JP2006038604A - Leakage current measuring instrument - Google Patents

Leakage current measuring instrument Download PDF

Info

Publication number
JP2006038604A
JP2006038604A JP2004218074A JP2004218074A JP2006038604A JP 2006038604 A JP2006038604 A JP 2006038604A JP 2004218074 A JP2004218074 A JP 2004218074A JP 2004218074 A JP2004218074 A JP 2004218074A JP 2006038604 A JP2006038604 A JP 2006038604A
Authority
JP
Japan
Prior art keywords
phase
leakage current
circuit
insulation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004218074A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kuwabara
延行 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MULTI KEISOKUKI KK
Original Assignee
MULTI KEISOKUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MULTI KEISOKUKI KK filed Critical MULTI KEISOKUKI KK
Priority to JP2004218074A priority Critical patent/JP2006038604A/en
Publication of JP2006038604A publication Critical patent/JP2006038604A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein, though a method wherein a leakage current is measured at a wiring service entrance of a residence and the amount thereof is specified to be kept below 1 mA when insulation measurement in the residence is difficult is utilized widely because the insulation state in the residence is known from the outside without service interruption in this method, the leakage current sometimes exceeds 1 mA because it includes a current caused by a capacitance between a circuit in the residence and the ground, and in this case, a method for measuring circuit insulation by an insulation-resistance meter after applying service interruption of the circuit by a distribution board in the residence is adopted, and consequently a long time and much labor are required because re-measurement is necessary though the insulation state of the circuit is in a good state. <P>SOLUTION: Two or more electrodes are installed in a window of a split current transformer of a leakage current meter, and the magnitude and the phase of an electric potential induced between the electrodes and the ground are detected through a space or an insulator of an electric wire, and a reference phase is determined, and a zero-phase current is synchronously detected by the phase, and a current caused by an insulation resistance included in the leakage current is displayed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電路の絶縁状態の計測に関し、活線状態で電路に直接ふれることなく、電路の絶縁抵抗に起因する漏れ電流を計測する漏れ電流計測器に関するものである。   The present invention relates to a measurement of an insulation state of an electric circuit, and relates to a leakage current measuring instrument that measures a leakage current caused by an insulation resistance of the electric circuit without directly touching the electric circuit in a live line state.

電気は電気事業法に基づく技術基準(電気設備技術基準、以下電技)により、保安の原則として、電路は、大地から絶縁しなければならないと定められている。絶縁抵抗計での測定では、その基準値は使用電路電圧に換算して1mAである。一般住宅での絶縁抵抗は、4年に1度おこなわれている。しかし、現状は日中は留守であったり、また、停電作業による問題点や、住宅内での測定を好ましく思われないケースがある。そこで、これらの要求に応えるかたちとして、使用電圧が低圧の電路にあって、絶縁測定が困難な場合には、漏洩電流を1mA以下に保つことが規定された。この方法は停電させないで、しかも屋外から住宅内の絶縁状態がわかるために、広く活用されている。クランプ式の漏れ電流計で漏れ電流を高精度に計測するする方法がある(特許文献1)。 According to the technical standards based on the Electricity Business Law (electrical equipment technical standards, hereinafter referred to as electrical engineering), as a principle of safety, electricity is required to be insulated from the earth. In the measurement with an insulation resistance meter, the reference value is 1 mA in terms of the circuit voltage used. Insulation resistance in ordinary houses is carried out once every four years. However, there are cases where the present situation is absence during the day, problems due to power outage work, and measurement in a house are not preferable. In order to meet these requirements, it has been stipulated that the leakage current be kept at 1 mA or less when the working voltage is in a low voltage circuit and insulation measurement is difficult. This method is widely used in order not to cause a power outage and to understand the insulation state in the house from the outside. There is a method of measuring the leakage current with a clamp-type leakage ammeter with high accuracy (Patent Document 1).

漏洩電流が1mAを超える場合は、電路と大地との間の静電容量によるものか、電路の絶縁が低下したことによるものかは不明である。そこで、停電させて絶縁抵抗試験器による絶縁抵抗の測定や、一般住宅内の分電盤において、活線状態のままで電路電圧と零相電流を入力させて、漏れ電流の中に含まれる抵抗分電流を計測する方法がおこなわれている。 When the leakage current exceeds 1 mA, it is unclear whether the leakage current is due to the capacitance between the electric circuit and the ground or the insulation of the electric circuit is lowered. Therefore, measure the insulation resistance with an insulation resistance tester after a power failure, or input the circuit voltage and zero-phase current while keeping the live line state in the distribution board in a general house, and the resistance included in the leakage current A method of measuring the partial current has been performed.

その方法を図1示す。図1で、ブレーカ1の負荷側端子2に電圧検出用クリップ4により電路電圧を漏れ電流抵抗分測定器6に取り込む。負荷電流が流れる電線3に分割型ZCT5を挟み込み零相電流を検出し、零相電流の中に含まれる電路電圧と同相分電流を計測する。この電流が漏れ電流に含まれる抵抗分電流である(特許文献2)。
特許第2802993号 特開2002−125313
The method is shown in FIG. In FIG. 1, the circuit voltage is taken into the leakage current resistance measuring device 6 by the voltage detection clip 4 at the load side terminal 2 of the breaker 1. The split-type ZCT 5 is inserted into the electric wire 3 through which the load current flows, and the zero-phase current is detected, and the current in the same phase as the circuit voltage included in the zero-phase current is measured. This current is a resistance component current included in the leakage current (Patent Document 2).
Japanese Patent No. 2802993 JP 2002-125313 A

屋外の引き込み口における漏れ電流の測定は住宅内全体の配線と大地間のストレー容量(静電容量)が漏洩電流となって表れる。大きさとしては1mA前後である。これは、電路の絶縁の計測値の基準が1mA以下という要求に対して、不必要な電流である。計測電流が1mAを超えた場合には、住宅内に入り分電盤を切り、フィーダ毎の絶縁抵抗計を測定する。あるいは分電盤のブレーカの2次側から電圧を計測して漏れ電流に含まれる抵抗分電流を計測し、電路の絶縁が良好なことを確認している。このような場合、時間と手間が多くかかる。 In the measurement of leakage current at the outdoor entrance, the stray capacitance (capacitance) between the wiring in the entire house and the ground appears as leakage current. The size is around 1 mA. This is an unnecessary current in response to a requirement that the standard of the measured value of the insulation of the electric circuit is 1 mA or less. If the measured current exceeds 1 mA, enter the house, cut off the distribution board, and measure the insulation resistance meter for each feeder. Alternatively, the voltage is measured from the secondary side of the breaker of the distribution board to measure the resistance divided current included in the leakage current, and it is confirmed that the insulation of the electric circuit is good. In such a case, it takes a lot of time and effort.

変流器の窓内に2個以上の電極を取り付け、この電極と大地との間に誘起する電位の大きさ及び位相を検出し、この基準位相を求め、この位相によって零相電流を同期検波させる。 Two or more electrodes are installed in the current transformer window, the magnitude and phase of the potential induced between this electrode and the ground are detected, the reference phase is obtained, and the zero-phase current is synchronously detected by this phase. Let

この電極に誘起される電圧はCTの窓内の1次導体の電圧が誘起される。電圧と同時に位相も検出する。この検出された位相と電圧の大きさから1次導体の活線相の位相を計算する。これにより、分割CTを1次導体にクランプするのみで、電路に流れる漏れ電流の中の抵抗分漏れ電流の計測が可能になる。 The voltage induced in this electrode is the voltage of the primary conductor in the CT window. The phase is detected simultaneously with the voltage. The phase of the live conductor phase of the primary conductor is calculated from the detected phase and voltage magnitude. Thereby, it is possible to measure the resistance leakage current in the leakage current flowing in the electric circuit only by clamping the divided CT to the primary conductor.

CTの窓の内周に銅テープ又は金属片の電極を2枚以上取り付ける。CTの側面又は側面と外周側に、電界シールドを各電極に共通のアース電位面として取り付ける。これにより、CTの窓内に任意の位置に配置された単相又は3相電源の各相電圧の対地間電位を電極と電界シールド間に生じた電位により演算処理し、CTの1次側の各相の位相を算出する。算出された位相を基に漏れ電流に対して同期検波させ、漏れ電流に含まれる抵抗分電流を計測する。単相電路用では電極に誘起させた電圧の位相を基準とする。3相電路用は各電極に誘起された位相から又は誘起電圧の大きさを含めた位相から、基準位相を求めて零相電流に対し同期検波を行い、抵抗分漏れ電流を求める。 At least two copper tape or metal strip electrodes are attached to the inner periphery of the CT window. An electric field shield is attached to each electrode as a common ground potential surface on the side surface or side surface and outer peripheral side of the CT. As a result, the ground-to-ground potential of each phase voltage of a single-phase or three-phase power source arranged at an arbitrary position in the CT window is processed by the potential generated between the electrode and the electric field shield, and the primary side of the CT is processed. Calculate the phase of each phase. Based on the calculated phase, synchronous detection is performed with respect to the leakage current, and the resistance component current included in the leakage current is measured. For a single-phase circuit, the phase of the voltage induced in the electrode is used as a reference. For the three-phase circuit, the reference phase is obtained from the phase induced in each electrode or the phase including the magnitude of the induced voltage, and synchronous detection is performed on the zero-phase current to obtain the resistance leakage current.

例として、本発明によるCTの窓、及び外周の回りに貼付された電極、シールドと1次導体との静電結合を示す図2で説明する。鉄心7の回りには零相電流を検出するための2次巻線8が巻かれている。その周りには樹脂の外装ケース9で覆われている。導体でできた電極10、11、12、13がCTの窓の内周にお互いどうしは絶縁されて取り付けられている。大地アース側の電位を基準とするために、人体を介し又は直接アースに接続されている電界シールド14がCTの窓の内周を除いた回りに取り付けられている。1次側の導体15をR相、導体16を接地相側のS相とする。すると、各部品どうし間において静電容量が生じる。導体15、16付近の静電容量値を示すと、電極導体15と電極10との間の静電容量値をC1、電極10とシールド14間はC2、導体15とシールド間はC3、導体15と電極13間はC4、導体15と16間はC5、導体16と電極10間はC6、導体16と電極13間はC7、電極13とシールド14間はC8とすると、各導体の電位と導体付近の各電極の電位を求める等価回路は図3で表せる。図3の中で、電圧17の電圧Vは導体15の大地に対するR相の電圧である。導体16は大地と同電位である。電極10、13とシールド14間の電位は各々、電圧V1、V2で示す。するとV1,V2の出力はVの位相を維持したまま大きさのみの変化として表れる。よってV1、V2のどちらかをを基準位相として零相電流に対して同期検波を行うと、抵抗分漏れ電流が計測できる。デルタ結線され、1端子がB種接地された一般的な3相電路では1次側の活線相同士の電圧の位相範囲は60度である。このときは各電極の大きさと位相から1次電圧の位相範囲の中間の位相である30度の位相を算出し、この位相を基準位相とする。図4は本発明によるクランプタイプの抵抗分漏れ電流計の回路ブロック図である。CT部18は分割型CTで漏れ電流計測用の2次巻線8を有し、詳細は図2で示す通りである。バッファ19、20、21、22でインピーダンス変換させる。演算回路23ではCT18の窓内の1次側電圧の位相を検出する。バッファ19、20、21、22の出力の位相が同一又は180°の位相のみが含まれているときは単相電源と判断し、一つの電極の位相を基準位相をする。バッファ19、20、21、22の出力の位相の範囲が10°〜60°のときは1次側電圧を3相電源と判断して、1次側電源の位相範囲の1/2である30°を算出し、基準とする。この1次側電源の位相範囲の1/2である30°の位相検出方法は、バッファ19、20、21、22の出力を平均する方程式から解を求める方法や、連立方程式等により求める。演算回路の出力は整流回路24で直流にし、コンパレータ25で基準電圧と比較し、ノイズと信号レベルを選別し、計測状態をLED表示26で示す。計測の良好状態を確認したあと、演算出力はアンプ27で増幅後、同期検波28の基準信号とする。零相電流はCTの2次コイル8から出力され、アンプ29で増幅され、位相可変回路30で誤差位相を調整後同期検波28に信号として入力される。同期検波28の出力はフィルタ31を通過後直流レベルとなり、表示部32で零相電流の中に含まれる抵抗分電流を表示する。 As an example, FIG. 2 shows the CT window according to the present invention and the electrostatic coupling between the electrodes, shields and primary conductors attached around the periphery. A secondary winding 8 for detecting a zero-phase current is wound around the iron core 7. The periphery is covered with a resin outer case 9. Electrodes 10, 11, 12, and 13 made of a conductor are attached to the inner periphery of the CT window while being insulated from each other. In order to use the electric potential on the earth ground side as a reference, an electric field shield 14 connected to the earth via a human body or directly is attached around the inner periphery of the CT window. The primary conductor 15 is the R phase, and the conductor 16 is the ground phase S phase. As a result, capacitance is generated between the components. When the capacitance values near the conductors 15 and 16 are shown, the capacitance value between the electrode conductor 15 and the electrode 10 is C1, the gap between the electrode 10 and the shield 14 is C2, the gap between the conductor 15 and the shield C3, and the conductor 15 And the electrode 13 are C4, the conductors 15 and 16 are C5, the conductors 16 and 10 are C6, the conductors 16 and 13 are C7, and the electrodes 13 and the shield 14 are C8. An equivalent circuit for calculating the potential of each nearby electrode can be represented in FIG. In Figure 3, the voltage V R of the voltage 17 is the voltage of the R phase to earth conductor 15. The conductor 16 is at the same potential as the ground. The potentials between the electrodes 10 and 13 and the shield 14 are indicated by voltages V1 and V2, respectively. Then V1, the output of V2 is manifested as a change in only while magnitude maintaining the phase of V R. Therefore, if synchronous detection is performed on the zero-phase current using either V1 or V2 as a reference phase, the resistance leakage current can be measured. In a general three-phase electric circuit in which the delta connection is made and one terminal is B-type grounded, the phase range of the voltage between the primary active line phases is 60 degrees. At this time, a phase of 30 degrees that is an intermediate phase in the phase range of the primary voltage is calculated from the size and phase of each electrode, and this phase is set as a reference phase. FIG. 4 is a circuit block diagram of a clamp-type resistance leakage current meter according to the present invention. The CT section 18 is a split CT and has a secondary winding 8 for measuring leakage current, and details are as shown in FIG. Impedance conversion is performed by the buffers 19, 20, 21, and 22. The arithmetic circuit 23 detects the phase of the primary voltage in the CT 18 window. When the phases of the outputs of the buffers 19, 20, 21, and 22 are the same or include only a phase of 180 °, it is determined as a single phase power supply, and the phase of one electrode is set as a reference phase. When the output phase range of the buffers 19, 20, 21, and 22 is 10 ° to 60 °, the primary side voltage is determined to be a three-phase power source, which is 1/2 of the phase range of the primary side power source 30. Calculate ° as a reference. This 30 ° phase detection method that is ½ of the phase range of the primary power supply is obtained by a method of obtaining a solution from an equation that averages the outputs of the buffers 19, 20, 21, and 22, simultaneous equations, or the like. The output of the arithmetic circuit is converted to direct current by the rectifier circuit 24, compared with the reference voltage by the comparator 25, noise and signal level are selected, and the measurement state is indicated by the LED display 26. After confirming the good state of measurement, the calculation output is amplified by the amplifier 27 and then used as a reference signal for the synchronous detection 28. The zero-phase current is output from the CT secondary coil 8, amplified by the amplifier 29, adjusted in error phase by the phase variable circuit 30, and input as a signal to the synchronous detection 28. The output of the synchronous detection 28 becomes a DC level after passing through the filter 31, and the display unit 32 displays the resistance-divided current included in the zero-phase current.

従来の零相電流と電圧を取り込んだ抵抗分漏れ電流計測器の測定例を示す図The figure which shows the measurement example of the resistance leakage current measuring instrument which took in the conventional zero phase current and voltage 本発明による、CTの窓及び外周の回りに貼付された電極、シールドと1次導体との静電結合を示す図The figure which shows the electrostatic coupling of the electrode pasted around the window and outer periphery of CT, a shield, and a primary conductor by this invention 1次導体と1次導体に近接した電極及びシールドとの間の等価回路図Equivalent circuit diagram between primary conductor and electrode and shield in close proximity to primary conductor 本発明による抵抗分計測の回路ブロック例図Circuit block diagram of resistance measurement according to the present invention

符号の説明Explanation of symbols

1・・ブレーカ、2・・ブレーカの負荷側端子、3・・負荷電流が流れる電線、4・・電圧計測用クリップ、5・・分割型CT、6・・漏れ電流の抵抗分計測用計測器本体、7・・CTに使用する鉄心、8・・CTの2次巻線、9・・外装ケース、10・・電極1、11・・電極2、12・・電極3、13・・電極4、14・・電界シールド、15・・R相電源、16・・S相電源、17・・大地に対するR相電源の電位,18・・CT部,19,20,21,22,・・インピーダンス変換用バッファ、23・・電圧の大きさ及び位相を計測する演算回路、24・・整流回路、25・・コンパレータ回路、26・・LED表示、27・・増幅回路、28・・同期検波回路、29・・アンプ、30・・位相調整回路、31・・ローパスフィルタ、32・・表示部、C1・・R相と電極1間の静電容量、C2・・電極1と電界シールド間の静電容量、C3・・R相と電界シールド間の静電容量、C4・・R相と電極2間の静電容量、C5・・R相とS相間の静電容量、C6・・S相と電極1との間の静電容量、C7・・S相と電極2との間の静電容量、C8・・電極2と電界シールド間の静電容量、C9・・S相と電界シールド間の静電容量、V1・・電極1と電界シールド14間に生じる電位、V2・・電極2と電界シールド間14に生じる電位 1 .... Breaker 2. Load terminal of breaker 3 .... Electric wire through which load current flows 4 .... Clip for voltage measurement 5 .... Split CT, 6 .... Measuring instrument for resistance measurement of leakage current Main body, 7 ... Iron core used for CT, 8 ... CT secondary winding, 9 ... Exterior case, 10 ... Electrode 1, 11 ... Electrode 2, 12 ... Electrode 3, 13 ... Electrode 4 , 14 .. Electric field shield, 15 .. R phase power supply, 16 .. S phase power supply, 17 .. Potential of R phase power supply with respect to ground, 18 .. CT section, 19, 20, 21, 22,. Buffer, 23 .... arithmetic circuit for measuring voltage magnitude and phase, 24..rectifier circuit, 25..comparator circuit, 26..LED display, 27..amplifier circuit, 28..synchronous detection circuit, 29. ..Amplifier 30 ..Phase adjustment circuit 31 ..Low pass filter 2 ··· Display unit, capacitance between C1 ·· R phase and electrode 1, C2 ··· Capacitance between electrode 1 and electric field shield, C3 ·· Capacitance between R phase and electric field shield, C4 · · Capacitance between R phase and electrode 2, C5 ·· Capacitance between R phase and S phase, C6 ·· Capacitance between S phase and electrode 1, C7 ·· S phase and electrode 2 , Capacitance between C8... Electrode 2 and electric field shield, C9... Capacitance between S phase and electric field shield, V1... Potential generated between electrode 1 and electric field shield 14, V2 .. Potential generated between electrode 2 and electric field shield 14

Claims (3)

単相2線式、単相3線式、3相3線式電路の引込み線又は分岐回路において、CTを使用して、漏洩電流の計測により活線状態における電路の絶縁状態を測定する場合に、CTの窓に2つ以上の電極を設け、電極に誘起される電圧の位相を検出し、CTの2次側に出力される当該電路に流れる漏れ電流との位相を比較し、電路の絶縁抵抗に起因する漏れ電流を計測する漏れ電流計測器。   When measuring the insulation state of the circuit in the live line state by measuring leakage current using CT in the lead-in line or branch circuit of the single-phase two-wire type, single-phase three-wire type, three-phase three-wire type circuit , Provide two or more electrodes in the CT window, detect the phase of the voltage induced in the electrodes, compare the phase with the leakage current flowing in the electric circuit output to the secondary side of the CT, and insulate the electric circuit Leakage current measuring instrument that measures the leakage current caused by resistance. 単相2線式、単相3線式、3相3線式電路の引込み線又は分岐回路において、CTを使用して、活線状態における電路の絶縁状態を測定する場合に、CTの内周に2つ以上の電極を設け、電極に誘起される電圧の位相を検出し、検出された電圧に含まれる高調波成分を検出し、当該電路に流れる漏れ電流に含まれる高調波成分を比較し、電路の絶縁抵抗に起因する漏れ電流を計測する漏れ電流計測器。   When measuring the insulation state of the electric circuit in the live line state using CT in the lead-in line or branch circuit of the single-phase two-wire type, single-phase three-wire type, three-phase three-wire type electric circuit, the inner circumference of the CT Two or more electrodes are provided, and the phase of the voltage induced in the electrodes is detected, the harmonic component included in the detected voltage is detected, and the harmonic component included in the leakage current flowing through the circuit is compared. Leakage current measuring instrument that measures the leakage current caused by the insulation resistance of the electric circuit. 請求項1、2において示すCTに使用する電極と電界シールド材又はどちらか一方を、CTに取り付けられている残留電流、外部磁界の低減のための磁気シールドを兼用させて使用し、電路の絶縁抵抗に起因する漏れ電流を計測する漏れ電流計測器 Insulation of the electric circuit by using the electrode and the electric field shielding material used in the CT shown in claim 1 or 2 together with the magnetic shield for reducing the residual current and the external magnetic field attached to the CT. Leakage current measuring instrument that measures leakage current caused by resistance
JP2004218074A 2004-07-27 2004-07-27 Leakage current measuring instrument Pending JP2006038604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218074A JP2006038604A (en) 2004-07-27 2004-07-27 Leakage current measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218074A JP2006038604A (en) 2004-07-27 2004-07-27 Leakage current measuring instrument

Publications (1)

Publication Number Publication Date
JP2006038604A true JP2006038604A (en) 2006-02-09

Family

ID=35903754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218074A Pending JP2006038604A (en) 2004-07-27 2004-07-27 Leakage current measuring instrument

Country Status (1)

Country Link
JP (1) JP2006038604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069249A1 (en) * 2006-12-08 2008-06-12 Ohno, Takemi Leakage current determining apparatus and leakage current determining method
JP2009198282A (en) * 2008-02-21 2009-09-03 Hioki Ee Corp Leakage current measurement apparatus
CN102662126A (en) * 2012-05-25 2012-09-12 河北省电力公司检修分公司 Portable warning and protecting device for grounding fault of apparatus
CN104931832A (en) * 2015-06-23 2015-09-23 中山市木易万用仪器仪表有限公司 Leakage current generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069249A1 (en) * 2006-12-08 2008-06-12 Ohno, Takemi Leakage current determining apparatus and leakage current determining method
WO2008072287A1 (en) * 2006-12-08 2008-06-19 Ohno, Takemi Leakage current determining apparatus and leakage current determining method
JP2009198282A (en) * 2008-02-21 2009-09-03 Hioki Ee Corp Leakage current measurement apparatus
CN102662126A (en) * 2012-05-25 2012-09-12 河北省电力公司检修分公司 Portable warning and protecting device for grounding fault of apparatus
CN104931832A (en) * 2015-06-23 2015-09-23 中山市木易万用仪器仪表有限公司 Leakage current generator

Similar Documents

Publication Publication Date Title
JP3388440B2 (en) How to measure ground resistance
WO2019194754A1 (en) Link box with built-in insulator type voltage divider and inductive partial discharge sensor
JP5301081B2 (en) Double-insulated electrical measuring instrument
CN105359365B (en) Method and apparatus for complexity, common ground error protection in high pressure electric system
JP2006234800A (en) Device for measuring ground resistance
JP2006071341A (en) Insulation monitoring device and method of electric installation
JP2006038604A (en) Leakage current measuring instrument
JP2000206162A (en) Method and system for measuring grounding resistance
JP2019045315A (en) Partial discharge measurement device
JP2021081240A (en) Electric signal detector
Sarmiento et al. Survey of low ground electrode impedance measurements
WO2018034260A1 (en) Open phase detecting system, open phase detecting device and open phase detecting method
CN113203926B (en) Direct-current withstand voltage tester and method for inter-phase lap joint water conduit of water-cooled generator
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JP2014142230A (en) High voltage insulation monitoring method and high voltage insulation monitoring device
JP3009323B2 (en) Power cable insulation diagnostic device
JP2009047663A (en) Partial discharge detecting technique for electric equipment and device thereof
CN206975165U (en) A kind of low current synchronous signal sensor device
JP3390691B2 (en) Current measuring device
RU2556332C1 (en) Leakage current monitor in load of single-phase rectifier
JP6532264B2 (en) Current detection device
JP2577825B2 (en) Non-power failure insulation diagnostic device
JP3540778B2 (en) Total power measurement method for specific load and total power measurement device for specific load
JP2002277496A (en) Measuring method for dielectric loss tangent of cable
JPH0428065Y2 (en)