiante pendant 14h. Le conjugué est purifié par HPLC préparative. On obtient 126 mg du conjugué Boc de cyclosporine A (M+H 1+ = 2941 - Msel TFA = 3510 - Rdt = 77%). Le conjugué Boc (103 mg - 35 μmol) est solubilisé dans 900 μl de HC1 4N dans du dioxane et 90 μl de DMF, agité 30 minutes à température ambiante puis purifié par HPLC préparative. On obtient 75 mg de conjugué CsA-linkerl-SynB3 L/D (M+H 1+ = 2841 - Msel TFA = 3524 - Rdt = 60%).
III . Synthèse Chimique de la Cyclosporine vectorisée CsA-linker2-SynBτ
Il sera fait référence à la figure 3 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (Boc- hydrazino-acétyl ) -cyclosporine.
Les synthèses du peptide SynB3 et de la chloroacétyl-cyclosporine ont été décrites précédemment.
De la chloroacétyl-cyclosporine (m = 130 mg - 100 μmol) est solubilisée dans 2 ml d' acétonitrile en présence de tert-Butyl carbazate (1 éq. - m = 13 mg - 100 μmol), de diisopropyléthylamine (4 éq. - 69 μl - 400 μmol) et de Nal (1 éq. - m = 15 mg - 100 μmol). Le mélange réactionnel est agité à 65°C pendant 24 heures, étendu par 1,5 ml de DMSO et purifié par HPLC préparative pour donner 62 mg de dérivé carbazate de la cyclosporine A (M+Na 1+ = 1397 - Rdt = 42%).
2. Synthèse du conjugué de Cyclosporine A.
Un mélange de dérivé carbazate (m = 45 mg - 30 μmol), d'acide N-Boc-iminodiacétique (5 eq. - m = 35 mg - 150 μmol), de PyBroP (5 éq. - 70 mg - 150 μmol), de diisopropyléthylamine (10 éq. - 52 μl - 300 μmol) dans 75 μl de dichlorométhane et 250 μl de DMF, est agité à température ambiante pendant 3 jours. On purifie par HPLC préparative et obtient 31 mg de poudre blanche d'intermédiaire diBoqué de la cyclosporine (M+H 1+ = 1590 - Rdt = 65%) .
3. Couplage de la Cyclosporine A sur SynB3.
Une solution d'intermédiaire diBoqué de la cyclosporine (23 mg - 14,4 μmol), peptide SynB3 (1,2 éq. - 36 mg - 17,4 μmol), de PyBOP (1,2 éq. - 9 mg - 17,4 μmol), DIEA (3 éq.- 7,5 μl - 43 μmol) dans 600 μl de DMF est agité à température ambiante pendant lh. Le conjugué est purifié par HPLC préparative. On obtient 14 mg de conjugué diBoc de cyclosporine A (M+H 1+ = 2968 - Msel TFA = 3536 - Rdt = 27%). Le conjugué diBoc (12 mg - 3,4 μmol) est solubilisé dans 200 μl de DMF et 800 μl de TFA. Après agitation à température ambiante pendant 2 heures 30 minutes, le produit est précipité à l'éther diéthylique, centrifugé puis le culot est purifié par HPLC préparative. On obtient 5,1 mg de conjugué CsA-linker2-SynB3 (M+H 1+ = 2767 - MselTFA= 3564 - Rdt = 42%).
Le linker 2 correspond à un linker de formule III telle que définie précédemment dans laquelle n et m sont égaux à 1, R4 est un groupe alkyl (CH2) et R1 est de la forme N(R6)R7 avec R5 = R7 = H.
IV. Synthèse Chimique de la Cyclosporine vectorisée CsA-linker3-SynB.
Il sera fait référence à la figure 4 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl) -cyclosporine. Les synthèses du peptide SynB3 et de la (2- benzylamino-acétyl ) -cyclosporine ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A. A un mélange de ( 2-benzylamino-acétyl) - cyclosporine (m = 85 mg - 58 μmol), HATU (2 éq. - 44,1 mg - 116 μmol) et DIEA (4 éq. - V = 38 μl - 232 μmol) dans 425 μl de DMF et 425 μl de dichlorométhane, on ajoute une solution d'acide glyoxilique hydraté (1 éq. - m = 5,27 mg - 58 μmol) dans 425 μl de DMF. On agite à température ambiante pendant 12h. Le brut réactionnel est purifié par HPLC préparative. On obtient 47,5 mg de dérivé glyoxylamide de la CsA (M+H 1+ = 1406 - M+Na 1+ = 1428 - Rdt = 58%).
Un mélange de peptide SynB3 (m = 150 mg - 72 μmol), d'anhydride d'acide chloroacétique (4 éq. - 49 mg - 288 μmol) et DIEA (6 éq. - V = 68 μl - 432 μmol) dans 1 ml de DMF est agité à température ambiante pendant 6h. Le peptide brut est précipité à l'éther diéthylique puis centrifugé. Le solide obtenu est solubilisé dans 400 μl de DMF. On ajoute de l'hydrazine monohydratée (11,4 éq. - 40 μl - 825 μmol) et agite à température ambiante pendant 3 h. Le mélange réactionnel est purifié par HPLC préparative. On obtient 80 mg de peptide hydrazine (M+H 1+ = 1468 - Rdt = 49%). 3 ) Couplage de la Cyclosporine A sur SynB„.
On solubilise le dérivé glyoxylamide de la CsA (m = 6 mg - 4,2 μmol), le peptide hydrazine SynB3 (1,06 éq. - 25 mg - 4,5 μmol) dans 400 μl d'une solution de methanol contenant 1% d'acide acétique. On ajoute du cyanoborohydrure de sodium (1,4 éq. - 0,4 mg - 6 μmol). On agite à température ambiante pendant 3h, ajoute 400 μl d'une solution aqueuse contenant 0,1% d'acide trifluoroacétique puis purifie par HPLC préparative. On obtient 3,5 mg du conjugué CsA-linker3-SynB3 (M+H 1+ = 2856 - Msel TFA = 3654 - Rdt = 22%).
Le linker 3 correspond à un linker de formule IX telle que définie précédemment dans laquelle R4, R5 et R8 sont des groupes alkyls identiques (CH2) et R1 est un alkylaryl (CH2Ph) et R6 = R7 = H.
V. Synthèse Chimique de la Cyclosporine vectorisée CsA-linker4-SynB3. II sera fait référence à la figure 5 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl)-cyclosporine. Les synthèses du peptidyl résine SynB3 et de la
( 2-benzylamino-acétyl ) -cyclosporine ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A.
Un mélange de peptidyl résine SynB3 (m = 0,8g), d'anhydride d'acide chloroacétique (170 mg - 1,8 mmol) et
DIEA (V = 200 μl - 1,2 mmol) dans 9 ml de DMF est agité à température ambiante pendant 3h. La résine est lavée au DMF et au dichlorométhane . On ajoute sur la résine un mélange de N-hydroxyphtalimide (m = 150 mg - 920 μmol), K2C03 (m = 65 mg - 470 μmol) dans 9 ml de DMF et agite 12h à température ambiante. La résine est lavée au DMF et au dichlorométhane puis on ajoute une solution d'hydrazine 5% dans DMF (V = 9ml) et agite 14h à température ambiante. La résine est lavée au DMF et au dichlorométhane puis le peptide est clivé à l'acide trifluoroacétique, précipité à l'éther diéthylique puis centrifugé. Après purification par
HPLC préparative, on obtient 97 mg de peptide hydroxylamine
(M+H 1+ = 1469). Ce dérivé est solubilisé dans une solution d'acide bromoacétique (1 éq - m= 97 mg - 45 μmol), DIEA (4 éq. - V = 30 μl - 45 μmol) dans 1 ml de DMF. On agite à température ambiante pendant 2 jours puis purifie en HPLC préparative. On obtient 28 mg de peptide hydroxylamine alkylé (M+H 1+ = 1524 - Rdt = 28%).
On solubilise le dérivé peptidique obtenu dans une solution de di-tbutyl-dicarbonate (6 éq - m= 12 mg - 53 μmol), de DIEA (6 éq - V = 9 ml - 53 μmol) dans 1 ml de DMF et chauffe 12h à 50°C. On isole le peptide boc (1 à 3 fois) brut par précipitation à l'éther diéthylique puis centrifugation (M+H 1+ = 1624 - 1724 -1824 ).
3. Couplage de la Cyclosporine A sur SynB,.
Une solution de dérivé peptidique boc brut (8,9 μmol), de (2-benzylamino-acétyl) -cyclosporine (4,1 éq. - 54 mg - 36,6 μmol), de PyBroP (4 éq. - 17 mg 36,5 μmol), de
DIEA (8,5 éq. - 13 μl - 76 μmol) dans 300 μl de DMF et 50 μl de dichlorométhane, est agitée à température ambiante pendant 14h. On purifie par HPLC préparative et obtient 10 mg du conjugué Boc de cyclosporine A (M+H 1+ = 2955 -3055-
3155 - Rdt = 32% environ). Le conjugué Boc (10 mg - 2,8 μmol) est solubilisé dans 900 μl de HCl 4N dans du dioxane et 90 μl de DMF. Le produit est purifié par HPLC préparative. On obtient 0,94 mg de conjugué CsA-linker4- SynB3 (M+H 1+ = 2859 - Msel TFA = 3541 - Rdt = 9,5%).
Le linker 4 est un linker de formule générale VII telle que définie précédemment dans laquelle R4, R5 et R8 sont des groupes alkyls identiques (CH2) et Rj est un alkylaryl (CH2Ph).
VI . Synthèse Chimique de la Cyclosporine vectorisée CsA-linker5-SynB3 . Il sera fait référence à la figure 6 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl) -cyclosporine .
Les synthèses du peptide SynB3 et du dérivé glyoxylamide de la CsA ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A.
Un mélange de peptide SynB3 (m = 100 mg - 48 μmol), d'acide N-Fmoc-α-Aminoisobutyrique (6 éq. - 15,6 mg
- 48 μmol), PyBOP (1 éq. - 25 mg - 48 μmol) et DIEA (6 éq.
- V = 50 μl - 290 μmol) dans 500 μl de DMF est agité à température ambiante pendant lh. On ajoute 50 μl de pipéridine (6 éq. - V = 50 μl - 290 μmol) et poursuit l'agitation pendant 12h. Le peptide brut est précipité à l'éther diéthylique, centrifugé puis purifié par HPLC préparative. On obtient 77 mg de dérivé peptidique Aib- SynB3 (M+H 1+ = 1480 - Msel TFA= 2164- Rdt = 73%).
3. Couplage de la Cyclosporine A sur SynB,. On solubilise le dérivé glyoxylamide de la CsA
(m = 9 mg - 6,4 μmol), le peptide Aib-SynB3 (1,1 éq. - 15 mg - 6,9 μmol) dans 400 μl d'une solution de methanol contenant 1% d'acide acétique. On ajoute du cyanoborohydrure de sodium (1,2 éq. - 0,5 mg - 8 μmol). On agite à 45°C pendant 60h, ajoute 100 μl d'une solution aqueuse contenant 0,1% d'acide trifluoroacétique puis on purifie par HPLC préparative. On obtient 5,3 mg du conjugué CsA-linker5-SynB3 (M+H 1+ = 2871 - Msel TFA = 3553 - Rdt = 23%). Le linker 5 est un linker de formule générale
IV telle que définie précédemment dans laquelle R4 et R2 sont des groupes alkyls linéaires identiques (CH2), R est un alkylaryl (CH2Ph) et R3 est un groupe alkyl ramifié par deux alkyls -C(CH3)2. VII. Synthèse Chimique de la Cyclosporine vectorisée CsA-linker6-SynB3.
Il sera fait référence à la figure 7 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl ) -cyclosporine .
Les synthèses du peptide SynB3 et de la (2- benzylamino-acétyl ) -cyclosporine ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A.
Un mélange de peptide SynB3 (m = 50 mg - 24 μmol), d'acide N-Boc-Serine (l éq. - m = 4,9 mg - 24 μmol), HATU (1 éq. - 9,2 mg - 24 μmol) et DIEA (7 éq. - V = 29 μl - 170 μmol) dans 60 μl de DMF est agité lh à température ambiante. On ajoute 5 ml d'acide trifluoroacétique, agite à température ambiante pendant 12 heures puis précipite le peptide à l'éther diéthylique. Après centrifugation, on reprend le résidu dans un tampon phosphate et ajoute du periodate de sodium NaI04 (5 éq. - m = 24,6 mg - 120 μmol), agite une heure à température ambiante et purifie par HPLC préparative. On obtient 10,8 mg de dérivé glyoxylamide- SynB3 (M+H 1+ = 1452 - Msel TFA = 2022 -Rdt = 22%). Un mélange de ( 2-benzylamino-acétyl ) - cyclosporine (m = 16 mg - 10,9 μmol), d'acide N-Boc-α- a inoisobutyrique (6 éq. - m = 13,2 mg - 65,4 μmol), HATU (8 éq. - 33,2 mg - 87 μmol) et DIEA (6 éq. - V = 11,2 μl - 65,4 μmol) dans 80 μl de DMF est agité à 40°C pendant 60h. On purifie par HPLC préparative et obtient 7 mg de dérivé Boc-Aib de la CsA (M+H 1+ = 1535 - Rdt = 41%). Ce dérivé est solubilisé dans 80 μl de DMF et 200 μl d'une solution d'acide trifluoroacétique et agité une nuit à température ambiante. On dilue par 2 ml d'eau-acétonitrile, lyophilise et obtient 6mg huile jaune de dérivé Aib de la CsA (M+H 1+ = 1435 - MselTFA= 1549 - Rdt = 85%).
3. Couplage de la Cyclosporine A sur SynB3.
On solubilise le peptide glyoxylamide-SynB3 (4,2 mg - 2,1 μmol), le dérivé Aib de la CsA (1,85 éq - m = 6 mg - 3,9 μmol) dans 145 μl d'une solution de methanol contenant 1% d'acide acétique et 25 μl de DMF. On ajoute du cyanoborohydrure de sodium (3,8 éq. - 0,5 mg - 8 μmol). On agite à 45°C pendant 60h, ajoute 50 μl d'une solution aqueuse contenant 0,1% d'acide trifluoroacétique puis purifie par HPLC préparative. On obtient 1,1 mg du conjugué CsA-linker6-SynB3 (M+H 1+ = 2870 - Msel TFA = 3553 - Rdt = 15%).
Le linker 6 est un linker de formule générale IV telle que définie précédemment dans laquelle R4 et R3 sont des groupes alkyls linéaires identiques (CH2), R1 est un alkylaryl (CH2Ph) et R2 est un groupe alkyl ramifié par un alkyl -C(CH3)2.
VIII. Synthèse Chimique de la Cyclosporine vectorisée CsA-linker7-SynB„.
Il sera fait référence à la figure 8 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine. 1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl ) -cyclosporine .
Les synthèses du dérivé glyoxylamide de SynB3 et de la (2-benzylamino-acétyl) -cyclosporine ont été décrites précédemment. 2. Synthèse du conjugué de Cyclosporine A.
Un mélange d'acide N-Boc-aminovalérique (10 éq. — 68 μmol - 15,6 mg) , de diisopropylcarbodiimide (5 éq. — 34 μmol - 5,2 μl) est solubilisé dans 180 μl de DMF et 30 μl de dichlorométhane. Après concentration, au solide repris dans 80 μl de DMF, on ajoute de la (2-benzylamino- acétyl) -cyclosporine (1 éq. - m = 10 g - 6,8 μmol), de la diméthylaminopyridine (l éq. - in = 1 mg - 6,8 μmol) et agite à 40°C pendant 48h. On purifie par HPLC préparative et obtient 1,3 mg de dérivé Boc-aminovalérique de la CsA (M+Na 1+ = 1424 - Rdt = 13%). Ce dérivé est solubilisé dans 50 μl de DMF et 140μl d'une solution d'acide trifluoroacétique et agité 4h à température ambiante. On dilue par 2 ml d'eau-acétonitrile, lyophilise et obtient 0,8 mg de dérivé aminovalérique de la CsA (M+H 1+ = 1302 - MselTFA= 1415 - Rdt = 62%).
3. Couplage de la Cyclosporine A sur SynB^.
On solubilise le peptide glyoxylamide-SynB3 (8 mg - 3,9 μmol), le dérivé aminovalérique de la CsA (1,3 éq. - m = 7,3 g - 5,2 μmol) dans 125 μl d'une solution de methanol contenant 1% d'acide acétique et 7,5μl de DMF. On ajoute du cyanoborohydrure de sodium (1 éq. - 0,2 mg - 3,9 μmol). On agite à 45°C pendant 16h, ajoute 500 μl d'une solution aqueuse contenant 0,1% d'acide trifluoroacétique puis purifie par HPLC préparative. On obtient 1,8 mg du conjugué CsA-linker7-SynB3 (M+H 1+ = 2737 - Msel TFA = 3420 - Rdt = 13%) .
Le linker 7 est un linker de formule générale X telle que définie précédemment dans laquelle R5 = CH2 et R4 = (CH2)4.
IX. Synthèse Chimique de la Cyclosporine vectorisée CsA-linker8-SynB3.
Il sera fait référence à la figure 9 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl )-cyclosporine. La synthèse du dérivé glyoxylamide de la CsA a été décrite précédemment. La méthode de synthèse du peptide Ala-SynB3 de séquence ARRLSYSRRRF (SEQ ID NO : 3) est identique à celle de SynB3. 2. Couplage de la Cyclosporine A sur SynB3.
On solubilise le dérivé glyoxylamide de la CsA (m ≈ 5 mg - 3,5 μmol), le peptide Ala-SynB3 (1,4 éq. - 10,5 mg - 4,9 μmol) dans 200 μl d'une solution de methanol contenant 1% d'acide acétique. On ajoute du cyanoborohydrure de sodium (3,5 éq. - 0,8 mg - 12,4 μmol). On agite à température ambiante pendant 12h, ajoute 100 μl d'eau puis purifie par HPLC préparative. On obtient 1 mg du conjugué CsA-linker8-SynB3 (M+H 1+ = 2855 - Msel TFA = 3539 - Rdt = 8%) . Le linker 8 est un linker de formule générale
IV telle que définie précédemment dans laquelle R4 et R2 sont des groupes alkyls linéaires identiques (CH2), Rλ est un alkylaryl (CH2Ph) et R3 est un groupe alkyl ramifié par un alkyl -CH(CH3) .
X. Synthèse Chimique de la Cyclosporine vectorisée CsA-linker9-SynB3.
Il sera fait référence à la figure 9 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl )-cyclosporine .
La synthèse du dérivé glyoxylamide de la CsA a été décrite précédemment. La méthode de synthèse du peptide βAla-SynB3 de séquence βAla-RRLSYSRRRF (SEQ ID NO : 4) est identique à celle de SynB3.
2. Couplage de la Cyclosporine A sur SynB^.
On solubilise le dérivé glyoxylamide de la CsA (m = 6,7 mg - 4,7 μmol), le peptide βAla-SynB3 (1,5 éq. - 15 mg - 7 μmol) dans 300 μl d'une solution de methanol contenant 1% d'acide acétique. On ajoute du cyanoborohydrure de sodium (3,5 éq. - 3,5 mg - 16,4 μmol). On agite à température ambiante pendant 12h, ajoute 100 μl d'eau puis purifie par HPLC préparative. On obtient 2 mg du conjugué CsA-linker9-SynB3 (M+H 1+ = 2856 - Msel TFA = 3539 - Rdt = 12%).
Le linker 9 est un linker de formule générale III telle que définie précédemment dans laquelle R4 est un groupes alkyl linéaire (CH2), Rx est un alkylaryl (CH2Ph), n = 1 et m = 2.
XI . Synthèse Chimique de la Cyclosporine vectorisée CsA-linker 10-SynB. II sera fait référence à la figure 10 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl)-cyclosporine. Les synthèses du peptide SynB3 et de la (2- benzylamino-acétyl ) -cyclosporine ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A.
Un mélange de ( 2-benzylamino-acétyl ) - cyclosporine (m = 52,8 mg - 36 μmol), N-Boc-serine (1,2 éq. - m = 8,9 mg - 43 μmol), HATU (1,2 éq. - 16,4 mg - 43 μmol) et DIEA (3 éq. - V = 18,8 μl - 108 μmol) dans 150 μl de DMF est agité à température ambiante pendant 6h. On ajoute alors de l'anhydride succinique (4 éq. - m = 14,4 mg - 144 μmol), de la DIEA (2 éq. - 12,5 μl - 72 μmol) et de la DMAP (1,2 éq - m = 5,2 mg - 43 μmol). Le mélange est agité à température ambiante pendant 12h. Le brut réactionnel est purifié par HPLC préparative. On obtient 24 mg de dérivé succinylé de la CsA (M+H 1+ = 1638 - M+Na 1+ = 1660 - Rdt = 40%).
3. Couplage de la Cyclosporine A sur SynB3.
On solubilise le dérivé succinylé de la CsA (m = 14,3 mg - 8,7 μmol) dans 200 μl de DMF, ajoute le peptide SynB3 (1,3 éq. - 23 mg - 11 μmol), du PyBOP (1,3 éq. - 7,5 mg - 11 μmol), de la DIEA (3 éq.- 4,5 μl - 26 μmol). On agite à température ambiante pendant 2h. On ajoute 800 μl de TFA. Après agitation à température ambiante pendant 30 minutes, le produit est précipité à l'éther diethylique, centrifugé puis le culot est purifié par HPLC préparative. On obtient 21 mg de conjugué CsA-linkerl0-SynB3 (M+H 1+ = 2913 - Msel TFA = 3597 - Rdt = 67%).
Le linker 10 est un linker de formule générale VI telle que définie précédemment dans laquelle R4 et R5 sont des groupes alkyls linéaires identiques (CH2), R8 est un groupe alkyl linéaire (CH2)2, Rx est un alkylaryl (CH2Ph).
XII. Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerll-SynB3.
Il sera fait référence à la figure 11 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine. 1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl )-cyclosporine.
Les synthèses du peptide SynB3 et de la (2- benzylamino-acétyl) -cyclosporine ont été décrites précédemment. 2. Synthèse du conjugué de Cyclosporine A.
Un mélange de ( 2-benzylamino-acétyl ) - cyclosporine (m = 50 mg - 34,1 μmol), N-Boc-L-trans-4- hydroxyproline (1,2 éq. - m = 9,5 mg - 41 μmol), HATU (1,2 éq. - 15,5 mg - 41 μmol) et DIEA (3 éq. - V = 17,8 μl - 102 μmol) dans 200 μl de DMF est agité à température ambiante pendant 12h. On ajoute du HATU (0,38 éq. - 5 mg - 13 μmol) et agite lh supplémentaire. On ajoute alors de l'anhydride succinique (4 éq. - m = 13,6 mg - 136,4 μmol), de la DIEA (3 éq. - 23ul - 139 μmol) et de la DMAP (1 éq - m = 4,1 mg - 34,1 μmol). Le mélange est agité à température ambiante pendant 12h. Le brut réactionnel est purifié par HPLC préparative. On obtient 40 mg de dérivé succinylé de la CsA (M+H 1+ = 1665 - M+Na 1+ = 1687 - Rdt = 70%).
3. Couplage de la Cyclosporine A sur SynB3.
On solubilise le dérivé succinylé de la CsA (m = 20 mg - 12 μmol) dans 600 μl de DMF, ajoute le peptide SynB3 (1 éq. - 25 mg - 12 μmol), du PyBOP (1,2 éq. - 7,5 mg - 14,4 μmol), de la DIEA (3 éq.- 6,2 μl - 36 μmol). On agite à température ambiante pendant 4h puis purifie par HPLC préparative. On obtient 30 mg du conjugué Boc de cyclosporine A (M+H 1+ = 3041 - Mgel TFA = 3611 - Rdt = 69%).
Le conjugué Boc (19 mg - 5,3 μmol) est solubilisé dans 300 μl de DMF puis on ajoute 700 μl de TFA. Après agitation à température ambiante pendant 14h, le produit est précipité à l'éther diethylique, centrifugé puis le culot est purifié par HPLC préparative. On obtient 7,4 mg de conjugué CsA-linkerll-SynB3 (M+H 1+ = 2941 - Msel TFft = 3625 - Rdt = 39%).
Le linker 11 est un linker de formule générale V telle que définie précédemment dans laquelle R4 est un groupe alkyl linéaire (CH2), R5 est un groupe alkyl linéaire (CH2)2 et Rx est un alkylaryl (CH2Ph).
XIII . Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerl2-SynB„. Il sera fait référence à la figure 12 en annexe qui représente schematiquement la structure chimique du composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl ) -cyclosporine.
Les synthèses du peptide SynB3 et de la (2- benzylamino-acétyl ) -cyclosporine ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A. Un mélange de ( 2-benzylamino-acétyl ) - cyclosporine (m = 80 mg - 56 μmol), N-Boc-D-trans-4- hydroxyproline (3 éq. - m = 38,6 mg - 168 μmol), PyBroP (3 éq. - 79 mg - 168 μmol) et DIEA (10,3 éq. - V = 100 μl - 580 μmol) dans 380 μl de DMF est agité à température ambiante pendant 18h. On ajoute alors de l'anhydride succinique (8 éq. - m = 44,8 mg - 448 μmol) en deux fois sur 24 heures. Le brut réactionnel est purifié par HPLC préparative. On obtient 55,2 mg de dérivé succinylé de la CsA (M+H 1+ = 1662 - Rdt = 60%). 3. Couplage de la Cyclosporine A sur SynB3.
On solubilise le dérivé succinylé de la CsA (m = 55,2 mg - 33 μmol) dans 332 μl de DMF, ajoute le peptide synB3 (2 éq. - 104 mg - 66 μmol), du PyBOP (2 éq. - 35 mg - 66 μmol), de la DIEA (8 éq.- 46,4 μl - 264 μmol). On agite à température ambiante pendant 14h puis purifie par HPLC préparative. On obtient 55,5 mg du conjugué Boc de cyclosporine A (M+H 1+ = 3040 - M3el TFA = 3611 - Rdt = 46%).
Le conjugué Boc (53 mg - 14,6 μmol) est solubilisé dans 800 μl de DMF puis on ajoute 3 ml de TFA et 200 μl de triisopropylsilane. Après agitation à température ambiante pendant lh, le produit est précipité à l'éther diethylique, centrifugé puis le culot est purifié par HPLC préparative. On obtient 27,6 mg de conjugué CsA-linkerl2- SynB3 (M+H 1+ = 2939 - Msel TFA = 3625 - Rdt = 52%). XIV. Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerl3-SynB.
Il sera fait référence à la figure 12 en annexe qui représente schematiquement la structure chimique du composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl ) -cyclosporine.
Les synthèses du peptide SynB3 et de la (2- benzylamino-acétyl ) -cyclosporine ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A.
Un mélange de ( 2-benzylamino-acétyl ) - cyclosporine (m = 40 mg - 27,3 μmol), N-Boc-D-cis-4- hydroxyproline (2,25 éq. - m = 14,4 mg - 61 μmol), PyBroP (3,25 éq. - 42 mg - 110 μmol) et DIEA (7,5 éq. - V = 36 μl - 210 μmol) dans 255ul de DMF est agité à température ambiante pendant 48h. On purifie par HPLC préparative et obtient 9,5 mg de dérivé N-Boc-D-cis-4-hydroxyproline de la CsA (M+H 1+ = 1563 - Rdt = 22%). On solubilise 9 mg de ce dérivé dans 50 μl de DMF, ajoute de l'anhydride succinique (3 éq. - m = 1,7 mg - 17 μmol), de la DMAP (1 éq - m = 0,7 mg - 5,7 μmol). Le mélange est agité à température ambiante pendant 24h. 3. Couplage de la Cyclosporine A sur SynB„.
On ajoute le peptide SynB3 (2 éq. - 11,8 mg - 11,4 μmol), du PyBOP (2 éq. - 11,8 mg - 11,4 μmol), de la DIEA (15 éq.- 15 μl - 87 μmol). On agite à température ambiante pendant 14h puis purifie par HPLC préparative. On obtient 4,3 mg du conjugué Boc de cyclosporine A (M+H 1+ = 3039 - MselTFA= 3611 - Rdt = 21%).
Le conjugué Boc (1,0 mg - 0,28 μmol) est solubilisé dans 11 μl de DMF puis on ajoute 3 μl de triisopropylsilane et 44 μl de TFA. Après agitation à température ambiante pendant 3h, le produit est précipité à l'éther diethylique, centrifugé puis le culot est purifié par HPLC préparative. On obtient 0,37 mg de conjugué CsA- linkerl3-SynB3 (M+H 1+ = 2941 - Msel TFA = 3625 - Rdt = 36%).
XV. Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerl4-SynBi.
Il sera fait référence à la figure 12 en annexe qui représente schematiquement la structure chimique du composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl)-cyclosporine.
Les synthèses du peptide SynB3 et de la (2- benzylamino-acétyl ) -cyclosporine ont été décrites précédemment.
2. Synthèse du conjugué de Cyclosporine A.
Un mélange de ( 2-benzylamino-acétyl ) - cyclosporine (m = 80 mg - 54,6 μmol), N-Boc-L-cis-4- hydroxyproline (6 éq. - m = 76 mg - 328 μmol), PyBroP (6 éq. - 160 mg - 328 μmol) et DIEA (10,6 éq. - V = 100 μl - 580 μmol) dans 380 μl de DMF est agité à température ambiante pendant 48h. On purifie par HPLC préparative et obtient 22 mg de dérivé N-Boc-L-cis-4-hydroxyρroline de la CsA (M+H 1+ = 1563 - rdt = 25%). On solubilise ce dérivé dans 200 μl de DMF, ajoute de l'anhydride succinique (4 éq. - m = 6 mg - 56 μmol), de la DIEA ( 12 éq - m = 30 μl - 174 μmol). Le mélange est agité à température ambiante pendant 24h.
3. Couplage de la Cyclosporine A sur SynB3. On ajoute le peptide synB3 (2 éq. - 58 mg - 28 μmol) , du PyBOP (2 éq. - 14,5 mg - 11,4 μmol), agite à température ambiante pendant 4h puis purifie par HPLC préparative. On obtient 10 mg du conjugué Boc de cyclosporine A (M+H 1+ = 3041 - Msel TFA ≈ 3611 - Rdt = 20%). Le conjugué Boc (lOmg - 2,7 μmol) est solubilisé dans 111 μl de DMF puis on ajoute 444 μl de TFA et 28 μl de triisopropylsilane. Après agitation à température ambiante pendant 2h, le produit est précipité à l'éther diethylique, centrifugé puis le culot est purifié par HPLC préparative. On obtient 6 mg de conjugué CsA- linkerl4-SynB3 (M+H 1+ = 2939 - Msel TFA = 3625 - Rdt = 60%).
Les linkers 12 à 14 sont des stéréoisomères du linker 11 décrit ci-dessus.
XVI. Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerl-SynB1.
Il sera fait référence à la figure 9 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du peptide vecteur et de la (2- benzylamino-acétyl)-cyclosporine .
La méthode de synthèse du peptide Gly-SynBl de Séquence GRGGRLSYSRRRFSTSTGR (SEQ ID NO : 5), dérivé du peptide SynBl de séquence RGGRLSYSRRRFSTSTGR (SEQ ID NO : 6), est identique à celle du peptide synB3. La synthèse de la (2-benzylamino-acétyl) -cyclosporine a été décrite précédemment.
2. Couplage de la Cyclosporine A sur SynBj,. On solubilise le dérivé glyoxylamide de la CsA
(16,2 mg - 11,5 μmol), le peptide Gly-SynBl (1,5 éq. - 50,9 mg - 17 μmol) dans 400 μl d'une solution de methanol contenant 1% d'acide acétique et 200 μl de DMF. On ajoute du cyanoborohydrure de sodium (1 éq. - 1 mg - 11,5 μmol). On agite à 40°C pendant 48h, ajoute 4ml d'eau-acétonitrile puis purifie par HPLC préparative. On obtient 8,6 mg du conjugué CsA-linkerl-SynBl (M+H 1+ = 3546 - Msel TFA = 4344 - Rdt = 18%) . XVII. Synthèse Chimique de la Cyclosporine vectorisée CsA-linkerl5-SynB3.
Il sera fait référence à la figure 13 en annexe qui représente schematiquement la synthèse chimique d'un composé vectorisé de la cyclosporine.
1. Synthèse du dérivé peptidique Cya-MP- SynB3.
La synthèse du peptidyl résine SynB3 a été décrite précédemment.
Un mélange de peptidyl résine SynB3 (m = 4g - 1 mmol brut), d'acide S-trityl-3-mercaptopropionique sous forme de sel de diisopropyléthylamine (1,5 éq. - 0,72 g - 1,5 mmol), de PyBOP (1,5 éq. - 0,78 g - 1,5 mmol) et de DIEA (2 éq. - V = 350 μl - 2 mmol) dans 35 ml de DMF est agité à température ambiante pendant 3h. La résine est lavée au DMF et au dichlorométhane. Le peptide est clivé à l'acide trifluoroacétique, précipité à l'éther diethylique puis centrifugé. On obtient 1 g de dérivé peptidique 3- mercaptopropionamide de SynB3 (M+H 1+ = 1483). On le solubilise dans 3 ml de DMF et y ajoute une solution de dithiodipyridine (3 éq. - 0,66 g - 3 mmol) dans 10 ml de DMF et agite pendant 3 h. On ajoute alors une solution d' hydrochlorure de cystéamine (4 éq. - 0,45 g - 4 mmol) et agite deux jours à température ambiante. Le peptide est précipité à l'éther diethylique puis centrifugé. Le résidu solide est purifié par HPLC préparative et on obtient 560 mg de dérivé peptidique Cya-MP-SynB3 (M+H 1+ = 1561 - M sel TFA = 2244 - Rdt = 25%).
2. Couplage de la Cyclosporine A sur SynB3.
On solubilise la CsA (100 mg - 83,2 μmol) dans 16 ml d'une solution de phosgène à 20% dans le toluène et agite à température ambiante pendant 4 jours. On concentre le milieu réactionnel sur évaporateur rotatif puis solubilise le résidu solide dans 2 ml de DMF. On ajoute le dérivé peptidique Cya-MP-SynB3 (0,81 éq. - 152 mg - 68 μmol), de la DIEA (1,4 éq. -20 μl - 116 μmol) et agite à température ambiante pendant 3h. On purifie par HPLC préparative et obtient 80 mg du conjugué CsA-linkerl5-SynB3 (M+H 1+ = 2790 - MgelTFA= 3359 - Rdt = 35%).
Le linker 15 est un dérivé du phosgène avec un groupe alkyl incluant un pont disulfure.
B. TESTS DES COMPOSES.
I. Composés testés.
Les composés testés sont donnés dans le tableau 1 ci-dessous.
Figure imgf000045_0001
Tableau 1 : Composés testés
II. Essais de Cinétique de libération de la
Cyclosporine A native.
1. Libération dans un tampon phosphate. Le conjugué testé est solubilisé à une concentration finale de 10 μM dans un tampon phosphate 10 M de pH 7,5 additionné de 30% d'acétonitrile. On réalise une cinétique de libération de la cyclosporine A par le conjugué à 37°C, en prélevant une partie de la solution à un temps choisi et en l'analysant par une chromatographie HPLC couplée à un spectromètre de masse tandem (mode d'ionisation électrospray). En s 'appuyant sur une courbe de calibration, l'intensité de la transition 1203,3 > 675,6 représentative de la cyclosporine A, permet de calculer la quantité de cyclosporine présente dans chaque échantillon. On peut ainsi tracer les courbes représentant la quantité de cyclosporine A libérée en fonction du temps d'incubation du conjugué dans le tampon. Un temps de demi-libération de la quantité de CsA (temps où 50% de la CsA libre est relarguée du produit vectorisé) est ensuite estimé pour le conjugué testé.
2. Résultats.
Les temps de demi-libération estimés sont présentés dans le tableau 2 ci-dessous :
Figure imgf000046_0001
Tableau 2 : Temps de demi-libération estimés
Les conjugués testés libèrent la cyclosporine A avec des vitesses qui diffèrent selon le linker présent dans le conjugué. Le choix du linker permet donc de moduler la vitesse de libération de la cyclosporine A dans un tampon aqueux proche d'un milieu biologique.
III. Essais de Perfusion cérébrale. 1. Perfusion cérébrale in situ .
Des souris (20-25 g, Iffa-Credo ; l'Arbresle, France) sont anesthésiées. Après exposition de la carotide commune, l'artère carotide externe droite est liée au niveau de la bifurcation avec la carotide interne et la carotide commune est liée entre le cœur et le site d'implantation du cathéter (cathéter polyéthylène, ID :0.76). Celui-ci, préalablement rempli par une solution d'héparine (100 unités/ml) est inséré dans la carotide commune. Les souris sont perfusées avec le tampon de perfusion (128 mM NaCl, 24 mM NaHC03, 4.2 mM KC1, 2.4 mM NaH2P04, 1.5 mM CaCl2, 0.9 mM MgS04, et 9 mM D-glucose). Ce tampon est filtré puis bulle par un mélange contenant 95% 02/ 5% C02 afin de maintenir le pH proche de 7.4 et d'alimenter le cerveau en oxygène au cours de la perfusion. Les souris sont perfusées avec le tampon contenant la cyclosporine A libre ou la cyclosporine A vectorisée. La cyclosporine A est marquée au tritium 3H (activité spécifique 20 Ci/mol). Juste avant le début de la perfusion, le cœur est arrêté par section des ventricules, ceci afin d'éviter au cours de la perfusion un reflux du perf sât. L'hémisphère droit est alors perfusé à une vitesse de 2,5 ml/min pendant 60 secondes après quoi la souris est décapitée. La quantité de radioactivité dans l'hémisphère droit est alors mesurée et la pénétration cérébrale (Kin) est calculée.
2. Résultats. a. Tolérance des produits.
L'effet des produits testés sur l'intégrité de la BHE a été observé, grâce au volume de distribution du [ 14C]-sucrose, qui est une petite molécule ne pénétrant pas dans le système nerveux central pour des temps d'exposition courts. On estime que ce volume ne doit pas excéder 20 μl/g. Au delà, on conclut à une perméabilité anormale de la BHE. Les composés testés ont été injectés en présence de sucrose et l'intégrité de la BHE est mesurée. Le tableau 3 ci-dessous rapporte l'effet de la perfusion des produits sur l'intégrité de la BHE. Toutes les valeurs obtenues étant inférieures à 20 μl/g, indiquent que les composés ne provoquent pas d'ouverture anormale de la BHE aux doses utilisées. Dans le tableau 3, SEM indique la valeur de « standard error mean » et n indique le nombre d'animaux testés.
Figure imgf000048_0001
Tableau 3 : Volume de distribution du [ 14C-sucrose]
b. Pénétration des produits.
Dans cette étude, nous avons comparé la pénétration dans la BHE de la cyclosporine A libre avec la cyclosporine A vectorisée. Pour suivre le passage des produits à travers la barrière hémato-encéphalique, nous avons utilisé de la cyclosporine A préalablement marquée au tritium 3H (activité spécifique de 20 Ci/mol).
La cyclosporine A libre et la cyclosporine A vectorisée sont ensuite perfusées dans le cerveau de la souris. Après 60 secondes de perfusion dans le tampon, la pénétration des produits est estimée par la constante d'influx ou Kin en μl/sec/g. Le tableau 4 ci-dessous montre que la vectorisation de la cyclosporine A par les vecteurs augmente son passage dans le cerveau d'environ 2 à 4 fois après une perfusion de 60 secondes dans du tampon. Dans le tableau 4, SEM indique la valeur de « standard error mean » et n indique le nombre d'animaux testés.
Figure imgf000049_0001
Tableau 4: Constante d'influx Kin en μl/sec/g
III. Essais de Pharmacocinétiques iv de la Cyclosporine A native et vectorisées.
1. Pharmacocinétiques après injections intraveineuses .
L'étude du passage d'une substance au travers de la BHE nécessite l'emploi de plusieurs approches complémentaires. La perfusion cérébrale permet des mesures sur des temps très courts. L'injection intraveineuse permet une évaluation globale des pharmacocinétiques chez l'animal sur des temps longs. La molécule radioactive est introduite dans la circulation sanguine et se distribue dans l'organisme. Une certaine quantité de cette molécule pénètre dans le cerveau où sa concentration est mesurée à des temps déterminés.
2. Résultats pharmacocinétiques iv.
Les souris sont injectées par voie intraveineuse avec le composé à une dose de 0,7 mg/kg (équivalent en Cyclosporine A). La Cyclosporine A est marquée au tritium (activité spécifique 20 Ci/mol).
Après 5,30 et 120 minutes, les souris sont sacrifiées. Nous avons utilisé 3 souris par temps. Les organes sont ensuite prélevés et comptés. La quantité de radioactivité dans chaque organe est ensuite exprimée en quantité de produit (équivalent en cyclosporine) par gramme d'organe. Les quantités de produit mesurées dans le cerveau sont indiquées dans le tableau 5 ci-dessous.
Figure imgf000050_0001
Tableau 5 : Quantités de produit mesurées dans le cerveau après injections intraveineuses à 0,7 mg/kg équivalent
Dans une autre expérience, les souris sont injectées par voie intraveineuse avec le composé à une dose de 2 mg/kg (équivalent en Cyclosporine A). La Cyclosporine A est marquée au tritium (activité spécifique 5 Ci/mol). Les quantités de produit mesurées dans le cerveau sont indiquées dans le tableau 6 ci-dessous.
Figure imgf000050_0002
Tableau 6 : Quantités de produit mesurées dans le cerveau après injections intraveineuses à 2 mg/kg équivalent Les quantités de produit mesurées dans le cerveau après injections intraveineuses à une dose de 2 mg/kg (équivalent en Cyclosporine A) sont représentées dans la figure 14.
La vectorisation a permis d'améliorer de façon significative le passage de la Cyclosporine A à travers la barrière hémato-encéphalique. Cette accumulation est observée non seulement pour des temps courts mais aussi pour des temps longs allant jusqu'à 2 heures postadministration.
REFERENCES
4,117.118 Harri et al . Organic compounds. 5,972.924 Keep et al . Treatment of cérébral ischemia and cérébral damage.
PCT/US98/20040 Keep and Elmér. Sélective neuronal radioprotection.
Begley, D. J., Squires, L. K. , Zlokovic, B. V.,
Mitrovic, D. M., Hughes, C. C, Revest, P. A. and
Greenwood, J. (1990) Permeability of the blood brain barrier to the immunosuppressive cyclic peptide cyclosporin A. J. Neurochem. 55, 1222-1230.
Bernardi, P. (1996) The permeability transition pore. Control points of a cyclosporin A- sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275, 5-9. Bernardi, P., Colonna, R. , Costantini, P.,
Eriksson, O., Fontaine, E., Ichas, F., Massari, S., Nicolli, A., Petronilli, V. and Scorrano, L. (1998) The mitochondrial permeability transition. Biofactors 8, 273- 81. Borlongan, C. V., Stahl, C. E., Keep, M. F.,
Elmer, E. and Watanabe, S. (2000) Cyclosporine-A enhances choline acetyltransferase immunoreactivity in the septal région of adult rats. Neurosci Lett 279, 73-6.
Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P. and Wieloch, T. (1998) Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycémie damage and implicates the mitochondrial permeability transition in cell death. J. Neurosci. 18, 5151-9. Keep, M., Elmér, E., Fong, K. and Csiszar, K.
(2001) Intrathecal cyclosporin prolongs survival of late- stage ALS mice. Brain Research 894, 327-31. Lensmeyer, G. L., Wiebe, D. A., Carlson, I. H. and Subramanian, R. (1991) Concentrations of cyclosporin A and its métabolites in hu an tissues postmortem. J. Anal. Toxicol. 15, 110-5. Kokryakov, V. N. , Harwig S. S., Panyutich E.A.,
Shevchenko A.A. , Aleshina G.M. , Shamova O.V. , Korneva H.A., Lehrer R.I. (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. Febs Let. 327, 231-236 Leventhal, L., Sortwell, C. E., Hanbury, R.,
Collier, T. J., Kordower, J. H. and Palfi, S. (2000) Cyclosporin A protects striatal neurons in vitro and in vivo from 3-nitropropionic acid toxicity. J. Comp. Neurol. 425, 471-8. Li, P. A., Uchino, H., Elmér, E. and Siesjô, B.
K. (1997) Amélioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res. 753, 133-40.
Liu, J., Farmer, J. D., Jr. , Lane, W. S., Friedman, J. , Weissman, I. and Schreiber, S. L. (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807-15.
Mazel, M, clair, P, Rousselle, C, Vidal, P, Scherrmann, JM, Mathieu, D and Temsamani, J. (2001) Doxorubicin-peptide conjugates overcome multidrug résistance. Anti-Cancer Drugs 12, 107-116.
Miyata, K., Omori, N., Uchino, H., Yamaguchi, T., Isshiki, A. and Shibasaki, F. (2001) Involvement of the brain-derived neurotrophic factor/TrkB pathway in neuroprotecive effect of cyclosporin A in forebrain ischemia. Neuroscience 105, 571-8.
Okonkwo, D. O. , Buki, A., Siman, R. and Povlishock, J. T. (1999) Cyclosporin A limits calcium- induced axonal damage following traumatic brain in jury. NeuroReport 10, 353-8. Okonkwo, D. O. and Povlishock, J. T. (1999) An intrathecal bolus of cyclosporin A before injury préserves mitochondrial integrity and atténuâtes axonal disruption in traumatic brain injury. J. Cereb. Blood Flow Metab. 19, 443-51.
Petersen, A. , Castilho, R. F. , Hansson, O. ,
Wieloch, T. and Brundin, P. (2000) Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons. Brain Res. 857, 20-9.
Rousselle, C, Clair, P., Lefauconnier, J.M.,
Kaczorek, M., Scherrmann, J.M. and Temsamani, J (2000) New advances in the transport of Doxorubicin through the blood- brain barrier by a peptide-vector mediated strategy. Molecular Pharmacology. 57, 679-686.
Rousselle, C, S irnova, M., Clair, P., Lefauconnier, J.M., Chavanieu, A., Calas, B., Scherrmann, J.M. and Temsamani, J. (2001) Enhanced delivery of doxorubicin into the brain via a peptide-vector mediated strategy: saturation kinetics and specificity. J. Pharmacol Exp. Ther. 296, 124-131.
Sakata, A., Tamai, I., Kawazu, K., Deguchi, Y.,
Ohnishi, T., Saheki, A., Tsuji, A. (1994) In vivo évidence for ATP-dependent and P-glycoprotein mediated transport of Cyclosporin A at the blood brain barrier. Biochem
Pharmacol. 48, 1989-1992.
Scheff, S. W. and Sullivan, P. G. (1999) Cyclosporin A significantly améliorâtes cortical damage following expérimental traumatic brain injury in rodents. J. Neurotrauma 16, 783-92.
Sullivan, P. G., Rabchevsky, A. G., Hicks, R.
R. , Gibson, T. R. , Fletcher-Turner, A. and Scheff, S. W.
(2000a) Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 101, 289-95. Sullivan, P. G., Thompson, M. and Scheff, S. W. (2000b) Continuous infusion of cyclosporin A postinjury significantly améliorâtes cortical damage following traumatic brain injury. Exp. Neurol. 161, 631-637. Sullivan, P. G., Thompson, M. B. and Scheff, S.
W. (1999) Cyclosporin A atténuâtes acute mitochondrial dysfunction following traumatic brain injury. Exp. Neurol. 160, 226-34.
Tamura, H. et al. (1993) Chem. Pharm. Bul. Tokyo 41, 978-980.
Temsamani, J. , Rousselle, C, Rees, AR, Scherrmann, JM (2001) Vector-Mediated Drug Delivery to the brain. Expert Opinion on Biological Therapy 1, 773-782.
Temsamani, J., Scherrmann, J.M., Rees A.R. and Kaczorek M. (2000) Brain drug delivery technology: Novel approaches for transporting therapeutics (invited paper). J. Pharmaceutical & Science Technology Today 3, 155-162.
Tsuji, A., Tamai, I., Sakata, A., Tenda, Y., Terasaki, T., (1993) Restricted transport of cyclosporin A across the blood brain barrier by a multidrug transporter, P-glycoprotein. Biochem Pharmacol. 46, 1096-1099.
Uchino, H., Elmér, E., Uchino, K. , Li, P. A., He, Q. P., Smith, M. L. and Siesjô, B. K. (1998) Amélioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res. 812, 216-26.
Uchino, H., Elmér, E., Uchino, K., Lindvall, O. and Siesjδ, B. K. (1995) Cyclosporin A dramatically améliorâtes CAl hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol. Scand. 155, 469-471.
Yoshimoto, T. and Siesjô, B. K. (1999) Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res. 839, 283-91.

Claims

REVENDICATIONS
1) Un composé qui comprend au moins une molécule de cyclosporine et au moins un vecteur peptidique capable de transporter ladite molécule à travers la barrière hémato-encéphalique.
2) Le composé selon la revendication 1, caractérisé en ce que la molécule de cyclosporine est la Cyclosporine A.
3) Le composé selon la revendication 1 ou 2 , caractérisé en ce que le vecteur peptidique est un peptide linéaire ayant pour formule l'une des formules suivantes (I) ou (II) : BX(X OU B)BXXXXBBBXXXXXXB (I)
BXXXBXXXBXXXXBBXB (II) dans lesquelles :
-les groupes B, identiques ou différents, représentent un résidu d'un acide aminé dont la chaîne latérale porte un groupement basique, et
-les groupes X, identiques ou différents, représentent un résidu d'un acide aminé aliphatique ou aromatique , ou lesdits peptides de formule (I) ou (II), dans leur forme rétro ou formés des acides aminés ayant une configuration D et/ou L, ou un fragment formé d'une séquence d'au moins 5, et préférentiellement 7 acides aminés successifs des peptides de la formule (I) ou (II).
4 ) Le composé de la revendication 3 , caractérisé en ce que B est choisi parmi le groupe comprenant l ' arginine, la lysine, l ' acide diaminoacétique, l'acide diaminobutyrique, l'acide diaminopropionique, 1 ' ornithine.
5) Un composé selon les revendications 3 ou 4, caractérisé en ce que X est choisi parmi la glycine, l'alanine, la valine, la norleucine, 1 ' isoleucine, la leucine, la cystéine, la Acmcystéine, la pénicillamine, la méthionine, la serine, la thréonine, 1 ' asparagine, la glutamine, la phénylalanine, l'histidine, le tryptophane, la tyrosine, la proline, l'Abu, l'acide amino -1- cyclohexane carboxylique, l'Aib, le carboxylic 2- aminotétraline, la 4-bromophénylalanine, la tert-Leucine, la 4-chlorophénylalanine, la beta-cyclohexylalanine, la 3 , 4-dichlorophénylalanine, la 4-f luorophenylalanine, 1' homoleucine, la beta-homoleucine, l'homophényalanine, la 4-methylphénylalanine, la 1-naphtyl-alanine, la 2- naphtylalanine , la 4-nitrophenylalanine , la 3- nitrotyrosine, la norvaline, la phenylglycine, la 3- pyridylalanine, la [2-thienyl]alanine.
6) Un composé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la molécule de cyclosporine est liée directement ou indirectement au vecteur peptidique en son extrémité N-terminale ou C- terminale ou par l'une de ses chaînes latérales.
7) Un composé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la molécule de cyclosporine peut être liée directement ou indirectement au vecteur peptidique par l'intermédiaire d'un groupe fonctionnel qui est présent naturellement ou inséré soit dans le vecteur soit dans la molécule, ou dans les deux.
8 ) Le composé de la revendication 7, caractérisé en ce que le groupe fonctionnel est choisi parmi des groupes comprenant -OH, -SH, -COOH, -C(0)H, - C(O)-, -NH2.
9) Un composé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la liaison entre la molécule de cyclosporine et le vecteur peptidique peut être choisie parmi les groupes comprenant une liaison covalente, une liaison hydrophobe, une liaison ionique, un linker qui est clivable ou non clivable en milieu physiologique ou à l'intérieur des cellules.
10) Un composé selon la revendication 9, caractérisé en ce que le linker est choisi dans le groupe comprenant les agents bi- ou multifonctionnels contenant un alkyl, aryl, alkylaryl ou des groupes peptidiques, esters, amides, aminés, alkyl, aryl ou alkylaryl aldéhydes ou acides, anhydrides, sulfhydriles ou des groupes carboxyles tels que les dérivés d' acide maleymil benzoique, acide maleymil propionique et les dérivés succinimidyles, groupes dérivés de bromure ou chlorure de cyanogène, carbonyldiimidazole, esters, phosgène, esters de succinimide ou halogénures sulfoniques.
11) Un composé selon l'une quelconque des revendications 9 ou 10, caractérisé en ce que le linker est choisi dans les groupes comprenant les formules suivantes : -C(0)-R4-NR1-C(0)-(CH2)n-NH-(CH2)m-C(0)- (III) -C ( O) -R4-NR!-C (O) -R2-NH-R3-C (O) - ( IV) -C(0)-R4-NR1-Hyp-0-C(0)-R5-C(0)- (V) -C(0)-R4-NR1-C(0)-CH(NH2)-R5-0-C(0)-R8-C(0)- (VI)
-C (O) -R4-NRj-C ( O) -R5-NH-0-R8-C (O ) - (VII ) -C(O) -R4-NR!-C(O) -R5-0-NH-R8-C (O) - (VIII ) -C (O) -R4-NRj-C (O) -R5-NR7-NR6-R8-C (O) - ( IX ) -C(0)-R4-NH-R5-C(0)- (X) dans lesquelles : n et m sont des entiers indépendants supérieurs ou égaux à 1,
Rj. est H, OR6, N(R6)R7, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl, R2 et R3 sont des alkyls dont au moins un est ramifié par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl) ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques,
R4, R5 et R8 sont, indépendamment, des alkyls linéaires (CH2)n ou ramifiés par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques,
R6 et R7 sont, indépendamment, H, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl,
Hyp-0 représente un résidu hydroxyproline où le groupe hydroxy est en position 2, ou 3, ou 4 de la proline, la liaison au reste du bras de liaison se faisant par l'intermédiaire de l'oxygène du groupe hydroxy de 1 ' hydroxyproline, les carbones asymétriques présents dans les groupes Rlf R2, R3, R4, R5, R6, R7, R8 ou Hyp-0 pouvant être de configuration R ou S.
12) Un composé selon l'une quelconque des revendications 9 à 11, caractérisé en ce que la liaison entre le linker et la molécule de cyclosporine et/ou le vecteur peptidique comprend au moins un pont disulfure.
13) Une composition pharmaceutique comprenant au moins un composé selon les revendications 1 à 12.
14) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des états neurologiques aigus incluant les lésions cérébrales traumatiques, les lésions de la moelle épinière, l'exposition aux radiations, la chimiothérapie, les états epileptiques, la schizophrénie et la chirurgie cérébrale ou spinale.
15) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des états neurologiques aigus incluant l'accident vasculaire cérébral, l'accident vasculaire cérébral embolique, l'ischémie globale cérébrale, la rupture d' anévrisme, l'hémorragie subarachnoïde, les spasmes des vaisseaux et l'accident vasculaire cérébral hémorragique.
16) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des maladies neurodégénératives comprenant la maladie d'Alzheimer, la maladie de Parkinson, la maladie de Huntington, le syndrome de Down, la maladie de Charcot, l'atrophie spino-musculaire, la paralysie bulbaire, la schizophrénie, le syndrome de Tourette, l'atrophie cérébrale corticale diffuse, la démence à corps de Lewy, la démence mésolimbocorticale, la dégénérescence thalamique, la maladie de Pick, l'atrophie multisystème, la dégénérescence cortico-striato-spinale, le syndrome de Shy- Drager, le syndrome de Richardson-Steele-Olzewski, le complexe Prakinson-SLA-Démence de Guam, le syndrome postpolio, l'atrophie olivocérébelleuse , l'ataxie de Friedreich, le syndrome par anéoplas tique , l'encéphalopathie traumatique chronique (Démence pugilistique) , la maladie de Wilson, la maladie de Menke, la gangliosidose Tay-Sachs et la maladie de Krabbe, la neuropathie périphérique, la neuropathie diabétique et le vieillissement.
17) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des maladies à prions incluant la maladie de Creutzfeldt-Jacob, la maladie atypique de Creutzfeldt- Jacob, le Kuru, la scrapie, et l'encéphalopathie bovine spongiforme.
18) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des maladies rétrovirales incluant la démence du SIDA, la myélopathie du SIDA, la neuropathie périphérique du SIDA, et la paraparésie tropicale.
19) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des maladies visuelles et rétiniennes incluant la dégénérescence relative au glaucome, la dégénérescence maculaire, la dégénérescence diabétique, la rétinopathie diabétique, l'inflammation relative à la dégénérescence, le détachement rétinien, les neurites optiques, les lésions du nerf optique, du chiasma optique, du tractus optique et les lésions rétiniennes causées par les photons, les traumatismes, l'ischémie, et l'augmentation de la pression intracrânienne .
20) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention d'infections virales et bactériennes et d' encéphalopathies incluant les encéphalites herpétiques, l'encéphalite équine, l'encéphalite post-vaccinatoire, l'encéphalite Japonaise, l'encéphalite Nile, la méningite, la rage, la poliomyélite, la leukoencéphalopathie progressive multifocale, la panencéphalite subaigue sclérosante, la malaria cérébrale, la maladie de Lyme et la neurosyphilis .
21) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des maladies immunes incluant les scléroses en plaque, le syndrome de Guillain-Barré, le lupus érythémateux et la maladie de Grave.
22) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des effets des neurotoxines incluant les aminoglycosides , les hydrocarbures chlorés, les organophosphates, les insecticides, les herbicides, le paraquat, l'Agent Orange, les gaz innervant, le MPTP, la roténone, le cyanide, le monoxyde de carbone, le methanol, l'éthanol, le mercure, l'arsenic et les agents de chimiothérapie incluant le méthotrexate, la mercaptopurine, le fluorouracile, les nitrosourées, 1 'hydroxyurée, le cisplatinum, le carboplatinum, la daunorubicine, la doxorubicine, l'époside, la vincristine, la vinblastine, le taxol et ses dérivés, le cyclophosphamide, et les corticostéroides .
23) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention des encéphalopathies métaboliques incluant l'encéphalopathie hépatique et l'encéphalopathie urémique.
24) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement ou la prévention de l'être humain nécessitant un état de non- immunité en vue de la transplantation d'un organe, tissu ou cellulaire, ou pour les maladies autoimmunes et immunes telles que l'arthrite rhumatoïde, l'eczéma, le psoriasis et l'alopécie.
25) Utilisation d'un composé selon l'une quelconque des revendications 1 à 12 pour la préparation d'une composition pharmaceutique pour le traitement chez l'être humain d'une tumeur résistante à la chimiothérapie.
26) Utilisation selon l'une quelconque des revendications 14 à 25, caractérisée en ce que la composition pharmaceutique est une forme appropriée pour l'administration par la voie parentérale, la voie intravasculaire, la voie orale, la voie rectale, la voie vaginale, la voie nasale, la voie transdermique, la voie pulmonaire, la voie cérébrospinale, la voie intracisternale , la voie subarachnoïde, la voie intratéchale, ou directement dans ou sur le parenchyme cérébral.
27) Utilisation selon l'une quelconque des revendications 14 à 25, caractérisée en ce que la composition pharmaceutique est une forme appropriée pour l'administration par la voie intravasculaire, la voie cérébrospinale, la voie intraventriculaire, la voie intracisternale, la voie subarachnoïde, la voie intratéchale, ou directement dans ou sur le parenchyme cérébral, utilisant partiellement ou complètement des appareils tels que ceux à relargage prolongé par injection dépôt, des pompes, des réservoirs ou des cathéters.
28) Agent de liaison répondant à l'une des formules suivantes :
-C(0)-R4-NR1-C(0)-(CH2)n-NH-(CH2)m-C(0)- (III) -C(0)-R4-NR1-C(0)-R2-NH-R3-C(0)- (IV) -C(0)-R4-NR1-Hyp-0-C(0)-R5-C(0)- (V) -C(0)-R4-NR1-C(0)-CH(NH2)-R5-0-C(0)-R8-C(0)- (VI)
-C (O) -R4-NR!-C (O) -R5-NH-0-R8-C (O) - (VII ) -C(O) -R4-NR!-C(O) -R5-0-NH-R8-C(O) - (VIII ) -C (O) -R4-NR!-C (O) -R5-NR7-NR6-R8-C ( O) - ( IX ) -C(0)-R4-NH-R5-C(0)- (X) dans lesquelles : n et m sont des entiers indépendants supérieurs ou égaux à 1,
Ri est H, OR6, N(R6)R7, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl, R2 et R3 sont des alkyls dont au moins un est ramifié par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl) ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques,
R4, R5 et R8 sont, indépendamment, des alkyls linéaires (CH2)n ou ramifiés par un ou deux ou une combinaison d' alkyl, aryl, alkylaryl, acyl, allyl ou tout autre alkyl ramifié pouvant porter des groupes hétéroatomiques ,
R6 et R7 sont, indépendamment H, un alkyl, un aryl, un alkylaryl, un acyl ou un allyl,
Hyp-0 représente un résidu hydroxyproline où le groupe hydroxy est en position 2, ou 3, ou 4 de la proline, la liaison au reste du bras de liaison se faisant par l'intermédiaire de l'oxygène du groupe hydroxy de 1 ' hydroxyproline, les carbones asymétriques présents dans les groupes Rl R2, R3, R4, R5, R6, R7, R8 ou Hyp-0 pouvant être de configuration R ou S.
PCT/FR2003/000591 2002-02-22 2003-02-24 Composes et compositions pour le transport de la cyclosporine a travers la barriere hemato-encephalique WO2003070755A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003229835A AU2003229835A1 (en) 2002-02-22 2003-02-24 Compounds, compositions and method for transporting cyclosporin molecules through the blood brain barrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0202299A FR2836474B1 (fr) 2002-02-22 2002-02-22 Composes, compositions et methode pour le transport des molecules de cyclosporine a travers la barriere hemato-encephalique
FR02/02299 2002-02-22

Publications (2)

Publication Number Publication Date
WO2003070755A2 true WO2003070755A2 (fr) 2003-08-28
WO2003070755A3 WO2003070755A3 (fr) 2004-03-04

Family

ID=27676020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000591 WO2003070755A2 (fr) 2002-02-22 2003-02-24 Composes et compositions pour le transport de la cyclosporine a travers la barriere hemato-encephalique

Country Status (3)

Country Link
AU (1) AU2003229835A1 (fr)
FR (1) FR2836474B1 (fr)
WO (1) WO2003070755A2 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851471A1 (fr) * 2003-02-24 2004-08-27 Synt Em Composes comprenant au moins une substance active et au moins un vecteur relies par un agent de liaison, leurs utilisations et lesdits agents de liaison
WO2007027559A3 (fr) * 2005-08-29 2007-06-21 Victor E Shashoua Procedes et compositions de neuroprotection et de neurorestauration
WO2007094026A1 (fr) * 2006-02-17 2007-08-23 Paolo La Colla Traitement prophylactique et/ou thérapeutique de maladies prolifératives et conformationnelles
US7652037B2 (en) 2003-10-27 2010-01-26 City Of Hope Methods of lowering lipid levels in a mammal
US7696166B2 (en) 2006-03-28 2010-04-13 Albany Molecular Research, Inc. Use of cyclosporin alkyne/alkene analogues for preventing or treating viral-induced disorders
US7696165B2 (en) 2006-03-28 2010-04-13 Albany Molecular Research, Inc. Use of cyclosporin alkyne analogues for preventing or treating viral-induced disorders
WO2010063483A2 (fr) * 2008-12-04 2010-06-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Construction de principe actif et de peptide pour une administration extracellulaire
WO2012076824A1 (fr) 2010-12-10 2012-06-14 Institut Gustave Roussy Nouveaux derives d'oxazaphosphorines pre-activees, utilisation et methode de preparation
US10456443B2 (en) 2014-08-27 2019-10-29 Ohio State Innovation Foundation Peptidyl calcineurin inhibitors
US10626147B2 (en) 2014-05-21 2020-04-21 Entrada Therapeutics, Inc. Cell penetrating peptides and methods of making and using thereof
US10815276B2 (en) 2014-05-21 2020-10-27 Entrada Therapeutics, Inc. Cell penetrating peptides and methods of making and using thereof
US11168310B2 (en) 2018-02-22 2021-11-09 Entrada Therapeutics, Inc. Compositions and methods for treating mitochondrial neurogastrointestinal encephalopathy
US11576946B2 (en) 2018-01-29 2023-02-14 Ohio State Innovation Foundation Peptidyl inhibitors of calcineurin-NFAT interaction
US11987647B2 (en) 2018-05-09 2024-05-21 Ohio State Innovation Foundation Cyclic cell-penetrating peptides with one or more hydrophobic residues

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1810675A1 (fr) * 2006-01-18 2007-07-25 Institut Curie Methode de traitement de la maladie de Huntington par l'inhibition de la dephosphorylation de la S421
CN113952468B (zh) * 2021-09-26 2023-07-07 中国人民解放军空军军医大学 一种治疗心肌缺血再灌注损伤的环孢菌素a纳米药物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001667A1 (fr) * 1990-07-25 1992-02-06 G.D. Searle & Co. Promedicaments nephroselectifs de regulation de l'activite du systeme nerveux sympathique du rein, utilises dans le traitement de l'hypertension
WO1999007728A2 (fr) * 1997-08-12 1999-02-18 Synt:Em (S.A.) Peptides lineaires derives de peptides antibiotiques, leur preparation et leur utilisation pour vectoriser des substances actives
WO2001013957A2 (fr) * 1999-08-24 2001-03-01 Cellgate, Inc. Compositions et procedes ameliorant la diffusion de medicaments a travers et dans des tissus epitheliaux
WO2002067917A1 (fr) * 2001-02-23 2002-09-06 Cellgate, Inc. Compositions et procedes renforçant la livraison de medicaments dans et a travers tissus oculaires

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001667A1 (fr) * 1990-07-25 1992-02-06 G.D. Searle & Co. Promedicaments nephroselectifs de regulation de l'activite du systeme nerveux sympathique du rein, utilises dans le traitement de l'hypertension
WO1999007728A2 (fr) * 1997-08-12 1999-02-18 Synt:Em (S.A.) Peptides lineaires derives de peptides antibiotiques, leur preparation et leur utilisation pour vectoriser des substances actives
WO2001013957A2 (fr) * 1999-08-24 2001-03-01 Cellgate, Inc. Compositions et procedes ameliorant la diffusion de medicaments a travers et dans des tissus epitheliaux
WO2002067917A1 (fr) * 2001-02-23 2002-09-06 Cellgate, Inc. Compositions et procedes renforçant la livraison de medicaments dans et a travers tissus oculaires

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C ROUSSELLE ET AL.: "New advances in the transport of doxoubicin through the blood-brain barrier by a peptide vector-mediated strategy" MOLECULAR PHARMACOLOGY, vol. 57, 2000, pages 679-686, XP002226486 BALTIMORE, MD, US ISSN: 0026-895X *
J R ROTHBARD ET AL.: "Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation" NATURE MEDICINE., vol. 6, no. 11, novembre 2000 (2000-11), pages 1253-1257, XP002226485 NATURE AMERICA, NEW YORK., US ISSN: 1078-8956 *
J TEMSAMANI ET AL.: "Brain drug delivery technologies: novel approaches for transporting therapeutics" PHARMACEUTICAL SCIENCE AND TECHNOLOGY TODAY, vol. 3, no. 5, mai 2000 (2000-05), pages 155-162, XP002226487 ELSEVIER TRENDS JOURNALS, CAMBRIDGE,, GB ISSN: 1461-5347 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851471A1 (fr) * 2003-02-24 2004-08-27 Synt Em Composes comprenant au moins une substance active et au moins un vecteur relies par un agent de liaison, leurs utilisations et lesdits agents de liaison
US7652037B2 (en) 2003-10-27 2010-01-26 City Of Hope Methods of lowering lipid levels in a mammal
US9295707B2 (en) 2005-08-29 2016-03-29 Angela Shashoua Neuroprotective and neurorestorative methods and compositions
WO2007027559A3 (fr) * 2005-08-29 2007-06-21 Victor E Shashoua Procedes et compositions de neuroprotection et de neurorestauration
US8507439B2 (en) 2005-08-29 2013-08-13 Angela Shashoua Neuroprotective and neurorestorative method and compositions
WO2007094026A1 (fr) * 2006-02-17 2007-08-23 Paolo La Colla Traitement prophylactique et/ou thérapeutique de maladies prolifératives et conformationnelles
US7696166B2 (en) 2006-03-28 2010-04-13 Albany Molecular Research, Inc. Use of cyclosporin alkyne/alkene analogues for preventing or treating viral-induced disorders
US7696165B2 (en) 2006-03-28 2010-04-13 Albany Molecular Research, Inc. Use of cyclosporin alkyne analogues for preventing or treating viral-induced disorders
WO2010063483A2 (fr) * 2008-12-04 2010-06-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Construction de principe actif et de peptide pour une administration extracellulaire
WO2010063483A3 (fr) * 2008-12-04 2010-10-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Construction de principe actif et de peptide pour une administration extracellulaire
WO2012076824A1 (fr) 2010-12-10 2012-06-14 Institut Gustave Roussy Nouveaux derives d'oxazaphosphorines pre-activees, utilisation et methode de preparation
US10626147B2 (en) 2014-05-21 2020-04-21 Entrada Therapeutics, Inc. Cell penetrating peptides and methods of making and using thereof
US10815276B2 (en) 2014-05-21 2020-10-27 Entrada Therapeutics, Inc. Cell penetrating peptides and methods of making and using thereof
US11225506B2 (en) 2014-05-21 2022-01-18 Entrada Therapeutics, Inc. Cell penetrating peptides and methods of making and using thereof
US10456443B2 (en) 2014-08-27 2019-10-29 Ohio State Innovation Foundation Peptidyl calcineurin inhibitors
US11576946B2 (en) 2018-01-29 2023-02-14 Ohio State Innovation Foundation Peptidyl inhibitors of calcineurin-NFAT interaction
US11168310B2 (en) 2018-02-22 2021-11-09 Entrada Therapeutics, Inc. Compositions and methods for treating mitochondrial neurogastrointestinal encephalopathy
US11987821B2 (en) 2018-02-22 2024-05-21 Entrada Therapeutics, Inc. Compositions and methods for treating mitochondrial neurogastrointestinal encephalopathy
US11987647B2 (en) 2018-05-09 2024-05-21 Ohio State Innovation Foundation Cyclic cell-penetrating peptides with one or more hydrophobic residues

Also Published As

Publication number Publication date
AU2003229835A8 (en) 2003-09-09
WO2003070755A3 (fr) 2004-03-04
FR2836474B1 (fr) 2004-12-24
FR2836474A1 (fr) 2003-08-29
AU2003229835A1 (en) 2003-09-09

Similar Documents

Publication Publication Date Title
WO2003070755A2 (fr) Composes et compositions pour le transport de la cyclosporine a travers la barriere hemato-encephalique
AU623423B2 (en) A method for preventing tissue damage after an ischemic episode
ES2206608T3 (es) Inhibidores de la actividad rotamasa de la ciclofilina.
US10758589B2 (en) Chloride salt of TAT-NR2B9c
KR102166374B1 (ko) Tat-nr2b9c의 동결건조된 제형
EA010200B1 (ru) Рекомбинантные тканезащитные цитокины и кодирующие их нуклеиновые кислоты для защиты, восстановления и усиления чувствительных клеток, тканей и органов
WO2015197193A2 (fr) Nouvelle utilisation de molécules inhibitrices de jnk pour le traitement de diverses maladies
JP6998878B2 (ja) 環状ポリペプチド、それらを得る方法、及びその治療的使用
CN111744020B (zh) 一种主动靶向响应型多肽药物、其制备方法和应用
US9717772B2 (en) Interval therapy for the treatment of loss of eyesight in humans with glaucoma and other degenerative eye diseases
JP7002788B2 (ja) ポリペプチドの薬学的に許容される塩およびその使用
JP7073486B2 (ja) 興奮性神経毒性に関連した損傷の治療用ペプチド組成物
US8003596B2 (en) P-selectin targeting ligand and compositions thereof
CN114555630A (zh) 用于治疗脊髓损伤和/或髓鞘再生的肽的全身施用
EP3996733A1 (fr) Hybride peptoïde-peptide, nmeg-?cgrp, et son utilisation dans des maladies cardiovasculaires
US20170305969A1 (en) B-Lamella Blocking Peptide Used for Preventing and/or Treating Alzheimer's Disease
FR2830016A1 (fr) Compositions pour la vectorisation de derives taxoides a travers la barriere hematoencephalique et leur utilisation pour le traitement des cancers, plus particulierement des cancers du cerveau
WO2014015338A1 (fr) Polypeptides cristallins acétylés et leurs mimétiques comme agents thérapeutiques
Yanamadala Peptide carriers to improve uptake and functionality and to cross BBB to arrest secondary injury post TBI
RU2747121C1 (ru) Способ применения средства на основе модифицированного пероксиредоксина 2 человека для коррекции последствий ишемически-реперфузионного поражения почек
JP2023504074A (ja) ペンタペプチドおよびその使用方法
KR20230147163A (ko) 안구 병태에 대한 단백질-기반 요법
JP2002080395A (ja) 心筋傷害処置剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP