JPH06289067A - Current detector for fault point locator - Google Patents

Current detector for fault point locator

Info

Publication number
JPH06289067A
JPH06289067A JP9528193A JP9528193A JPH06289067A JP H06289067 A JPH06289067 A JP H06289067A JP 9528193 A JP9528193 A JP 9528193A JP 9528193 A JP9528193 A JP 9528193A JP H06289067 A JPH06289067 A JP H06289067A
Authority
JP
Japan
Prior art keywords
pass filter
current detection
led
surge
surge current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9528193A
Other languages
Japanese (ja)
Inventor
Toshiharu Miyamoto
俊治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9528193A priority Critical patent/JPH06289067A/en
Publication of JPH06289067A publication Critical patent/JPH06289067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To transmit information of surge occurring timing (first wave of a surge current) and a commercial frequency component (amplitude and phase) by one LED in a fault current detector for a fault detecting apparatus of a transmission line. CONSTITUTION:A high-pass filter 3 and a low-pass filter 4 are respectively connected to the output terminals of two wound-core CTs or a wound-core CT having two windings wound on the same core, a full-wave rectifier 5 is connected to the output side of the filter 3, a half-wave rectifier 6 is connected to the filter 4, the polarities of the outputs of both the rectifiers are matched and an LED 7 is connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は地中送電線に事故が発生
した時、事故点を標定する装置に用いる電流検出回路に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current detection circuit used in a device for locating an accident point when an accident occurs in an underground power transmission line.

【0002】[0002]

【従来の技術】超高圧地中送電線の地絡事故の場合の事
故点標定装置として、例えば平成4年電気学会全国大会
No. 1445「超高圧地中送電線用サージ電流受信型事故点
標定装置の開発」に発表しているように、事故時のサー
ジ電流第1波を2箇所の線路上位置に配したセンサで検
出し、検出したサージ電流の到達時間差を計測して事故
点を標定する方式がある。この方式においてはサージ電
流の検出に、電流によって生ずる磁界で光の強度を変え
るファラデー素子が利用されている。図3は前記装置を
ブロック図で示す。送電線路20はパイプタイプ3芯OF
ケーブルよりなるものとし、この線路において、定めら
れた距離Lをとって、3芯のケーブルを囲んで環状のフ
ェライトコアの空隙にファラデー素子22を介在させたセ
ンサ21,21' が設置されている。事故点Fで発生したサ
ージ電流はt1 ,t2 の時間を経てセンサ21,21' で検
出される。事故点Fより近い位置にあるセンサ21に達し
たサージ電流第1波によってセンサ21の位置にある子局
LS1においてカウンタが動作を開始し、センサ21' がサ
ージ電流第1波を検出した後、カウンタを停止するパル
スを子局LS2より子局LS1に伝送する。この時の子局LS
1におけるカウント時間tm は次の(1)式で表わされ
る。 tm =t2 +t3 −t1 (1) 但し、t1 :センサ21におけるサージ電流の検出時間 t2 :センサ21' におけるサージ電流の検出時間 t3 :センサ21' より子局LS1へのカウンタを停止する
パルス到達時間 センサ21と21' への伝送時間差tは次の(2)式で表わ
される。 t=t2 −t1 =tm −t3 (2) 標定距離 : Xとすれば、 X=(L−v.t)/2 (3) v:サージ速度 ここでカウンタ停止パルスの伝送時間t3 は事故点位置
に無関係であり、事前に求めておけばよい。得られた時
間tおよび、事前に求めておいたケーブル中のサージ伝
搬速度vから事故点までの距離Xは(3)で得られる。
サージ検出情報およびカウンタ値は子局LS1から親局MS
に伝送され、親局内部のCPUによって距離換算され、
表示される。
2. Description of the Related Art As an accident point locating device in the case of a ground fault of an ultrahigh voltage underground power line, for example, the 1992 National Congress of the Institute of Electrical Engineers of Japan
As stated in No. 1445 "Development of surge current receiving type fault locator for ultra high voltage underground power transmission line", it is a sensor that arranges the first surge current wave at two locations on the line at the time of an accident. There is a method of detecting and locating the fault point by measuring the arrival time difference of the detected surge current. In this method, a Faraday element that changes the intensity of light with a magnetic field generated by the current is used to detect the surge current. FIG. 3 shows the device in a block diagram. Transmission line 20 is a pipe type 3-core OF
In this line, sensors 21 and 21 'having a Faraday element 22 interposed in an air gap of an annular ferrite core are installed so as to surround a three-core cable at a predetermined distance L in this line. . The surge current generated at the accident point F is detected by the sensors 21 and 21 ′ after the time of t 1 and t 2 . Slave station located at sensor 21 due to the first surge current wave reaching sensor 21 located near accident point F
After the counter starts operating in LS1 and the sensor 21 'detects the first surge current wave, a pulse for stopping the counter is transmitted from the slave station LS2 to the slave station LS1. Slave station LS at this time
The count time t m at 1 is represented by the following equation (1). t m = t 2 + t 3 −t 1 (1) where t 1 : detection time of surge current in sensor 21 t 2 : detection time of surge current in sensor 21 ′ t 3 : from sensor 21 ′ to slave station LS1 Pulse arrival time for stopping the counter The transmission time difference t to the sensors 21 and 21 'is expressed by the following equation (2). t = t 2 −t 1 = t m −t 3 (2) Orientation distance: If X, X = (L−v.t) / 2 (3) v: Surge speed Transmission time of counter stop pulse here t 3 is irrelevant to the location of the accident point and may be obtained in advance. The obtained time t and the distance X from the surge propagation velocity v in the cable, which is obtained in advance, to the accident point are obtained by (3).
The surge detection information and counter value are from the slave station LS1 to the master station MS.
And the distance is converted by the CPU inside the master station,
Is displayed.

【0003】他方、電流を検出する装置として、ファラ
デー素子ではなく、「光を使った電気量測定器」(「電
気計算」 別刷、昭和60年 6月号、第53巻第 9号)に示さ
れるように、CTとE/O(LED)の組み合わせの例
があり、鉄塔の雷電流が測定される。
On the other hand, as a device for detecting an electric current, it is shown not in a Faraday element but in a "electric quantity measuring instrument using light"("ElectricalCalculation" reprint, June 1985 issue, Vol. 53, No. 9). As described above, there is an example of a combination of CT and E / O (LED), and the lightning current of the tower is measured.

【0004】[0004]

【発明が解決しようとする課題】前記のように事故点標
定装置には電流検出素子としてファラデー素子が用いら
れていたが、常時LEDを発光させておく必要があり、
消費電力が大きい。これを前記CTとE/O(LED)
の組み合わせに置き換えることで同じ機能は得られる
が、LEDは片側の極性でしか発光せず、逆極性の事故
電流が流れたときに検出できない欠点がある。本発明
は、サージ電流の極性の正負にかかわらず、これを検出
するものであり、加えて、この事故電流の極性は事故区
間を知るうえで重要な要素であるので、このため、本発
明では、片側の極性のみで、サージの侵入のタイミング
と電流の極性(位相)の情報が得られるようにしようと
するものである。
As described above, the Faraday element is used as the current detecting element in the accident locator, but it is necessary to keep the LED lit at all times.
High power consumption. This is the CT and E / O (LED)
Although the same function can be obtained by substituting the combination of No. 1 and No. 2, there is a drawback that the LED emits light only in one polarity and cannot be detected when a fault current of opposite polarity flows. The present invention detects this regardless of whether the polarity of the surge current is positive or negative. In addition, since the polarity of this fault current is an important factor for knowing the fault zone, the present invention therefore , It is intended to obtain information on the surge intrusion timing and the current polarity (phase) with only one side polarity.

【0005】[0005]

【課題を解決するための手段】本発明はCT2個使用
し、もしくは同一CTコアに巻線を2組施し、その出力
端子に、一方はサージ電流を通過させるハイパスフィル
タを設け、他方は商用周波数を通過させるローパスフィ
ルタを設ける。ハイパスフィルタ通過後の出力は両波整
流器を通り、サージ電流の正負極性にかかわらず、同極
の出力をLEDに導く。ローパスフィルタ通過後の出力
は半波整流器を通り、前記の同一LEDに導かれる。こ
のような構成を採ることによって事故点において発生し
たサージ電流の極性が正、負いずれであってもこれをL
EDで検出することができる。従ってこのようなサージ
電流検出回路を図3において説明したような事故点標定
装置のセンサ位置にそれぞれ設置し、事故点の標定を行
うことができる。
According to the present invention, two CTs are used, or two sets of windings are provided on the same CT core, and one output terminal thereof is provided with a high-pass filter for passing a surge current, and the other is provided with a commercial frequency. A low-pass filter that passes The output after passing through the high-pass filter passes through the double-wave rectifier and guides the output of the same polarity to the LED regardless of the positive / negative polarity of the surge current. The output after passing through the low-pass filter passes through the half-wave rectifier and is led to the same LED. By adopting such a configuration, even if the polarity of the surge current generated at the accident point is positive or negative,
It can be detected by ED. Therefore, such a surge current detection circuit can be installed at each of the sensor positions of the accident point locating device as described in FIG. 3 to locate the accident point.

【0006】[0006]

【実施例】以下図1に示す実施例ならびに図2に示す図
1の回路各部動作波形図により本発明を説明する。3芯
の地中送電線1を囲んで巻線型CTの磁芯(図示してい
ない)を配し、このCTの2次巻線2の出力端子をハイ
パスフィルタ3に接続する。また、前記CTとは別個に
結合したCTまたは前記同じ磁芯に巻回した2次巻線
2' の出力端子をローパスフィルタ4に接続する。ハイ
パスフィルタ3はサージ電流を通過させ、商用周波を遮
断する性能を備え、ローパスフィルタ4はサージ電流を
遮断し、商用周波を通過させる性能を備えるものであ
る。ハイパスフィルタ3の出力側は両波整流器5に接続
され、ローパスフィルタ4の出力側は半波整流器6に接
続され、両整流器5,6の出力側は極性を揃えて並列に
LED7の端子間に接続される。LED7の発光に対し
て光ファイバ8が結合され、光ファイバ8の他端は、図
3における子局LS1および、またはLS2に延びる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiment shown in FIG. 1 and the operation waveform chart of each part of the circuit shown in FIG. A magnetic core (not shown) of a wound type CT is arranged so as to surround the three-core underground power transmission line 1, and the output terminal of the secondary winding 2 of this CT is connected to the high-pass filter 3. Further, the output terminal of the secondary winding 2 ′ wound around the same magnetic core or the CT coupled separately from the CT is connected to the low pass filter 4. The high-pass filter 3 has a performance of passing a surge current and blocking a commercial frequency, and the low-pass filter 4 has a performance of blocking a surge current and passing a commercial frequency. The output side of the high-pass filter 3 is connected to the double-wave rectifier 5, the output side of the low-pass filter 4 is connected to the half-wave rectifier 6, and the output sides of the both rectifiers 5 and 6 are aligned in parallel between the terminals of the LED 7. Connected. An optical fiber 8 is coupled to the light emitted from the LED 7, and the other end of the optical fiber 8 extends to the slave station LS1 and / or LS2 in FIG.

【0007】[0007]

【動作】図2の波形図に示すように、送電線路上におい
て、事故を発生したときは、この事故点より線路上をサ
ージ電流が伝搬する。CTにより事故電流信号Ifが捉ら
えられる。この電流信号Ifは2次巻線2,2' の出力端
において同様な波形 If1,If2 である。ハイパスフィル
タ3の出力S1は単に事故初期のサージ分のみ残った波形
となり、これを両波整流回路5を通すことにより、正側
のみのサージ分に交換される。一方、2次巻線2' より
の事故電流If2 はローパスフィルタ4によって、その出
力S2より初期サージ分は除去され、商用周波数分のみが
残った波形となり、更に半波整流器6を通すことによっ
て、正側成分のみ残る半波となる。これら両波整流器出
力と半波整流器出力を共にLED7に並列に加わえるこ
とになるので、LED7における発光出力S0には、1個
のLEDで、サージ発生のタイミング(サージ電流第1
波目)と商用周波数成分(大きさおよび位相)の情報が
伝送できる。以上説明したサージ電流検出回路を図3に
示した標定装置のセンサ位置にそれぞれ設置すれば、事
故点の標定を行うことができる。本発明は配電線におけ
る事故点標定の検出にも適用することができる。また、
前記実施例においては、サージ電流検出回路を2箇所に
設置したものについて説明したが、線路全長にわたり、
適当な距離をおいて、複数の検出回路が設置されるもの
である。
[Operation] As shown in the waveform diagram of FIG. 2, when an accident occurs on the power transmission line, a surge current propagates on the line from this accident point. The fault current signal If can be captured by CT. This current signal If has similar waveforms If1 and If2 at the output terminals of the secondary windings 2 and 2 '. The output S1 of the high-pass filter 3 has a waveform in which only the surge component at the initial stage of the accident remains, and by passing this waveform through the double-wave rectifier circuit 5, it is replaced with the surge component on the positive side only. On the other hand, the fault current If2 from the secondary winding 2'is removed by the low-pass filter 4 from the output S2, and the initial surge component is removed. Only the commercial frequency component remains, and the fault current If2 is further passed through the half-wave rectifier 6. It becomes a half wave in which only the positive component remains. Since both of the both-wave rectifier output and the half-wave rectifier output are added to the LED 7 in parallel, the light emission output S0 of the LED 7 has only one LED at the timing of surge generation (surge current first
Information on the ripples and commercial frequency components (magnitude and phase) can be transmitted. If the surge current detection circuit described above is installed at each of the sensor positions of the orientation device shown in FIG. 3, it is possible to locate the accident point. The present invention can also be applied to detection of fault location in a distribution line. Also,
Although the surge current detection circuit is installed at two locations in the above embodiment,
A plurality of detection circuits are installed at an appropriate distance.

【0008】上記のようなサージ電流検出回路を図3の
子局LS1とLS2の位置に配置し、この子局間を一つの事
故検出区間とし、この検出区間の両側に電源があり、事
故点が区間内にある場合と、事故点が区間外にある場合
について各サージ電流検出回路で捉らえられる電流波形
ならびに光出力波形はそれぞれ図4,図5に示される
が、事故点が区間内にあるときは、前記両回路に流れる
サージ電流およびこれに続く商用周波電流波形は互いに
逆極性となり、この商用周波整流分は半波整流されるの
で、この出力のタイミングは半波ずれることになる。こ
れに対して、事故点が区間外にあるときは、商用周波の
半波整流分は双方のサージ電流検出回路にて同極、同位
相で生じる。ここでは詳細説明していないが、両サージ
電流検出回路の半波波形位置を対比することによって、
事故点が区間内、区間外いずれで発生したか判別でき
る。なお、電流が片端電源で、事故点が区間内にあると
き、一方のサージ電流検出回路で、サージ電流に続く商
用周波電流を生じないことがあるが、この場合は一方に
半波の整流分が生じることで、事故点が区間内で発生し
たものと判別することができるが、これらも本発明のサ
ージ電流検出回路を用いることに得られる一つの特徴で
ある。
The surge current detection circuit as described above is arranged at the positions of the slave stations LS1 and LS2 in FIG. 3, one accident detection section is provided between the slave stations, and there are power sources on both sides of this detection section. Fig. 4 and Fig. 5 show the current waveforms and optical output waveforms captured by each surge current detection circuit when the fault point is inside the section and when the fault point is outside the section. , The surge current flowing through both circuits and the commercial frequency current waveform following it have opposite polarities, and the commercial frequency rectified component is half-wave rectified, so the timing of this output is shifted by half wave. . On the other hand, when the accident point is outside the section, half-wave rectification of the commercial frequency occurs in both surge current detection circuits in the same pole and the same phase. Although not described in detail here, by comparing the half-wave waveform positions of both surge current detection circuits,
It is possible to determine whether the accident point occurred inside the section or outside the section. When the current is a one-sided power supply and the fault point is within the section, one surge current detection circuit may not generate commercial frequency current following the surge current. It is possible to determine that the accident point has occurred within the section due to the occurrence of the above. However, these are also one of the characteristics obtained by using the surge current detection circuit of the present invention.

【0009】[0009]

【発明の効果】本発明によれば、サージ電流が正負いず
れの極性であっても第1波目の立上がりが検出でき、複
数箇所設けたサージ電流検出回路を用いれば、サージ電
流到達時間差計測が可能となる。また、商用周波成分も
検出することから隣接する電流検出回路が検出したレベ
ルあるいは位相比較をすることにより、事故発生区間の
判定も可能である。更にこのサージ電流検出回路は、常
時LEDを発光させることなく、事故時の電流でLED
を発光させるので、事故点標定装置の低消費電力化が図
かれる。
According to the present invention, the rise of the first wave can be detected regardless of whether the surge current has positive or negative polarity, and the surge current detection circuits provided at a plurality of points can be used to measure the difference in the surge current arrival times. It will be possible. Further, since the commercial frequency component is also detected, it is possible to determine the accident occurrence section by comparing the levels or phases detected by the adjacent current detection circuits. Furthermore, this surge current detection circuit does not constantly emit light from the LED
Since the light is emitted, the power consumption of the accident locator can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す。FIG. 1 shows an embodiment of the present invention.

【図2】図1の実施例各部の波形を示す。FIG. 2 shows waveforms at various points in the embodiment of FIG.

【図3】従来の送電線事故点標定装置を示す。FIG. 3 shows a conventional transmission line accident locator.

【図4】事故点が区間内にあるときの波形図を示す。FIG. 4 shows a waveform diagram when the accident point is within the section.

【図5】事故点が区間外にあるときの波形図を示す。FIG. 5 shows a waveform diagram when the accident point is outside the section.

【符号の説明】[Explanation of symbols]

1 地中送電線 2,2' CT2次巻線 3 ハイパスフィルタ 4 ローパスフィルタ 5 両波整流器 6 半波整流器 7 LED 8 光ファイバ 1 Underground transmission line 2, 2'CT secondary winding 3 High pass filter 4 Low pass filter 5 Double wave rectifier 6 Half wave rectifier 7 LED 8 Optical fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一の送配電線上の複数箇所に電流検出
部を配置し、地絡事故時のサージ電流を検出し、隣り合
う電流検出部にサージ電流が到達する時間差を検出して
事故点までの距離を標定する事故点標定装置に前記電流
検出部として用いる電流検出回路であって、2個の巻線
型CTもしくは同一磁芯に2組の巻線を施した巻線型C
Tの出力端子にそれぞれハイパスフィルタとローパスフ
ィルタを接続し、前記ハイパスフィルタの出力側に両波
整流器と、前記ローパスフィルタの出力側に半波整流器
をそれぞれ接続し、前記両整流器出力の極性を合わせて
LEDに接続し、前記LEDの発光を光ファイバと結合
させたことを特徴とする事故点標定装置用電流検出回
路。
1. An accident point is provided by arranging current detection units at a plurality of locations on the same transmission / distribution line to detect surge currents at the time of a ground fault and by detecting a time difference between surge currents reaching adjacent current detection units. Is a current detection circuit used as the current detection unit in a fault locator for locating a distance to, and is a two-winding type CT or a winding type C in which two sets of windings are formed on the same magnetic core.
A high-pass filter and a low-pass filter are connected to the output terminals of T, a double-wave rectifier is connected to the output side of the high-pass filter, and a half-wave rectifier is connected to the output side of the low-pass filter. A current detection circuit for an accident locator, characterized in that the light emission of the LED is coupled to an optical fiber.
JP9528193A 1993-03-30 1993-03-30 Current detector for fault point locator Pending JPH06289067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9528193A JPH06289067A (en) 1993-03-30 1993-03-30 Current detector for fault point locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9528193A JPH06289067A (en) 1993-03-30 1993-03-30 Current detector for fault point locator

Publications (1)

Publication Number Publication Date
JPH06289067A true JPH06289067A (en) 1994-10-18

Family

ID=14133395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9528193A Pending JPH06289067A (en) 1993-03-30 1993-03-30 Current detector for fault point locator

Country Status (1)

Country Link
JP (1) JPH06289067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375507B1 (en) * 2000-07-25 2003-03-10 삼성전기주식회사 Output stabilizing method of inverter circuit
WO2017128631A1 (en) * 2016-01-29 2017-08-03 中国电力科学研究院 Current differential protection method for self-adaptive half-wavelength line based on time-difference method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375507B1 (en) * 2000-07-25 2003-03-10 삼성전기주식회사 Output stabilizing method of inverter circuit
WO2017128631A1 (en) * 2016-01-29 2017-08-03 中国电力科学研究院 Current differential protection method for self-adaptive half-wavelength line based on time-difference method
US10985547B2 (en) 2016-01-29 2021-04-20 China Electric Power Research Institute Company Limited Current differential protection method for self-adaptive half-wavelength line based on time-difference method

Similar Documents

Publication Publication Date Title
KR890004170A (en) Insulation Detection Method and Device
US5914608A (en) Method and apparatus for tracing coaxial cables
JPH06289067A (en) Current detector for fault point locator
CN108519508B (en) Comparator for measuring alternating current and direct current
JP4136079B2 (en) DC current detector
JP6092519B2 (en) Ground fault detection device and ground fault detection method
JP3087155B2 (en) Leakage current detection sensor
JPH09152462A (en) Partial discharge detection method for transformer
Brown et al. A wireless differential protection system for air-core inductors
CN113009264A (en) High-speed railway traction substation pavilion direct-current magnetic bias monitoring system and method
JP2910277B2 (en) Converter transformer inspection equipment
JP3351304B2 (en) System for detecting the applied voltage polarity of a cable line and the system for detecting the breakdown position of a cable line
RU2587533C1 (en) Method of finding point of break of multicore cable with inaccessible for grounding conductors and device therefor
JP2786723B2 (en) Wireless telemeter device for transmission line monitoring
JPWO2003069754A1 (en) Protective relay using photocurrent sensor
JPH0642214Y2 (en) Current measuring device
JPH06313776A (en) Detector of ground fault current of grounding line
SU1048416A1 (en) Ac transformer bridge
JP2654792B2 (en) Partial discharge detection device
JP3178652B2 (en) Wiring path identification device
JPH0252829B2 (en)
JP2016075600A (en) Current and phase measurement system
JP2006038604A (en) Leakage current measuring instrument
JPH10170590A (en) Areal and underground line monitoring device
JPS60178371A (en) Earth detection of high voltage machinery