JP2009047663A - Partial discharge detecting technique for electric equipment and device thereof - Google Patents

Partial discharge detecting technique for electric equipment and device thereof Download PDF

Info

Publication number
JP2009047663A
JP2009047663A JP2007216563A JP2007216563A JP2009047663A JP 2009047663 A JP2009047663 A JP 2009047663A JP 2007216563 A JP2007216563 A JP 2007216563A JP 2007216563 A JP2007216563 A JP 2007216563A JP 2009047663 A JP2009047663 A JP 2009047663A
Authority
JP
Japan
Prior art keywords
partial discharge
frequency current
output
current transformer
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007216563A
Other languages
Japanese (ja)
Other versions
JP5256483B2 (en
Inventor
Toshiaki Ueda
俊明 植田
Yoshinori Nagai
美徳 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Chubu Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Chubu Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Chubu Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007216563A priority Critical patent/JP5256483B2/en
Publication of JP2009047663A publication Critical patent/JP2009047663A/en
Application granted granted Critical
Publication of JP5256483B2 publication Critical patent/JP5256483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attempt to solve controversial object that since, when partial discharge of electric equipment is detected with the high frequency CT technique, measuring of two earthing wire currents is required for denoising, workability is poor resulted in difficulty of accurate denoising. <P>SOLUTION: A high frequency CT is attached to each of the two earthing wires with different partial discharge signals and levels of noise. Comparing the amplitude of signals detected from a first and a second high frequency CT, when signals from the first high frequency current transformer is equal or less than signals from the second high frequency current transformer, the output is set to 0, while when signals from the first high frequency current transformer is larger than signals from the second high frequency current transformer, the output is generated to maintain as n periods classification of power supply voltage. When it counts n periods, by superimposing the maintained output signals of n periods, existence or nonexistence of partial discharge is detected based on whether output signal concentrates in a specific time period. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、変圧器などの電気機器における部分放電の検出方法とその装置に関するものである。   The present invention relates to a method and apparatus for detecting partial discharge in electrical equipment such as a transformer.

変圧器や遮断器などの電気機器は、その絶縁体中に微小な空隙状欠陥などの存在や、絶縁体表面の汚損などの影響により当該部分に電界が集中して部分放電と称呼される微弱な放電が発生する。部分放電が発生すると、発生部分の絶縁体が劣化し、長期間後には絶縁破壊にまで進行する虞がある。
この部分放電を検出する手法としては、特許文献1で記載されているように、
(a)変圧器などの測定対象機器の主回路に直接カップリングコンデンサを接続し、部分放電の発生に伴う電圧変動から部分放電を検出する電気的手法(以下CC法という)。
(b)接地線に高周波CT(変流器)を取り付け、部分放電の発生を漏れ電流として測定する電気的手法(以下高周波CT法という)。
(c)部分放電発生に伴う弾性波振動や放電音を音響的に検出する診断測定法(以下AE法という)。
がある。
Electrical devices such as transformers and circuit breakers are weak, which is called partial discharge because the electric field concentrates on the part due to the presence of minute void defects in the insulator and the contamination of the insulator surface. Discharge occurs. When the partial discharge occurs, the insulator in the generated portion deteriorates, and there is a risk that the dielectric breakdown will progress after a long period of time.
As a technique for detecting this partial discharge, as described in Patent Document 1,
(A) An electrical method (hereinafter referred to as CC method) in which a coupling capacitor is directly connected to a main circuit of a measurement target device such as a transformer, and partial discharge is detected from voltage fluctuations accompanying partial discharge.
(B) An electrical method (hereinafter referred to as a high-frequency CT method) in which a high-frequency CT (current transformer) is attached to the ground wire and the occurrence of partial discharge is measured as a leakage current.
(C) A diagnostic measurement method (hereinafter referred to as AE method) for acoustically detecting elastic wave vibration and discharge sound accompanying partial discharge generation.
There is.

上記した検出方法のうち、(b)の高周波CT法については特許文献2が公知となっている。この文献では、測定対象機器の接地線に高周波CTを取り付け、部分放電により発生する微弱なパルス電流が接地線に流れるのを検出するものであるが、その際、接地線には測定したいパルス電流以外にノイズが検出される。このノイズ除去のために接地線電流を2ヶ所測定して差分をとってノイズを打ち消すことが記載されている。
また、(c)のAE法におけるノイズ除去については、特許文献1に記載されている。
特開2006−17753 特開平9−5386
Among the detection methods described above, Patent Document 2 is known for the high-frequency CT method (b). In this document, a high-frequency CT is attached to the ground line of the device to be measured, and a weak pulse current generated by partial discharge is detected to flow through the ground line. Besides, noise is detected. In order to eliminate this noise, it is described that the ground line current is measured at two points and the difference is taken to cancel the noise.
Further, the noise removal in the AE method of (c) is described in Patent Document 1.
JP 2006-17753 A JP-A-9-5386

高周波CT法によって部分放電測定時のノイズ除去のためには接地線電流を2つ測定する必要がある。1つはノイズと部分放電信号、他の1つはノイズのみである。そのためには、接地線電流を測定する高周波CTの取り付け位置はある程度離した接地線に設置する必要があり、次のような問題が生じる。
(1)離れた位置では、ノイズの波形は似ているがその大きさ、位相などが異なってくる。この大きさ、位相を同一に合わせてノイズを打ち消すためには位相調整器と増幅器(減衰器)が必要になる。測定現場によっては、大きさ、位相を合わせても、微妙に波形が同一とはならず精度のよいノイズ除去ができない。
(2)ノイズと部分放電信号が似ている場合、大きさ、位相を合わせる際に誤って部分放電信号を消してしまい、測定結果としては誤測定の虞が生じる。
(3)測定現場での実作業では、高周波CTの取り付け位置が離れた2ヶ所に存在することにより測定ケーブルの引き回しなどの作業が大変なものとなっている。
In order to remove noise at the time of partial discharge measurement by the high frequency CT method, it is necessary to measure two ground line currents. One is noise and a partial discharge signal, and the other is only noise. For this purpose, it is necessary to install the high frequency CT for measuring the ground line current on a ground line separated to some extent, which causes the following problems.
(1) At a distant position, the noise waveform is similar, but its magnitude, phase, etc. are different. A phase adjuster and an amplifier (attenuator) are required to cancel the noise by matching the magnitude and phase. Depending on the measurement site, even if the size and phase are matched, the waveforms are not exactly the same, and accurate noise removal cannot be performed.
(2) When the noise and the partial discharge signal are similar, the partial discharge signal is mistakenly deleted when matching the magnitude and phase, and there is a risk of erroneous measurement as a measurement result.
(3) In the actual work at the measurement site, the installation of the high-frequency CT is located at two places apart from each other, so that the work such as routing of the measurement cable becomes difficult.

本発明が目的とするところは、2つの高周波CT取り付位置の接近配置を可能とし、且つ精度のよいノイズ除去を可能とした電気機器の部分放電検出方法とその装置を提供することにある。   An object of the present invention is to provide a partial discharge detection method and apparatus for an electrical device that enables close placement of two high-frequency CT mounting positions and enables accurate noise removal.

本発明の請求項1は、複数の接地線を有する電気機器の部分放電検出において、
前記接地線で、接地線に流れる部分放電信号とノイズのレベルが異なる2つの接地線にそれぞれ高周波変流器を取り付け、第1と第2の高周波変流器にて検出された信号の大小を比較し、第1高周波変流器≦第2高周波変流器のときに出力を0とし、第1高周波変流器>第2高周波変流器のときに出力を発生してこの出力を電源電圧のn周期分保存し、保存されたn周期分の出力信号を重畳して特定の時間帯で出力が集中しているか否かで部分放電の発生の有無を検出することを特徴とした検出法である。
According to claim 1 of the present invention, in partial discharge detection of an electrical device having a plurality of ground wires,
A high-frequency current transformer is attached to each of two ground lines having noise levels different from those of the partial discharge signal flowing through the ground line, and the magnitudes of the signals detected by the first and second high-frequency current transformers are reduced. In comparison, the output is 0 when the first high-frequency current transformer ≦ the second high-frequency current transformer, and the output is generated when the first high-frequency current transformer> the second high-frequency current transformer. And detecting the presence or absence of partial discharge based on whether or not the output is concentrated in a specific time zone by superimposing the stored output signals for n cycles It is.

本発明の請求項2は、前記異なる2つの接地線の一つは、三相の1次側巻線の中性点接地線であることを特徴とした検出法である。   A second aspect of the present invention is a detection method characterized in that one of the two different ground lines is a neutral point ground line of a three-phase primary winding.

本発明の請求項3は、前記電気機器はモールドされた接地形計器用変圧器で、この変圧器のモールド部分にAE法によるセンサを取り付け、AEセンサの検出信号と前記第1,第2高周波変流器の比較出力の出力時間が所定値範囲内に発生したときに部分放電発生した相を特定することを特徴とした検出法である。   According to a third aspect of the present invention, the electric device is a molded grounding-type instrument transformer, and a sensor by an AE method is attached to a molded portion of the transformer, and a detection signal of the AE sensor and the first and second high-frequency elements are attached. The detection method is characterized in that the phase in which partial discharge occurs is specified when the output time of the comparison output of the current transformer is within a predetermined value range.

本発明の請求項4は、複数の接地線を有する電気機器の部分放電検出装置であって、接地線を流れる部分放電信号とノイズのレベルが異なる2つの接地線にそれぞれ高周波変流器を取り付け、検出される信号を演算処理部によって処理するものにおいて、
前記演算処理部は、前記2つの高周波変流器のうち、第1の高周波変流器にて検出された信号と第2の高周波変流器にて検出された信号の大小を比較し、第1高周波変流器≦第2高周波変流器のときに出力を0とし、第1高周波変流器>第2高周波変流器のときに出力を発生する手段と、発生した出力信号を電源電圧のn周期分周期毎に区切って保存し、n周期となったときにn周期分を重畳する手段と、重畳された信号が閾値を超え、特定時間帯に出力が集中しているか否かを判断する手段を備えたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a partial discharge detection device for an electrical apparatus having a plurality of ground lines, wherein a high frequency current transformer is attached to each of two ground lines having different levels of noise and partial discharge signals flowing through the ground line. In the processing of the detected signal by the arithmetic processing unit,
The arithmetic processing unit compares the magnitude of the signal detected by the first high frequency current transformer with the magnitude of the signal detected by the second high frequency current transformer among the two high frequency current transformers, When 1 high-frequency current transformer ≦ second high-frequency current transformer, the output is set to 0, and when first high-frequency current transformer> second high-frequency current transformer, the means for generating the output and the generated output signal as the power supply voltage Means for superimposing and storing n periods when n periods, and whether or not the superimposed signal exceeds a threshold and the output is concentrated in a specific time zone. It is characterized by comprising means for determining.

本発明の請求項5は、前記異なる2つの接地線の1つは、三相の1次側巻線の中性点接地線であることを特徴としたものである。   The fifth aspect of the present invention is characterized in that one of the two different ground lines is a neutral point ground line of a three-phase primary winding.

本発明の請求項6は、前記電気機器はモールドされた接地形計器用変圧器で、この変圧器のモールド部分にAE法によるセンサを取り付け、AEセンサの検出信号と前記第1,第2高周波変流器の比較出力信号との出力時間が所定値範囲内に発生したときに部分放電発生した相を特定するよう構成したことを特徴としたものである。   According to a sixth aspect of the present invention, the electrical device is a molded grounding-type instrument transformer, and a sensor by an AE method is attached to a molded portion of the transformer, and a detection signal of the AE sensor and the first and second high-frequency components are attached. The present invention is characterized in that it is configured to identify a phase in which partial discharge has occurred when an output time with a comparative output signal of the current transformer is within a predetermined value range.

以上のとおり、本発明によれば、2個の高周波CT出力の大小で部分放電信号とノイズとの区分が簡単にできるので、ノイズを打ち消す調整作業が不要となると共に、位相調整器と増幅器が不要となる。また、2つの高周波CTの取り付け位置が近いことにより、測定のための作業性が向上するものである。また、AE法を併用することにより、部分放電箇所がどの相であるかの特定が可能となると共に、2つの高周波CTにより接地線から流れてくるノイズをカットし、AEセンサにより電気的なノイズがカットできることにより、さらに測定精度が向上できるものである。   As described above, according to the present invention, since the partial discharge signal and the noise can be easily distinguished by the magnitude of the two high-frequency CT outputs, the adjustment work for canceling the noise becomes unnecessary, and the phase adjuster and the amplifier are provided. It becomes unnecessary. In addition, the workability for measurement is improved due to the close attachment positions of the two high-frequency CTs. In addition, by using the AE method in combination, it is possible to specify the phase of the partial discharge location, and the noise flowing from the ground line is cut by the two high-frequency CTs, and the electric noise is detected by the AE sensor. Can cut the measurement accuracy.

図1は、本発明の実施例を示す構成図で、接地形計器用変圧器GPTに適用した場合を示したものである。接地形計器用変圧器GPTの場合、接地線としては1次巻線の中性点端子(端子0)接地、フレーム(架台)接地、2次巻線接地、及び3次巻線接地と複数の接地線が存在するが、ここでは1次巻線中性点の端子0の接地線に第1の高周波CT1を取り付け、フレーム接地線Eに第2の高周波CT2を取り付ける。CT1、CT2の検出信号は、図2で示す検出装置に出力される。   FIG. 1 is a block diagram showing an embodiment of the present invention, and shows a case where the present invention is applied to a grounded instrument transformer GPT. In the case of a grounded instrument transformer GPT, the grounding wire includes a neutral point terminal (terminal 0) grounding of the primary winding, a frame (frame) grounding, a secondary winding grounding, a tertiary winding grounding, and a plurality of Although a ground wire exists, the first high-frequency CT1 is attached to the ground wire of the terminal 0 of the primary winding neutral point, and the second high-frequency CT2 is attached to the frame ground wire E. The detection signals of CT1 and CT2 are output to the detection device shown in FIG.

図2において、1,11はパルス抽出部で、特定周波数帯のパルスを取り出す。2,12はパルス抽出部から入力された信号を増幅するための増幅器、3,13はA/D変換器で、入力されたパルス信号をディジタル信号に変換する。4,14は記憶部で、抽出されたパルスの大きさと、その電源電圧波形の1周期間の角度を順次記憶する。5は比較処理部で、記憶部4,14に記憶されたCT1、CT2の検出信号は、電源電圧の1周期波形における同一時点の角度で比較されてノイズの除去が実行される。6は重畳記憶部で、この記憶部6はノイズの除去された部分放電信号をn回重ねて記憶し、その結果を表示部7によってビジュアル表示する。なお、5、6、7の機能はパソコンが使用される。   In FIG. 2, reference numerals 1 and 11 denote pulse extraction units which extract pulses in a specific frequency band. Reference numerals 2 and 12 are amplifiers for amplifying the signal input from the pulse extraction unit, and reference numerals 3 and 13 are A / D converters for converting the input pulse signal into a digital signal. Reference numerals 4 and 14 denote storage units that sequentially store the size of the extracted pulse and the angle of one cycle of the power supply voltage waveform. Reference numeral 5 denotes a comparison processing unit, and the detection signals of CT1 and CT2 stored in the storage units 4 and 14 are compared at an angle at the same time point in one cycle waveform of the power supply voltage, and noise removal is executed. Reference numeral 6 denotes a superposition storage unit, which stores the partial discharge signal from which noise has been removed n times and stores the result, and visually displays the result on the display unit 7. A personal computer is used for the functions 5, 6 and 7.

図3はパルス検出から表示までの原理説明のための波形図で、(a)図は、第1の測定部(1〜4)によって検出されたCT1のパルス波形、(b)図は、第2の(11〜14)によって検出されたCT2のパルス波形で、電源電圧波形の同一位相時点での波形である。各図において、PDは部分放電信号を、また、NOはノイズを示したもので、CT1の部分放電信号PDはCT2の部分放電信号PDよりも大きな信号となっている。逆に、ノイズNOは、CT1側が小さくCT2側が大きくなっている。(c)図は、比較処理部5で電源電圧の1周期波形における同一時点の合成処理波形で、ノイズが除去されてPD信号が残される。部分放電は電源電圧の1周期の特定位相に集中するという現象に基づき、除去演算をn回まとめて表示すると(d)図のようになる。   3A and 3B are waveform diagrams for explaining the principle from pulse detection to display. FIG. 3A is a pulse waveform of CT1 detected by the first measurement unit (1 to 4), and FIG. 2 is a pulse waveform of CT2 detected by (11-14) of No. 2 and is a waveform at the same phase of the power supply voltage waveform. In each figure, PD indicates a partial discharge signal, and NO indicates noise. The CT1 partial discharge signal PD is a larger signal than the CT2 partial discharge signal PD. Conversely, the noise NO is small on the CT1 side and large on the CT2 side. (C) The figure shows the combined processing waveform at the same time in the one-cycle waveform of the power supply voltage in the comparison processing unit 5, and the noise is removed and the PD signal is left. Based on the phenomenon that the partial discharge concentrates on a specific phase of one cycle of the power supply voltage, the removal calculation is collectively displayed n times as shown in FIG.

なお、(a)(b)図で示す部分放電信号の大小については、図4で示す実験結果でも明らかである。この実験は、接地形計器用変圧器GPT内部の1次巻線部で部分放電が発生した場合で、接地形計器用変圧器GPTの1次コイルに500pCの電荷を注入ものであって、線アで示す1次巻線中性点の端子0の接地線の測定値が、線エで示すフレーム接地線Eの測定値に比較して大きな値を示している。   The magnitudes of the partial discharge signals shown in FIGS. 4A and 4B are also apparent from the experimental results shown in FIG. This experiment was conducted when a partial discharge occurred in the primary winding portion inside the grounded-type instrument transformer GPT, and an electric charge of 500 pC was injected into the primary coil of the grounded-type instrument transformer GPT. The measured value of the ground wire of the terminal 0 at the neutral point of the primary winding indicated by A is larger than the measured value of the frame ground wire E indicated by the wire D.

図5は比較処理部5と重畳記憶部6の具体的な処理フローを示したものである。
手段S1では、記憶部4,14に格納されている同時点のCT1、CT2データを取得し、手段S2で第1の演算処理を実行する。手段S2での処理は、CT1、CT2のデータを順次時間毎に比較してCT1>CT2のときに出力し、CT1≦CT2のときには0とする。すなわち、図3(a),(b)で示す波形図において1番目のパルスデータはノイズNOで、このノイズの場合にはCT2が大きいので出力は0となる。次に2番目のパルスデータはPDでCT1の方が大きいので出力される。以下同様に順次比較することにより図3(c)のようにノイズが除去された部分放電波形の時系列データとなる。これを一定時間分、例えば、接地形計器用変圧器GPTに印加される1周期の長さに区分し、この区分された周期のn回分を保存する。
FIG. 5 shows a specific processing flow of the comparison processing unit 5 and the superposition storage unit 6.
The means S1 acquires CT1 and CT2 data at the same point stored in the storage units 4 and 14, and the means S2 executes the first calculation process. In the processing in means S2, the data of CT1 and CT2 are sequentially compared for each time and output when CT1> CT2, and 0 when CT1 ≦ CT2. That is, in the waveform diagrams shown in FIGS. 3A and 3B, the first pulse data is noise NO. In the case of this noise, CT2 is large and the output is 0. Next, the second pulse data is PD and is output because CT1 is larger. In the same manner, the time series data of the partial discharge waveform from which noise is removed as shown in FIG. This is divided into a certain amount of time, for example, the length of one cycle applied to the grounded instrument transformer GPT, and n times of the divided cycle are stored.

手段S3は第2の演算処理を行うもので、この手段では時間軸の長さを1周期毎に区切ってn回分加算することで図3(d)のようになる。なお、加算結果は、電源の印加電圧に同期していることで、全時間軸にわたって出力が一様に発生することはない。
手段S4では加算されたデータに対して、所定の閾値を超え、且つ特定の時間帯に出力が集中している場合に部分放電発生ありとして判断する。また、そうでない場合には部分放電なしとして判断される。
The means S3 performs the second arithmetic processing. In this means, the length of the time axis is divided every period and added n times as shown in FIG. Since the addition result is synchronized with the applied voltage of the power supply, the output is not uniformly generated over the entire time axis.
The means S4 determines that partial discharge has occurred when the added data exceeds a predetermined threshold and the output is concentrated in a specific time zone. Otherwise, it is determined that there is no partial discharge.

したがって、この実施例によれば、2個の高周波CT出力の大小で部分放電信号とノイズとの区分が簡単にできるので、ノイズを打ち消す作業が不要となって位相調整器と増幅器が不要となる。また、2つの高周波CTの取り付け位置が近いことにより、測定のための作業性が向上するものである。   Therefore, according to this embodiment, since the partial discharge signal and the noise can be easily distinguished by the magnitude of the two high-frequency CT outputs, the work for canceling the noise is not required, and the phase adjuster and the amplifier are not required. . In addition, the workability for measurement is improved due to the close attachment positions of the two high-frequency CTs.

図6は第2の実施例を示したものである。この実施例は、前述した第1の実施例にAE法による検出を追加したものである。すなわち、第1の実施例では、高周波CTの1つを1次巻線の中性点からの電流を検出しているため、どの相での部分放電かの判断が出来ない。この実施例はこれを補うもので、AE法に基づくセンサAEを取り付けて超音波を測定するものである。その際、例えば、3相の接地形計器用変圧器GPTの場合、1相毎にモールドされて3個のモールド部分で構成されている。このため、測定に当たっては各相1回づつ3回に渡って測定するか、若しくは各相それぞれにAEセンサを設置して三相同時に測定する。
AE法に基づく検出装置としては、図7のような構成のものが使用される。AEは集音するセンサ、20は増幅器やフィルタ及びA/D変換器などよりなる測定部、21はディジタルオシロスコープ、22はパソコンで、演算処理部や表示部を有している。このパソコンは図2で示すパソコンと共用される。
FIG. 6 shows a second embodiment. In this embodiment, detection by the AE method is added to the first embodiment described above. That is, in the first embodiment, since the current from the neutral point of the primary winding is detected in one of the high-frequency CTs, it is impossible to determine which phase the partial discharge is in. In this embodiment, this is supplemented by attaching a sensor AE based on the AE method to measure ultrasonic waves. At that time, for example, in the case of a three-phase grounding-type instrument transformer GPT, each phase is molded and is constituted by three molded parts. For this reason, in the measurement, each phase is measured once three times, or three phases are measured simultaneously by installing an AE sensor in each phase.
As a detection apparatus based on the AE method, one having a configuration as shown in FIG. 7 is used. AE is a sensor for collecting sound, 20 is a measuring unit including an amplifier, a filter and an A / D converter, 21 is a digital oscilloscope, 22 is a personal computer, and has an arithmetic processing unit and a display unit. This personal computer is shared with the personal computer shown in FIG.

高周波CT法による演算と、AE法による演算結果は図8のような波形経過となる。図8(a)は、高周波CTによって検出されたパルスを図5で示す手段S2により演算された処理後のもので、図3(c)の波形である。図8(b)はAEセンサによって検出した波形で、AEセンサの場合も接地形計器用変圧器GPTに印加される1周期の長さに区分し、この区分された周期のn回分を保存する。高周波CTによって検出された信号とAEセンサによって検出された信号の出力のずれが、例えば、2ms以内のように一定時間の範囲内で両信号が出力されたとき、合成処理演算を実行することにより図8(c)のような波形になる。これを手段S3により1〜n周期分を加算することにより、測定対象の相波形が図8(d)のように表示される。これを相毎に切り替えることにより、どの相に部分放電が発生しているか否かが判別できる。   The calculation results by the high-frequency CT method and the calculation result by the AE method are as shown in FIG. FIG. 8 (a) shows the waveform of FIG. 3 (c) after the pulse detected by the high frequency CT is processed by the means S2 shown in FIG. FIG. 8B shows a waveform detected by the AE sensor. In the case of the AE sensor, the waveform is divided into lengths of one cycle applied to the grounded instrument transformer GPT, and n times of the divided cycles are stored. . When the difference between the output of the signal detected by the high frequency CT and the signal detected by the AE sensor is, for example, within a certain time range within 2 ms, the combination processing operation is executed. The waveform is as shown in FIG. By adding 1 to n cycles by means S3, the phase waveform to be measured is displayed as shown in FIG. By switching this for each phase, it can be determined in which phase partial discharge has occurred.

図9は実機モデルによる測定結果である。この実験では、接地形計器用変圧器GTPの測定を模擬し、1次巻線中性点の端子0の接地点に高周波CTを取り付けて、また、AEセンサはモールド部に取り付けて測定を実施した。この測定結果は、部分放電100pC発生時のもので、線アは電源電圧波形、線イが高周波CTによる波形、線ウがAEセンサによる波形である。図9でも明らかなように、高周波CT法及びAE法ともに電源電圧波形の60°、220°…近辺に部分放電が発生し、高周波CT法とAE法を併せて採用することにより、部分放電の発生相の把握が可能であることが判明した。   FIG. 9 shows the measurement results based on the actual machine model. In this experiment, the measurement of the grounded instrument transformer GTP was simulated, the high frequency CT was attached to the grounding point of the primary winding neutral terminal 0, and the AE sensor was attached to the mold part, and the measurement was carried out. did. The measurement results are obtained when partial discharge 100 pC is generated. Line A is a power supply voltage waveform, line A is a waveform by high-frequency CT, and line C is a waveform by an AE sensor. As is clear from FIG. 9, partial discharge occurs in the vicinity of the power supply voltage waveform of 60 °, 220 °... In both the high frequency CT method and the AE method, and by using the high frequency CT method and the AE method together, It was found that the generation phase can be grasped.

したがって、この実施例によれば、第1の実施例に加えて更に部分放電箇所がどの相であるかの特定が可能となると共に、2つの高周波CTにより接地線から流れてくるノイズをカットし、AEセンサにより電気的なノイズがカットできることにより、さらに測定精度が向上できるものである。   Therefore, according to this embodiment, in addition to the first embodiment, it is possible to specify which phase the partial discharge portion is in, and the noise flowing from the ground line is cut by two high frequency CTs. Since the electrical noise can be cut by the AE sensor, the measurement accuracy can be further improved.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 本発明の高周波CT法による構成図。The block diagram by the high frequency CT method of this invention. 本発明の作用を説明するためのパルス信号波形図。The pulse signal waveform diagram for demonstrating the effect | action of this invention. 高周波CTによる異なる検出位置での波形図。The wave form diagram in the different detection position by high frequency CT. 本発明の演算処理フロー図。The operation processing flowchart of this invention. 本発明の他の実施例による構成図。The block diagram by the other Example of this invention. AE法による検出装置の構成図。The block diagram of the detection apparatus by AE method. 説明のための波形図。Waveform diagram for explanation. 実機モデルによる測定結果図。The measurement result figure by a real machine model.

符号の説明Explanation of symbols

1、11… パルス抽出部
2、12… 増幅器
3、13… A/D変換器
4、14… 記憶部
5、… 比較処理部
6、… 重畳記憶部
7、… 表示部
20… 測定部
21… ディジタルオシロスコープ
22… パソコン
DESCRIPTION OF SYMBOLS 1, 11 ... Pulse extraction part 2, 12 ... Amplifier 3, 13 ... A / D converter 4, 14 ... Memory | storage part 5, ... Comparison processing part 6, ... Superimposition memory | storage part 7, ... Display part 20 ... Measurement part 21 ... Digital oscilloscope 22 ... PC

Claims (6)

複数の接地線を有する電気機器の部分放電検出において、
前記接地線で、接地線に流れる部分放電信号とノイズのレベルが異なる2つの接地線にそれぞれ高周波変流器を取り付け、第1と第2の高周波変流器にて検出された信号の大小を比較し、第1高周波変流器≦第2高周波変流器のときに出力を0とし、第1高周波変流器>第2高周波変流器のときに出力を発生してこの出力を電源電圧のn周期分区分して保存し、保存されたn周期分の出力信号を重畳して特定の時間帯で出力が集中しているか否かで部分放電の発生の有無を検出することを特徴とした電気機器の部分放電検出方法。
In partial discharge detection of electrical equipment having a plurality of ground wires,
A high-frequency current transformer is attached to each of two ground lines having noise levels different from those of the partial discharge signal flowing through the ground line, and the magnitudes of the signals detected by the first and second high-frequency current transformers are reduced. In comparison, the output is 0 when the first high-frequency current transformer ≦ the second high-frequency current transformer, and the output is generated when the first high-frequency current transformer> the second high-frequency current transformer. Characterized in that it is divided into n periods and stored, and the presence or absence of partial discharge is detected by superimposing the stored output signals for n periods and determining whether the output is concentrated in a specific time zone. Method for detecting partial discharge of electrical equipment.
前記異なる2つの接地線の一つは、三相の1次側巻線の中性点接地線であることを特徴とした請求項1記載の電気機器の部分放電検出方法。 2. The partial discharge detection method for an electric device according to claim 1, wherein one of the two different ground lines is a neutral point ground line of a three-phase primary winding. 前記電気機器はモールドされた接地形計器用変圧器で、この変圧器のモールド部分にAE法によるセンサを取り付け、AEセンサの検出信号と前記
第1,第2高周波変流器の比較出力の出力時間が所定値範囲内に発生したときに部分放電発生した相を特定することを特徴とした請求項2記載の電気機器の部分放電検出方法。
The electrical equipment is a molded grounding-type instrument transformer. A sensor by the AE method is attached to the molded part of the transformer, and the detection signal of the AE sensor and the comparison output of the first and second high-frequency current transformers are output. The method for detecting a partial discharge of an electric device according to claim 2, wherein the phase in which the partial discharge is generated when the time is generated within a predetermined value range is specified.
複数の接地線を有する電気機器の部分放電検出装置であって、接地線を流れる部分放電信号とノイズのレベルが異なる2つの接地線にそれぞれ高周波変流器を取り付け、検出される信号を演算処理部によって処理するものにおいて、
前記演算処理部は、前記2つの高周波変流器のうち、第1の高周波変流器にて検出された信号と第2の高周波変流器にて検出された信号の大小を比較し、第1高周波変流器≦第2高周波変流器のときに出力を0とし、第1高周波変流器>第2高周波変流器のときに出力を発生する手段と、発生した出力信号を電源電圧のn周期分周期毎に区切って保存し、n周期となったときにn周期分を重畳する手段と、重畳された信号が閾値を超え、特定時間帯に出力が集中しているか否かを判断する手段を備えたことを特徴とする電気機器の部分放電検出装置。
A partial discharge detection device for an electrical device having a plurality of ground lines, in which a high frequency current transformer is attached to each of two ground lines having different noise levels from the partial discharge signal flowing through the ground line, and the detected signal is processed. In what is processed by the department,
The arithmetic processing unit compares the magnitude of the signal detected by the first high frequency current transformer with the magnitude of the signal detected by the second high frequency current transformer among the two high frequency current transformers, When 1 high-frequency current transformer ≦ second high-frequency current transformer, the output is set to 0, and when first high-frequency current transformer> second high-frequency current transformer, the means for generating the output and the generated output signal as the power supply voltage Means for superimposing and storing n periods when n periods, and whether or not the superimposed signal exceeds a threshold and the output is concentrated in a specific time zone. An apparatus for detecting partial discharge of electrical equipment, characterized by comprising means for determining.
前記異なる2つの接地線の1つは、三相の1次側巻線の中性点接地線であることを特徴とした請求項4記載の電気機器の部分放電検出装置。 5. The partial discharge detection device for an electric device according to claim 4, wherein one of the two different ground lines is a neutral point ground line of a three-phase primary winding. 前記電気機器はモールドされた接地形計器用変圧器で、この変圧器のモールド部分にAE法によるセンサを取り付け、AEセンサの検出信号と前記
第1,第2高周波変流器の比較出力信号との出力時間が所定値範囲内に発生したときに部分放電発生した相を特定するよう構成したことを特徴とした請求項5記載の電気機器の部分放電検出装置。
The electrical equipment is a molded grounding type instrument transformer. A sensor by the AE method is attached to the molded part of the transformer, and a detection signal of the AE sensor and a comparison output signal of the first and second high-frequency current transformers 6. The partial discharge detection device for an electric device according to claim 5, wherein a phase in which partial discharge has occurred is specified when the output time is within a predetermined value range.
JP2007216563A 2007-08-23 2007-08-23 Method and apparatus for detecting partial discharge of electrical equipment Active JP5256483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216563A JP5256483B2 (en) 2007-08-23 2007-08-23 Method and apparatus for detecting partial discharge of electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216563A JP5256483B2 (en) 2007-08-23 2007-08-23 Method and apparatus for detecting partial discharge of electrical equipment

Publications (2)

Publication Number Publication Date
JP2009047663A true JP2009047663A (en) 2009-03-05
JP5256483B2 JP5256483B2 (en) 2013-08-07

Family

ID=40500008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216563A Active JP5256483B2 (en) 2007-08-23 2007-08-23 Method and apparatus for detecting partial discharge of electrical equipment

Country Status (1)

Country Link
JP (1) JP5256483B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353649A (en) * 2016-09-18 2017-01-25 广东电网有限责任公司珠海供电局 Method for denoising partial discharge signals on basis of lifting wavelet transformation
JP2019120548A (en) * 2017-12-28 2019-07-22 九電テクノシステムズ株式会社 Insulation deterioration diagnostic device and insulation-deteriorated position orienting device
CN117148076A (en) * 2023-10-31 2023-12-01 南通豪强电器设备有限公司 Multi-feature fusion type high-voltage switch cabinet partial discharge identification method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506671U (en) * 1973-05-16 1975-01-23
JPS5246431A (en) * 1975-10-13 1977-04-13 Toshiba Corp Partial discharge detector of oil injected electrical equipment
JPS5780572A (en) * 1980-11-07 1982-05-20 Fuji Electric Co Ltd Inner abnormality monitor for oil-filled electric apparatus
JPS5821173A (en) * 1981-07-30 1983-02-07 Sumitomo Metal Ind Ltd Discriminator for detecting abnormality in power source system
JPS6486074A (en) * 1987-09-29 1989-03-30 Fuji Electric Co Ltd Operation checker of in-oil partial discharge type monitor apparatus
JPH08124771A (en) * 1994-10-19 1996-05-17 Matsushita Electric Ind Co Ltd Molded transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506671U (en) * 1973-05-16 1975-01-23
JPS5246431A (en) * 1975-10-13 1977-04-13 Toshiba Corp Partial discharge detector of oil injected electrical equipment
JPS5780572A (en) * 1980-11-07 1982-05-20 Fuji Electric Co Ltd Inner abnormality monitor for oil-filled electric apparatus
JPS5821173A (en) * 1981-07-30 1983-02-07 Sumitomo Metal Ind Ltd Discriminator for detecting abnormality in power source system
JPS6486074A (en) * 1987-09-29 1989-03-30 Fuji Electric Co Ltd Operation checker of in-oil partial discharge type monitor apparatus
JPH08124771A (en) * 1994-10-19 1996-05-17 Matsushita Electric Ind Co Ltd Molded transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353649A (en) * 2016-09-18 2017-01-25 广东电网有限责任公司珠海供电局 Method for denoising partial discharge signals on basis of lifting wavelet transformation
JP2019120548A (en) * 2017-12-28 2019-07-22 九電テクノシステムズ株式会社 Insulation deterioration diagnostic device and insulation-deteriorated position orienting device
CN117148076A (en) * 2023-10-31 2023-12-01 南通豪强电器设备有限公司 Multi-feature fusion type high-voltage switch cabinet partial discharge identification method and system
CN117148076B (en) * 2023-10-31 2024-01-26 南通豪强电器设备有限公司 Multi-feature fusion type high-voltage switch cabinet partial discharge identification method and system

Also Published As

Publication number Publication date
JP5256483B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
Sadeh et al. A new fault location algorithm for radial distribution systems using modal analysis
JP2010085386A (en) Apparatus for measuring superhigh frequency partial discharge and partial discharge position for high-voltage power apparatus
JPWO2016157912A1 (en) Insulation diagnostic apparatus and insulation diagnostic method for power equipment
US20180159310A1 (en) Arc fault circuit interrupter apparatus and methods using symmetrical component harmonic detection
JP2008051566A (en) Partial discharge measuring method for mold type instrument transformer by ae sensor
JP5256483B2 (en) Method and apparatus for detecting partial discharge of electrical equipment
JP5719970B2 (en) Scintillation estimation method
JP2010230497A (en) Insulation deterioration diagnostic device of high voltage power receiving facility
JP2010038602A (en) Method of detecting partial discharge by magnetic field measurement
JP2008191113A (en) Partial discharge detector for cable end terminal part
JP2019507344A (en) Apparatus and associated method for determining a ground fault
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JP6063354B2 (en) Conducted disturbance source search device
KR20140038261A (en) Apparatus for diagnosing a transformer and method for the same
JP6605992B2 (en) Insulation diagnostic apparatus and insulation diagnostic method for power equipment
JP2008215864A (en) Partial discharge detection device and partial discharge detection method of rotary electric machine
JP2019045315A (en) Partial discharge measurement device
JP6567230B1 (en) Arc ground fault detection method
JP2017181148A (en) Power cable insulation degraded position estimation method and estimation system
JP4353840B2 (en) Method for detecting partial discharge of electric circuit
JP7339881B2 (en) Partial discharge detection device and partial discharge detection method
JP2011252780A (en) Detection method of partial discharge of electrical device using magnetic field probe
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
CN109617017B (en) Generator stator grounding protection system, method and device
JP2011252779A (en) Detection method of partial discharge of electrical device using magnetic field probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5256483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150