JPH02259477A - Detection of fault position for submarine optical fiber cable - Google Patents

Detection of fault position for submarine optical fiber cable

Info

Publication number
JPH02259477A
JPH02259477A JP33458989A JP33458989A JPH02259477A JP H02259477 A JPH02259477 A JP H02259477A JP 33458989 A JP33458989 A JP 33458989A JP 33458989 A JP33458989 A JP 33458989A JP H02259477 A JPH02259477 A JP H02259477A
Authority
JP
Japan
Prior art keywords
cable
resistance
repeater
current
electrical conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33458989A
Other languages
Japanese (ja)
Inventor
Oswald Thomas
オズワルド トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STC PLC
Original Assignee
STC PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STC PLC filed Critical STC PLC
Publication of JPH02259477A publication Critical patent/JPH02259477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/808Electrical power feeding of an optical transmission system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Locating Faults (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE: To detect the position of the failure of a repeating communication cable containing the surge protective device of a repeater by measuring the resistance of the cable by setting the protective device in a conducting state in a lowresistance state by eliminating normal power supply from the end of the cable. CONSTITUTION: The resistance of a repeating communication cable is measured at the terminal of an electrical conductor in the cable by effectively setting the surge protective device of a repeater in a conducting state in a low- resistance state by eliminating normal power supply from the end of the cable and impressing a current modulated to the electrical conductor at a terminal having a polarity and amplitude sufficient to reduce the effect of the polarity when a failure occurs. Therefore, the position of the failure of the cable including the surge protective device can be detected.

Description

【発明の詳細な説明】 本発明は、中継された海底通信ケーブル、特に情報伝達
媒体として光ファイバを組み込んだケーブルの故障位置
検出方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for locating faults in relayed submarine communication cables, particularly cables incorporating optical fibers as information transmission media.

浅瀬1例えば大陸棚の海中の海底ケーブルはトロール船
漁具、船錨等により損傷を受ける。光ファイバによる中
継したケーブルの場合、第1の中継器を越えて存在する
ファイバ故障を位置決めするのに反射率計技術を用いる
ことは不可能である。
Shallow Water 1 For example, submarine cables in the ocean on the continental shelf are damaged by fishing trawlers, ship anchors, etc. In the case of optical fiber relayed cables, it is not possible to use reflectometer techniques to locate fiber faults that exist beyond the first repeater.

少なくても非光学的陸上ケーブルに対し、開発された技
術はケーブルの連続部で電気抵抗測定がなされるように
する中継器のいわゆる「ループバック」装置を含む。し
かし、電気的に再生器で行なわれた光ループバックは監
視目的用に用いられるが、故障位置用ループバックは、
海底ファイバ光システムでは用いられない。
At least for non-optical terrestrial cables, developed techniques include so-called "loopback" devices in repeaters that allow electrical resistance measurements to be made in a continuous section of the cable. However, while optical loopbacks performed electrically with regenerators are used for monitoring purposes, fault location loopbacks are
Not used in submarine fiber optic systems.

ケーブルは海に対する短絡回路を有して通常通電される
が、これにより、故障部はファイバが塙れた場合、中継
器光監視方法により見つけることができ、特にケーブル
が埋設されている場合、故障をより近く位置決めでき、
同じ部分のケーブルの1つ以上の修理を避けることは重
要でありこれは反射率計方法がセクション内の故障を位
置決めするのに用いられる場合に必要とされる。時々起
こることであるが、ケーブルがシャント障害を有するが
光ファイバは壊れないままである場合、「電極化」及び
準直流抵抗方法のような単なる低周波数方法は故障を位
置決めでき:良好な抵抗測定は「電極化」の貴重な船の
時間を節約しうる。
The cable is normally energized with a short circuit to the sea, so that if the fiber is buried, the fault can be detected by repeater optical monitoring methods, especially if the cable is buried. can be positioned closer to the
It is important to avoid repairing more than one cable in the same section, which is required when reflectometer methods are used to locate faults within a section. If, as sometimes happens, the cable has a shunt fault but the optical fiber remains unbroken, mere low frequency methods such as "electrode" and quasi-DC resistance methods can locate the fault: a good resistance measurement can save valuable ship time on "electrodeization".

海底ケーブル用の中継器は一般にサージ保護装置、典型
的には電力サージに応じて伝導をする半導体ダイオード
を組込んでおり従って電力サージが中継器回路をバイパ
スするようにできる。
Repeaters for submarine cables commonly incorporate surge protection devices, typically semiconductor diodes that conduct in response to power surges, thus allowing power surges to bypass the repeater circuitry.

本発明によれば中継器は電力サージから電力供給及び信
号中継器回路を保護するようサージ保護装置を含む、中
継通信ケーブルの故障位置を検出する方法であって、ケ
ーブル端から通常の電力供給を取除き、低抵抗状態で中
継器のサージ保護装置を効果的に伝導状態にし同時に故
障時の極性効果を減少させるのに十分な極性及び振幅の
端子で電気的コンダクタに変調された電流を印加し、ケ
ーブル内の電気的コンダクタの端子で抵抗測定を行なう
段階を含む方法が提供される。
According to the present invention, the repeater includes a surge protector to protect the power supply and signal repeater circuits from power surges, and a method for detecting the fault location of a relay communication cable, wherein the repeater disconnects the normal power supply from the end of the cable. removing and applying a modulated current to the electrical conductor at the terminals of sufficient polarity and amplitude to effectively conduct the repeater's surge protector in a low resistance state and at the same time reduce polarity effects in the event of a fault. , a method is provided that includes making a resistance measurement at a terminal of an electrical conductor within a cable.

実施例 海底中継器の半導体ダイオードを順方向バイアスする適
宜な振幅及び極性の電流を印加することは電導を良くす
る。ダイオードは通常アバランシェモードであるので、
順方向では、通常の中継器回路は動作しない。典型的に
、100m A又はそれ以上の電流はサージ保護ダイオ
ニードを「オン」に変え、中継器を介して効果的直流パ
スを提供する。非常に低い周波数変調が100m A電
流に印加される。変調は30Hz以下で、そして典型的
には僅か1/2−1H2である。変調のこの低いレベル
で、ケーブルの一部として中継器を通る効果的直流バス
を含む端子からケーブルの直流抵抗測定を行うことは可
能である。測定された抵抗は安定な直流を振分ける範囲
に対し電圧/電流曲線の傾斜であり、従って低電流の効
果(例えば分極効果)は避けられる。海底光フアイバケ
ーブルの電気コンダクタの直流抵抗は約1 ohm /
kにすべきである。中継器を通るバスの直流抵抗はケー
ブルの抵抗と比較して低くすべきである。
Applying a current of appropriate amplitude and polarity to forward bias the semiconductor diodes of the embodiment submarine repeater improves conduction. Since the diode is normally in avalanche mode,
In the forward direction, normal repeater circuits do not work. Typically, a current of 100mA or more turns the surge protection diode needle "on" and provides an effective DC path through the repeater. A very low frequency modulation is applied to the 100mA current. The modulation is below 30Hz and is typically only 1/2-1H2. At this low level of modulation, it is possible to make DC resistance measurements of the cable from terminals that include an effective DC bus passing through the repeater as part of the cable. The measured resistance is the slope of the voltage/current curve over a range that distributes stable direct current, so low current effects (eg polarization effects) are avoided. The DC resistance of the electrical conductor of a submarine optical fiber cable is approximately 1 ohm/
It should be k. The DC resistance of the bus through the repeater should be low compared to the resistance of the cable.

例えばオウエンブリッジを用いて、直流抵抗測定を行な
う場合、海底ケーブルの故障が通常短絡又は回路でない
ことに注意すべきである。実際、破損ケーブルへの海水
の侵入は海水等の伝導により抵抗的状態を引き起こす。
When performing DC resistance measurements, for example using an Owen Bridge, it should be noted that failures in submarine cables are usually not short circuits or circuits. In fact, the intrusion of seawater into a damaged cable causes a resistive state due to conduction of seawater, etc.

これは直流抵抗測定から故障の位置を計算する際、考慮
されなければならない。しかし、この方法により許容さ
れた高い値の直流で、故障抵抗は最小に減少される。
This must be taken into account when calculating the location of the fault from DC resistance measurements. However, at the high values of DC allowed by this method, the fault resistance is reduced to a minimum.

短絡回路ケーブルの入力インピーダンスは次の通りであ
る: R+j X  −Zo tanh7d S ここで Zo−特性インピーダンス γ −伝搬定数 d −短絡回路の長さ。
The input impedance of the short circuit cable is: R + j X - Zo tanh7d S where Zo - characteristic impedance γ - propagation constant d - short circuit length.

非常に低い周波数で、γは小さく、これによりべき級数
でZotanhγdを展開でき、次の通りとなる。
At very low frequencies, γ is small, which allows us to expand Zotanhγd in a power series:

R+jX  −Zo  [(γd)−1/3(γd)S +2/15(γ )5・・・] ここで R−単位長当たりのケーブル抵抗 り一単位長当たりのインダクタンス C−単位長当たりのキャパシタンス [R及びCは正確に知られているが、しは不正確である
。] 上記の恒等式を用いて、 R+ J W L = Z oγに注目し、下記の式を
得る:R,+ jx、 −(R+jwL)d[1i/3
(R+JwL)jwcd2+  /15[(R+jwL
)jwc] 2d ’ ・]この式の実数部に注目し、
R8を見つけ、伯の項を無視すると、下記の様になる。
R + j [R and C are known exactly, but is inaccurate. ] Using the above identity, paying attention to R+ J W L = Z oγ, we obtain the following equation: R, + jx, −(R+jwL) d[1i/3
(R+JwL)jwcd2+ /15[(R+jwL
)jwc] 2d' ・] Focusing on the real part of this equation,
If we find R8 and ignore the count term, we get the following.

+215(w2 LC)  s  ’  ]十分に低い
周波数(即ち十分に短かい長さ)で、し及びCの項は、
小さい修正になり、ある計算の後でも、Rsを測定した
dに対する式を解くことができる。修正項の大きさは測
定の正確度に影響する。例えばl/2Hzの周波数で R−0,658オーム/− C= 0.192μF/麺 L−411H/& d−7001に 一2/15 (14cR)  d  −−5,04x1
0−32/3 (w2LC)d2−2.48x10−3
215 (w2LC) 2d ’−無視できる合計修正
は次に−2,56X 10’又は0.26%である。し
かし、C及びRは正確に知られ、項はそれらのみを含む
がいずれにせよ小さいので、不正確を生じない。
+215(w2 LC) s' ] At sufficiently low frequencies (i.e., sufficiently short lengths), the and C terms become:
With a small modification, even after some calculations, the equation for d measured Rs can be solved. The magnitude of the correction term affects the accuracy of the measurement. For example, at a frequency of 1/2 Hz, R-0,658 ohm/- C = 0.192 μF/Noodle L-411H/& d-7001 - 2/15 (14cR) d--5,04x1
0-32/3 (w2LC)d2-2.48x10-3
215 (w2LC) 2d' - The negligible total modification is then -2,56X 10' or 0.26%. However, since C and R are known exactly and the term contains only them, they are small anyway, so they do not introduce inaccuracies.

しかし、ここでしは、約20%の不正確又は5X10’
の修正値の不確実になる。700触において、これは0
.35−の距離誤差に相当する。これはかなり不確実で
ある。(ざらに、×8も測定されるので、上記式の虚数
項を分離することにより、d及びLを解くよう2つの連
結方程式を与えることにより、しも解ける)。
But here we have about 20% inaccuracy or 5X10'
The revised value of becomes uncertain. At 700 touches, this is 0
.. This corresponds to a distance error of 35-. This is highly uncertain. (Roughly, since ×8 is also measured, it can be solved by separating the imaginary term in the above equation and giving two connected equations to solve d and L.)

ある低い周波数で、戻り電流は、接地に房る回路のイン
ピーダンスが非常に小さく(非常に良く計篩されつる)
なるようケーブルから非常に大きい距離に延在する。
At some low frequency, the return current has a very small impedance (very well filtered) in the circuit connected to ground.
The cable extends over a very large distance.

オウエンブリッジ(第1図)は測定に最も便利であると
思われる。発電器は交流により変調された直流を与える
ものにすべきである。このブリッジは、発電器か検出器
(望ましくは前者)のどちらかが接地から分離されるべ
きで、ケーブルキャパシタンスに比較して小さい接地に
対する容量を有するが、検出端子から直流を取り除く。
Owen Bridge (Figure 1) appears to be the most convenient for measurements. The generator should provide direct current modulated by alternating current. This bridge should isolate either the generator or the detector (preferably the former) from ground, and has a small capacitance to ground compared to the cable capacitance, but removes direct current from the sensing terminals.

平衡で: R5−RbCb/Ca L、−R,RbC。At equilibrium: R5-RbCb/Ca L, -R, RbC.

注ニーー次平衡等により、浮遊を除去する配置(図示せ
ず)。
Note: Arrangement to eliminate floating by knee-second equilibration, etc. (not shown).

適当な値はCa凸C6−20μFであるべきである。次
のRbはケーブル抵抗と略同じである。
A suitable value should be Ca convex C6-20 μF. The next Rb is approximately the same as the cable resistance.

ケーブルの非常に長い長さに対して、短絡リアクタンス
は容量を持つがこれはケーブルと直列にインダクタンス
を含み、そして−次平衡を行ない、又はシエーリングブ
リッジ(第2図)を用いることにより解決できる。イン
ピーダンス値の差により、高利得検出器が必要とされる
:しかし帯域幅を非常に小さくできるので、これは実行
できる。
For very long lengths of cable, the short circuit reactance has a capacitance that can be solved by including an inductance in series with the cable and performing -order balancing or by using a shearing bridge (FIG. 2). Due to the difference in impedance values, a high gain detector is required; however, this is feasible as the bandwidth can be made very small.

正確性に対し、置換方法が推属される。すなわち、R8
は可変標準抵抗を含む。−次平衡は送電端(Rb及びR
aで)短絡されたケーブルでできていて、ケーブルが含
まれ、そして他の平衡が(R,及びRaで)とられる。
For accuracy, a replacement method is inferred. That is, R8
includes a variable standard resistance. -The next equilibrium is the sending end (Rb and R
a) made of short-circuited cables, cables included, and other balances (at R, and Ra).

R5の値の減少は障害抵抗であり:R8は初めに障害抵
抗よりさらに多くすべきである。
Decreasing the value of R5 is the fault resistance: R8 should initially be even more than the fault resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオウエンブリッジを示す図、 第2図はシェーリングブリッジを示す図である。 C・・・キャパシタンス、L・・・インダクタンス、R
・・・ケーブル抵抗。 特許出願人 エステイ−シー ビーエルシー図面の浄書
(内容に変更なし) 〜・2・ 6゜ 補正の対象 図面 以 上 手 続 補 正 書(方式) %式%
Figure 1 is a diagram showing the Owen Bridge, and Figure 2 is a diagram showing the Schering Bridge. C...Capacitance, L...Inductance, R
...Cable resistance. Patent applicant St.C. BLC Engraving of drawings (no change in content) 〜・2・6゜Procedural amendment for drawings subject to amendment (method) % formula %

Claims (1)

【特許請求の範囲】 1、中継器は電力サージから電力供給及び信号中継器回
路を保護するようサージ保護装置を含む、中継通信ケー
ブルの故障位置を検出する方法であつて、ケーブル端か
ら通常の電力供給を取除き、低抵抗状態で中継器のサー
ジ保護装置を効果的に伝導状態にし同時に故障時の極性
効果を減少させるのに十分な極性及び振幅の端子で電気
的コンダクタに変調された電流を印加し、ケーブル内の
電気的コンダクタの端子で抵抗測定を行なう段階を含む
方法。 2、電流が30Hz以下の周波数で変調されている請求
項1記載の方法。 3、電流が0.5から1Hzの周波数で変調されている
請求項2記載の方法。 4、該抵抗測定がオウエンブリッジを介してなされる請
求項2記載の方法。 5、該抵抗測定がオウエンブリッジを介してなされる請
求項3記載の方法。
[Claims] 1. A method for detecting a fault location in a relay communication cable, the relay including a surge protector to protect the power supply and signal repeater circuits from power surges, the method comprising: A modulated current in the electrical conductor at the terminals of sufficient polarity and amplitude to remove the power supply and effectively conduct the surge protector of the repeater in a low resistance state and at the same time reduce polarity effects in the event of a fault. and making a resistance measurement at the terminals of an electrical conductor within the cable. 2. The method of claim 1, wherein the current is modulated at a frequency of 30 Hz or less. 3. The method of claim 2, wherein the current is modulated at a frequency of 0.5 to 1 Hz. 4. The method of claim 2, wherein said resistance measurement is made via an Owen bridge. 5. The method of claim 3, wherein said resistance measurement is made via an Owen bridge.
JP33458989A 1988-12-24 1989-12-22 Detection of fault position for submarine optical fiber cable Pending JPH02259477A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8830262.5 1988-12-24
GB888830262A GB8830262D0 (en) 1988-12-24 1988-12-24 Submarine optical cable fault location

Publications (1)

Publication Number Publication Date
JPH02259477A true JPH02259477A (en) 1990-10-22

Family

ID=10649193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33458989A Pending JPH02259477A (en) 1988-12-24 1989-12-22 Detection of fault position for submarine optical fiber cable

Country Status (4)

Country Link
JP (1) JPH02259477A (en)
AU (1) AU610031B2 (en)
FR (1) FR2641084A1 (en)
GB (2) GB8830262D0 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129008A (en) * 2011-01-07 2011-07-20 杭州市电力局 Fault detection device for distribution network
CN102540010A (en) * 2010-12-29 2012-07-04 吴昌德 Test method for selecting lines by zero-sequence current gradual transfer in low current ground system
CN103743999A (en) * 2013-12-30 2014-04-23 中航华东光电有限公司 Device and method for finding breakpoint position of electric wire/cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990642A (en) * 1998-06-08 1999-11-23 Daewoo Electronics Co., Ltd. Method and apparatus for driving a sensorless DC motor having a bridge-type inductance detecting circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490377A (en) * 1944-12-16 1949-12-06 Universal Electronic Lab Inc System for determining the point of break in an electrical conductor
GB992690A (en) * 1960-10-04 1965-05-19 Gen Electric Co Ltd Improvements in or relating to electric communication systems
DE2201330C3 (en) * 1972-01-12 1975-11-13 Standard Elektrik Lorenz Ag, 7000 Stuttgart Fault location arrangement for 4-wire communication systems
CH607471A5 (en) * 1975-12-10 1978-12-29 Siemens Ag Albis
DE3216497A1 (en) * 1982-05-03 1983-11-03 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR COMMISSIONING THE REMOTE POWER SUPPLY OF ELECTRICAL CONSUMERS AND CIRCUIT ARRANGEMENT FOR IMPLEMENTING THE METHOD
JPS63169534A (en) * 1987-01-08 1988-07-13 Kokusai Denshin Denwa Co Ltd <Kdd> Locating system for trouble point of optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540010A (en) * 2010-12-29 2012-07-04 吴昌德 Test method for selecting lines by zero-sequence current gradual transfer in low current ground system
CN102129008A (en) * 2011-01-07 2011-07-20 杭州市电力局 Fault detection device for distribution network
CN103743999A (en) * 2013-12-30 2014-04-23 中航华东光电有限公司 Device and method for finding breakpoint position of electric wire/cable

Also Published As

Publication number Publication date
AU4710689A (en) 1990-06-28
AU610031B2 (en) 1991-05-09
GB2226465B (en) 1993-03-03
FR2641084A1 (en) 1990-06-29
GB8922963D0 (en) 1989-11-29
GB2226465A (en) 1990-06-27
GB8830262D0 (en) 1989-02-22

Similar Documents

Publication Publication Date Title
US10126345B2 (en) Device and method for insulation monitoring in a power supply system including a high-resistance grounded neutral point
US9182431B2 (en) Method and apparatus for determining an insulation resistance in a grounded isole terre system
US3909712A (en) Circuit arrangement for measuring high ohmic cable faults in telecommunication and similar networks
US4322677A (en) System and method for locating resistive faults and interconnect errors in multi-conductor cables
US20080309351A1 (en) High Voltage Insulation Monitoring Sensor
EP2648008B1 (en) Insulation monitoring system for secured electric power system
NO173076B (en) PROCEDURE AND DEVICE FOR LOCATING EARTH CIRCULATION OF A THREE PHASE NET WORKER
AU3946193A (en) Near-end communications line characteristic measuring system
AU2013224729B2 (en) Testing a fuse
JPH06237193A (en) Submarine equipment of submarine cable communication system and fault point localization method
SE462244B (en) ELECTRO-LINE PROTECTION FOR EARTH ERROR DETECTION
US3938006A (en) Active negative sequence cable monitor
JPH02259477A (en) Detection of fault position for submarine optical fiber cable
EP0295240A1 (en) Method and device for detecting a fault, e.g. a short circuit, break or leakage, in an electric cable or conductor
US3489865A (en) Routiners for checking telephone circuits
JPS6188167A (en) Device for discriminating section of transmission line
SU911378A1 (en) Apparatus for detecting single-phase earthing in compensated-neutral networks
SU1150558A1 (en) Bridge for measuring resistance of electrical circuits under ac voltage
JPS6027969Y2 (en) Cable disconnection detection device
JPS62172272A (en) Apparatus for detecting insulation deterioration of power cable
JPS59145973A (en) Fault position searching method of submarine coaxial cable
SU551748A2 (en) Short circuit protection device
JPS632067B2 (en)
SU663014A1 (en) Method and apparatus for protecting three-phase consumers from incomplete operating modes
JPH0275974A (en) Method and device for detecting defective insulation point of cable