WO2003069754A1 - Protective relay apparatus comprising photoelectriccurrent sensor - Google Patents

Protective relay apparatus comprising photoelectriccurrent sensor Download PDF

Info

Publication number
WO2003069754A1
WO2003069754A1 PCT/JP2003/001662 JP0301662W WO03069754A1 WO 2003069754 A1 WO2003069754 A1 WO 2003069754A1 JP 0301662 W JP0301662 W JP 0301662W WO 03069754 A1 WO03069754 A1 WO 03069754A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
current
optical signal
protection section
photocurrent sensor
Prior art date
Application number
PCT/JP2003/001662
Other languages
French (fr)
Japanese (ja)
Inventor
Takafumi Ito
Yoshifumi Chida
Matsuyoshi Kato
Yasuhisa Yamada
Yoichiro Tashiro
Kiyoshi Kurosawa
Kenji Ohkawara
Original Assignee
Takaoka Electric Mfg. Co., Ltd.
Tokyo Electric Power Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg. Co., Ltd., Tokyo Electric Power Company filed Critical Takaoka Electric Mfg. Co., Ltd.
Priority to JP2003568757A priority Critical patent/JP3802028B2/en
Priority to AU2003211341A priority patent/AU2003211341A1/en
Publication of WO2003069754A1 publication Critical patent/WO2003069754A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • H02H1/0069Details of emergency protective circuit arrangements concerning transmission of signals by means of light or heat rays

Definitions

  • the present invention relates to a protective relay for measuring and monitoring a current flowing in a conductor of a power facility by utilizing the Faraday effect.
  • a current signal of a device conductor detected by a current transformer is transmitted to the protective relay, and the protective relay performs calculation and determination for failure determination.
  • a protective relay device using a photocurrent sensor with a differential operation function has been proposed instead of the current measurement method using a conventional wound-type current transformer.
  • the application has been filed in the form of “Open 200 0—5 9 9 8 7” and Japanese Patent Application No. 1 1—2 2 4 8 2 1.
  • a protection relay device using a conventional photocurrent sensor includes a first photocurrent sensor 1 including a polarizer 14, a Faraday element 11, and an analyzer 15, and a first photocurrent sensor.
  • Second photocurrent sensor 2 configured in the same way as sensor 1, optical fiber transmission lines 3a, 3b, 3c, light source 12, photoelectric converter 16, high-pass filter circuit 17, low-pass filter It comprises an optical signal processing section 4 a composed of a circuit 18 and a divider 19, a power frequency component difference current detecting means 5 d, and a judging means 8.
  • the first photocurrent sensor 1 and the second photocurrent sensor 2 are provided at both ends of the protection section 9 of the power system.
  • the current first photocurrent sensor 1 detects the i physician second optical current sensor 2 a current detected a i 2, the code together inflow direction to the protected section 9 of the electric power system +
  • the outflow direction is one.
  • the direction of propagation of light in the first photocurrent sensor 1 is provided so as to coincide with the direction of the magnetic field generated by the current i detected by the first photocurrent sensor 1, and the second photocurrent
  • the light propagation direction in the sensor 2 is provided so as to match the magnetic field generated by the current i 2 detected by the second photocurrent sensor 2.
  • the relationship between the current i detected by the first photocurrent sensor 1 and the rotation angle ⁇ of the polarization plane is when the Verde constant is V.
  • the incident light is further converted into light in which the rotation angle 0 of the polarization plane is modulated by the analyzer 15 in the first photocurrent sensor 1.
  • the analyzer 15 is preferably installed at an angle of plus 45 ° or minus 45 ° with respect to the polarizer 14, and the emitted light of the first photocurrent sensor 1 is x, y by the analyzer 15
  • the light is divided into two components, Plx and Ply , in the direction.
  • the outgoing light P lx of the first photocurrent sensor 1 is represented by the following equation.
  • the output light Plx of the first photocurrent sensor 1 is guided to the optical fiber transmission line 3b and reaches the second photocurrent sensor 2.
  • Outgoing light P lx, the second receiving the Faraday effect due to the magnetic field optical current sensor 2 is generated by the current i 2 I 28 ⁇ t) for detecting a current i 2 of the plane of polarization in proportion to the magnitude angle 0 2 Just rotate.
  • the light emitted from the second photocurrent sensor 2 is again divided by the analyzer 15 into two component lights P 2x and P 2y in the x and y directions, and are expressed by the following equation.
  • the light P 2x emitted from the second photocurrent sensor 2 is guided to the optical fiber transmission line 3 c and enters the photoelectric converter 16, where it is converted into an electric signal.
  • the DC component and the AC component are separated by 18, and the AC component is divided by the DC component in the divider 19 to obtain a difference current output S 2x by the photocurrent sensor.
  • the method of dividing by the DC component by the divider 19 is used in order to compensate for the loss of light quantity when the optical signal is transmitted.
  • the difference current output S 2x by the photocurrent sensor is represented by the following equation.
  • Equation (9) holds in a small current region where Equation (7) holds, and does not hold in a high current region.
  • the present inventors the Japanese Patent Application No. flat 11-224821 as a protective relay device using an optical fiber sensor capable of measuring the difference current i E + i 2 to the protected section 9 of the electric power system even in a large current region Filed.
  • J k (a) is the k-th Bessel function
  • equation (10) becomes
  • B 2 2A 1 A 2 / (1 + 2A 1 A 2 ) ⁇ ⁇ ⁇ -(13 c) where BB 2 is a constant with respect to time.
  • the difference current output S 2x by the photocurrent sensor is the frequency component of the difference current i + i 2 to the protection section 9 of the power system shown in the first term, that is, the power supply frequency In addition to the component, it consists of the term of the frequency component twice the power frequency shown in the second term.
  • the term of the power frequency component of Eq. (13b) by calculation.
  • the current flowing into protection section 9 is assumed to be 33 kA or less.
  • Verdet constant V 3. 93X 10- 6 [rad / A] of the lead glass fiber-type optical current sensors of wavelength 155 onm. Using these values, 'An approximation of In holds.
  • equation (13b) can be expressed as equation (13d).
  • the approximation error is 1% or less at an effective current of 24 kA and 2% or less at an effective value of 33 kA or less, and a lead glass fiber type photocurrent sensor with a wavelength of 155 Onm is obtained. Considering the possibility that the used protective relay can be applied to the failure judgment calculation available.
  • equation (13a) shows that at a current of 33 kA or less, at the same frequency component as the power supply frequency of the differential current output S 2 x by the photocurrent sensor, the differential current i Although an output proportional to E + i 2, which means that twice the frequency components of the power supply frequency is generated as an error component.
  • the power supply frequency component difference current detection means 5 removes twice the frequency component from the difference current output S 2 x by the photocurrent sensor, and the output is led to the judgment means 8 to protect the power system. operate on the differential current i E + i 2 to the protective relay device is formed.
  • the current signal is a sine wave AC signal.
  • the current signal becomes a signal that is superimposed on the DC component and transiently attenuated.
  • the largest DC component is superimposed, that is, the fault current with 100% DC component superimposed is expressed by the following equation.
  • is an attenuation time constant determined from the ratio of the reactance and the resistance of the power system. Even if the transiently attenuated current signal represented by equation (14) is substituted into equations (5a) and (6), it is divided into power supply frequency components as shown in equation (13a). It cannot be represented. Therefore, the effect of the error component included in the difference current output S 2 x of the photocurrent sensor on the protection case 9 of the power system for the accident cases outside the protection zone and the accident within the protection zone think.
  • FIG. 2 is a system diagram for explaining the operation of the protective relay using the photocurrent sensor.
  • fl and f3 are accidents outside the protection section
  • f2 are accidents in the protection section.
  • an accident outside the section of protection section 9 of the power system is referred to as an external accident
  • an accident within the section of protection section 9 of the power system is referred to as an internal accident.
  • the first photocurrent sensor 1 and the second photocurrent sensor 2 are respectively installed at both ends of the protection section 9 of the power system, and the light source is provided by the optical fiber transmission lines 3a to 3d. 12, connected to the first optical signal processing unit 4a and the second optical signal processing unit 4b.
  • the first photocurrent sensor 1 detects the current ii
  • the second photocurrent Sensor 2 for detecting the current i 2.
  • Fig. 7 is a diagram for explaining that if an external fault occurs and the fault current is a DC component superimposed, unnecessary operation of the protective relay may occur with the conventional technology.
  • the values of the fault current and the optical fiber constants shown below were substituted into equations (14), (5a) and (6), and the signal values at each section were calculated.
  • Fig. 7 (a) shows the fault current signal in which the DC component expressed by equation (14) is superimposed in the case of an external fault
  • Fig. 7 (b) shows the second photocurrent sensor at this time.
  • FIG. 7 (c) a differential current output S 2 x by the optical current sensor
  • Fig. 7 (d) the effective value R 2x power frequency component of the differential current output S 2x by the optical current sensor obtained, respectively it Things.
  • the optical current sensor 1, 2 is a lead-glass Sufaiba type fiber-optic current sensor having a wavelength of 1550 nm
  • the Verdet constant V is used 3. 93X 10- 6 [r ad / A].
  • the magnitude of the fault current I is 33 kA rms, the power supply frequency is 5 OHz, and the time constant is 50 ms.
  • digital in a digital relay circuit Filter 'Effective value calculation circuit used. Since this is a well-known technique, we will only introduce its algorithm here.
  • Fig. 7 (e) shows the fault current when the fault current was a sine wave AC signal expressed by equation (3).
  • Light signal P 2x / P from the second photocurrent sensor 2 shows the difference current output S2x by the photocurrent sensor in Fig. 7 (g)
  • Fig. 7 (h) shows the effective value of the power supply frequency component of the difference current output S2x by the photocurrent sensor. .
  • a short-time error signal is generated immediately after the fault (equivalent to a peak value of 4kA for 0.01 seconds). Is not reached.
  • an error signal is generated for a time that cannot be ignored as shown in Fig. 7 (d) (equivalent to a peak value of 20 kA, 0.2 Seconds). This is because the power supply frequency component is represented as an error signal until the DC component is attenuated as shown in Eq. (16).
  • FIG. 7 (i) shows a signal in which an internal fault has occurred in the system shown in FIG. 2 and the fault current is expressed by the equation (14) with a DC component superimposed on 100%.
  • Figure 7 (j) shows the difference current output S 2x by the photocurrent sensor in Figure 7 (k), and
  • Figure 7 (1) shows the effective value of the power supply frequency component of the difference current output S 2x by the photocurrent sensor. Show.
  • Fig. 7 (m) shows the case where an internal fault occurs in the system shown in Fig. 2 and the fault current is a sinusoidal AC signal expressed by equation (3).
  • the optical signal P 2x from sensor 2 is shown in Fig. 7 (n)
  • the differential current output S 2x by the photo current sensor is shown in Fig. 7 (o)
  • the effective value of the power supply frequency component of the differential current output S 2x by the photo current sensor Is shown in Fig. 7 (p).
  • An object of the present invention is to detect a fault current superimposed with a direct current component, not only when an internal fault occurs, but also when an external fault occurs, without discriminating that the fault is an internal fault.
  • An object of the present invention is to propose a protection relay device using a photocurrent sensor that does not perform unnecessary operations.
  • the present invention provides two first and second photocurrent sensors that individually measure input and output currents at both ends of a protection section of a power system, wherein the first photocurrent sensor has an incident end,
  • the analyzer has an analyzer that performs analysis in two polarization directions of plus 45 degrees and a minus 45 degrees with respect to the polarization direction of the polarizer provided at the incident end, and an emission end for each of the analysis components.
  • a difference current detection unit that detects a difference current component from an output signal of the optical signal processing unit; a sum current detection unit that detects a sum current component from an output signal of the optical signal processing unit; and a difference current detection unit.
  • An operation amount calculating means for obtaining an operation amount from an output;
  • a suppression amount calculating means for obtaining a suppression amount from an output of the output means and an output of the sum current detecting means;
  • a protection relay device using a photocurrent sensor comprising: a determination unit configured to determine whether an accident is within the protection section or outside the protection section of the power system from the output of the operation amount calculation unit and the output of the operation ratio calculation unit. It is provided.
  • the present invention provides two first and second photocurrent sensors that individually measure input and output currents at both ends of a protection section of a power system, wherein the first photocurrent sensor has an incident end and It has an analyzer that performs analysis in two polarization directions of plus 45 degrees and minus 45 degrees with respect to the polarization direction of the polarizer provided at the incident end, and an emission end for each of the analysis components.
  • the first and second Differential current detecting means for connecting optical current sensors to each other and between the second photocurrent sensor and the optical signal processing unit by optical fiber transmission, and detecting a differential current component from an output signal of the optical signal processing unit.
  • Sum current detection means for detecting a sum current component from the output signal of the optical signal processing unit; and correction calculation means for obtaining individual input / output currents from the output of the difference current detection means and the output of the sum current detection means.
  • An operation amount calculating means for obtaining an operation amount from the correction operation means; a suppression amount calculating means for obtaining a suppression amount from the correction operation means; an operation from an output of the operation amount calculating means and an output of the suppression amount calculating means.
  • Operating ratio calculating means for obtaining a ratio, and determining means for judging whether the accident is within the protection section or outside the protection section of the power system from the output of the operation amount calculation means and the output of the operation ratio calculation means. Equipped photoelectric
  • a protection relay device using a flow sensor is provided. Further, the present invention is a protection relay device for monitoring an accident of a power system having a protection section, wherein the protection relay device includes:
  • a first photocurrent sensor disposed on one end side of the protection section of the power system, the first photocurrent sensor receiving the optical signal from the light source, Rotating the polarization plane of the optical signal in proportion to the magnitude of the first current flowing on one end side, and converting the first optical signal of at least one direction component of the optical signal whose polarization plane has been rotated.
  • a first photocurrent sensor that emits;
  • a second photocurrent sensor disposed at the other end of the protection section of the power system, wherein the second photocurrent sensor transmits the first optical signal from the first photocurrent sensor. Receiving the first optical signal, further rotating the polarization plane of the first optical signal in proportion to the magnitude of the second current flowing to the other end of the protection section of the power system, and further rotating the polarization plane.
  • a second photocurrent sensor that emits a second optical signal of one direction component and a third optical signal of another direction component of the first optical signal;
  • a first optical signal processing unit for obtaining a difference current output that is a difference between the first current and the second current from the second optical signal
  • a second optical signal processing unit for obtaining a sum current output that is a sum of the first current and the second current from the third optical signal;
  • a difference current detection unit that detects the difference current output of the first optical signal processing unit;
  • a sum current detection unit that detects the sum current output of the second optical signal processing unit; and
  • An operation amount calculating means for obtaining an operation amount from the output;
  • Suppression amount calculation means for obtaining the suppression amount from the output of the difference current detection means and the output of the sum current detection means
  • An operation ratio calculating unit that obtains an operation ratio from the output of the operation amount calculating unit and the output of the suppression amount calculating unit;
  • a protection means comprising: a determination means for determining whether the power gun has an accident inside the protection section or outside the protection section based on an output of the operation amount calculation means and an output of the operation ratio calculation means.
  • An electric device is provided.
  • the present invention is a protection relay device for monitoring an accident of a power system having a protection section, wherein the protection relay device includes:
  • a first photocurrent sensor disposed on one end side of the protection section of the power system, the first photocurrent sensor receiving the optical signal from the light source, Rotating the polarization plane of the optical signal in proportion to the magnitude of the first current flowing on one end side, and converting the first optical signal of at least one direction component of the optical signal whose polarization plane has been rotated.
  • a first photocurrent sensor that emits;
  • a second photocurrent sensor disposed at the other end of the protection section of the power system, wherein the second photocurrent sensor transmits the first optical signal from the first photocurrent sensor. Receiving the first optical signal, further rotating the polarization plane of the first optical signal in proportion to the magnitude of the second current flowing to the other end of the protection section of the power system, and further rotating the polarization plane.
  • a second photocurrent sensor that emits a second optical signal of one direction component and a third optical signal of another direction component of the first optical signal;
  • a first optical signal processing unit for obtaining a difference current output that is a difference between the first current and the second current from the second optical signal
  • a second optical signal processing unit for obtaining a sum current output that is a sum of the first current and the second current from the third optical signal
  • Difference current detection means for detecting the difference current output of the first optical signal processing unit
  • Sum current detection means for detecting the sum current output of the second optical signal processing unit
  • correction calculation means for obtaining individual input / output currents from the output of the difference current detection means and the output of the sum current detection means
  • Operation amount calculation means for obtaining an operation amount from an output of the correction operation means
  • Suppression amount calculation means for obtaining the suppression amount from the output of the correction calculation means
  • An operation ratio calculating unit that obtains an operation ratio from the output of the operation amount calculating unit and the output of the suppression amount calculating unit;
  • a protection relay device comprising: a determination unit that determines whether an accident is inside the protection section of the power system gun or outside the protection section based on an output of the operation amount calculation unit and an output of the operation ratio calculation unit.
  • the present invention also provides a method for detecting an accident in a power system having a protected section
  • the first photocurrent sensor sensing a magnitude of a first current flowing on one end side of the protection section of the power system
  • the present invention is a method for detecting an accident in a power system having a protection zone
  • the first photocurrent sensor sensing a magnitude of a first current flowing on one end side of the protection section of the power system
  • FIG. 1 is a configuration diagram illustrating an embodiment according to the present invention and illustrating a protection relay device using a photocurrent sensor.
  • FIG. 2 is a system diagram illustrating an embodiment according to the present invention and illustrating a protection relay device using a photocurrent sensor.
  • FIG. 3 is an example of an output waveform when fault current is measured according to the embodiment of the present invention.
  • FIG. 4 is a configuration diagram illustrating another embodiment according to the present invention and illustrating a protection relay device using a photocurrent sensor.
  • FIG. 5 is an example of an output waveform when a fault current is measured according to another embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a protection relay device using a conventional photocurrent sensor.
  • FIG. 7 is an example of an output waveform when a fault current is measured according to a conventional technique.
  • the output signal from the optical current sensors is x, the light P 2 x 2 component in the y-direction, there are P 2 y, conventional
  • the technology uses only one or the other.
  • FIG. 1 is an explanatory diagram showing an embodiment of a protective relay device using the photocurrent sensor of the present invention. Using optical signal P 2 y signal in the same way as using the optical signal P 2 x to determine a difference current signal S 2 x by the optical current sensor.
  • the differential current signal S 2 x by the photocurrent sensor obtained from the optical signal P 2 x is the difference between the current ii detected by the first photocurrent sensor 1 S and the current i 2 detected by the second photocurrent sensor 2. while has information of ii + i 2 which is a flow, the optical signal P 2 from y i ⁇ and i is the second sum current II- i 2 sum has information current output S The fact that 2 y can be obtained will be described below. Incidentally, the sum current of the protection section 9 of the power system i - i 2 and indicated Runowa, the inflow direction to the protected section 9 of both power system the sign of i have i 2 +, as one of the outflow direction By definition.
  • FIG. 1 shows a first photoelectric current sensor 1 including a polarizer 14, a Faraday element 11, and an analyzer 15, a second photoelectric current sensor 2 configured similarly to the first photoelectric current sensor 1, and a light source 12 And a first optical signal processing unit 4a comprising a photoelectric converter 16, a high-pass filter circuit 17, a low-pass filter circuit 18, and a divider 19, and a first optical signal processing unit 4a.
  • a second optical signal processing unit 4b an optical fiber transmission line 3a for transmitting an optical signal between the light source 12 and the first photoelectric current sensor 1, a first optical current sensor 1 and a second optical current
  • An optical fiber transmission path 3 b for transmitting an optical signal between the sensors 2, an emission end for emitting an optical signal P 2x having difference current information among the two emission ends of the second optical current sensor 2, and a first light
  • An optical fiber transmission line 3c for transmitting the signal processing unit 4a, and a sum current of two emission ends of the second photocurrent sensor 2.
  • Operation amount calculating means 6a for obtaining the suppression amount
  • the suppression amount calculating means 6b for obtaining the suppression amount from the outputs of the difference current detecting means 5a and the sum current detecting means 5b, the operation amount calculating means 6a and the suppression amount calculating means.
  • Operation ratio calculation means 7 for obtaining the operation ratio from 6 b, and operation amount detection means 6a and the output of the operation ratio calculation means 7 and the output of the operation ratio calculation means 7 determine whether the accident is within the protection section of the power system or outside the section. It consists of means 8.
  • the installation status of the first photocurrent sensor 1 and the second photocurrent sensor 2 in the protection section 9 of the power system and the configuration of the optical signal processing unit 4a are the same as those of the conventional technology.
  • the difference current output S 2 x by the photocurrent sensor is obtained from the unit 4a.
  • the optical signal guided by the optical fiber transmission means 3d is the P2y signal described in equation ( 5b ).
  • Another optical signal P 2 y from the second photocurrent sensor 2 is guided to the optical fiber transmission line 3 d and is incident on the photoelectric converter 16 of the second optical signal processing unit 4 b.
  • the sum current output S2y by the photocurrent sensor is obtained.
  • the sum current output S 2y by the photocurrent sensor is expressed by the following equation.
  • the error signal component [delta] x contained in (1 8 a) expression of the difference current component paragraph is included in the S 2x signal, the second term S 2 x signal.
  • ⁇ ⁇ , ⁇ 5 y is due to the transiently attenuated signal on which the DC component is superimposed, and occurs until the DC component is attenuated as expressed by equation (16).
  • the operating ratio k of the differential relay which is used as a protection relay, is expressed by the following equation as the ratio of the operation amount m to the suppression amount n.
  • Equation (18b) includes error signals ⁇ 5x , dy, but assuming that the magnitude is negligible, S2x and S2x obtained by the difference current detection means 5a
  • the method of calculating the operating ratio k expressed by Eq. (19) using S2y obtained by the sum current detection means 5b is shown below.
  • the motion amount m in equation (20a) is obtained by the motion amount calculation means 6a in FIG. 1 as in equation (21a).
  • the suppression amount n in the expression (20b) is obtained by the suppression amount calculating means 6 as shown in the expression (21b).
  • n I i 1 I + 1 i 2
  • the operation ratio k is obtained by substituting the expressions (21a) and (21b) into the expression (19) in the operation ratio calculating means 7.
  • the operation amount m obtained by the operation amount calculation means 6 a and the operation ratio k obtained by the operation ratio detection operation 7 are:
  • the judgment means 8 when the operation amount setting value is kl and the operation ratio setting value is k2, when m> k1 and k> k2, it is judged that an internal fault has occurred. Even if it does, unnecessary actions can be prevented in the event of an external accident.
  • the magnitude of the error component fluctuates depending on the magnitude of the fault current and the sensitivity of the applied current sensor. However, if there is a large difference between the operation ratio k when an external accident occurs and when an internal accident occurs, the judging means 8 can determine whether the accident is inside or outside the protected area.
  • the assumed maximum fault current of the power system is 33 kA
  • the DC component is assumed to be 100% superimposed
  • the time constant is set to 10 Oms.
  • the applied optical fiber sensor is Similar to surgery, and is lead glass fiber-type optical current sensor having a wavelength 1550 nm, the Verdet constant V is 3. 93X 10- 6 using [r ad / A].
  • f1 is used here as a typical example of external accidents.
  • f1 is used here as a typical example of external accidents.
  • a single-side power supply is considered to be the same for the fl side and the f3 side, so the fl side is a representative example.
  • Figure 3 is a diagram for explaining that the operating ratio k obtained from Eq. (22) has a sufficiently large difference between an internal fault and an external fault.
  • the fault current value and the optical fiber constant Is substituted into the equations (14), (5a), (5b), (6), (17), (21a), (21b), and (22), and calculated.
  • Figure 3 (a) shows the fault current i (t) on which the DC component expressed by Eq. (14) is superimposed, and shows the waveform of fault current i 33 kA.
  • Figures 3 (b) to 3 (d) show the case of an external accident, Figure 3 (b) shows the amount of operation m, Figure 3 (c) shows the amount of suppression n, and Figure 3 (d) The respective operating ratios k are shown.
  • Fig. 3 (e) to Fig. 3 (g) show the case of a power supply arrangement on both sides of the internal fault.
  • Fig. 3 (e) shows the operation amount m
  • Fig. 3 (f) shows the suppression amount n.
  • the fault current shows the following four types.
  • Figures 3 (h) to 3 (j) show the case of a single-sided internal power supply arrangement.
  • Figure 3 (h) shows the amount of operation m
  • Figure 3 (i) shows the amount of suppression n
  • Figure 3 (j) shows the amount of operation.
  • Each shows the ratio k.
  • Fig. 3 (d) which shows the operating ratio k of the external accident case
  • Figs. 3 (g) and 3 (j) which show the operating ratio k in each case of the internal accident power supply arrangement and the internal accident single-side power supply arrangement.
  • the operating ratio k is 100% for both the single-ended power supply and the double-ended power supply in the case of an internal accident, but temporarily increased to more than 20% in the case of an external accident. Then it is obviously a small value.
  • the operation amount m is determined by the determination means 8 to be smaller than the operation amount setting value k1. Even if it is large, if the operation ratio k is smaller than the operation ratio set value k2, it is determined that an external accident has occurred, and unnecessary operation of the protective relay can be prevented.
  • FIG. 4 is an explanatory diagram showing another embodiment of the protection relay device using the photocurrent sensor of the present invention.
  • the same or corresponding portions are denoted by the same reference characters and description thereof is omitted.
  • equations (5a) and (5b) are rewritten as follows using approximation of equation (7).
  • the error current component of paragraph (26 a) formula is contained in S 2x signal
  • the error signal component monument second term is included in the S 2 x signal. 2 (ii ⁇ i 2 ).
  • the first term of equation ( 26b ) is the sum current component included in the S2y signal
  • the second term is the error signal component included in the S2y signal.
  • the output S 2x from the difference current detecting means 5 a and the output S 2 y from the sum current detecting means 5 b are corrected by the correction calculating means 5 c as follows.
  • 2 (i ⁇ i 2 ) is removed. That is, as shown in the (2 7 a) (27 c ), S zl, the S z 2, S z 3 define, (28 a), obtaining the i have i 2 as (28 b) expression.
  • the operation amount operation means 6 c and the suppression amount operation means 6 d use the following equations (29a) and (29 b) to calculate the operation amount m and the suppression amount. n is required.
  • the motion amount m obtained by the following equations (29a) and (29b) in the motion amount calculating means 6c and the suppression amount calculating means 6d, and the suppression amount n are calculated by The motion ratio k is determined.
  • FIG. 5 is a diagram for explaining that the operation ratio k obtained from Eq. (30) has a sufficiently large difference between an internal accident and an external accident. It shows the result of calculation under the same conditions as used.
  • Figures 5 (b) to 5 (d) show the cases of external accidents.
  • Figure 5 (b) shows the amount of movement m
  • Figure 5 (c) shows the amount of suppression n
  • Figure 5 (d) shows the amount of movement k.
  • I have.
  • Figs. 5 (e) to 5 (g) show the case of the power supply arrangement on both sides of the internal accident.
  • Fig. 5 (e) shows the operation amount m
  • Fig. 5 (f) shows the suppression amount n.
  • the accident current shows the following four types.
  • i x +7.5 kA
  • i 2 +7.5 kA
  • Figures 5 (h) to 5 (j) show the case of a single-sided internal power supply arrangement.
  • Figure 5 (h) shows the operation amount m
  • Figure 5 (i) shows the suppression amount n
  • Figure 5 (j) shows the operation amount.
  • the ratio k is shown.
  • the operating ratio k is the case of a single-ended power supply in the internal accident case.
  • the operating ratio k is occasionally increased to 5% in the case of an external accident, but it is clearly smaller than that of the internal accident.
  • the operation ratio k is If the operation ratio setting value is smaller than k2, it is determined that an external accident has occurred, and unnecessary operation of the protective relay can be prevented.
  • the protection relay device using the photocurrent sensor according to the present invention it is possible to prevent unnecessary operation of the relay even when the external accident force S occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

A protective relay apparatus comprising two photoelectriccurrent sensors installed at both ends of a protected section of a power system which can not only detect an internal fault but also discriminate an external fault from an internal fault without its misreading even if the fault current is one with superposed a DC component. A first photoelectriccurrent sensor (1) and a second photoelectriccurrent sensor (2) are installed at both ends of a protected section (9) of a power system. Optical fiber transmission lines (3a to 3d) series-connect a light source (11), a first photoelectriccurrent sensor (1), a second photoelectriccurrent sensor (2), a first optical signal processing section (4a), and a second optical signal processing section (4b). An action quantity operating means (6a), a suppression quantity operating means (6b), and an action rate operating means (7) determine an action quantity, a suppression quantity, and an action rate from a differential current signal from the first optical signal processing section (4a) and a sum current signal of the second optical signal processing section (4b). Even if a judging means (8) detects that the action quantity over a set value, the fault is judged to be an external fault if the action rate is below a constant, thereby preventing an unnecessary action of the relay.

Description

明細書  Specification
光電流センサを用いる保護継電装置 技術分野  Protective relay device using photocurrent sensor
本発明はファラデ一効果を利用して電力設備の導体に流れる電流の計測及び監 視をする保護継電装置に関する。  The present invention relates to a protective relay for measuring and monitoring a current flowing in a conductor of a power facility by utilizing the Faraday effect.
背景技術 Background art
従来、 電力系統における保護継電装置では、 変流器で検出された機器導体の電 流信号を保護継電装置に伝達し、 保護継電装置で故障判定のための演算と判定を 行っている。 この保護継電装置の低コスト化、 軽量化を目的として、 従来の巻線 型電流変成器による電流測定方法に代わり、 差動演算機能を有する光電流センサ による保護継電装置が提案され、 特開 2 0 0 0— 5 9 9 8 7や特願平 1 1—2 2 4 8 2 1が出願されている。  Conventionally, in a protective relay in a power system, a current signal of a device conductor detected by a current transformer is transmitted to the protective relay, and the protective relay performs calculation and determination for failure determination. . In order to reduce the cost and weight of this protective relay device, a protective relay device using a photocurrent sensor with a differential operation function has been proposed instead of the current measurement method using a conventional wound-type current transformer. The application has been filed in the form of “Open 200 0—5 9 9 8 7” and Japanese Patent Application No. 1 1—2 2 4 8 2 1.
従来の光電流セ サによる保護継電装置は例えば図 6に示すように、 偏光子 1 4、 ファラデー素子 1 1及び検光子 1 5よりなる第一の光電流センサ 1と、 第一 の光電流センサ 1と同様に構成される第二の光電流センサ 2と、 光ファイバ伝送 路 3 a、 3 b、 3 cと、 光源 1 2と、 光電変換器 1 6、 ハイパスフィルタ回路 1 7、 ローパスフィルタ回路 1 8及び割算器 1 9よりなる光信号処理部 4 aと、 電 源周波数成分の差電流検出手段 5 dと, 判定手段 8とより構成される。  As shown in FIG. 6, for example, a protection relay device using a conventional photocurrent sensor includes a first photocurrent sensor 1 including a polarizer 14, a Faraday element 11, and an analyzer 15, and a first photocurrent sensor. Second photocurrent sensor 2 configured in the same way as sensor 1, optical fiber transmission lines 3a, 3b, 3c, light source 12, photoelectric converter 16, high-pass filter circuit 17, low-pass filter It comprises an optical signal processing section 4 a composed of a circuit 18 and a divider 19, a power frequency component difference current detecting means 5 d, and a judging means 8.
第一の光電流センサ 1及び第二の光電流センサ 2は、 電力系統の保護区間 9の 両端に設けられている。 ここで第一の光電流センサ 1が検出する電流を iい 第 二の光電流センサ 2が検出する電流を i 2とし、 その符号はともに、 電力系統の 保護区間 9への流入方向が +、 流出方向が一とする。 また第一の光電流センサ 1 内の光の伝搬方向は、 第一の光電流センサ 1が検出する電流 iェによって発生す る磁界方向と一致するように設けられており、 第二の光電流センサ 2内の光の伝 搬方向は第二の光電流センサ 2が検出する電流 i 2によって発生する磁界と一致 するように設けられている。 The first photocurrent sensor 1 and the second photocurrent sensor 2 are provided at both ends of the protection section 9 of the power system. Here the current first photocurrent sensor 1 detects the i physician second optical current sensor 2 a current detected a i 2, the code together inflow direction to the protected section 9 of the electric power system + The outflow direction is one. The direction of propagation of light in the first photocurrent sensor 1 is provided so as to coincide with the direction of the magnetic field generated by the current i detected by the first photocurrent sensor 1, and the second photocurrent The light propagation direction in the sensor 2 is provided so as to match the magnetic field generated by the current i 2 detected by the second photocurrent sensor 2.
所定の波長の光を出射する光源 1 2から出射された光 P。は、 光ファイバ伝送 路 3 aにより、 第一の光電流センサ 1に至る。 光源 1 2からの光 P。は第一の光 電流センサ 1の偏光子 14によって直線偏光になり、 この直線偏光をファラデー 素子 1 1に入射する。 入射光は、 電流 i tによって発生する磁界によるファラデ 一効果を受け、 電流 i iの大きさに比例して偏波面が角度 だけ回転する。第一 の光電流センサ 1が検出する電流 iェと偏波面の回転角 Θェの関係はベルデ定数 を Vとしたとき Light P emitted from a light source 12 that emits light of a predetermined wavelength. Reaches the first photocurrent sensor 1 via the optical fiber transmission line 3a. Light P from light source 1 2. Is the first light The light becomes linearly polarized light by the polarizer 14 of the current sensor 1, and the linearly polarized light enters the Faraday element 11. The incident light is subjected to the Faraday effect by the magnetic field generated by the current it, and the plane of polarization rotates by an angle in proportion to the magnitude of the current ii. The relationship between the current i detected by the first photocurrent sensor 1 and the rotation angle Θ of the polarization plane is when the Verde constant is V.
Θ X = V- i 1 · · · . (1) Θ X = V- i 1
となる。 前記の入射光はさらに第一の光電流センサ 1において検光子 15により 、 偏波面の回転角 0 を強度に変調された光となる。 この時検光子 1 5は偏光子 14に対し好ましくはプラス 45° またはマイナス 45° の角度に設置されて おり、 第一の光電流センサ 1の出射光は、 検光子 1 5により、 x、 y方向の 2成 分の光 Plx、 Plyに分けられ、 次式で表される。 Becomes The incident light is further converted into light in which the rotation angle 0 of the polarization plane is modulated by the analyzer 15 in the first photocurrent sensor 1. At this time, the analyzer 15 is preferably installed at an angle of plus 45 ° or minus 45 ° with respect to the polarizer 14, and the emitted light of the first photocurrent sensor 1 is x, y by the analyzer 15 The light is divided into two components, Plx and Ply , in the direction.
Ραχ=(1/2)Ρ0 (1 +sin2 Θ丄) Ρ αχ = (1/2) Ρ 0 (1 + sin2 Θ 丄)
=(1/2)Ρ0 (1 +sin2 V· i ,) · · · · (2 a) = (1/2) Ρ 0 (1 + sin2 Vi,)
Ply = (l/2)P。 (1—sin 2 Θ!) P ly = (l / 2) P. (1—sin 2 Θ!)
=(1/2)P0 (1 -sin2 V· i x) • • • • (2 b) = (1/2) P 0 (1 -sin2 Vi x ) • • • • (2 b)
従来装置では、 どちらか一方の光信号のみ用いており、 ここでは光 Plxを使つ て説明する。 In the conventional apparatus, either it is used only one of the optical signals, will be described here light P lx Te situ.
第一の光電流センサ 1が検出する電流 i を正弦波交流信号とすると、 第一の 光電流センサ 1の出射光 P lxは以下の式で表される。Assuming that the current i detected by the first photocurrent sensor 1 is a sine wave AC signal, the outgoing light P lx of the first photocurrent sensor 1 is represented by the following equation.
Figure imgf000004_0001
Figure imgf000004_0001
P lx=(l/2)P。 { 1 +sin (2Λ 2 V - I ^ίηω t)} · · · · (4) ここで、 I iは流入電流の実効値、 ω (=2 π f ) は角周波数、 fは電源周波数 である。 P lx = (l / 2) P. {1 + sin (2Λ 2 V-I ^ ίηω t)} · (4) where I i is the effective value of the inflow current, ω (= 2 π f) is the angular frequency, and f is the power supply frequency. is there.
第一の光電流センサ 1の出射光 Plxは、光ファイバ伝送路 3 bに導かれて第二 の光電流センサ 2に至る。 出射光 Plxは、 第二の光電流センサ 2が検出する電流 i 2 I 28ΐηω t) によって発生する磁界によるファラデー効果を受け、 電流 i 2の大きさに比例して偏波面が角度 02だけ回転する。第二の光電流センサ 2の出射光はやはり、 検光子 1 5により、 x、 y方向の 2成分の光 P2x、 P2y に分けられ、 次式で表される。 P2x-(l/2)Plx (l+sin202) The output light Plx of the first photocurrent sensor 1 is guided to the optical fiber transmission line 3b and reaches the second photocurrent sensor 2. Outgoing light P lx, the second receiving the Faraday effect due to the magnetic field optical current sensor 2 is generated by the current i 2 I 28 ΐηω t) for detecting a current i 2 of the plane of polarization in proportion to the magnitude angle 0 2 Just rotate. The light emitted from the second photocurrent sensor 2 is again divided by the analyzer 15 into two component lights P 2x and P 2y in the x and y directions, and are expressed by the following equation. P 2x - (l / 2) P lx (l + sin20 2)
=(1/4)P。 (1 +sin2 Θ i) (1 +sin2 Θ 2) = (1/4) P. (1 + sin2 Θ i) (1 + sin2 Θ 2 )
=(1/4)P。 (l+sin2V * i丄) (1 +sin2 V i 2) · - (5 a) = (1/4) P. (L + sin2V * i 丄) (1 + sin2 V i 2 ) ·-(5 a)
P2y=(l/2)Plx (1一 sin 2 Θ 2) P 2y = (l / 2) P lx (1 sin 2 Θ 2 )
=(1/4)P0 (1 +sin2 Θ x) (1 -sin2 Θ 2) = (1/4) P 0 (1 + sin2 Θ x ) (1 -sin2 Θ 2 )
=(1/4)P0 (1 +sin2 V - i (1 -Sin2 V - i 2) · - (5 b) ここで、 第一の光電流センサ 1の 2つの出力のうち Plxを選択しているので、 第二の光電流センサ 2の出射光として第一の光電流センサ 1の出射光と同一の偏 波方向となる P2xを用いる。第一の光電流センサ 1の 2つの出力のうち Plyを選 択した場合は、 第二の光電流センサ 2の出射光としては P2yを用いる。 = (1/4) P 0 (1 + sin2 V-i (1- S in2 V-i 2 ))-(5 b) where P lx of the two outputs of the first photocurrent sensor 1 is Since P2x is selected, P 2x having the same polarization direction as the outgoing light of the first photocurrent sensor 1 is used as the outgoing light of the second photocurrent sensor 2. When Ply is selected from the outputs, P2y is used as the output light of the second photocurrent sensor 2.
第二の光電流センサ 2の出射光 P2xは光ファイバ伝送路 3 cに導かれて光電 変換器 16に入射し、 電気信号に変換された後、 ハイパスフィル夕回路 17、 口 一パスフィル夕回路 18により直流成分と交流成分に分離され、 割算器 19で交 流成分を直流成分で除することにより、光電流センサによる差電流出力 S 2xを得 る。 ここで割算器 19により直流成分で除する手法を用いているのは光信号が伝 送される際の光量損失を補償するためである。 光電流センサによる差電流出力 S 2xは以下の式で表される。 The light P 2x emitted from the second photocurrent sensor 2 is guided to the optical fiber transmission line 3 c and enters the photoelectric converter 16, where it is converted into an electric signal. The DC component and the AC component are separated by 18, and the AC component is divided by the DC component in the divider 19 to obtain a difference current output S 2x by the photocurrent sensor. Here, the method of dividing by the DC component by the divider 19 is used in order to compensate for the loss of light quantity when the optical signal is transmitted. The difference current output S 2x by the photocurrent sensor is represented by the following equation.
S2x= (P2xの交流成分) / (P2xの直流成分) · · · '(6) ここで得られた光電流センサによる差電流出力 S 2 xには、第一の光電流センサ 1が検出した電流 iェと第二の光電流センサ 2が検出した電流 i 2の差電流であ る iュ+ i 2の情報を有していることを以下に説明する。 尚、 電力系統の保護区間 9への差電流が i i+ i 2と示されるのは、 i 2の符号をともに電力系統の保 護区間 9への流入方向を十、 流出方向を一と定義したことによる。 S 2x = A (P 2x of the AC component) / (P DC component of 2x) · · · '(6 ) the difference between the current output S 2 x by the optical current sensor obtained here, the first optical current sensor 1 There will be described below in that it has a detected current i E and a second difference current der Ru information i Interview + i 2 of the current i 2 photocurrent sensor 2 has detected. In addition, the difference current to the protection section 9 of the power system is indicated as i i + i 2 because both the sign of i 2 and the outflow direction to the protection section 9 of the power system are defined as 10 and 1, respectively. It depends.
第一の光電流センサ 1が検出する電流 i t及び第二の光電流センサ 2が検出す る電流 i 2が小電流である場合、 If the current it 2 detected by the first photocurrent sensor 1 and the current i2 detected by the second photocurrent sensor 2 are small currents,
sin29 ^26 ^ sin2 θ 2= 2 θ 2 · · · · (7) sin29 ^ 26 ^ sin2 θ 2 = 2 θ 2 (7)
が成立し、 (5 a) 式は、 Holds, and equation (5a) is
P2X = (1/4)P。 (1 + 2V . i X + 2V - i 2) P 2X = (1/4) P. (1 + 2V. I X + 2V-i 2 )
= il/4)P0 { 1 + 2^2 V ( I τ + I 2) sinc t} ' · · - (8) となる。 (8) 式を (6) 式に代入すると、 = il / 4) P 0 {1 + 2 ^ 2 V (I τ + I 2 ) sinc t} ' Becomes Substituting equation (8) into equation (6) gives
S2x=2 2V ( I !+ I 2) sino t · · · - (9) となり、光電流センサによる差電流出力 S 2xは電力系統の保護区間 9への差電流 i !+ i 2に比例した値となる。 S 2x = 2 2V (I! + I 2 ) sinot ...- (9), and the difference current output S 2x by the photocurrent sensor is proportional to the difference current i! + I 2 to the protection section 9 of the power system. Value.
しかしながら、 (9)式は(7)式が成立するような小電流領域において成立す るものであり、 大電流領域では成立しない。  However, Equation (9) holds in a small current region where Equation (7) holds, and does not hold in a high current region.
そこで本発明者らは、 大電流領域でも電力系統の保護区間 9への差電流 iェ+ i 2を測定することができる光ファイバセンサを用いた保護継電装置として特願 平 11—224821を出願している。 The present inventors, the Japanese Patent Application No. flat 11-224821 as a protective relay device using an optical fiber sensor capable of measuring the difference current i E + i 2 to the protected section 9 of the electric power system even in a large current region Filed.
すなわち、 (7) 式が成立しないような大電流が流れた場合、 (5 a) 式で示し た第二の光電流センサ 2の出射光 P 2 xは、 That is, when a large current flows such that Expression (7) does not hold, the output light P 2 x of the second photocurrent sensor 2 expressed by Expression (5a) is
P2x=(l/4)P。 U+sin(2 2V ' sinco t)} X P 2x = (l / 4) P. U + sin (2 2V 'sinco t)} X
{ 1 +sin(2 "2 V · I 2sino t)} · · · - (10) {1 + sin (2 "2 VI 2 sino t)}
と表される。 It is expressed as
ここで sin(2 2V * I nsinc t) をフ一リエ級数展開することにより周波 数成分毎に分解すると、 以下の (11) 式で表せる。 Here is decomposed for each frequency component by sin a (2 2V * I n sinc t ) deployed off one Fourier series, expressed in the following equation (11).
sin( 2 V r I χβίηω t ) = sin (2 V r I χβίηω t) =
Υ [2 · J2m+1 (2 Vr I i) · sin{ (2m+ 1) ω t}] · · · · (11)Υ [2 · J 2m + 1 (2 V r I i) · sin {(2m + 1) ω t}] · · · · (11)
=0  = 0
ここで J k(a)は k次の Bessel関数である Where J k (a) is the k-th Bessel function
(11) 式の 3次以降の項を微少であるとして無視し、 以降の式を簡略に示す ために、 Ap A2を(12 a)(l 2 b)式に示すとおりに定義する。 (11) and ignored as a small cubic following sections of Formula, in order to show schematically the subsequent expression, defined as showing the Ap A 2 in (12 a) (l 2 b) expression.
Ax=2 J !(2^2 V - ) · · · - (12 a) A x = 2 J! (2 ^ 2 V-) · · ·-(12 a)
A2=2 J X(2>T2 V · I 2) · · · ' (12 b) A 2 = 2 J X (2> T2 VI 2 ) '(12 b)
ここで A A2は、 電流の実効値 Iい I 2にベルデ定数を乗じ、 1次の Besse 1関数に代入したものであり、 電流 i nを(3)式に示すとおりの正弦波交流信号で あるとすると、 時間に関しては定数である。 Here AA 2 is multiplied by a Verdet constant I 2 have the effective value I of the current is obtained by substituting the primary Besse 1 function, the current i n (3) with a sinusoidal AC signal as shown in the formula If there is, time is a constant.
この場合、 (10) 式は、 In this case, equation (10) becomes
Figure imgf000006_0001
t } { 1 + 2 A2sinto t } · - (1 c) で表せる。
Figure imgf000006_0001
t} {1 + 2 A 2 sinto t} ·-(1 c) Can be represented by
(12 c)式を展開し、 三角関数の公式 sin2 Φ =(1/2) { 1 -cos2 } を用い ると、
Figure imgf000007_0001
ω U
Expanding equation (12c) and using the trigonometric formula sin 2 Φ = (1/2) {1 -cos2},
Figure imgf000007_0001
ω U
• ' ' '(I 2d) • '' '(I 2d)
となる。 この時の光電流センサによる差電流出力 S2xは (12 d) 式を、 (6) 式に代入することにより (13 a) 式のように表すことができる。 ここで以降の 式を簡略に示すために、 (12 a)、 (12 b)式に示す Aい A2を(13 b)、 (13 c )に表す B B 2でおきかえている。 Becomes At this time, the difference current output S 2x by the photocurrent sensor can be expressed as in equation (13a) by substituting equation (12d) into equation (6). To show where the subsequent expression briefly, are replaced by (12 a), (12 b ) formula A have A 2 shown in (13 b), BB 2 depicted in (13 c).
S 2x= B isinco t + B 2 cos 2 ω t · · · · (13 a) S 2x = B isinco t + B 2 cos 2 ω t
B1=2(A1 + A2) / (1 + 2A1A2) · · · · (13 b) B 1 = 2 (A 1 + A 2 ) / (1 + 2A 1 A 2 ) (13 b)
B2= 2A1A2/ (1 + 2A1A2) · · · - (13 c) ここで B B2は、 時間に関して定数である。 B 2 = 2A 1 A 2 / (1 + 2A 1 A 2 ) · · ·-(13 c) where BB 2 is a constant with respect to time.
(13 a) 式に示すように光電流センサによる差電流出力 S2xは、 第一項に示 された電力系統の保護区間 9への差電流 iェ+ i 2の周波数成分、すなわち電源周 波数成分の他に、 第二項に示された電源周波数の 2倍の周波数成分の項から成る ここで (13b) 式の電源周波数成分の項 を計算により評価することを試 みる。 66 kVから 154 kVの電力系統において保護区間 9への流入電流を 3 3 k A以下のケースとする。 このケースにおいて、 波長 155 Onmの鉛ガラス ファイバ型光電流センサのベルデ定数 V= 3. 93X 10— 6[rad/A]を用いる。 こ れらの値を用いると、
Figure imgf000007_0002
' In と いう近似が成立する。 このとき、(13 b)式は(13 d)式のように表すことができ る。
As shown in equation (13a), the difference current output S 2x by the photocurrent sensor is the frequency component of the difference current i + i 2 to the protection section 9 of the power system shown in the first term, that is, the power supply frequency In addition to the component, it consists of the term of the frequency component twice the power frequency shown in the second term. Here, we try to evaluate the term of the power frequency component of Eq. (13b) by calculation. In the 66 kV to 154 kV power system, the current flowing into protection section 9 is assumed to be 33 kA or less. In this case, using the Verdet constant V = 3. 93X 10- 6 [rad / A] of the lead glass fiber-type optical current sensors of wavelength 155 onm. Using these values,
Figure imgf000007_0002
'An approximation of In holds. At this time, equation (13b) can be expressed as equation (13d).
Figure imgf000007_0003
Figure imgf000007_0003
計算の結果、 近似による誤差は通電電流が実効値 24 k Aで 1%以下、 通電電 流が実効値 33 k A以下で 2%以下であり、 波長 155 Onmの鉛ガラスフアイ バ型光電流センサを用いた保護継電装置が故障判定演算に適用できる可能性が考 えられる。 As a result of the calculation, the approximation error is 1% or less at an effective current of 24 kA and 2% or less at an effective value of 33 kA or less, and a lead glass fiber type photocurrent sensor with a wavelength of 155 Onm is obtained. Considering the possibility that the used protective relay can be applied to the failure judgment calculation available.
したがって、 (1 3 a) 式は、 通電電流 33 k A以下において、 光電流センサに よる差電流出力 S 2 xの電源周波数と同じ周波数成分においては、電力系統の保護 区間 9への差電流 iェ+ i 2に比例した出力であるが、電源周波数の 2倍の周波数 成分が誤差成分として発生していることを意味する。 Therefore, equation (13a) shows that at a current of 33 kA or less, at the same frequency component as the power supply frequency of the differential current output S 2 x by the photocurrent sensor, the differential current i Although an output proportional to E + i 2, which means that twice the frequency components of the power supply frequency is generated as an error component.
光電流センサによる差電流出力 S 2 xから、電源周波数成分の差電流検出手段 5 により、 2倍の周波数成分を取り除くことにより、 その出力を判定手段 8に導 き、電力系統の保護区間.9への差電流 iェ+ i 2に対して動作する保護継電装置が 構成される。 The power supply frequency component difference current detection means 5 removes twice the frequency component from the difference current output S 2 x by the photocurrent sensor, and the output is led to the judgment means 8 to protect the power system. operate on the differential current i E + i 2 to the protective relay device is formed.
上記従来の技術における説明では、 電流信号が正弦波交流信号と仮定している 。 しかしながら、 電力系統において短絡事故が発生した場合、 電流信号は直流分 が重畳され過渡的に減衰する信号となることを考慮する必要がある。 この時、 最 も大きい直流分が重畳した場合、 すなわち直流分 1 0 0 %重畳の事故電流は以下 の式で表される。  In the above description of the related art, it is assumed that the current signal is a sine wave AC signal. However, it is necessary to consider that when a short circuit accident occurs in the power system, the current signal becomes a signal that is superimposed on the DC component and transiently attenuated. At this time, when the largest DC component is superimposed, that is, the fault current with 100% DC component superimposed is expressed by the following equation.
i
Figure imgf000008_0001
t } · · · · ( 1 4 )
i
Figure imgf000008_0001
t} · · · · (1 4)
なお、 τは電力系統のリァク夕ンス分と抵抗分の比から定まる減衰時定数であ る。 (1 4)式で表されるような過渡的に減衰する電流信号を(5 a)、 (6 )式に 代入しても、 (1 3 a )式のように電源周波数成分ごとに分けて表すことはできな い。 そこで、 電力系統の保護区間 9に対して、 保護区間外事故、 保護区間内事故 の各々の事故ケ一スについて、光電流センサによる差電流出力 S 2 xに含まれる誤 差成分が及ぼす影響について考える。 Here, τ is an attenuation time constant determined from the ratio of the reactance and the resistance of the power system. Even if the transiently attenuated current signal represented by equation (14) is substituted into equations (5a) and (6), it is divided into power supply frequency components as shown in equation (13a). It cannot be represented. Therefore, the effect of the error component included in the difference current output S 2 x of the photocurrent sensor on the protection case 9 of the power system for the accident cases outside the protection zone and the accident within the protection zone Think.
図 2は、 光電流センサを用いた保護継電装置の動作を説明するための系統図で ある。 電力系統の保護区間 9の事故箇所として、 f l、 f 3を保護区間外事故、 f 2を保護区間内事故とする。 以下電力系統の保護区間 9の区間外事故を外部事 故、 電力系統の保護区間 9の区間内事故を内部事故と呼ぶ。  FIG. 2 is a system diagram for explaining the operation of the protective relay using the photocurrent sensor. As the accident points in protection section 9 of the power system, fl and f3 are accidents outside the protection section, and f2 are accidents in the protection section. Hereinafter, an accident outside the section of protection section 9 of the power system is referred to as an external accident, and an accident within the section of protection section 9 of the power system is referred to as an internal accident.
また図 2において、 第一の光電流センサ 1及び第二の光電流センサ 2はそれぞ れ電力系統の保護区間 9の両端に設置されており、 光ファイバ伝送路 3 aないし 3 dにより、 光源 1 2、 第一の光信号処理部 4 a、 第二の光信号処理部 4 bと接 続されている。 ここで第一の光電流センサ 1は電流 i iを検出し、 第二の光電流 センサ 2は電流 i 2を検出する。 In FIG. 2, the first photocurrent sensor 1 and the second photocurrent sensor 2 are respectively installed at both ends of the protection section 9 of the power system, and the light source is provided by the optical fiber transmission lines 3a to 3d. 12, connected to the first optical signal processing unit 4a and the second optical signal processing unit 4b. Here, the first photocurrent sensor 1 detects the current ii, and the second photocurrent Sensor 2 for detecting the current i 2.
まず外部事故が発生した場合について考える。 外部事故が発生した場合、 電流 i 、 " は、  First, consider the case where an external accident has occurred. If an external accident occurs, the current i, "
i i 2(t) ' " ' " (! 5) ii 2 (t) '"'" (! 5)
が成立する。 (14)、 (15) 式を (5 a) 式に代入すると、 Holds. Substituting equations (14) and (15) into equation (5a) gives
P2x=(l/4)P。 { 1 +sin2 V · i ^t)} { 1 -sin2 V · i x(t)} となる。 ここ で、 説明を簡単にするために、 P 2x = (l / 4) P. {1 + sin2 V · i ^ t)} {1 -sin2 V · i x (t)}. Here, for simplicity,
sin {2 V · i x(t)} ^ 2 V · i ^t) sin {2 V · i x (t)} ^ 2 V · i ^ t)
とおいて、 (14) 式を代入すると、 (5 a) 式は、 Then, substituting equation (14), equation (5a) becomes
P2x=(l/4)P0 [1-8V2 i!2 {e ("t/r) -οοβω t} 2 ] P 2x = (l / 4) P 0 [1-8V 2 i! 2 {e ( " t / r) -οοβω t} 2 ]
=(1/4)Ρ0 [1-8 V2 i !2 {e (― 2 t/て) + 2 · e (― t/r) .coso t—1/2+1/2 cos2 ω t }] · · · · (16) = (1/4) Ρ 0 [1-8 V 2 i 2 {e! (- 2 t / Te) + 2 · e (- t / r) .coso t-1/2 + 1/2 cos2 ω t }] · · · · (16)
となる。 すなわち、 従来の技術では事故電流が正弦波交流信号であれば外部事故 時においては電力系統の保護区間 9への差電流 i + i 2の電源周波数成分は 0 であるべきであるのに、 直流分が重畳された過渡的に減衰する信号の場合は、 ( 16) 式に示すとおり直流分が減衰するまでの間誤差信号が発生してしまう。 図 7は、 外部事故が発生し、 直流分が重畳された事故電流であった場合、 従来 の技術では保護継電装置の不要動作が発生する可能性があることを説明するため の図であり、 以下に示す事故電流の値、光ファイバの定数を、 (14)、 (5 a)、 ( 6) 式に代入し、 各部における信号の値を計算により求めたものである。 Becomes That is, in the conventional technology, if the fault current is a sine-wave AC signal, the power supply frequency component of the difference current i + i 2 to the protection section 9 of the power system should be 0 at the time of an external fault. In the case of a transiently attenuated signal with a superimposed component, an error signal is generated until the DC component is attenuated as shown in equation (16). Fig. 7 is a diagram for explaining that if an external fault occurs and the fault current is a DC component superimposed, unnecessary operation of the protective relay may occur with the conventional technology. The values of the fault current and the optical fiber constants shown below were substituted into equations (14), (5a) and (6), and the signal values at each section were calculated.
図 7(a)は、 外部事故のケースにおける (14) 式で表される直流分が重畳さ れた事故電流信号を表しており、 図 7 (b)はこの時の第二の光電流センサ 2から の光信号 P2xZP。を、 図 7(c)は光電流センサによる差電流出力 S2xを、 図 7( d)は光電流センサによる差電流出力 S2xの電源周波数成分の実効値 R2xをそれ ぞれ求めたものである。 ここで光電流センサ 1、 2は波長 1550 nmの鉛ガラ スファイバ型光電流センサであるとし、 そのベルデ定数 Vは 3. 93X 10— 6[r ad/A]を用いている。事故電流 Iェの大きさは実効値 33 kA、電源周波数 5 OHz 、 時定数ては 50ms としている。 また光電流センサによる差電流出力の電源周 波数の実効値 R2xを求める手段としては、 デジタルリレー回路におけるデジタル フィルタ '実効値演算回路を用いた。 既に公知の技術であるため、 ここではその ァルゴリズムを紹介するに留める。 Fig. 7 (a) shows the fault current signal in which the DC component expressed by equation (14) is superimposed in the case of an external fault, and Fig. 7 (b) shows the second photocurrent sensor at this time. Optical signal from 2 P 2x ZP. And FIG. 7 (c) a differential current output S 2 x by the optical current sensor, Fig. 7 (d) the effective value R 2x power frequency component of the differential current output S 2x by the optical current sensor obtained, respectively it Things. Here the optical current sensor 1, 2 is a lead-glass Sufaiba type fiber-optic current sensor having a wavelength of 1550 nm, the Verdet constant V is used 3. 93X 10- 6 [r ad / A]. The magnitude of the fault current I is 33 kA rms, the power supply frequency is 5 OHz, and the time constant is 50 ms. As the means for determining the effective value R 2x power frequency of the differential current output by the optical current sensor, digital in a digital relay circuit Filter 'Effective value calculation circuit used. Since this is a well-known technique, we will only introduce its algorithm here.
電気角 30度  Electrical angle 30 degrees
デジタルフィル夕 D. F. l f= (l—Z— 6) (1 +Z~1 + Z-2 + Z-3) Digital fill DF lf = (l—Z— 6 ) (1 + Z ~ 1 + Z- 2 + Z- 3 )
—— 2„ .  —— 2 „.
し n— 3 し n し n 6  Then n—3 then n then n 6
次に正弦波交流信号の場合との比較をするために、 事故電流が (3) 式で表さ れる正弦波交流信号であった場合の事故電流を図 7(e)に示し、 この時の第二の 光電流サンサ 2からの光信号 P2x/P。を図 7(f)に、光電流センサによる差電流 出力 S2xを図 7(g)に、 光電流センサによる差電流出力 S2xの電源周波数成分の 実効値を図 7 (h)それぞれに示す。 Next, in order to compare with the case of a sine wave AC signal, Fig. 7 (e) shows the fault current when the fault current was a sine wave AC signal expressed by equation (3). Light signal P 2x / P from the second photocurrent sensor 2 . Fig. 7 (f) shows the difference current output S2x by the photocurrent sensor in Fig. 7 (g), and Fig. 7 (h) shows the effective value of the power supply frequency component of the difference current output S2x by the photocurrent sensor. .
図 7 (h)に示すとおり、 外部事故において事故電流が正弦波交流信号であれば 事故直後に短時間誤差信号が発生する (ピーク値 4k A相当、 0. 01秒間) が 、 リレーの不要動作には至らない程度である。 一方、 事故電流に直流分が重畳し た過渡電流信号の場合は図 7(d)に示すとおり、 無視できない程の時間、 誤差信 号が発生している (ピーク値 20 kA相当、 0. 2秒間以上)。 これは (16) 式 に示したように直流分が減衰するまでの間、 電源周波数成分が誤差信号として表 れているためである。  As shown in Fig. 7 (h), if the fault current is a sine-wave AC signal in an external fault, a short-time error signal is generated immediately after the fault (equivalent to a peak value of 4kA for 0.01 seconds). Is not reached. On the other hand, in the case of a transient current signal in which a DC component is superimposed on the fault current, an error signal is generated for a time that cannot be ignored as shown in Fig. 7 (d) (equivalent to a peak value of 20 kA, 0.2 Seconds). This is because the power supply frequency component is represented as an error signal until the DC component is attenuated as shown in Eq. (16).
次に内部事故における、 従来の技術での光電流センサを用いた保護継電装置の 動作を図 7を用いて説明する。 図 7 ( i )は図 2に示す系統で内部事故が発生し、 事故電流が (14) 式で表される直流分が 100%重畳された信号を示しており 、 この時の第二の電流センサ 2からの光信号 P2xZP。を図 7 (j)に、光電流セン サによる差電流出力 S2xを図 7 (k)に、 光電流センサによる差電流出力 S2xの電 源周波数成分の実効値を図 7 ( 1 )に示す。 Next, the operation of a protective relay using a photocurrent sensor according to the prior art in an internal accident will be described with reference to FIG. FIG. 7 (i) shows a signal in which an internal fault has occurred in the system shown in FIG. 2 and the fault current is expressed by the equation (14) with a DC component superimposed on 100%. Optical signal from sensor 2 P 2x ZP. Figure 7 (j) shows the difference current output S 2x by the photocurrent sensor in Figure 7 (k), and Figure 7 (1) shows the effective value of the power supply frequency component of the difference current output S 2x by the photocurrent sensor. Show.
図 7(m) は図 2に示す系統で内部事故が発生し、 事故電流が (3)式で表され る正弦波交流信号であった場合を示しており、 この時の第二の光電流センサ 2か らの光信号 P2xを図 7(n)に、 光電流センサによる差電流出力 S2xを図 7(o)に 、 光電流センサによる差電流出力 S2xの電源周波数成分の実効値を図 7 (p)に示 す。 Fig. 7 (m) shows the case where an internal fault occurs in the system shown in Fig. 2 and the fault current is a sinusoidal AC signal expressed by equation (3). The optical signal P 2x from sensor 2 is shown in Fig. 7 (n), the differential current output S 2x by the photo current sensor is shown in Fig. 7 (o), and the effective value of the power supply frequency component of the differential current output S 2x by the photo current sensor Is shown in Fig. 7 (p).
図 7(1)、 図 7 (p)に示すとおり区間内事故に関しては、従来の技術で良好な動 作が得られる。 As shown in Fig. 7 (1) and Fig. 7 (p), the conventional technology A crop is obtained.
以上説明したように従来の技術においては、 直流分が重畳された事故電流であ つた場合、 内部事故のケースでは正常に検出するものの、 外部事故のケースで内 部事故が発生したかのような誤差信号が発生する場合がある。  As described above, in the conventional technology, if the fault current is superimposed on the DC component, it is detected normally in the case of an internal fault, but as if an internal fault occurred in the case of an external fault. An error signal may be generated.
本発明の目的とするところは、 直流分が重畳された事故電流を検出した場合に おいても内部事故発生時の検出はもとより、 外部事故発生時でも内部事故と見誤 ることなく判別しリレーの不要動作をしない光電流センサを用いる保護継電装置 を提案することである。  An object of the present invention is to detect a fault current superimposed with a direct current component, not only when an internal fault occurs, but also when an external fault occurs, without discriminating that the fault is an internal fault. An object of the present invention is to propose a protection relay device using a photocurrent sensor that does not perform unnecessary operations.
発明の開示 Disclosure of the invention
そこで本発明は、 電力系統の保護区間の両端に入出力電流を個別に測定する二 台の第一及び第二の光電流センサを配置し、 前記第一の光電流センサは、 入射端 と、 前記入射端に設けられた偏光子の偏光方向に対してプラス 4 5度及びマイナ ス 4 5度の二つの偏光方向で検光を行う検光子と、 それぞれの検光成分に対する 出射端とを有しており、 光源と前記第一の光電流センサとの間、 前記第一及び第 二の光電流センサ同士および前記第二の光電流センサと光信号処理部の間を光フ アイバ伝送で接続し、 前記光信号処理部の出力信号から差電流成分を検出する差 電流検出手段と、 前記光信号処理部の出力信号から和電流成分を検出する和電流 検出手段と、 前記差電流検出手段の出力から動作量を求める動作量演算手段と、 前記差電流検出手段の出力と前記和電流検出手段の出力から抑制量を求める抑制 量演算手段と、 前記動作量演算手段の出力と前記抑制量演算手段の出力から動作 比率を求める動作比率演算手段と、 前記動作量演算手段の出力と前記動作比率演 算手段の出力より前記電力系統の保護区間内の事故か保護区間外の事故かを判別 する判定手段とを備える光電流センサを用いる保護継電装置を提供するものであ る。  Therefore, the present invention provides two first and second photocurrent sensors that individually measure input and output currents at both ends of a protection section of a power system, wherein the first photocurrent sensor has an incident end, The analyzer has an analyzer that performs analysis in two polarization directions of plus 45 degrees and a minus 45 degrees with respect to the polarization direction of the polarizer provided at the incident end, and an emission end for each of the analysis components. Optical fiber transmission between the light source and the first photocurrent sensor, between the first and second photocurrent sensors, and between the second photocurrent sensor and the optical signal processing unit. A difference current detection unit that detects a difference current component from an output signal of the optical signal processing unit; a sum current detection unit that detects a sum current component from an output signal of the optical signal processing unit; and a difference current detection unit. An operation amount calculating means for obtaining an operation amount from an output; A suppression amount calculating means for obtaining a suppression amount from an output of the output means and an output of the sum current detecting means; A protection relay device using a photocurrent sensor, comprising: a determination unit configured to determine whether an accident is within the protection section or outside the protection section of the power system from the output of the operation amount calculation unit and the output of the operation ratio calculation unit. It is provided.
また、 本発明は、 電力系統の保護区間の両端に入出力電流を個別に測定する二 台の第一及び第二の光電流センサを配置し、 前記第一の光電流センサは入射端と 、 前記入射端に設けられた偏光子の偏光方向に対してプラス 4 5度及びマイナス 4 5度の二つの偏光方向で検光を行う検光子と、 それぞれの検光成分に対する出 射端とを有しており、 光源と前記第一の光電流センサとの間、 前記第一及び第二 の光電流センサ同士および前記第二の光電流センサと光信号処理部の間を光ファ ィバ伝送で接続し、 前記光信号処理部の出力信号から差電流成分を検出する差電 流検出手段と、 前記光信号処理部の出力信号から和電流成分を検出する和電流検 出手段と、 前記差電流検出手段の出力および前記和電流検出手段の出力から個別 の入出力電流を求める補正演算手段と、 前記補正演算手段から動作量を求める動 作量演算手段と、 前記補正演算手段から抑制量を求める抑制量演算手段と、 前記 動作量演算手段の出力と前記抑制量演算手段の出力から動作比率を求める動作比 率演算手段と、 前記動作量演算手段の出力と前記動作比率演算手段の出力より前 記電力系統の保護区間内の事故か保護区間外の事故かを判別する判定手段とを備 える光電流センサを用いる保護継電装置を提供するものである。 また、 本発明は、 保護区間を有する電力系統の事故を監視するための保護継電 装置であって、 前記保護継電装置は、 In addition, the present invention provides two first and second photocurrent sensors that individually measure input and output currents at both ends of a protection section of a power system, wherein the first photocurrent sensor has an incident end and It has an analyzer that performs analysis in two polarization directions of plus 45 degrees and minus 45 degrees with respect to the polarization direction of the polarizer provided at the incident end, and an emission end for each of the analysis components. Between the light source and the first photocurrent sensor, the first and second Differential current detecting means for connecting optical current sensors to each other and between the second photocurrent sensor and the optical signal processing unit by optical fiber transmission, and detecting a differential current component from an output signal of the optical signal processing unit. Sum current detection means for detecting a sum current component from the output signal of the optical signal processing unit; and correction calculation means for obtaining individual input / output currents from the output of the difference current detection means and the output of the sum current detection means. An operation amount calculating means for obtaining an operation amount from the correction operation means; a suppression amount calculating means for obtaining a suppression amount from the correction operation means; an operation from an output of the operation amount calculating means and an output of the suppression amount calculating means. Operating ratio calculating means for obtaining a ratio, and determining means for judging whether the accident is within the protection section or outside the protection section of the power system from the output of the operation amount calculation means and the output of the operation ratio calculation means. Equipped photoelectric A protection relay device using a flow sensor is provided. Further, the present invention is a protection relay device for monitoring an accident of a power system having a protection section, wherein the protection relay device includes:
所定の光信号を出射する光源と、  A light source for emitting a predetermined optical signal,
前記の電力系統の保護区間の一端側に配置された第 1の光電流センサであって 、 該第 1の光電流センサは、 前記光源からの前記光信号を受け、 前記電力系統の 保護区間の一端側に流れる第 1の電流の大きさに比例して前記の光信号の偏波面 を回転させ、 偏波面が回転させられた前記光信号のうち少なくとも一方向の成分 の第 1の光信号を放射する第 1の光電流センサと、  A first photocurrent sensor disposed on one end side of the protection section of the power system, the first photocurrent sensor receiving the optical signal from the light source, Rotating the polarization plane of the optical signal in proportion to the magnitude of the first current flowing on one end side, and converting the first optical signal of at least one direction component of the optical signal whose polarization plane has been rotated. A first photocurrent sensor that emits;
前記の電力系統の保護区間の他端側に配置された第 2の光電流センサであって 、 該第 2の光電流センサは、 前記第 1の光電流センサからの前記第 1の光信号を 受け、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさに比例して 、 前記第 1の光信号の偏波面をさらに回転させ、 偏波面がさらに回転させれた前 記第 1の光信号のうちの一方向成分の第 2の光信号と他方向成分の第 3の光信号 とを放射する第 2の光電流センサと、  A second photocurrent sensor disposed at the other end of the protection section of the power system, wherein the second photocurrent sensor transmits the first optical signal from the first photocurrent sensor. Receiving the first optical signal, further rotating the polarization plane of the first optical signal in proportion to the magnitude of the second current flowing to the other end of the protection section of the power system, and further rotating the polarization plane. A second photocurrent sensor that emits a second optical signal of one direction component and a third optical signal of another direction component of the first optical signal;
前記第 2の光信号から、 前記第 1の電流と前記第 2の電流との差である差電流 出力を求める第 1の光信号処理部と、  A first optical signal processing unit for obtaining a difference current output that is a difference between the first current and the second current from the second optical signal;
前記第 3の光信号から、 前記第 1の電流と前記第 2の電流との和である和電流 出力を求める第 2の光信号処理部と、 前記第 1の光信号処理部の前記差電流出力を検出する差電流検出手段と、 前記第 2の光信号処理部の前記和電流出力を検出する和電流検出手段と、 前記差電流検出手段の出力から動作量を求める動作量演算手段と、 A second optical signal processing unit for obtaining a sum current output that is a sum of the first current and the second current from the third optical signal; A difference current detection unit that detects the difference current output of the first optical signal processing unit; a sum current detection unit that detects the sum current output of the second optical signal processing unit; and An operation amount calculating means for obtaining an operation amount from the output;
前記差電流検出手段の出力と前記和電流検出手段の出力とから抑制量を求める 抑制量演算手段と、  Suppression amount calculation means for obtaining the suppression amount from the output of the difference current detection means and the output of the sum current detection means,
前記動作量演算手段の出力と前記抑制量演算手段の出力とから動作比率を求め る動作比率演算手段と、  An operation ratio calculating unit that obtains an operation ratio from the output of the operation amount calculating unit and the output of the suppression amount calculating unit;
前記動作量演算手段の出力と前記動作比率演算手段の出力とにより前記電力系 銃の前記保護区間の内側の事故か前記保護区間の外側の事故かを判別する判定手 段とを備えた保護継電装置を提供するものである。  A protection means comprising: a determination means for determining whether the power gun has an accident inside the protection section or outside the protection section based on an output of the operation amount calculation means and an output of the operation ratio calculation means. An electric device is provided.
また、 本発明は、 保護区間を有する電力系統の事故を監視するための保護継電 装置であって、 前記保護継電装置は、  Further, the present invention is a protection relay device for monitoring an accident of a power system having a protection section, wherein the protection relay device includes:
所定の光信号を出射する光源と、  A light source for emitting a predetermined optical signal,
前記の電力系統の保護区間の一端側に配置された第 1の光電流センサであって 、 該第 1の光電流センサは、 前記光源からの前記光信号を受け、 前記電力系統の 保護区間の一端側に流れる第 1の電流の大きさに比例して前記の光信号の偏波面 を回転させ、 偏波面が回転させられた前記光信号のうち少なくとも一方向の成分 の第 1の光信号を放射する第 1の光電流センサと、  A first photocurrent sensor disposed on one end side of the protection section of the power system, the first photocurrent sensor receiving the optical signal from the light source, Rotating the polarization plane of the optical signal in proportion to the magnitude of the first current flowing on one end side, and converting the first optical signal of at least one direction component of the optical signal whose polarization plane has been rotated. A first photocurrent sensor that emits;
前記の電力系統の保護区間の他端側に配置された第 2の光電流センサであって 、 該第 2の光電流センサは、 前記第 1の光電流センサからの前記第 1の光信号を 受け、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさに比例して 、 前記第 1の光信号の偏波面をさらに回転させ、 偏波面がさらに回転させれた前 記第 1の光信号のうちの一方向成分の第 2の光信号と他方向成分の第 3の光信号 とを放射する第 2の光電流センサと、  A second photocurrent sensor disposed at the other end of the protection section of the power system, wherein the second photocurrent sensor transmits the first optical signal from the first photocurrent sensor. Receiving the first optical signal, further rotating the polarization plane of the first optical signal in proportion to the magnitude of the second current flowing to the other end of the protection section of the power system, and further rotating the polarization plane. A second photocurrent sensor that emits a second optical signal of one direction component and a third optical signal of another direction component of the first optical signal;
前記第 2の光信号から、 前記第 1の電流と前記第 2の電流との差である差電流 出力を求める第 1の光信号処理部と、  A first optical signal processing unit for obtaining a difference current output that is a difference between the first current and the second current from the second optical signal;
前記第 3の光信号から、 前記第 1の電流と前記第 2の電流との和である和電流 出力を求める第 2の光信号処理部と、  A second optical signal processing unit for obtaining a sum current output that is a sum of the first current and the second current from the third optical signal;
前記第 1の光信号処理部の前記差電流出力を検出する差電流検出手段と、 前記第 2の光信号処理部の前記和電流出力を検出する和電流検出手段と、 前記差電流検出手段の出力と前記和電流検出手段の出力とから個別の入出力電 流を求める補正演算手段と、 Difference current detection means for detecting the difference current output of the first optical signal processing unit, Sum current detection means for detecting the sum current output of the second optical signal processing unit, and correction calculation means for obtaining individual input / output currents from the output of the difference current detection means and the output of the sum current detection means When,
前記補正演算手段の出力から動作量を求める動作量演算手段と、  Operation amount calculation means for obtaining an operation amount from an output of the correction operation means,
前記補正演算手段の出力から抑制量を求める抑制量演算手段と、  Suppression amount calculation means for obtaining the suppression amount from the output of the correction calculation means,
前記動作量演算手段の出力と前記抑制量演算手段の出力とから動作比率を求め る動作比率演算手段と、  An operation ratio calculating unit that obtains an operation ratio from the output of the operation amount calculating unit and the output of the suppression amount calculating unit;
前記動作量演算手段の出力と前記動作比率演算手段の出力とにより前記電力系 銃の保護区間の内側の事故か保護区間の外側の事故かを判別する判定手段とを備 えた保護継電装置を提供するものである。  A protection relay device comprising: a determination unit that determines whether an accident is inside the protection section of the power system gun or outside the protection section based on an output of the operation amount calculation unit and an output of the operation ratio calculation unit. To provide.
また、 本発明は、 保護区間を有する電力系統の事故を検出するための方法であ つて、  The present invention also provides a method for detecting an accident in a power system having a protected section,
前記の電力系統の保護区間の一端側に第 1の光電流センサを配置するステツプ と、  Arranging a first photocurrent sensor at one end of the protection section of the power system;
前記第 1の光電流センサにより、 前記電力系統の保護区間の一端側に流れる第 1の電流の大きさを感知するステップと、  By the first photocurrent sensor, sensing a magnitude of a first current flowing on one end side of the protection section of the power system;
前記の電力系統の保護区間の他端側に第 2の光電流センサを配置するステツプ と、  Placing a second photocurrent sensor at the other end of the protection section of the power system;
前記第 2の光電流センサにより、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさを感知するステップと、  Sensing the magnitude of a second current flowing on the other end side of the protection section of the power system by the second photocurrent sensor;
前記第 1の電流と前記第 2の電流との差である差電流出力を求めるステップと 前記第 1の電流と前記第 2の電流との和である和電流出力を求めるステップと 前記差電流出力から動作量を求めるステップと、  Obtaining a difference current output which is a difference between the first current and the second current; obtaining a sum current output which is a sum of the first current and the second current; and Obtaining a motion amount from
前記差電流出力と前記和電流出力とから抑制量を求めるステツプと、 前記動作量と前記抑制量とから動作比率を求めるステップと、  Determining a suppression amount from the difference current output and the sum current output; and determining an operation ratio from the operation amount and the suppression amount;
前記動作量と前記動作比率出力とにより前記電力系統の保護区間の内側の事故 か保護区間の外側の事故かを判別するステップとを備えた、 電力系統の事故を検 出するための方法を提供するものである。 Detecting an accident inside the protection section of the electric power system or outside the protection section based on the operation amount and the operation ratio output. It provides a way to get out.
さらに、 本発明は、 保護区間を有する電力系統の事故を検出するための方法で あって、  Further, the present invention is a method for detecting an accident in a power system having a protection zone,
前記の電力系統の保護区間の一端側に第 1の光電流センサを配置するステツプ と、  Arranging a first photocurrent sensor at one end of the protection section of the power system;
前記第 1の光電流センサにより、 前記電力系統の保護区間の一端側に流れる第 1の電流の大きさを感知するステップと、  By the first photocurrent sensor, sensing a magnitude of a first current flowing on one end side of the protection section of the power system;
前記の電力系統の保護区間の他端側に第 2の光電流センサを配置するステツプ と、  Placing a second photocurrent sensor at the other end of the protection section of the power system;
前記第 2の光電流センサにより、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさを感知するステップと、  Sensing the magnitude of a second current flowing on the other end side of the protection section of the power system by the second photocurrent sensor;
前記第 1の電流と前記第 2の電流との差である差電流出力を求めるステツプと 前記第 1の電流と前記第 2の電流との和である和電流出力を求めるステツプと 前記差電流出力と前記和電流出力とから個別の入出力電流を求めるステップと 前記入出力電流から動作量を求めるステップと、  A step for obtaining a difference current output that is a difference between the first current and the second current; a step for obtaining a sum current output that is a sum of the first current and the second current; and the difference current output Calculating an individual input / output current from the sum current output; andcalculating an operation amount from the input / output current;
前記入出力電流から抑制量を求めるステップと、  Obtaining a suppression amount from the input / output current;
前記動作量と前記抑制量とから動作比率を求めるステップと、  Obtaining an operation ratio from the operation amount and the suppression amount;
前記動作量と前記動作比率とにより前記電力系統の保護区間の内側の事故か保 護区間の外側の事故かを判別するステップとを備えた、 電力系統の事故を検出す るための方法を提供するものである。 図面の簡単な説明  Determining whether the accident is inside the protection section of the power system or outside the protection section based on the operation amount and the operation ratio. Is what you do. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による実施の形態を示し、 光電流センサを用いる保護継電装置 を説明する構成図である。  FIG. 1 is a configuration diagram illustrating an embodiment according to the present invention and illustrating a protection relay device using a photocurrent sensor.
図 2は、 本発明による実施の形態を示し、 光電流センサを用いる保護継電装置 を説明する系統図である。 図 3は、 本発明の実施の形態に従って事故電流を測定したときの出力波形の一 例である。 FIG. 2 is a system diagram illustrating an embodiment according to the present invention and illustrating a protection relay device using a photocurrent sensor. FIG. 3 is an example of an output waveform when fault current is measured according to the embodiment of the present invention.
図 4は、 本発明による他の実施の形態を示し、 光電流センサを用いる保護継電 装置を説明する構成図である。  FIG. 4 is a configuration diagram illustrating another embodiment according to the present invention and illustrating a protection relay device using a photocurrent sensor.
図 5は、 本発明による他の実施の形態に従って事故電流を測定したときの出力 波形の一例である。  FIG. 5 is an example of an output waveform when a fault current is measured according to another embodiment of the present invention.
図 6は、 従来技術の光電流センサを用いる保護継電装置の説明図である。 図 7は、 従来技術に従って事故電流を測定したときの出力波形の一例である。 発明を実施するための最良の形態  FIG. 6 is an explanatory diagram of a protection relay device using a conventional photocurrent sensor. FIG. 7 is an example of an output waveform when a fault current is measured according to a conventional technique. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の実施の形態について添付図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
従来の技術の (5 a )、 ( 5 b ) 式に示したように、 光電流センサからの出力信 号は x、 y方向の 2成分の光 P 2 x、 P 2 yがあり、 従来の技術においてはこのどち らか一方しか用いていない。 使用していない方の光信号を用いれば、 直流分が重 畳した外部事故が発生した場合でも内部事故と誤って判定することがないこと、 すなわち、 外部事故か内部事故かを判別することが可能であることを以下に説明 する。 The prior art (5 a), (5 b ) As indicated formula, the output signal from the optical current sensors is x, the light P 2 x 2 component in the y-direction, there are P 2 y, conventional The technology uses only one or the other. By using the optical signal that is not used, even if an external accident where DC components are superimposed occurs, it is not erroneously determined that the accident is an internal accident, that is, it is possible to determine whether the accident is an external accident or an internal accident. The possibilities are explained below.
図 1は本発明の光電流センサを用いる保護継電装置の実施の形態を示す説明図 である。光電流センサによる差電流信号 S 2 xを求めるために光信号 P 2 xを用いた のと同様に光信号 P 2 y信号を用いる。 FIG. 1 is an explanatory diagram showing an embodiment of a protective relay device using the photocurrent sensor of the present invention. Using optical signal P 2 y signal in the same way as using the optical signal P 2 x to determine a difference current signal S 2 x by the optical current sensor.
光信号 P 2 xより得られる光電流センサによる差電流信号 S 2 xが、第一の光電流 センサ 1力 S検出した電流 i iと第二の光電流センサ 2が検出した電流 i 2の差電 流である i i + i 2の情報を有しているのに対し、光信号 P 2 yからは i 丄と i 2の和 電流である i i— i 2の情報を有している和電流出力 S 2 yを得ることができるこ とを以下に説明する。 尚、 電力系統の保護区間 9への和電流が i — i 2と示され るのは、 iい i 2の符号をともに電力系統の保護区間 9への流入方向を +、 流出 方向を一と定義したことによる。 The differential current signal S 2 x by the photocurrent sensor obtained from the optical signal P 2 x is the difference between the current ii detected by the first photocurrent sensor 1 S and the current i 2 detected by the second photocurrent sensor 2. while has information of ii + i 2 which is a flow, the optical signal P 2 from y i丄and i is the second sum current II- i 2 sum has information current output S The fact that 2 y can be obtained will be described below. Incidentally, the sum current of the protection section 9 of the power system i - i 2 and indicated Runowa, the inflow direction to the protected section 9 of both power system the sign of i have i 2 +, as one of the outflow direction By definition.
尚、 以下の説明では 「従来の技術」 の項で参照した図及び式において、 同一も しくは相当する部分には同一符号を付してその説明は省略する。 図 1は、 偏光子 14、 ファラデー素子 11及び検光子 15よりなる第一の光電 流センサ 1と、 第一の光電流センサ 1と同様に構成される第二の光電流センサ 2 と、 光源 12と、 光電変換器 16、 ハイパスフィルタ回路 17、 ローパスフィル 夕回路 18及び割算器 19よりなる第一の光信号処理部 4 aと、 第一の光信号処 理部 4 aと同様に構成される第二の光信号処理部 4 bと、 光源 12と第一の光電 流センサ 1間の光信号を伝送する光ファイバ伝送路 3 aと、 第一の光電流センサ 1と第二の光電流センサ 2間の光信号を伝送する光ファイバ伝送路 3 bと、 第二 の光電流センサ 2の 2つの出射端のうち差電流情報を有する光信号 P2xを出射 する出射端と第一の光信号処理部 4 aとを伝送する光ファイバ伝送路 3 cと、 第 二の光電流センサ 2の 2つの出射端のうち和電流情報を有する光信号 P 2yを出 射する出射端と第二の光信号処理部 4 bとを伝送する光ファイバ伝送路 3 dと、 第一の光信号処理部 4 aからの差電流出力 S2xを検出する差電流検出手段 5 a と、第二の光信号処理部 4 bからの和電流出力 S2yを検出する差電流検出手段 5 bと、 差電流検出手段 5 aの出力から動作量を求める動作量演算手段 6 aと、 差 電流検出手段 5 aと和電流検出手段 5 bの出力から抑制量を求める抑制量演算手 段 6 bと、 動作量演算手段 6 aと抑制量演算手段 6 bから動作比率を求める動作 比率演算手段 7と、 動作量検出手段 6 aの出力及び動作比率演算手段 7の出力よ り電力系統の保護区間内の事故か区間外の事故かを判別する判定手段 8とより構 成される。 In the following description, in the figures and formulas referred to in the section of "Prior Art", the same or corresponding portions are denoted by the same reference characters and description thereof will be omitted. FIG. 1 shows a first photoelectric current sensor 1 including a polarizer 14, a Faraday element 11, and an analyzer 15, a second photoelectric current sensor 2 configured similarly to the first photoelectric current sensor 1, and a light source 12 And a first optical signal processing unit 4a comprising a photoelectric converter 16, a high-pass filter circuit 17, a low-pass filter circuit 18, and a divider 19, and a first optical signal processing unit 4a. A second optical signal processing unit 4b, an optical fiber transmission line 3a for transmitting an optical signal between the light source 12 and the first photoelectric current sensor 1, a first optical current sensor 1 and a second optical current An optical fiber transmission path 3 b for transmitting an optical signal between the sensors 2, an emission end for emitting an optical signal P 2x having difference current information among the two emission ends of the second optical current sensor 2, and a first light An optical fiber transmission line 3c for transmitting the signal processing unit 4a, and a sum current of two emission ends of the second photocurrent sensor 2. An optical fiber transmission line 3 d to transmit the optical signal processing unit 4 b exit end and a second for morphism exiting the optical signal P 2y having a broadcast, differential current output S of the first optical signal processing unit 4 a The difference current detection means 5a for detecting 2x , the sum current output S2 from the second optical signal processing unit 4b , the difference current detection means 5b for detecting the 2y , and the operation amount from the output of the difference current detection means 5a Operation amount calculating means 6a for obtaining the suppression amount, the suppression amount calculating means 6b for obtaining the suppression amount from the outputs of the difference current detecting means 5a and the sum current detecting means 5b, the operation amount calculating means 6a and the suppression amount calculating means. Operation ratio calculation means 7 for obtaining the operation ratio from 6 b, and operation amount detection means 6a and the output of the operation ratio calculation means 7 and the output of the operation ratio calculation means 7 determine whether the accident is within the protection section of the power system or outside the section. It consists of means 8.
第一の光電流センサ 1及び第二の光電流センサ 2の、 電力系統の保護区間 9へ の設置の状況及び、 光信号処理部 4 aの構成は従来の技術と同様であり、 光信号 処理部 4 aからは光電流センサによる差電流出力 S 2 xを得る。 The installation status of the first photocurrent sensor 1 and the second photocurrent sensor 2 in the protection section 9 of the power system and the configuration of the optical signal processing unit 4a are the same as those of the conventional technology. The difference current output S 2 x by the photocurrent sensor is obtained from the unit 4a.
一方光ファイバ伝送手段 3dにより導かれる光信号は (5 b)式に述べた P2y 信号である。第二の光電流センサ 2からのもう一つの光信号である P 2 yは光ファ ィバ伝送路 3 dに導かれ第二の光信号処理部 4 bの光電変換器 16に入射し、 同 様の信号処理により、 光電流センサによる和電流出力 S2yを得る。 光電流センサ による和電流出力 S2yは以下の式で表される。 On the other hand, the optical signal guided by the optical fiber transmission means 3d is the P2y signal described in equation ( 5b ). Another optical signal P 2 y from the second photocurrent sensor 2 is guided to the optical fiber transmission line 3 d and is incident on the photoelectric converter 16 of the second optical signal processing unit 4 b. By the same signal processing, the sum current output S2y by the photocurrent sensor is obtained. The sum current output S 2y by the photocurrent sensor is expressed by the following equation.
S2y= (P2yの交流成分) / (P2yの直流成分) · · · · (17) ここで、 (5 a)、 (5 b)式に対して、 (7)式の近似を用いると、 (6)式の S 2X及び (1 7) 式の S2yは以下のように簡略に表すことができる。 S 2y = (AC component of P 2y ) / (DC component of P 2y ) ·························································································· (17) And S in equation (6) 2X and S 2y in the expression (17) can be simply expressed as follows.
S2x0(i i+ i 2) + δ χ (1 8 a) S 2x = « 0 (i i + i 2 ) + δ χ (1 8 a)
S2y0(i i- i 2) + δ γ (1 8 b) ここで Q!。=2V であり、 Vは光電流センサのベルデ定数である。 S 2y = « 0 (i i-i 2 ) + δ γ (1 8 b) where Q !. = 2V, where V is the Verdet constant of the photocurrent sensor.
ここで、 (1 8 a)式の第一項が S2x信号に含まれる差電流成分、 第 2項が S2 x信号に含まれる誤差信号成分 δ xである。 Here, the error signal component [delta] x contained in (1 8 a) expression of the difference current component paragraph is included in the S 2x signal, the second term S 2 x signal.
同様に、 (1 8 b)式の第一項が S2y信号に含まれる和電流成分、 第 2項が S2 y信号に含まれる誤差信号成分 δγである。 Similarly, the error signal component [delta] gamma where (1 8 b) paragraph S 2y sum current component included in the signal type, the second term included in the S 2 y signal.
δχ、 <5 yは直流分が重畳された過渡的に減衰する信号によるもので、 (1 6) 式に表したように、 直流分が減衰するまでの間生じてしまう。 δ 、, <5 y is due to the transiently attenuated signal on which the DC component is superimposed, and occurs until the DC component is attenuated as expressed by equation (16).
一般に保護継電器に用いられる比率差動継電器の動作比率 kは動作量 mと抑制 量 nの比として以下の式で表される。  In general, the operating ratio k of the differential relay, which is used as a protection relay, is expressed by the following equation as the ratio of the operation amount m to the suppression amount n.
動作比率 k=m/n · · · - (1 9) 動作量 m= I i i + i 2 I · · · · (20 a) 抑制量 n= I i I + I i 2 I • • • ■ (20 b) ここで I i i + i 2 Iは差電流 i 丄 + i 2の実効値を、 I i I及び I i 2 Iはそれ ぞれ の実効値、 i 2の実効値を表すものとする。 Movement ratio k = m / n · ·--(1 9) Movement amount m = I ii + i 2 I · · · (20 a) Suppression amount n = I i I + I i 2 I • • • ■ ( 20 b) where I ii + i 2 I represents the effective value of the difference current i 丄 + i 2 , I i I and I i 2 I represent the respective effective values and the effective value of i 2 .
(1 8 a) (1 8 b) 式には誤差信号 <5 x、 d yが含まれるが、 仮に無視できる 大きさであると仮定し、差電流検出手段 5 aで求められた S2x及び和電流検出手 段 5 bで求められた S2yを用いて (1 9) 式で表される動作比率 kを求める手法 を以下に示す。 (18a) Equation (18b) includes error signals < 5x , dy, but assuming that the magnitude is negligible, S2x and S2x obtained by the difference current detection means 5a The method of calculating the operating ratio k expressed by Eq. (19) using S2y obtained by the sum current detection means 5b is shown below.
(20 a) 式の動作量 mは図 1の動作量演算手段 6 aで (2 1 a) 式のとおり 求められる。 The motion amount m in equation (20a) is obtained by the motion amount calculation means 6a in FIG. 1 as in equation (21a).
Figure imgf000018_0001
Figure imgf000018_0001
= a 0( i 1+ ί 2) = a 0 (i 1 + ί 2 )
m= I i i+ i 2 I - I S2x I /a0 ' ' ' ' (2 1 a)m = I i i + i 2 I-IS 2x I / a 0 '''' (2 1 a)
(20 b) 式の抑制量 nは抑制量演算手段 6 で (2 1 b) 式のとおり求めら れる。The suppression amount n in the expression (20b) is obtained by the suppression amount calculating means 6 as shown in the expression (21b).
Figure imgf000018_0002
( i !+ i 2) + δχ0 ( i i— i 2) +<5y = 2 n - i -, + δ'
Figure imgf000018_0002
(i! + i 2 ) + δ χ + « 0 (ii— i 2 ) + <5 y = 2 n -i-, + δ '
2 α n · i 2 α n
( S 2x + S 2 , vy) (2 a J (S 2x + S 2, v y) (2 a J
S 2 x ° 2 y― 0 ( i + i J + δ - a ( ) -δ =2 a + δS 2 x ° 2 y− 0 (i + i J + δ- a () -δ = 2 a + δ
2 a n · i 2 a n
I i 2 ( ° 2 x _ ° 2 ?. vy) (2 an) I i 2 (° 2 x _ ° 2?. Vy) (2 a n )
n= I i 1 I + 1 i 2 n = I i 1 I + 1 i 2
= { (S 2x+S 2y ) I + I (S? -S2v) I } / (2 Q' 0) = {(S 2x + S 2y) I + I (S ? -S 2v ) I} / (2 Q ' 0 )
• (2 1 b)  • (2 1 b)
動作比率 kは動作比率演算手段 7において (2 1 a) 式及び (2 1 b) 式を ( 1 9) 式に代入することで求められる。 The operation ratio k is obtained by substituting the expressions (21a) and (21b) into the expression (19) in the operation ratio calculating means 7.
=m/n~ I i 1+ i + I ) = m / n ~ I i 1 + i + I)
=i l S la (S2x+S 2y) + (s 2 x S2y) 1/ (2 a0) }= il S la (S 2x + S 2y) + (s 2 x S 2y ) 1 / (2 a 0 )}
=2 S 2x (I s 2x+ S 2y + I s, -s 2y ) (22) 動作量演算手段 6 aで求められた動作量 mと、 動作比率検出演算 7で求められ た動作比率 kは、 判定手段 8において、 動作量整定値を k l、 動作比率整定値を k 2とした時、 m>k 1かつ k>k 2の時内部事故と判定することにより、 直流 分が重畳した事故電流であったとしても、 外部事故においても不要動作を防ぐこ とができる。 = 2 S 2x (I s 2x + S 2y + I s, -s 2y) (22) The operation amount m obtained by the operation amount calculation means 6 a and the operation ratio k obtained by the operation ratio detection operation 7 are: In the judgment means 8, when the operation amount setting value is kl and the operation ratio setting value is k2, when m> k1 and k> k2, it is judged that an internal fault has occurred. Even if it does, unnecessary actions can be prevented in the event of an external accident.
上記 (2 1 a) 式、 (22)'式で求められた動作量 m、 動作比率 kは、 (1 8 a ), (1 8 b)式に示す誤差成分 δχおよび Syが仮に無視できる大きさであると仮 定して求めているが、 誤差成分の大きさは、 事故電流の大きさおよび適用される 電流センサの感度によって変動する。 しかしながら外部事故発生時と、 内部事故 発生時に動作比率 kに大きな差異があれば、 判定手段 8において、 事故が保護区 間の内部であるか、 外部であるかを判別することができる。 The motion amount m and the motion ratio k obtained by the above equations (21a) and (22) 'are temporarily ignored for the error components δ χ and S y shown in the equations (18a) and (18b). The magnitude of the error component fluctuates depending on the magnitude of the fault current and the sensitivity of the applied current sensor. However, if there is a large difference between the operation ratio k when an external accident occurs and when an internal accident occurs, the judging means 8 can determine whether the accident is inside or outside the protected area.
以下に実際の電力系統において前記手法により、 事故が保護区間の内部である か、 外部であるかを判別することが可能であることを計算により確認する。  In the following, it is confirmed by calculation that it is possible to determine whether the accident is inside or outside the protection section by the above method in an actual power system.
想定する電力系統の最大事故電流を 33 k Aとし、 直流分が 1 00 %重畳され たものとし、 時定数て = 1 0 Omsとする。 適用する光ファイバセンサは従来技 術と同様の、 波長 1550 nmの鉛ガラスファイバ型光電流センサであるとし、 そのベルデ定数 Vは 3. 93X 10— 6 [r ad/A] を用いる。 The assumed maximum fault current of the power system is 33 kA, the DC component is assumed to be 100% superimposed, and the time constant is set to 10 Oms. The applied optical fiber sensor is Similar to surgery, and is lead glass fiber-type optical current sensor having a wavelength 1550 nm, the Verdet constant V is 3. 93X 10- 6 using [r ad / A].
電力系統の保護区間 9に対して、 外部事故、 内部事故の各々の事故ケースにつ いて、 本発明の光電流センサを用いた保護継電装置の動作を説明するために、 従 来の技術で説明したのと同様に図 2の系統図を用いる。  In order to explain the operation of the protective relay using the photocurrent sensor of the present invention in each of the external and internal accident cases with respect to the protection section 9 of the power system, a conventional technique was used. The system diagram of Fig. 2 is used as described.
外部事故は図 2に示す系統において事故箇所 f 1と ί 3の 2通りが考えられる が、 どちらも同等と考えられるのでここでは f 1を外部事故の代表例とする。 内部事故のケースは、 電源配置が両端か、 f l側の片端電源、 f 3側の片端電 源の 3通りが考えられる。 片側電源は f l側、 f 3側でも同様と考えられるので f l側を代表例とする。  There are two types of external accidents in the system shown in Fig. 2, i.e., accident location f1 and 、 3. Since both are considered equivalent, f1 is used here as a typical example of external accidents. In the case of an internal accident, it is considered that there are three types of power supply arrangement, one at both ends, the one-sided power supply at the fl side, and the one-sided power supply at the f3 side. A single-side power supply is considered to be the same for the fl side and the f3 side, so the fl side is a representative example.
両側電源配置における事故発生のケースでは、 iい i 2In the case of an accident in a double-sided power supply arrangement, i or i 2 is
i i(t)= i 2(t) ii (t) = i 2 (t)
として考えるものとする。 Shall be considered.
片端電源配置における事故発生のケースでは、  In the case of an accident in a single-ended power supply arrangement,
i 2(t)=0 i 2 (t) = 0
とする。 And
図 3は (22) 式より求められた動作比率 kが内部事故と外部事故において十 分大きな差があることを説明するための図であり、 先に示した事故電流の値、 光 ファイバの定数を、 (14)、 (5 a), (5 b), (6)、 (17)、 (21 a), (21 b)、 (22) 式に代入し、 計算により求めたものである。  Figure 3 is a diagram for explaining that the operating ratio k obtained from Eq. (22) has a sufficiently large difference between an internal fault and an external fault.The fault current value and the optical fiber constant Is substituted into the equations (14), (5a), (5b), (6), (17), (21a), (21b), and (22), and calculated.
なお、 動作量演算手段 6 a及び抑制量演算手段 6 bで電源周波数成分の実効値 I S2x I、 I S2x+S2y I及び I S2x— S2y Iを求める手段として、 従来技術 と同様に以下のアルゴリズムで計算した。 As means for calculating the effective values IS 2x I, IS 2x + S 2y I and IS 2x — S 2y I of the power supply frequency components in the operation amount calculating means 6a and the suppression amount calculating means 6b, as in the prior art, The algorithm was used.
電気角 30度  Electrical angle 30 degrees
ディジタルフィルタ: D. F. l f= (1一 Z— 6) (l + Z^ + Z—s+Z一3) Digital filter: DF lf = ( 1-1 Z- 6 ) (l + Z ^ + Z-s + Z- 3 )
' n-3 C, n ^ n—- f6 'n-3 C, n ^ n --- f 6
図 3(a)は (14) 式で表される直流分が重畳された事故電流 iェ (t) を示し ており、 事故電流 i ニ 33 kAの波形を示している。 図 3(b)ないし(d)は外部 事故のケースであり、 図 3(b)は動作量 mを、 図 3(c)は抑制量 nを、 図 3(d)は 動作比率 kをそれぞれ示している。 事故電流は iェ= 33 kA、 24kA、 15 kA、 9 kAの 4通りを示している。 Figure 3 (a) shows the fault current i (t) on which the DC component expressed by Eq. (14) is superimposed, and shows the waveform of fault current i 33 kA. Figures 3 (b) to 3 (d) show the case of an external accident, Figure 3 (b) shows the amount of operation m, Figure 3 (c) shows the amount of suppression n, and Figure 3 (d) The respective operating ratios k are shown. The fault current shows four types: i = 33 kA, 24 kA, 15 kA, and 9 kA.
同様に図 3 ( e )ないし図 3 ( g)は内部事故両側電源配置の場合であり、 図 3 ( e ) は動作量 mを、図 3 ( f )は抑制量 nを図 3 (g)は動作比率 kをそれぞれ示している 。 事故電流は以下の 4通りを示している。  Similarly, Fig. 3 (e) to Fig. 3 (g) show the case of a power supply arrangement on both sides of the internal fault.Fig. 3 (e) shows the operation amount m, and Fig. 3 (f) shows the suppression amount n. Indicates the operation ratio k. The fault current shows the following four types.
= +16. 5 kA、 i 2 = + 16. 5kA、  = +16.5 kA, i 2 = +16.5 kA,
= +12. 0 kA、 i 2 = + 12. 0 kA、 = +12.0 kA, i 2 = +12.0 kA,
i ! = + 7. 5 kA、 i 2 = + 7. 5 kA, i! = +7.5 kA, i 2 = +7.5 kA,
i ! = + 4. 5 kA, i 2 = + 4. 5 kA i! = +4.5 kA, i 2 = +4.5 kA
図 3 (h)ないし図 3 ( j )は内部事故片端電源配置の場合であり、 図 3 (h)は動作 量 mを、 図 3(i)は抑制量 nを図 3(j)は動作比率 kをそれぞれ示している。事故 電流は i 1=33kA、 24kA、 15 kA, 9 k Aの 4通りを示している。 外部事故ケースの動作比率 kを示す図 3(d)と、 内部事故両側電源配置、 内部 事故片側電源配置の各ケースにおける動作比率 kを示す図 3 (g)、図 3(j )を比較 すると明らかなように、 動作比率 kは内部事故ケースにおいては片端電源の場合 および両端電源の場合とも 100%であるが、 外部事故ケースでは一時的に 20 数%まで上昇しているが内部事故と比較するとあきらかに小さな値である。 Figures 3 (h) to 3 (j) show the case of a single-sided internal power supply arrangement.Figure 3 (h) shows the amount of operation m, Figure 3 (i) shows the amount of suppression n, and Figure 3 (j) shows the amount of operation. Each shows the ratio k. The fault current shows four types: i 1 = 33 kA, 24 kA, 15 kA, and 9 kA. Compare Fig. 3 (d), which shows the operating ratio k of the external accident case, with Figs. 3 (g) and 3 (j), which show the operating ratio k in each case of the internal accident power supply arrangement and the internal accident single-side power supply arrangement. As can be seen, the operating ratio k is 100% for both the single-ended power supply and the double-ended power supply in the case of an internal accident, but temporarily increased to more than 20% in the case of an external accident. Then it is obviously a small value.
よって動作比率整定値 k 2を決定するには、 外部事故において一時的に上昇す る動作比率 kの値より大きな値を設けることにより、 判定手段 8において動作量 mが動作量整定値 k 1より大きいとしても、 動作比率 kが動作比率整定値 k 2よ り小さいならば外部事故であると判定し、 保護継電装置の不要動作を防ぐことが できる。  Therefore, in order to determine the operation ratio setting value k2, by setting a value larger than the value of the operation ratio k that temporarily increases in an external accident, the operation amount m is determined by the determination means 8 to be smaller than the operation amount setting value k1. Even if it is large, if the operation ratio k is smaller than the operation ratio set value k2, it is determined that an external accident has occurred, and unnecessary operation of the protective relay can be prevented.
図 4は本発明の光電流センサを用いる保護継電装置の他の実施の形態例を示す 説明図である。 以下の説明では、 前記従来の技術及び前記実施の形態で参照した 図及び式において、 同一もしくは相当する部分には同一符号を付してその説明は 省略する。  FIG. 4 is an explanatory diagram showing another embodiment of the protection relay device using the photocurrent sensor of the present invention. In the following description, in the drawings and formulas referred to in the related art and the embodiment, the same or corresponding portions are denoted by the same reference characters and description thereof is omitted.
第一の光電流センサ 1、 第二の光電流センサ 2、 光源 12、 光信号処理回路 4 a、 光ファイバ伝送手段 3 a、 3b、 3 c、 3d、 第一の光信号処理部 4 a、 第 二の光信号処理部 4 b、 差電流検出手段 5 a、 和電流検出手段 5 bと、 差電流検 出手段 5 aの出力および和電流検出手段 5 bからの出力から個別の入出力電流を 求める補正演算手段 5 c、 補正演算手段 5 cの出力から動作量を求める動作量演 算手段 6 c、 補正演算手段 5 cの出力から抑制量を求める抑制量演算手段 6 d、 動作量演算手段 6 cの出力および抑制量演算手段 6 dの出力から動作比率を求め る動作比率演算手段 7、 動作量検出手段 6 cの出力及び動作比率演算手段 7の出 力より電力系統の保護区間内の事故か区間外の事故かを判別する判定手段 8より 構成される。 First photocurrent sensor 1, second photocurrent sensor 2, light source 12, optical signal processing circuit 4a, optical fiber transmission means 3a, 3b, 3c, 3d, first optical signal processing unit 4a, Second optical signal processing unit 4b, difference current detection means 5a, sum current detection means 5b, difference current detection Correction operation means 5c for obtaining an individual input / output current from the output of the output means 5a and the output from the sum current detection means 5b, an operation amount calculation means 6c for obtaining the operation amount from the output of the correction operation means 5c, Suppression amount calculation means 6 d for obtaining the suppression amount from the output of the correction calculation means 5 c, operation ratio calculation means 7 for obtaining the operation ratio from the output of the operation amount calculation means 6 c and the output of the suppression amount calculation means 6 d, operation amount It comprises a judgment means 8 for judging from the output of the detection means 6 c and the output of the operation ratio calculation means 7 whether the accident is within the protection section of the power system or outside the section.
ここで、 (5 a)、 (5 b) 式に対して、 (7) 式の近似を用いて、 以下のように 書き改める。  Here, equations (5a) and (5b) are rewritten as follows using approximation of equation (7).
Ρ-(1/4)Ρ0 (1 + α0 i i) (1 + 0 ) ' · · ' (2 5 a) Ρ 2Χ- (1/4) Ρ 0 (1 + α 0 ii) (1 + 0 ) '
P2y=(l/4)P。 (1 + α0 i i) (1_ひ。 i 2) . · . ' (2 5 b) P 2y = (l / 4) P. (1 + α 0 ii) (1_h. I 2 ). ·. '(25 b)
(α。=2 V)  (α. = 2 V)
この時、 差電流検出手段 5 aからの出力 S^、 和電流検出手段 5 bからの出力 At this time, the output S ^ from the difference current detecting means 5a and the output from the sum current detecting means 5b
S 2 yは以下のように表される。 S 2 y is expressed as follows.
S2 x= « o(i 1+ 2) + « o2( i i · i 2) · · (26 a) S 2 x = «o (i 1+ 2 ) +« o 2 (ii · i 2 ) · · (26 a)
S2 y= « o(i i— i 2) - « o 2(i i * i 2) . . (26 b) S 2 y = «o (ii— i 2)-« o 2 (ii * i 2 ).. (26 b)
ここで、 (26 a)式の第一項が S2x信号に含まれる誤差電流成分、 第 2項が S2 x信号に含まれる誤差信号成分ひ。 2(i i · i 2) である。 同様に、 (26 b) 式の 第一項が S 2y信号に含まれる和電流成分、第 2項が S 2y信号に含まれる誤差信号 成分である。 Here, the error current component of paragraph (26 a) formula is contained in S 2x signal, the error signal component monument second term is included in the S 2 x signal. 2 (ii · i 2 ). Similarly, the first term of equation ( 26b ) is the sum current component included in the S2y signal, and the second term is the error signal component included in the S2y signal.
次に、 差電流検出手段 5 aからの出力 S2x、 和電流検出手段 5 bからの出力 S 2 yを補正演算手段 5 cにおいて、 以下の通り誤差成分《。2(i · i 2) を除去す る。 すなわち、 (2 7 a) から (27 c) に示すとおり、 Sz l、 Sz 2、 Sz 3を定 義し、 (28 a)、 (28 b) 式のとおり iい i 2を求める。 Next, the output S 2x from the difference current detecting means 5 a and the output S 2 y from the sum current detecting means 5 b are corrected by the correction calculating means 5 c as follows. 2 (i · i 2 ) is removed. That is, as shown in the (2 7 a) (27 c ), S zl, the S z 2, S z 3 define, (28 a), obtaining the i have i 2 as (28 b) expression.
° z 1― 、 2x+ 2y) ノ  ° z 1−, 2x + 2y)
= Q!0 i! • • • • (2 7 a) = Q! 0 i! • • • • (2 7 a)
° z 2 ~ ( 0 2 x S? 2vy) /2 ° z 2 ~ ( 0 2 x S ? 2 v y) / 2
a n i 9 + a 0 ( a n i 9 + a 0 (
CK n ί 、 1 + 0! i ,) (27 b)
Figure imgf000023_0001
CK n ί, 1 + 0! I,) (27 b)
Figure imgf000023_0001
= 0 i 2 · · · · (27 c) = 0 i 2
i 1 =SZノ a0 ' ■ ' - (28 a) i 1 = S Z no a 0 '■'-(28 a)
i 2 =Sz3/a0 i 2 = S z3 / a 0
=Sz2/{a0 (1+Szl) } ' · ' ' (28b) = S z2 / {a 0 (1 + S zl )} '·''(28b)
補正演算手段 5 cで求められた iい i 2を用いて、 動作量演算手段 6 c、 抑制 量演算手段 6 dにおいて以下の (29 a)、 (29 b) 式により動作量 mと抑制量 nが求められる。 Using i or i 2 obtained by the correction operation means 5 c, the operation amount operation means 6 c and the suppression amount operation means 6 d use the following equations (29a) and (29 b) to calculate the operation amount m and the suppression amount. n is required.
.動作量 m= I i !+ i 2 I .Moving amount m = I i! + I 2 I
= I Szl + Sz3 I «o · · · · (29 a) = IS zl + S z3 I «o · · · · (29 a)
抑制量 n = i i ! I + I i 2 I Suppression n = ii! I + I i 2 I
- (I Szl I + I Sz3 I) /a, · · · - (29b) -(IS zl I + IS z3 I) / a,
動作量演算手段 6 c、 抑制量演算手段 6 dにおいて以下の (29 a)、 (29 b) 式により求められた動作量 mと、 抑制量 nは動作比率演算手段 7において ( 30) 式により動作比率 kが求められる。  The motion amount m obtained by the following equations (29a) and (29b) in the motion amount calculating means 6c and the suppression amount calculating means 6d, and the suppression amount n are calculated by The motion ratio k is determined.
動作比率 k=m/n  Operating ratio k = m / n
= I Szl + Sz3 I / (I Szl I + I Sz3 I ) … '(30) 動作量演算手段 6 cで求められた動作量 mと、 動作比率演算手段 7で求められ た動作比率 kは、 判定手段 8において、 動作量整定値を k l、 動作比率整定値を k 2とした時、 m>k 1かつ k>k 2の時内部事故と判定することにより、 直流 分が重畳した事故電流であったとしても、 外部事故においても不要動作を防ぐこ とができる。 = IS zl + S z3 I / (IS zl I + IS z3 I)… '(30) The operation amount m obtained by the operation amount calculating means 6 c and the operation ratio k obtained by the operation ratio calculating means 7 In the determination means 8, when the operation amount setting value is kl and the operation ratio setting value is k2, when m> k1 and k> k2, it is determined that an internal fault has occurred. However, unnecessary operation can be prevented even in the event of an external accident.
図 5は (30) 式より求められた動作比率 kが内部事故と外部事故において十 分大きな差があることを説明するための図であり、 前記実施の形態の図 3を示す 際の計算に用いたのと同様の条件のもとに計算した結果を示すものである。  FIG. 5 is a diagram for explaining that the operation ratio k obtained from Eq. (30) has a sufficiently large difference between an internal accident and an external accident. It shows the result of calculation under the same conditions as used.
図 5 (a)は (14) 式で表される直流分が重畳された事故電流 i n (t)を示して おり、 事故電流実効値 I n= 33 kAの波形を示している。 図 5(b)ないし(d)は 外部事故のケースであり、 図 5(b)は動作量 mを、 図 5(c)は抑制量 nを図 5(d) は動作比率 kを示している。 事故電流は i 1=33 kA、 24kA、 15 kA、 9 kAの 4通りを示している。 Figure 5 (a) shows represented by DC component indicates the fault current i n superimposed (t), the fault current effective value I n = 33 kA in waveform (14). Figures 5 (b) to 5 (d) show the cases of external accidents.Figure 5 (b) shows the amount of movement m, Figure 5 (c) shows the amount of suppression n, and Figure 5 (d) shows the amount of movement k. I have. The fault current is i 1 = 33 kA, 24 kA, 15 kA, Four patterns of 9 kA are shown.
同様に図 5 (e)ないし図 5 (g)は内部事故両側電源配置の場合であり、 図 5 (e) は動作量 mを、 図 5(f)は抑制量 nを図 5(g)は動作比率 kを示している。事故電 流は以下の 4通りを示している。  Similarly, Figs. 5 (e) to 5 (g) show the case of the power supply arrangement on both sides of the internal accident.Fig. 5 (e) shows the operation amount m, and Fig. 5 (f) shows the suppression amount n. Indicates the operation ratio k. The accident current shows the following four types.
= +16. 5 kA、 i 2 = + 16. 5kA、 = +16.5 kA, i 2 = +16.5 kA,
i ! = + 12. OkA、 i 2 = + 12. 0 kA, i! = + 12. OkA, i 2 = + 12.0 kA,
i x = + 7. 5 kA、 i 2 = + 7. 5 kA、 i x = +7.5 kA, i 2 = +7.5 kA,
i , = + 4. 5 kA、 i 2 = + 4. 5 kA i, = +4.5 kA, i 2 = +4.5 kA
図 5(h)ないし図 5(j )は内部事故片端電源配置の場合であり、 図 5(h)は動作 量 mを、 図 5(i)は抑制量 nを図 5(j)は動作比率 kを示している。事故電流は i !=33 kA, 24 kA, 15 kA、 9 k Aの 4通りを示している。  Figures 5 (h) to 5 (j) show the case of a single-sided internal power supply arrangement.Figure 5 (h) shows the operation amount m, Figure 5 (i) shows the suppression amount n, and Figure 5 (j) shows the operation amount. The ratio k is shown. Fault currents are shown in four ways: i! = 33 kA, 24 kA, 15 kA, and 9 kA.
外部事故時ケースの図 5(d)と、 内部事故ケースの図 5 (g)、 図 5(j)を比較す ると明らかなように、 動作比率 kは内部事故ケースにおいては片端電源の場合お よび両端電源の場合とも 100 %であるが、 外部事故ケースでは動作比率 kがー 時的に 5%まで上昇しているが内部事故と比較するとあきらかに小さな値である 上記のように内部故障発生時に一時的に上昇する動作比率 kの値より大きな値 の動作比率整定値 k 2を設けることにより、 判定手段 8において動作量 mが動作 量整定値 k 1より大きいとしても、 動作比率 kが動作比率整定値 k 2より小さい ならば外部事故であると判定し、 保護継電装置の不要動作を防ぐことができる。 産業上の利用の可能性  As can be seen by comparing Fig. 5 (d) for the external accident case with Figs. 5 (g) and 5 (j) for the internal accident case, the operating ratio k is the case of a single-ended power supply in the internal accident case. In the case of an external accident, the operating ratio k is occasionally increased to 5% in the case of an external accident, but it is clearly smaller than that of the internal accident. By providing an operation ratio set value k2 that is larger than the value of the operation ratio k that temporarily rises when an occurrence occurs, even if the operation amount m is larger than the operation amount set value k1 in the determination means 8, the operation ratio k is If the operation ratio setting value is smaller than k2, it is determined that an external accident has occurred, and unnecessary operation of the protective relay can be prevented. Industrial applicability
以上説明したように、 本発明による光電流センサによる保護継電装置によれば 外部事故力 S発生したとしてもリレーの不要動作を防ぐことが可能になる。  As described above, according to the protection relay device using the photocurrent sensor according to the present invention, it is possible to prevent unnecessary operation of the relay even when the external accident force S occurs.

Claims

請求の範囲 The scope of the claims
1 . 電力系統の保護区間の両端に入出力電流を個別に測定する二台の第一及び第 二の光電流センサを配置し、 前記第一及び第二の光電流センサは入射端と、 前記 入射端に設けられた偏光子の偏光方向に対してプラス 4 5度及びマイナス 4 5度 の二つの偏光方向で検光を行う検光子と、 それぞれの検光成分に対する出射端と を有しており、 光源と前記第一の光電流センサとの間、 前記第一及び第二の光電 流センサ同士の間および前記第二の光電流センサと光信号処理部の間を光フアイ バ伝送路で接続し、 前記光信号処理部の出力信号から差電流成分を検出する差電 流検出手段と、 前記光信号処理部の出力信号から和電流成分を検出する和電流検 出手段と、 前記差電流検出手段の出力から動作量を求める動作量演算手段と、 前 記差電流検出手段の出力と前記和電流検出手段の出力から抑制量を求める抑制量 演算手段と、 前記動作量演算手段の出力と前記抑制量演算手段の出力から動作比 率を求める動作比率演算手段と、 前記動作量演算手段の出力と前記動作比率演算 手段の出力より前記電力系統の保護区間内の事故か保護区間外の事故かを判別す る判定手段とを備えた光電流センサを用いる保護継電装置。 1. Two first and second photocurrent sensors for individually measuring input / output current are arranged at both ends of the protection section of the power system, wherein the first and second photocurrent sensors are an incident end, and It has an analyzer that performs analysis in two polarization directions of plus 45 degrees and minus 45 degrees with respect to the polarization direction of the polarizer provided at the entrance end, and an exit end for each of the analysis components. And an optical fiber transmission path between the light source and the first photocurrent sensor, between the first and second photocurrent sensors, and between the second photocurrent sensor and the optical signal processing unit. Connected, a difference current detection means for detecting a difference current component from the output signal of the optical signal processing unit, a sum current detection means for detecting a sum current component from the output signal of the optical signal processing unit, and the difference current An operation amount calculating means for obtaining an operation amount from an output of the detecting means; A suppression amount calculation means for obtaining a suppression amount from an output of the means and an output of the sum current detection means; an operation ratio calculation means for obtaining an operation ratio from an output of the operation amount calculation means and an output of the suppression amount calculation means; A protection relay device using a photocurrent sensor, comprising: a determination unit configured to determine whether an accident is within the protection section or outside the protection section of the power system from the output of the operation amount calculation unit and the output of the operation ratio calculation unit. .
2 . 電力系統の保護区間の両端に入出力電流を個別に測定する二台の第一及び第 二の光電流センサを配置し、 前記第一及び第二の光電流センサは入射端と、 前記 入射端に設けられた偏光子の偏光方向に対してプラス 4 5度及びマイナス 4 5度 の二つの偏光方向で検光を行う検光子と、 それぞれの検光成分に対する出射端と を有しており、 光源と前記第一の光電流センサとの間、 前記第一及び第二の光電 流センサ同士の間および前記第二の光電流センサと光信号処理部の間を光フアイ バ伝送路で接続し、 前記光信号処理部の出力信号から差電流成分を検出する差電 流検出手段と、 前記光信号処理部の出力信号から和電流成分を検出する和電流検 出手段と、 前記差電流検出手段の出力と前記和電流検出手段の出力から個別の入 出力電流を求める補正演算手段と、 前記補正演算手段の出力から動作量を求める 動作量演算手段と、 前記補正演算手段の出力から抑制量を求める抑制量演算手段 と、 前記動作量演算手段の出力と前記抑制量演算手段の出力から動作比率を求め る動作比率演算手段と、 前記動作量演算手段の出力と前記動作比率演算手段の出 力より前記電力系統の保護区間内の事故か保護区間外の事故かを判別する判定手 段とを備えた光電流センサを用いる保護継電装置。 2. Two first and second photocurrent sensors for individually measuring input / output current are arranged at both ends of the protection section of the power system, wherein the first and second photocurrent sensors are an incident end, It has an analyzer that performs analysis in two polarization directions of plus 45 degrees and minus 45 degrees with respect to the polarization direction of the polarizer provided at the entrance end, and an exit end for each of the analysis components. And an optical fiber transmission path between the light source and the first photocurrent sensor, between the first and second photocurrent sensors, and between the second photocurrent sensor and the optical signal processing unit. Connected, a difference current detection means for detecting a difference current component from the output signal of the optical signal processing unit, a sum current detection means for detecting a sum current component from the output signal of the optical signal processing unit, and the difference current From the output of the detecting means and the output of the sum current detecting means, an individual input / output current is calculated. Correction operation means for obtaining an operation amount from an output of the correction operation means; an operation amount operation means for obtaining a suppression amount from an output of the correction operation means; an output of the operation amount operation means; Obtain the operation ratio from the output of the suppression amount calculation means Operating ratio calculating means, and a judging means for determining from the output of the operating amount calculating means and the output of the operating ratio calculating means whether the accident is within the protection section of the power system or outside the protection section. A protective relay using a photocurrent sensor.
3 . 保護区間を有する電力系統の事故を監視するための保護継電装置であって 、 前記保護継電装置は、 3. A protection relay device for monitoring an accident in a power system having a protection section, wherein the protection relay device includes:
所定の光信号を出射する光源と、  A light source for emitting a predetermined optical signal,
前記の電力系統の保護区間の一端側に配置された第 1の光電流センサであって 、 該第 1の光電流センサは、 前記光源からの前記光信号を受け、 前記電力系統の 保護区間の一端側に流れる第 1の電流の大きさに比例して前記の光信号の偏波面 を回転させ、 偏波面が回転させられた前記光信号のうち少なくとも一方向の成分 の第 1の光信号を放射する第 1の光電流センサと、  A first photocurrent sensor disposed on one end side of the protection section of the power system, the first photocurrent sensor receiving the optical signal from the light source, Rotating the polarization plane of the optical signal in proportion to the magnitude of the first current flowing on one end side, and converting the first optical signal of at least one direction component of the optical signal whose polarization plane has been rotated. A first photocurrent sensor that emits;
前記の電力系統の保護区間の他端側に配置された第 2の光電流センサであって 、 該第 2の光電流センサは、 前記第 1の光電流センサからの前記第 1の光信号を 受け、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさに比例して 、 前記第 1の光信号の偏波面をさらに回転させ、 偏波面がさらに回転させれた前 記第 1の光信号のうちの一方向成分の第 2の光信号と他方向成分の第 3の光信号 とを放射する第 2の光電流センサと、  A second photocurrent sensor disposed at the other end of the protection section of the power system, wherein the second photocurrent sensor transmits the first optical signal from the first photocurrent sensor. Receiving the first optical signal, further rotating the polarization plane of the first optical signal in proportion to the magnitude of the second current flowing to the other end of the protection section of the power system, and further rotating the polarization plane. A second photocurrent sensor that emits a second optical signal of one direction component and a third optical signal of another direction component of the first optical signal;
前記第 2の光信号から、 前記第 1の電流と前記第 2の電流との差である差電流 出力を求める第 1の光信号処理部と、  A first optical signal processing unit for obtaining a difference current output that is a difference between the first current and the second current from the second optical signal;
前記第 3の光信号から、 前記第 1の電流と前記第 2の電流との和である和電流 出力を求める第 2の光信号処理部と、  A second optical signal processing unit for obtaining a sum current output that is a sum of the first current and the second current from the third optical signal;
前記第 1の光信号処理部の前記差電流出力を検出する差電流検出手段と、 前記第 2の光信号処理部の前記和電流出力を検出する和電流検出手段と、 前記差電流検出手段の出力から動作量を求める動作量演算手段と、  A difference current detection unit that detects the difference current output of the first optical signal processing unit; a sum current detection unit that detects the sum current output of the second optical signal processing unit; and An operation amount calculating means for obtaining an operation amount from the output;
前記差電流検出手段の出力と前記和電流検出手段の出力とから抑制量を求める 抑制量演算手段と、  Suppression amount calculation means for obtaining the suppression amount from the output of the difference current detection means and the output of the sum current detection means,
前記動作量演算手段の出力と前記抑制量演算手段の出力とから動作比率を求め る動作比率演算手段と、 前記動作量演算手段の出力と前記動作比率演算手段の出力とにより前記電力系 銃の前記保護区間の内側の事故か前記保護区間の外側の事故かを判別する判定手 段とを備えた保護継電装置。 An operation ratio calculating unit that obtains an operation ratio from the output of the operation amount calculating unit and the output of the suppression amount calculating unit; A protection means comprising: a determination means for determining whether the power gun has an accident inside the protection section or outside the protection section based on an output of the operation amount calculation means and an output of the operation ratio calculation means. Electrical equipment.
4. 請求項 3に記載の保護継電装置において、 4. In the protective relay device according to claim 3,
前記第 1の光電流センサは、  The first photocurrent sensor,
前記光源からの所定の光信号を直線偏光の信号とするための第 1の偏光子と、 前記第 1の偏光子から出力された前記直線偏光の信号を受光し、 前記第 1の電 流によって発生する磁界によるファラデー効果により、 前記第 1の電流の大きさ に比例して前記直線偏光の信号の偏波面を所定角度だけ回転させる第 1のファラ テー素子と、  A first polarizer for converting a predetermined optical signal from the light source into a linearly polarized signal, and receiving the linearly polarized signal output from the first polarizer, and A first Faraday element that rotates the plane of polarization of the linearly polarized signal by a predetermined angle in proportion to the magnitude of the first current by a Faraday effect due to the generated magnetic field;
前記第 1のファラデー素子から出力された前記直線偏光の信号を少なくとも X 方向の成分の光信号と y方向の成分の光信号とに分ける第 1の検光子とを備え、 このうち X方向の成分の光信号が、 前記第 1の光信号である保護継電装置。  A first analyzer that divides the signal of the linearly polarized light output from the first Faraday element into at least an optical signal of a component in the X direction and an optical signal of a component in the y direction; The protective relay device, wherein the optical signal is the first optical signal.
5 . 請求項 4に記載の保護継電装置において、 5. The protective relay according to claim 4,
前記第 2の光電流センサは、  The second photocurrent sensor is
前記第 1の検光子からの前記第 1の光信号を直線偏光の信号とするための第 2 の偏光子と、  A second polarizer for converting the first optical signal from the first analyzer into a linearly polarized signal,
前記第 2の偏光子から出力された前記直線偏光の信号を受光し、 前記第 2の電 流によって発生する磁界によるファラデ一効果により、 前記第 2の電流の大きさ に比例して、 前記第 2の偏光子から出力された前記直線偏光の信号の偏波面を所 定角度だけ回転させる第 2のファラデー素子と、  The linearly polarized signal output from the second polarizer is received, and the Faraday effect caused by a magnetic field generated by the second current causes the second current to be proportional to the magnitude of the second current. A second Faraday element for rotating the plane of polarization of the linearly polarized signal output from the second polarizer by a predetermined angle,
前記第 2のファラデー素子から出力された前記直線偏光の信号を、 X方向成分 の前記第 2の光信号と y向成分の前記第 3の光信号とに分ける第 2の検光子とを  A second analyzer that divides the linearly polarized signal output from the second Faraday element into the X-direction component second optical signal and the y-direction component third optical signal.
6 . 請求項 5に記載の保護継電装置において、 6. The protective relay according to claim 5,
前記第 1の光信号の偏波方向は、 前記第 2の光信号の偏波方向と同一となって いる保護継電装置。 The polarization direction of the first optical signal is the same as the polarization direction of the second optical signal. Is a protective relay.
7 . 請求項 6に記載の保護継電装置において、 7. The protective relay according to claim 6,
前記第 1の光信号処理部は、  The first optical signal processing unit,
前記第 2の光電流センサの前記第 2の検光子から出力された前記第 2の光信号 を、 電気信号に変換するための第 1の光電変換器と、 , 前記第 1の光電変換器から出力された電気信号から直流成分を取り出す第 1の ローパスフィルタ回路と、  A first photoelectric converter for converting the second optical signal output from the second analyzer of the second photocurrent sensor into an electric signal; and A first low-pass filter circuit for extracting a DC component from the output electric signal,
前記第 1の光電変換器から出力された電気信号から交流成分を取り出す第 1の ハイパスフィルタ回路と、  A first high-pass filter circuit for extracting an AC component from the electric signal output from the first photoelectric converter,
前記交流成分を前記直流成分で除して、 前記差電流出力を得るための第 1の割 算器とを備えた保護継電装置。  A protection relay device comprising: a first divider for dividing the AC component by the DC component to obtain the difference current output.
8 . 請求項 7に記載の保護継電装置において、 8. The protective relay according to claim 7,
前記第 2の光信号処理部は、  The second optical signal processing unit includes:
前記第 2の光電流センサの前記第 2の検光子から出力された前記第 3の光信号 を、 電気信号に変換するための第 2の光電変換器と、  A second photoelectric converter for converting the third optical signal output from the second analyzer of the second photocurrent sensor into an electric signal;
前記第 2の光電変換器から出力された電気信号から直流成分を取り出す第 2の 口一パスフィルタ回路と、  A second single-pass filter circuit for extracting a DC component from the electric signal output from the second photoelectric converter,
前記第 2の光電変換器から出力された電気信号から交流成分を取り出す第 2の ハイパスフィルタ回路と、  A second high-pass filter circuit for extracting an AC component from the electric signal output from the second photoelectric converter,
前記交流成分を前記直流成分で除して、 前記和電流出力を得るための第 2の割 算器とを備えた保護継電装置。  A protective relay device comprising: a second divider for dividing the AC component by the DC component to obtain the sum current output.
9 . 請求項 8に記載の保護継電装置において、 9. The protective relay according to claim 8,
前記第 1の電流の、 前記保護区間の外側から前記保護区間の内側への流入方向 がプラスであり、  The flow direction of the first current from outside the protection section to inside the protection section is positive,
前記第 1の電流の、 前記保護区間の内側から前記保護区間の外側への流出方向 がマイナスであり、 前記第 2の電流の、 前記保護区間の外側から前記保護区間の内側への流入方向 がプラスであり、 The outflow direction of the first current from the inside of the protection section to the outside of the protection section is negative, The flow direction of the second current from the outside of the protection section to the inside of the protection section is positive,
前記第 2の電流の、 前記保護区間の内側から前記保護区間の外側への流出方向 がマイナスである保護継電装置。  A protection relay device in which the outflow direction of the second current from the inside of the protection section to the outside of the protection section is negative.
1 0 . 請求項 9に記載の保護継電装置において、 10. The protective relay according to claim 9,
前記第 1の光電流センサ内の光の伝搬方向が、 当該第 1の光電流センサが検出 する前記第 1の電流によって発生する磁界方向と一致するように設けられており 前記第 2の光電流センサ内の光の伝搬方向が、 当該第 2の光電流センサが検出 する第 2の電流によって発生する磁界と一致するように設けられている保護継電  The direction of propagation of light in the first photocurrent sensor is provided so as to coincide with the direction of a magnetic field generated by the first current detected by the first photocurrent sensor, and the second photocurrent is A protective relay provided so that the light propagation direction in the sensor matches the magnetic field generated by the second current detected by the second photocurrent sensor.
1 1 . 請求項 1 0に記載の保護継電装置において、 11. The protective relay according to claim 10,
前記第 1の検光子は、 前記第 1の偏光子に対して 4 5 ° の角度に設置されてい  The first analyzer is installed at an angle of 45 ° with respect to the first polarizer.
1 2 . 請求項 1 1に記載の保護継電装置において、 1 2. In the protective relay device according to claim 11,
前記第 2の検光子は、 前記第 2の偏光子に対して 4 5 ° の角度に設置されてい る保護継電装置。  The protective relay device, wherein the second analyzer is installed at an angle of 45 ° with respect to the second polarizer.
1 3 . 保護区間を有する電力系統の事故を監視するための保護継電装置であつ て、 前記保護継電装置は、 13. A protective relay device for monitoring an accident in a power system having a protected section, wherein the protective relay device includes:
所定の光信号を出射する光源と、  A light source for emitting a predetermined optical signal,
前記の電力系統の保護区間の一端側に配置された第 1の光電流センサであって 、 該第 1の光電流センサは、 前記光源からの前記光信号を受け、 前記電力系統の 保護区間の一端側に流れる第 1の電流の大きさに比例して前記の光信号の偏波面 を回転させ、 偏波面が回転させられた前記光信号のうち少なくとも一方向の成分 の第 1の光信号を放射する第 1の光電流センサと、 前記の電力系統の保護区間の他端側に配置された第 2の光電流センサであって 、 該第 2の光電流センサは、 前記第 1の光電流センサからの前記第 1の光信号を 受け、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさに比例して 、 前記第 1の光信号の偏波面をさらに回転させ、 偏波面がさらに回転させれた前 記第 1の光信号のうちの一方向成分の第 2の光信号と他方向成分の第 3の光信号 とを放射する第 2の光電流センサと、 A first photocurrent sensor disposed on one end side of the protection section of the power system, the first photocurrent sensor receiving the optical signal from the light source, Rotating the polarization plane of the optical signal in proportion to the magnitude of the first current flowing on one end side, and converting the first optical signal of at least one direction component of the optical signal whose polarization plane has been rotated. A first photocurrent sensor that emits; A second photocurrent sensor disposed at the other end of the protection section of the power system, wherein the second photocurrent sensor transmits the first optical signal from the first photocurrent sensor. Receiving, furthermore, rotating the polarization plane of the first optical signal further in proportion to the magnitude of the second current flowing to the other end of the protection section of the power system, and further rotating the polarization plane. A second photocurrent sensor that emits a second optical signal of one direction component and a third optical signal of another direction component of the first optical signal;
前記第 2の光信号から、 前記第 1の電流と前記第 2の電流との差である差電流 出力を求める第 1の光信号処理部と、  A first optical signal processing unit for obtaining a difference current output that is a difference between the first current and the second current from the second optical signal;
前記第 3の光信号から、 前記第 1の電流と前記第 2の電流との和である和電流 出力を求める第 2の光信号処理部と、  A second optical signal processing unit for obtaining a sum current output that is a sum of the first current and the second current from the third optical signal;
前記第 1の光信号処理部の前記差電流出力を検出する差電流検出手段と、 前記第 2の光信号処理部の前記和電流出力を検出する和電流検出手段と、 前記差電流検出手段の出力と前記和電流検出手段の出力とから個別の入出力電 流を求める補正演算手段と、  A difference current detection unit that detects the difference current output of the first optical signal processing unit; a sum current detection unit that detects the sum current output of the second optical signal processing unit; and Correction operation means for obtaining individual input / output currents from the output and the output of the sum current detection means;
前記補正演算手段の出力から動作量を求める動作量演算手段と、  Operation amount calculation means for obtaining an operation amount from an output of the correction operation means,
前記補正演算手段の出力から抑制量を求める抑制量演算手段と、  Suppression amount calculation means for obtaining the suppression amount from the output of the correction calculation means,
前記動作量演算手段の出力と前記抑制量演算手段の出力とから動作比率を求め る動作比率演算手段と、  An operation ratio calculating unit that obtains an operation ratio from the output of the operation amount calculating unit and the output of the suppression amount calculating unit;
前記動作量演算手段の出力と前記動作比率演算手段の出力とにより前記電力系 銃の保護区間の内側の事故か保護区間の外側の事故かを判別する判定手段とを備  Determining means for determining whether the accident is inside the protection zone of the power system gun or outside the protection zone based on the output of the operation amount calculation unit and the output of the operation ratio calculation unit.
1 4. 保護区間を有する電力系統の事故を検出するための方法であって、 前記の電力系統の保護区間の一端側に第 1の光電流センサを配置するステップ と、 1 4. A method for detecting an accident in a power system having a protection section, comprising: arranging a first photocurrent sensor on one end side of the protection section of the power system;
前記第 1の光電流センサにより、 前記電力系統の保護区間の一端側に流れる第 1の電流の大きさを感知するステップと、  By the first photocurrent sensor, sensing a magnitude of a first current flowing on one end side of the protection section of the power system;
前記の電力系統の保護区間の他端側に第 2の光電流センサを配置するステップ と、 前記第 2の光電流センサにより、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさを感知するステップと、 Arranging a second photocurrent sensor at the other end of the protection section of the power system; Sensing the magnitude of a second current flowing to the other end of the protection section of the power system by the second photocurrent sensor;
前記第 1の電流と前記第 2の電流との差である差電流出力を求めるステップと 前記第 1の電流と前記第 2の電流との和である和電流出力を求めるステップと 前記差電流出力から動作量を求めるステップと、  Obtaining a difference current output which is a difference between the first current and the second current; obtaining a sum current output which is a sum of the first current and the second current; and Obtaining a motion amount from
前記差電流出力と前記和電巟出力とから抑制量を求めるステップと、 前記動作量と前記抑制量とから動作比率を求めるステップと、  Obtaining a suppression amount from the difference current output and the sum current output; and obtaining an operation ratio from the operation amount and the suppression amount.
前記動作量と前記動作比率出力とにより前記電力系統の保護区間の内側の事故 か保護区間の外側の事故かを判別するステツプとを備えた、 電力系統の事故を検 出するための方法。  A method for detecting an accident in a power system, comprising: a step of determining whether the accident is inside the protection section or outside the protection section of the power system based on the operation amount and the operation ratio output.
1 5 . 保護区間を有する電力系統の事故を検出するための方法であって、 前記の電力系統の保護区間の一端側に第 1の光電流センサを配置するステップ と、 15. A method for detecting an accident in a power system having a protection section, comprising: arranging a first photocurrent sensor at one end of the protection section of the power system;
前記第 1の光電流センサにより、 前記電力系統の保護区間の一端側に流れる第 1の電流の大きさを感知するステップと、  By the first photocurrent sensor, sensing a magnitude of a first current flowing on one end side of the protection section of the power system;
前記の電力系統の保護区間の他端側に第 2の光電流センサを配置するステップ と、  Arranging a second photocurrent sensor at the other end of the protection section of the power system;
前記第 2の光電流センサにより、 前記電力系統の保護区間の他端側に流れる第 2の電流の大きさを感知するステップと、  Sensing the magnitude of a second current flowing on the other end side of the protection section of the power system by the second photocurrent sensor;
前記第 1の電流と前記第 2の電流との差である差電流出力を求めるステップと 前記第 1の電流と前記第 2の電流との和である和電流出力を求める 前記差電流出力と前記和電流出力とから個別の入出力電流を求める 前記入出力電流から動作量を求める 前記入出力電流から抑制量を求める. Obtaining a difference current output that is a difference between the first current and the second current; and obtaining a sum current output that is a sum of the first current and the second current. Calculate individual input / output current from sum current output Calculate operation amount from the input / output current Obtain the suppression amount from the input / output current.
前記動作量と前記抑制量とから動作比率を求めるステップと、  Obtaining an operation ratio from the operation amount and the suppression amount;
前記動作量と前記動作比率とにより前記電力系統の保護区間の内側の事故か保 護区間の外側の事故かを判別するステップとを備えた、 電力系統の事故を検出す るための方法。  Determining whether the accident is inside the protection section of the power system or outside the protection section based on the operation amount and the operation ratio.
PCT/JP2003/001662 2002-02-18 2003-02-17 Protective relay apparatus comprising photoelectriccurrent sensor WO2003069754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003568757A JP3802028B2 (en) 2002-02-18 2003-02-17 Protective relay using photocurrent sensor
AU2003211341A AU2003211341A1 (en) 2002-02-18 2003-02-17 Protective relay apparatus comprising photoelectriccurrent sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002039585 2002-02-18
JP2002-39585 2002-02-18

Publications (1)

Publication Number Publication Date
WO2003069754A1 true WO2003069754A1 (en) 2003-08-21

Family

ID=27678257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001662 WO2003069754A1 (en) 2002-02-18 2003-02-17 Protective relay apparatus comprising photoelectriccurrent sensor

Country Status (4)

Country Link
JP (1) JP3802028B2 (en)
CN (1) CN100399660C (en)
AU (1) AU2003211341A1 (en)
WO (1) WO2003069754A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715650B (en) * 2014-01-20 2016-06-29 哈尔滨工业大学 Differential protection based on Faraday magnetooptical effect
CN103730884B (en) * 2014-01-22 2016-02-10 国家电网公司 A kind of photon differential protection device
CN104158161B (en) * 2014-08-25 2017-02-22 哈尔滨工业大学 Differential protection device based on optics current sensors
KR101770926B1 (en) * 2016-12-30 2017-08-23 엘에스산전 주식회사 Method for detecting electrical disturbances by DC component
CN111224387B (en) * 2020-01-20 2021-03-16 山东大学 Phase difference protection method and system based on magneto-optical measurement element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059987A (en) * 1998-06-01 2000-02-25 Tokyo Electric Power Co Inc:The Optical ct with failure judgement function
JP2000266787A (en) * 1999-03-18 2000-09-29 Hitachi Ltd Optical current sensor
JP2001050988A (en) * 1999-08-09 2001-02-23 Takaoka Electric Mfg Co Ltd Method and apparatus for measurement of current by using photocurrent sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2341737B (en) * 1998-09-17 2003-03-05 Alstom Uk Ltd Fault protection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059987A (en) * 1998-06-01 2000-02-25 Tokyo Electric Power Co Inc:The Optical ct with failure judgement function
JP2000266787A (en) * 1999-03-18 2000-09-29 Hitachi Ltd Optical current sensor
JP2001050988A (en) * 1999-08-09 2001-02-23 Takaoka Electric Mfg Co Ltd Method and apparatus for measurement of current by using photocurrent sensor

Also Published As

Publication number Publication date
JPWO2003069754A1 (en) 2005-06-09
AU2003211341A1 (en) 2003-09-04
CN1623261A (en) 2005-06-01
CN100399660C (en) 2008-07-02
JP3802028B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JPS613075A (en) Troubled section discrimination for transmission line
JP4375881B2 (en) Protective relay using photocurrent sensor
WO2003069754A1 (en) Protective relay apparatus comprising photoelectriccurrent sensor
JP4543007B2 (en) Current differential protection system
JPH0511269B2 (en)
US7423545B1 (en) Failed filter arrest indicator and method for use in multiple arrester location
WO2023085536A1 (en) Direct current arc current detection sensor for installation in large-capacity direct current circuit and direct current arc detection device using same
JP5750313B2 (en) Wiring confirmation tester and method for outlet with ground electrode
EP0414236B1 (en) Optical transformer
JP2009293991A (en) Sheath earth circuit surveillance device
JP2551564B2 (en) Accident section detection device for power equipment
JP5171399B2 (en) Power cable protection relay malfunction prevention device
JP4065243B2 (en) Optical CT with failure judgment function
US20230400531A1 (en) Monitoring the operation of an electrical coil assembly
JP3232580B2 (en) Zero-phase voltage detector
JPS6290579A (en) Faulty section discriminating apparatus for electric power apparatus
JPS6279373A (en) Faulty section discriminator for transmission line
JPH06289067A (en) Current detector for fault point locator
JP2000321316A (en) Ground fault accident detecting method for parallel dual communication underground power transmission line
KR20230067208A (en) Apparatus for monitoring insulation of insulation-terra system based
JP2007256023A (en) Method and circuit for measuring loss current by displacement current bypass method
JP2959228B2 (en) Optical transformer
JPS6188167A (en) Device for discriminating section of transmission line
JPH04190642A (en) System for judging fault section of transmission line
JPH03277979A (en) Zero-phase voltage detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003568757

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038028379

Country of ref document: CN

122 Ep: pct application non-entry in european phase