JPS6188167A - Device for discriminating section of transmission line - Google Patents

Device for discriminating section of transmission line

Info

Publication number
JPS6188167A
JPS6188167A JP59125789A JP12578984A JPS6188167A JP S6188167 A JPS6188167 A JP S6188167A JP 59125789 A JP59125789 A JP 59125789A JP 12578984 A JP12578984 A JP 12578984A JP S6188167 A JPS6188167 A JP S6188167A
Authority
JP
Japan
Prior art keywords
magnetic field
optical
section
transmission line
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59125789A
Other languages
Japanese (ja)
Inventor
Susumu Ihara
井原 将
Cho Nakamura
中村 兆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59125789A priority Critical patent/JPS6188167A/en
Publication of JPS6188167A publication Critical patent/JPS6188167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To prevent an accident section based upon physical damage of CT due to noise or high voltage from misjudge by detecting a magnetic field by optical magnetic sensors and transmitting the detected results to signal processing circuits through optical fibers. CONSTITUTION:The optical magnetic sensors 2a, 2b are arranged on both the end points A, B of a section L. Optical outputs corresponding to sequence currents which are outputted from the sensors 2a, 2b are transmitted to the signal processing circuits 4a, 4b through two-core optical fiber cables 3a, 3b. The circuits 4a, 4b convert the optical signals transmitted through the cables 3a, 3b respectively into electric signals and transmit the electric signals to a decision circuit 5. The circuit 5 decides the existence of earthing and the earthing section on the basis of the transmitted signals.

Description

【発明の詳細な説明】 [技術分野] この発明は送電線用区間判別装置、特に、管路気中送電
線用区間判別装置に門する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a section discriminating device for a power transmission line, particularly to a section discriminating device for a pipeline aerial power transmission line.

[従来の技術] 管路気中送電線(以下、GILと記す)は中心導体と金
厄製シースとの間を絶縁スペーサで保持し、中心導体と
金民性シースによる空間内にM t’R性ガス、たとえ
ばS F Gガスを充填して構成される。
[Prior Art] A conduit aerial power transmission line (hereinafter referred to as GIL) has a center conductor and a metal sheath that are held together by an insulating spacer, and M t' in the space between the center conductor and the metal sheath. It is filled with R gas, for example, SF G gas.

このようなGILはシースソリッドボンドで使用される
ため、シースには導体電流と逆方向にほぼ同じ大きさの
シース電流が流れる。
Since such a GIL is used with a sheath solid bond, a sheath current of approximately the same magnitude as the conductor current flows through the sheath in the opposite direction.

このようなGILにおいて、十分MTi圧JFf成がと
られているにもかかわらず地絡が生じることもあり、こ
れに対する対策が必要となる。
In such a GIL, a ground fault may occur even though the MTi pressure JFf is sufficiently established, and countermeasures against this are required.

このため、地絡が生じたとき、定められたGIL区間で
地絡が生じたのかあるいはこのGIL区間につながる区
間外で地絡が生じたのかを監視する必要がある。
Therefore, when a ground fault occurs, it is necessary to monitor whether the ground fault has occurred in a predetermined GIL section or outside the section connected to this GIL section.

従来のこのlの対策の方式としく、定められた区間の両
端に各々変流器(以下、CTと記す)を段直し、このC
Tからの(if号電流により事故点を検出する方式があ
る。しかし、このC[を用いる方式においては、C−[
かうの信号を検知判PTiするイコ号処理回路とCTと
の間の距離が長く、かつその信号リード線が電線である
ため、その途中でノイズを拾うことや、CTが露出しU
6圧線に取付けられているためCTと^圧線との接触や
、CTの物理的破壊等により誤判断が生ずることがある
The conventional method for countering this problem is to install current transformers (hereinafter referred to as CT) at both ends of a defined section, and to
There is a method of detecting the fault point using the (if current) from T.However, in this method using C[, C-[
The distance between the CT and the equal signal processing circuit that detects the signal PTi is long, and the signal lead wire is an electric wire, so noise may be picked up along the way and the CT may be exposed.
Since it is attached to a 6-voltage wire, erroneous judgments may occur due to contact between the CT and the ^-voltage wire or physical destruction of the CT.

また、CTの形状も大きいという欠点もあった。Another drawback was that the shape of the CT was large.

[発明の概要] この発明の目的は、上述の2個のCTを用いる方式の欠
点を除去し、簡単な構成をもつ、誤判断の生じない事故
区間判別装置を提供することである。
[Summary of the Invention] An object of the present invention is to eliminate the drawbacks of the above-mentioned method using two CTs, and to provide an accident section discriminating device that has a simple configuration and does not cause misjudgment.

この発明は、賛約すれば、2個のCTに変え、予め定め
られたGIL区間の両端の各々に磁界検出センサを設置
し、この2ff!ifの磁界検出センサからの信号を光
学ファイバで光−電気変換回路へ伝達し、この変換回路
からの信号によりiiI淳器を含む判別回路において、
地絡1放の有無および事故区間の判定を行なうものであ
る。
If approved, this invention replaces two CTs with magnetic field detection sensors installed at each end of a predetermined GIL section, and this 2ff! The signal from the magnetic field detection sensor of if is transmitted to the optical-to-electrical conversion circuit through an optical fiber, and the signal from this conversion circuit is used to determine whether
This is to determine whether there is a ground fault or not and the accident section.

この発明の目的および他の目的と特徴は以下に図面を参
照して行なう詳細な説明から一磨明らかとなろう。
The objects and other objects and features of the invention will become more apparent from the detailed description given below with reference to the drawings.

[発明の実施例] 第1A図はこの発明の一実施例である、光学的磁界セン
サを用いたGIL用地格事故区間判別装置の構成のブロ
ック凶である。第1A図において、GILlの区間Lt
fi監視される。区間りの両端地点AおよびBには各々
光学磁界センサ2aおよび2bが設置される。両磁界セ
ンサ2a、2bが導出するシースTram対応光出力は
2心の光フアイバケーブル3a 、3bにより信号処理
回路4aおよび4bにそれぞれ伝達される。信号処理回
路4a。
[Embodiment of the Invention] FIG. 1A is a block diagram of the configuration of a GIL grade accident zone determination device using an optical magnetic field sensor, which is an embodiment of the present invention. In FIG. 1A, the section Lt of GILl
fi monitored. Optical magnetic field sensors 2a and 2b are installed at both end points A and B of the section, respectively. The sheath Tram compatible optical outputs derived from both magnetic field sensors 2a and 2b are transmitted to signal processing circuits 4a and 4b by two-core optical fiber cables 3a and 3b, respectively. Signal processing circuit 4a.

4bは光ファイバケーブル3a 、3bによりそれぞれ
伝達された光信号をこの光信号に応じた1気13 、%
に変換して、判別回路5へ伝達する。判別回路5はこの
伝送された信号により地絡の有無および地絡区間を判定
する。第1B図は第1A図の判別回路5のブロック回路
図である。第1B図において、判別回路5は信号処理回
路4a、4bからの入力X、Yの振幅を1i)tiIツ
る掛ζ)器6から偶成される。このI!)陣器6はノイ
ズや磁界センナ2a。
4b is the optical signal transmitted by the optical fiber cables 3a and 3b, respectively, and the ratio of 1% to 13% according to this optical signal.
and transmits it to the discrimination circuit 5. The determination circuit 5 determines the presence or absence of a ground fault and the ground fault section based on the transmitted signal. FIG. 1B is a block circuit diagram of the discrimination circuit 5 of FIG. 1A. In FIG. 1B, the discrimination circuit 5 is composed of a multiplier 6 which multiplies the amplitudes of the inputs X and Y from the signal processing circuits 4a and 4b by 1i)tiI. This I! ) The sensor 6 is a noise and magnetic field sensor 2a.

2hの!54麿不良などによる誤判断を防ぐために設け
られる。
2 hours! This is provided to prevent erroneous judgments due to defects such as 54-year malfunctions.

まず、この発明に8川した光学的磁界センサについて説
明する。
First, an optical magnetic field sensor based on the present invention will be explained.

第2図はb1界センサの基本FIJI¥:原理を示す図
である一一定の偏光方向Aを持つ直線偏光が、たとえば
B S O甲結晶からなるファラデー素子7へ与えられ
る。このファラデー素子7には入射光の進行方向と平行
に電界Hが印加される。入射光はファラデー素子7を通
過する際、ファラデー回転を生じ入射光の掘tカ方向A
が一定の角度φだ【ノ回転される。したがって、このフ
ァラデー素子7の透過光は振動方向Bの直稼M光となる
う磁界の強さをH、ファラデー素子7の長さを9.ベル
f定数をVe とすると、回転角φは φ=ve −H−庭・・・(1) で表わされる。
FIG. 2 is a diagram showing the basic principles of a b1 field sensor.Linearly polarized light having a constant polarization direction A is applied to a Faraday element 7 made of, for example, a BSO crystal. An electric field H is applied to this Faraday element 7 in parallel to the traveling direction of the incident light. When the incident light passes through the Faraday element 7, it undergoes Faraday rotation and the direction A of the incident light
is rotated by a constant angle φ. Therefore, the transmitted light of this Faraday element 7 becomes direct M light in the vibration direction B.The strength of the magnetic field is H, and the length of the Faraday element 7 is 9. If the Bell f constant is Ve, then the rotation angle φ is expressed as φ=ve −H − Garden (1).

第3図は、このファラデー回転を利用した磁界センサの
構造図である。(1界センザ2はファラデー素子7とし
てBSO単結晶を用いる。このファラデー素子7はその
入射光側と透過光側とを除いて誘電体多層反射f18で
覆われる。このファラデー素子7の入射光側にはへm光
を直線四元に変換する偏光子9が設置される。また、透
過光測には、光軸が検光子9と45°の角度をなす検光
子10が設置される。検光子10とファラデー素子7と
の間には、透過光の光軸を一定角度回転さぜる旋光子1
1が付置される。
FIG. 3 is a structural diagram of a magnetic field sensor that utilizes this Faraday rotation. (The 1-field sensor 2 uses a BSO single crystal as the Faraday element 7. This Faraday element 7 is covered with a dielectric multilayer reflection f18 except for the incident light side and the transmitted light side.The incident light side of this Faraday element 7 A polarizer 9 is installed to convert the beam into linear quaternary light. Also, for transmitted light measurement, an analyzer 10 whose optical axis forms an angle of 45° with the analyzer 9 is installed. Between the photon 10 and the Faraday element 7, there is an optical rotator 1 that rotates the optical axis of the transmitted light by a certain angle.
1 is added.

このセンサ2の透′A率T(透過光と入射光の強度比)
は T =  (1+sln  2φ)  、/ 2 ・(
2)で表わされる。2φくく1の条件では、式(2)%
式%(3 と’cl Z) 、、ここで磁界HがH,stn <0
℃で表わされる交番ρ隻17の15合、透過゛PTは式
(1)と式(3)よう〕、 1=   (1’−2Ve    −H、!−,目1f
、リ 〔・  ρ、 )  / 2となる。シIこツノ
” ’ L N に r’−光のl’T ;、2成分と
交流成分の比率(変、11.りぼさ)を求1゛うること
により、al界の強、ぎH6を求めることができる。
Transmission rate T of this sensor 2 (intensity ratio of transmitted light and incident light)
is T = (1+sln 2φ), / 2 ・(
2). Under the condition of 2φ × 1, formula (2)%
The formula %(3 and 'cl Z) ,, where the magnetic field H is H, stn <0
At the 15th point of the police box ρ ship 17 expressed in degrees Celsius, the transmission {PT is as shown in equations (1) and (3)], 1= (1'-2Ve -H,!-, eye 1f
, ri [・ρ, ) / 2. By finding the ratio (variable, 11.ribosa) of the two components and the alternating current component, we can calculate the strength of the AL field, H6 can be found.

第4目は上述の磁胃センサ2を用いて、印加磁場1」の
大きさを求めイ)151界センサ回路の基本?1構成C
ある。第4図において、信号処理回路12から一定のz
位13号を発光ダイオード13に与える。
The fourth step is to use the magnetogastric sensor 2 described above to find the magnitude of the applied magnetic field 1.a) Basics of the 151 field sensor circuit? 1 configuration C
be. In FIG. 4, a constant z is output from the signal processing circuit 12.
No. 13 is applied to the light emitting diode 13.

発光ダイイードはこの(,3号に応答して一定強度の光
信りを光ノフ・イバケー1ル3を通して磁界セン→L2
に人中さUる。【り界センサ2の透過光1よ光フフイハ
ケーIル3を通して)A上ダイオード14に伝達される
。フ第1〜ダイオード14はこの透過光に応答した電気
信号をイこ号処理回路12に与える。信号処理回路12
はこの電気信号の直流成分と交流成分の比を求め、磁界
センサ2に印加される磁界Hの大きさおよび周波数に応
じた電気43丹を出力する。
The light-emitting diode responds to this (No. 3) by transmitting a light signal of a certain intensity through the light-emitting device 1 to the magnetic field sensor → L2.
There are people in the middle of the day. The transmitted light 1 of the field sensor 2 is transmitted to the upper diode 14 through the optical fiber cable 3. Diodes 14 to 14 provide electrical signals responsive to this transmitted light to the equal signal processing circuit 12. Signal processing circuit 12
calculates the ratio of the DC component to the AC component of this electric signal, and outputs 43 t of electricity according to the magnitude and frequency of the magnetic field H applied to the magnetic field sensor 2.

この印加される磁界Hはシース電流により;1起される
。したがって、磁界Hの強さはシース′I″:1流の大
きざに比例しているので、この磁界Hの強ざHaの変化
がシース電流の変化に対応する。すなわち、信号処理回
路12は導出する電圧信号のレベルがシース電流の大き
さに対応する。したがって、信号処理回路12が導出す
る信号を検知判断することによりシース電流の大きさの
変化を検知することが可能となる。
This applied magnetic field H is caused by the sheath current. Therefore, since the strength of the magnetic field H is proportional to the magnitude of the sheath 'I'':1 current, a change in the strength Ha of the magnetic field H corresponds to a change in the sheath current.In other words, the signal processing circuit 12 The level of the derived voltage signal corresponds to the magnitude of the sheath current. Therefore, by detecting and determining the signal derived by the signal processing circuit 12, it is possible to detect a change in the magnitude of the sheath current.

第5図は判別回路5の動作を一覧表にした口である。以
下、第1B図および第5図を参照して3故区間判別方法
について述べる。
FIG. 5 is a list of the operations of the discrimination circuit 5. Hereinafter, the three-fault section discrimination method will be described with reference to FIGS. 1B and 5.

まず、区間り外で地格が生じた場合を考える。First, let's consider the case where jikyoku occurs outside the interval.

地格が起こるとシース電流が増大する。地格は区間り外
で起きているので、地点Aおよび地点BにJ3りるシー
ス電流の位相は、はぼ同一である。この増大したシース
T1流に幻応し、 l: f、、月が(* ””;処理
回路4a、4bより鮭)筒器6へ)えられる。nov器
6はその入力X、Yの振幅4掛口して出力するので、第
5図に見られるように、掛n T5 Gからの出力信号
は正およびn側とにさらに振幅の増大したイa@どなる
。この出力信号を正側およびn側に設けられた基準設定
値と比較する。この出力信号レベルが両方の基準設定1
のを越えていれば区間り外の地格と判定される。
When grounding occurs, the sheath current increases. Since the ground current occurs outside the section, the phases of the sheath currents flowing to points A and B are almost the same. In response to this increased sheath T1 flow, l:f,, the moon (*""; salmon from the processing circuits 4a and 4b) is introduced into the cylinder 6). Since the nov device 6 outputs the amplitude of its inputs X and Y by 4 times, the output signal from the step n T5 G has an input signal whose amplitude has further increased on the positive and n sides, as shown in FIG. a @ roar. This output signal is compared with reference set values provided on the positive side and the n side. This output signal level is the reference setting for both
If it exceeds , it is determined that the land is outside the section.

次に、区間り内の地格が生じた場合を)える。Next, let us consider the case where a land position occurs within the interval.

このときも、区間り外の地格時同抹シース電流は増大す
る。しかし、地点A J3よび地点B t:1 ;Hけ
るシース電流の位相がほぼ180°異なつくいる(シー
ス電流は交流)。このため、信号処理回路4a 、4b
が与える信号も互いに位相が180゜異なっている。i
t)亦ii6はこの互いに位相が180657なった信
号を掛nするので、第5図に見られるように掛(1器6
からの出力信号はn ff!11だけの信号どなる。し
たがって、この出力信号の出力レベルが正側の基準設定
値を越えず、かつ負側の基準設定値を越え(いれば、区
間り内の地絡と判定される。
At this time as well, the sheath current increases when the area is outside the range. However, the phases of the sheath currents at point A J3 and point B t:1 differ by approximately 180° (the sheath current is alternating current). For this reason, the signal processing circuits 4a and 4b
The signals given by the two also have a phase difference of 180° from each other. i
t) + ii 6 multiplies these signals whose phases are 180657, so as shown in FIG.
The output signal from nff! The signal only for 11 is roaring. Therefore, if the output level of this output signal does not exceed the positive reference setting value and exceeds the negative reference setting value, it is determined that there is a ground fault within the section.

事故区間判別装訛は以上のように構成されでいるので、
地格の区間を判定することができるとともに、同時に地
格の有無をも判定できる。
The accident section identification system is structured as described above, so
It is possible to determine the section of a geogaku, and at the same time, it is also possible to determine the presence or absence of a geogaku.

第6図はこの発射の他の実燕例である判別回路5の構成
のブロック図である。第6図において、判別回路5はそ
の人力X、Yの振幅をl) T2するuトn115と、
一方の入力部に人力Yを反転させる反転回路17が直列
に接続されたtt)算器1Gとが互いに並列に接続され
る。
FIG. 6 is a block diagram of the configuration of the discriminating circuit 5 which is another example of this firing. In FIG. 6, the discrimination circuit 5 calculates the amplitude of the human forces X and Y by T2, and
tt) Calculator 1G, in which an inverting circuit 17 for inverting the human input Y is connected in series to one input section, are connected in parallel to each other.

第7図は上述の掛樟器15.16を用いた判別回路5の
動作を示す図である。
FIG. 7 is a diagram showing the operation of the discriminating circuit 5 using the above-mentioned hanging lamps 15 and 16.

第6図、第7図を参照してこの発明の他の実筋例の動作
について述べる。
The operation of another example of the real muscle according to the present invention will be described with reference to FIGS. 6 and 7.

掛粋器16の人力部にはインバータ回路17が直列に接
続されているので、その一方の入力信号Yは位相が18
06ずれる。したがって、地絡が区間り外のときには、
互いに位相が180°rAなつた信号が掛t’7F51
6に入力される。逆に、地絡が区間り内で生じたときは
、位相!メはぼ同一の信号が11F口器16に入力され
る。第7図に児られるよで)に、地絡が区間り外で起き
たとき、掛り器15の出力fzf′3レベルのみが正側
の基準設定値を越える。また地絡が区間り内で置きたと
きには、掛1516の正側の出力信号レベルのみが正側
の基IPπ2定Innを/iえている。このように構成
しても、上述の発明の一実施例ど間係に地格の有無およ
び地絡区間の判定が可能である。
Since the inverter circuit 17 is connected in series to the human power section of the hanging device 16, the input signal Y of one of the inverter circuits has a phase of 18
06 shift. Therefore, when the ground fault is outside the section,
Signals with a phase difference of 180°rA are multiplied by t'7F51
6 is input. Conversely, when a ground fault occurs within the section, the phase! The same signal is input to the 11F mouthpiece 16. As shown in FIG. 7), when a ground fault occurs outside the section, only the output fzf'3 level of the hooker 15 exceeds the positive reference setting value. Further, when a ground fault occurs within the interval, only the output signal level on the positive side of the multiplication 1516 exceeds the base IPπ2 constant Inn on the positive side. Even with this configuration, it is possible to determine whether or not there is a ground fault section in the person in charge of the above-described embodiment of the invention.

[発明の効果] 以上のように、この発明による事故区間判別装買におい
ては、従来の2個のCTを用いる事故区間判別装置に代
えて、2個の磁界センサを用い、かつ13号リード線と
して光学ファイバを用い、さらに1゛す別回路に11ト
0器を用いている。したがって、小形で筒中な装冒描成
で誤判断のない明確な事故区間の判定および地絡の有無
の判定が可能となる。
[Effects of the Invention] As described above, in the accident zone discrimination device according to the present invention, two magnetic field sensors are used instead of the conventional accident zone discrimination device using two CTs, and the No. 13 lead wire is used. An optical fiber is used as an optical fiber, and an 11-to-zero circuit is used as a separate circuit. Therefore, it is possible to clearly determine the accident zone and the presence or absence of a ground fault without misjudgment by drawing a small and in-cylinder equipment.

な・13、」二記実施例においては管路気中送電線のシ
ース電流対rトのに1界を検出したが、シース電流でな
く中心の導体電流に対応する磁界と寸れば、管路気中送
電線以外の送7r?沖にも適用可能であり上述の実施例
と同様の効果が19られる。
13. In the second embodiment, one field was detected for the sheath current of the conduit aerial power transmission line, but if it is the magnetic field corresponding to the center conductor current rather than the sheath current, the tube Transmission 7r other than road power transmission lines? It can also be applied offshore, and the same effects as the above-mentioned embodiments can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図はこの発明による事故区間マ1j別フォール1
〜ロケータの構成のブロック図である。第1B口は第1
Δ図の判別回路のブロック図である。第2図はファラデ
ー素子の動作原理を示す図である。 第3図は第1A図のLO’;i tンザの巳造を示づ図
である。第4図はfQ品セン勺回路の基本構成のブロッ
ク図である。第5図は第1A図の各部分における信号波
形を示す図である。第6図はこつ発明の伯の実施例であ
る判別回路の構成のブロック図である。第7図はこの発
明の他の実鉋例にJ3ける第1A図の各部分における信
号波形図である。 図において、1はGIL、7はファラデー素子、2.2
a 、2bは磁界センサ、4a 、4bは信号処理回路
、5は判別回路、6.15.164;を掛樟器、17は
インバータ。 なお、図中、同符号は同一または相当部を示す。 第1A図 壷 第1B図 第2図 第3I21 第4図
Figure 1A shows the fall 1 of the accident section map 1j according to the present invention.
~ FIG. 2 is a block diagram of the configuration of a locator. The 1st B port is the 1st
It is a block diagram of the discrimination circuit of a Δ diagram. FIG. 2 is a diagram showing the operating principle of a Faraday element. FIG. 3 is a diagram showing Mizo of the LO';it part of FIG. 1A. FIG. 4 is a block diagram of the basic configuration of the fQ product sensing circuit. FIG. 5 is a diagram showing signal waveforms in each portion of FIG. 1A. FIG. 6 is a block diagram of the configuration of a discriminating circuit according to an embodiment of the present invention. FIG. 7 is a signal waveform diagram at each part of FIG. 1A in J3 in another example of an actual plane of the present invention. In the figure, 1 is GIL, 7 is Faraday element, 2.2
a and 2b are magnetic field sensors, 4a and 4b are signal processing circuits, 5 is a discrimination circuit, 6.15.164; is a hanging device, and 17 is an inverter. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Figure 1A Urn Figure 1B Figure 2 Figure 3I21 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)電流を伝送する送電線における定められた区間の
両端に各々設置される、前記電流のレベルを検出する検
出手段と、前記検出手段が導出する信号を検知して前記
送電線の事故区間を判別する判別手段とを備える送電線
用区間判別装置であって、 前記検出手段は前記電流に誘起される磁界を検出して光
信号に変換する磁界−光変換手段と、かつ前記光信号を
さらに電気信号に変換する光−電気変換手段を含み、 前記判別手段は前記検出手段からの信号を入力とする少
なくとも1個の掛算器を含む、送電線用区間判別装置。
(1) Detection means for detecting the level of the current, installed at both ends of a defined section of a power transmission line that transmits current, and detecting the signal derived by the detection means and detecting the fault section of the power transmission line. A power transmission line section discriminating device comprising a discriminating means for discriminating a magnetic field, the detecting means detecting a magnetic field induced by the current and converting the detected magnetic field into an optical signal, and a magnetic field-optical converting means for detecting a magnetic field induced by the current and converting the detected magnetic field into an optical signal. The power transmission line section discriminating device further includes an optical-to-electrical conversion means for converting into an electrical signal, and the discriminating means includes at least one multiplier inputting the signal from the detecting means.
(2)前記磁界−光変換手段はファラディ回転を利用し
た光学的磁界センサである、特許請求の範囲第1項記載
の送電線用区間判別装置。
(2) The power transmission line section discriminating device according to claim 1, wherein the magnetic field-light conversion means is an optical magnetic field sensor using Faraday rotation.
(3)前記判別手段はおのおの2つの入力端子を有する
第1の掛算器と第2の掛算器とを含み、前記第2の掛算
器の一方入力端子には直列に反転回路が接続される、特
許請求の範囲第1項記載の送電線用区間判別装置。
(3) The discrimination means includes a first multiplier and a second multiplier each having two input terminals, and an inverting circuit is connected in series to one input terminal of the second multiplier. A power transmission line section determination device according to claim 1.
JP59125789A 1984-06-18 1984-06-18 Device for discriminating section of transmission line Pending JPS6188167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125789A JPS6188167A (en) 1984-06-18 1984-06-18 Device for discriminating section of transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125789A JPS6188167A (en) 1984-06-18 1984-06-18 Device for discriminating section of transmission line

Publications (1)

Publication Number Publication Date
JPS6188167A true JPS6188167A (en) 1986-05-06

Family

ID=14918901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125789A Pending JPS6188167A (en) 1984-06-18 1984-06-18 Device for discriminating section of transmission line

Country Status (1)

Country Link
JP (1) JPS6188167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474462A (en) * 1987-09-16 1989-03-20 Mitsubishi Cable Ind Ltd Accident point locating device
JPS6474463A (en) * 1987-09-16 1989-03-20 Mitsubishi Cable Ind Ltd Accident point locating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474462A (en) * 1987-09-16 1989-03-20 Mitsubishi Cable Ind Ltd Accident point locating device
JPS6474463A (en) * 1987-09-16 1989-03-20 Mitsubishi Cable Ind Ltd Accident point locating device

Similar Documents

Publication Publication Date Title
US20110115469A1 (en) Optical fiber electric current sensor, electric current measurement method, and fault zone detection apparatus
US5438266A (en) Instrument to locate buried conductors by providing an indication of phase reversal of the signal utilizing the odd harmonic and the even harmonic when a vertical axis coil passes over one of the buried conductors
US4524322A (en) Fiber optic system for measuring electric fields
JPH0367231B2 (en)
US4503526A (en) Device for water inflow detection inside a seismic streamer
JPS6188167A (en) Device for discriminating section of transmission line
JP4375881B2 (en) Protective relay using photocurrent sensor
JPH0511269B2 (en)
EP0414236B1 (en) Optical transformer
JP2551564B2 (en) Accident section detection device for power equipment
CN85106698A (en) The detection system of power equipment earth fault and device
Gräf et al. Nonconventional partial discharge measurement using fiber optic sensor system for transmission systems and switchgear
JPWO2003069754A1 (en) Protective relay using photocurrent sensor
JPH0616065B2 (en) Accident section identification device for power lines
JPS6224165A (en) Orientation system of transmission and distribution wire failure section
JP2654794B2 (en) Partial discharge detection device
SU1465776A1 (en) Method and apparatus for monitoring faults in power consumption in double-wire a.c. networks
JP2691549B2 (en) Partial discharge detection device
SU1525633A1 (en) Device for determining insulation damage of electric conductor
JP2654795B2 (en) Partial discharge detection device
JP2654792B2 (en) Partial discharge detection device
JPH02259477A (en) Detection of fault position for submarine optical fiber cable
SU911378A1 (en) Apparatus for detecting single-phase earthing in compensated-neutral networks
JP2516638B2 (en) Accident position detection method for electric current path
JPH0340279B2 (en)