JP6605992B2 - Insulation diagnostic apparatus and insulation diagnostic method for power equipment - Google Patents

Insulation diagnostic apparatus and insulation diagnostic method for power equipment Download PDF

Info

Publication number
JP6605992B2
JP6605992B2 JP2016040205A JP2016040205A JP6605992B2 JP 6605992 B2 JP6605992 B2 JP 6605992B2 JP 2016040205 A JP2016040205 A JP 2016040205A JP 2016040205 A JP2016040205 A JP 2016040205A JP 6605992 B2 JP6605992 B2 JP 6605992B2
Authority
JP
Japan
Prior art keywords
peak value
electromagnetic wave
discharge signal
wave sensor
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016040205A
Other languages
Japanese (ja)
Other versions
JP2017156238A (en
Inventor
広明 長
純一 佐藤
祐樹 藤井
恵一 佐々木
将邦 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016040205A priority Critical patent/JP6605992B2/en
Publication of JP2017156238A publication Critical patent/JP2017156238A/en
Application granted granted Critical
Publication of JP6605992B2 publication Critical patent/JP6605992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の実施形態は、電磁波センサを用いて電力機器から発生する部分放電を検出する電力機器の絶縁診断装置および絶縁診断方法に関する。   FIELD Embodiments described herein relate generally to an insulation diagnosis apparatus and insulation diagnosis method for a power device that detects partial discharge generated from the power device using an electromagnetic wave sensor.

部分放電は、スイッチギヤのような電力機器で生じる絶縁劣化を加速させる要因となるので、部分放電の検出による絶縁劣化診断が一般的に行われている。部分放電の検出では、電磁波を検出する手法があり、放電信号とノイズを区分けするため、商用周波電圧と同期しているか否かを判定するものが知られている(例えば、特許文献1参照)。また、複数の周波数帯を計測し、放送波と放電信号を区分けするものが知られている(例えば、特許文献2参照)。   Since partial discharge is a factor that accelerates insulation deterioration that occurs in power equipment such as switchgear, insulation deterioration diagnosis by detecting partial discharge is generally performed. In partial discharge detection, there is a method of detecting electromagnetic waves, and in order to distinguish a discharge signal from noise, there is known one that determines whether or not it is synchronized with a commercial frequency voltage (see, for example, Patent Document 1). . Moreover, what measures a several frequency band and classifies a broadcast wave and a discharge signal is known (for example, refer patent document 2).

しかしながら、部分放電は、放電信号が微弱であり、ノイズに埋もれ易く検出感度の向上には限界があった。このため、微弱な放電信号であっても、ノイズとの弁別を精度よく行い、部分放電を検出できるものが望まれていた。   However, partial discharge has a weak discharge signal and is easily buried in noise, and there is a limit to improving detection sensitivity. For this reason, even a weak discharge signal is desired to be able to accurately discriminate from noise and detect partial discharge.

特開2008−45977号公報JP 2008-45977 A 特開平9−292433号公報JP-A-9-292433

本発明が解決しようとする課題は、電力機器の内部から発生する部分放電による微弱な放電信号を、外部から伝搬してくるノイズと区分けし、確実に絶縁診断を行うことのできる電力機器の絶縁診断装置および絶縁診断方法を提供することにある。   The problem to be solved by the present invention is to isolate a weak discharge signal due to partial discharge generated from the inside of a power device from noise propagating from the outside, and to insulate the power device that can reliably perform an insulation diagnosis. The object is to provide a diagnostic device and an insulation diagnostic method.

上記課題を解決するために、実施形態の電力機器の絶縁診断装置は、箱体の内側に設けた第1の電磁波センサと、前記箱体の外側に設けた第2の電磁波センサと、前記第1の電磁波センサと前記第2の電磁波センサとが接続された絶縁診断装置とを備え、前記絶縁診断装置は、所定サイクル分の放電信号を1サイクルに合成するとともに、所定の時間幅で重なり合った放電信号をカットして波高値の高い放電信号を抽出する波形合成抽出部と、前記波高値の高い放電信号の尖頭値を検出するとともに、前記第1の電磁波センサと前記第2の電磁波センサとで検出した尖頭値の時間的変化を比較する尖頭値検出比較部と、前記尖頭値の時間的変化の増減から絶縁診断を行う絶縁判定部と、を備えたことを特徴とする。   In order to solve the above-described problem, an insulation diagnostic apparatus for power equipment according to an embodiment includes a first electromagnetic wave sensor provided inside a box, a second electromagnetic wave sensor provided outside the box, and the first And an insulation diagnostic device to which the second electromagnetic wave sensor is connected. The insulation diagnostic device synthesizes discharge signals for a predetermined cycle into one cycle and overlaps with a predetermined time width. A waveform synthesis and extraction unit that extracts a discharge signal having a high peak value by cutting the discharge signal, a peak value of the discharge signal having a high peak value, and the first electromagnetic wave sensor and the second electromagnetic wave sensor And a peak value detection / comparison unit that compares temporal changes in the peak value detected in step 1 and an insulation determination unit that performs insulation diagnosis from increase / decrease in the temporal change of the peak value. .

本発明の実施例に係る電力機器の絶縁診断装置の構成を示す構成図。The block diagram which shows the structure of the insulation diagnostic apparatus of the electric power equipment which concerns on the Example of this invention. 本発明の実施例に係る電力機器の絶縁診断方法を説明するフロー図。The flowchart explaining the insulation diagnostic method of the electric power equipment which concerns on the Example of this invention. 本発明の実施例に係る波形合成と波形カットを説明する図。The figure explaining the waveform synthesis and waveform cut which concern on the Example of this invention. 本発明の実施例に係る電磁波センサによる放電信号の測定例。The measurement example of the discharge signal by the electromagnetic wave sensor which concerns on the Example of this invention. 本発明の実施例に係る放電信号の出力例。The example of the output of the discharge signal which concerns on the Example of this invention. 本発明の実施例に係る放電信号の出力例。The example of the output of the discharge signal which concerns on the Example of this invention. 本発明の実施例に係る放電信号の尖頭値の時間的変化を示す特性図。The characteristic view which shows the time change of the peak value of the discharge signal which concerns on the Example of this invention. 本発明の実施例に係る放電信号の尖頭値の時間的変化を示す特性図。The characteristic view which shows the time change of the peak value of the discharge signal which concerns on the Example of this invention.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例に係る電力機器の絶縁診断装置を図1〜図8を参照して説明する。図1は、本発明の実施例に係る電力機器の絶縁診断装置の構成を示す構成図、図2は、本発明の実施例に係る電力機器の絶縁診断方法を説明するフロー図、図3は、本発明の実施例に係る波形合成と波形カットを説明する図、図4は、本発明の実施例に係る電磁波センサによる放電信号の測定例、図5、図6は、本発明の実施例に係る放電信号の出力例、図7、図8は、本発明の実施例に係る放電信号の尖頭値の時間的変化を示す特性図である。   A power equipment insulation diagnosis apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram showing a configuration of an insulation diagnosis apparatus for a power device according to an embodiment of the present invention, FIG. 2 is a flowchart for explaining an insulation diagnosis method for a power device according to an embodiment of the present invention, and FIG. FIG. 4 is a diagram for explaining waveform synthesis and waveform cut according to an embodiment of the present invention, FIG. 4 is a measurement example of a discharge signal by an electromagnetic wave sensor according to the embodiment of the present invention, and FIGS. 5 and 6 are embodiments of the present invention. FIG. 7 and FIG. 8 are characteristic diagrams showing temporal changes in the peak value of the discharge signal according to the embodiment of the present invention.

図1に示すように、箱体1内には、電流計測の変流器2、受電のケーブルヘッド3、電圧計測の変成器4、主回路を開閉する電源側の断路器5、主回路を保護する遮断器6、隣接盤との接続を行う母線7が収納されている。箱体1内の壁面には、例えばループアンテナからなる第1の電磁波センサ8が設けられ、箱体1外の壁面には、第1の電磁波センサ8と同様の例えばループアンテナからなる第2の電磁波センサ9が設けられている。第1の電磁波センサ8と第2の電磁波センサ9の出力は、それぞれ絶縁診断装置10に入力されている。   As shown in FIG. 1, a current measuring current transformer 2, a power receiving cable head 3, a voltage measuring transformer 4, a power supply side disconnector 5 that opens and closes the main circuit, and a main circuit are included in the box 1. A circuit breaker 6 to be protected and a bus bar 7 for connecting to an adjacent board are housed. A first electromagnetic wave sensor 8 made of, for example, a loop antenna is provided on the wall surface inside the box 1, and a second wave made of, for example, a loop antenna similar to the first electromagnetic wave sensor 8 is provided on the wall surface outside the box 1. An electromagnetic wave sensor 9 is provided. The outputs of the first electromagnetic wave sensor 8 and the second electromagnetic wave sensor 9 are respectively input to the insulation diagnostic device 10.

絶縁診断装置10は、周波数35kHz〜180MHzの帯域を持つフィルタ部11、アンプ部12、波形合成抽出部13、尖頭値検出比較部14、ウェーブレット変換部15、絶縁判定部16で構成されている。なお、第1、第2の電磁波センサ8、9も周波数35kHz〜180MHzの帯域を有する。   The insulation diagnostic apparatus 10 includes a filter unit 11 having a frequency band of 35 kHz to 180 MHz, an amplifier unit 12, a waveform synthesis extraction unit 13, a peak value detection comparison unit 14, a wavelet conversion unit 15, and an insulation determination unit 16. . The first and second electromagnetic wave sensors 8 and 9 also have a frequency band of 35 kHz to 180 MHz.

次に、絶縁診断方法を図2〜図8を参照して説明する。   Next, the insulation diagnosis method will be described with reference to FIGS.

図2に示すように、先ず、第1の電磁波センサ8と第2の電磁波センサ9を同時に起動し、部分放電に伴う第1、第2の放電信号の検出を行う(st1−1、st1−2)。第1の電磁波センサ8と第2の電磁波センサ9とも、所定の商用周波サイクル分の第1、第2の放電信号をそれぞれ取得する(st2−1、st2−2)。数サイクル分を取得した第1、第2の放電信号を波形合成抽出部13でそれぞれ1サイクル上に合成し、所定の時間幅(位相幅)で重なり合ったものは波高値の低い方をカットし、波高値の高いものをそれぞれ抽出する(st3−1、st3−2)。図3に3サイクル連続して発生した第1(第2)の放電信号の合成と抽出の例を示す。   As shown in FIG. 2, first, the first electromagnetic wave sensor 8 and the second electromagnetic wave sensor 9 are simultaneously activated to detect the first and second discharge signals accompanying the partial discharge (st1-1, st1- 2). Both the first electromagnetic wave sensor 8 and the second electromagnetic wave sensor 9 obtain first and second discharge signals for a predetermined commercial frequency cycle, respectively (st2-1, st2-2). The first and second discharge signals obtained for several cycles are synthesized one cycle above by the waveform synthesis / extraction unit 13, and the one with the predetermined time width (phase width) overlapped is cut off the one with the lower peak value. The ones with high peak values are extracted (st3-1, st3-2). FIG. 3 shows an example of synthesis and extraction of the first (second) discharge signal generated three consecutive cycles.

所定の時間幅で重なり合う放電信号をカットすることは、周波数の変化を防ぐためである。即ち、単に合成すると、近い時間で重なり合ったものは周波数が高くなり、本来の放電信号が持つ周波数成分と異なってくるためである。代表的な放電信号を図4に示すが、真空放電では約35kHz、絶縁物のボイド放電では約125MHz、気中放電では約180MHzの周波数を持っていた。   The reason for cutting the overlapping discharge signals in a predetermined time width is to prevent a change in frequency. In other words, if they are simply combined, those that overlap in a short time have a higher frequency, which is different from the frequency component of the original discharge signal. A typical discharge signal is shown in FIG. 4 and has a frequency of about 35 kHz for vacuum discharge, about 125 MHz for void discharge of an insulator, and about 180 MHz for air discharge.

被放電部位での周波数が変化しないように波形を合成し、抽出したときの結果を図5、図6に示す。図5では、放電信号がない場合であり、図5(a)が電磁波センサ8、9の出力、図5(b)が波形合成し、抽出後である。図6では、放電信号がある場合であり、図6(a)が電磁波センサ8、9の出力、図6(b)が波形合成し、抽出後であり、放電信号が確実に抽出されている。なお、電力機器には、真空機器が収納されるので、上述の代表的な放電信号のうち、少なくとも最も周波数の低い約35kHzが抽出されるように、時間約30μs以内で重なり合う放電信号はカットするものとする。   5 and 6 show the results when the waveforms are synthesized and extracted so that the frequency at the discharge site does not change. In FIG. 5, there is no discharge signal, FIG. 5 (a) shows the outputs of the electromagnetic wave sensors 8 and 9, and FIG. In FIG. 6, there is a discharge signal, FIG. 6 (a) shows the outputs of the electromagnetic wave sensors 8 and 9, FIG. 6 (b) shows the waveform synthesis, and after extraction, the discharge signal is reliably extracted. . In addition, since the vacuum equipment is housed in the power equipment, the overlapping discharge signals are cut within about 30 μs so that at least about 35 kHz having the lowest frequency is extracted from the representative discharge signals described above. Shall.

ノイズ性の信号は、単発性のものが多く、連続して発生して位相が重なり合うことが殆どないので、波形合成によりカットされるものが少なく、信号はそのまま累積される。このため、ノイズ特有の周波数成分を持ったものとなる。   Many noise signals are single-shot signals, and are generated continuously and rarely overlap in phase. Therefore, few signals are cut by waveform synthesis, and signals are accumulated as they are. For this reason, it has a frequency component peculiar to noise.

次に、波形合成し、抽出した第1、第2の放電信号を尖頭値検出比較部14で第1、第2の尖頭値を検出する(st4−1、st4−2)。そして、第1、第2の尖頭値の時間経過に伴う変化を比較する(st5)。連続性の放電では短時間の比較でよいが、突発性のノイズを考慮する場合、数秒の長時間を比較するものとなる。図7には、絶縁劣化に伴う放電がない場合を示す。丸印が第1の放電信号の第1の尖頭値、三角印が第2の放電信号の第2の尖頭値の特性であるが、時間経過とともに同様な傾向で変化している。即ち、時間t1に第1の尖頭値が上昇しているが、第2の尖頭値も同様に上昇しているので、外部ノイズの侵入によるものと考えることができる。   Next, the first and second peak values are detected by the peak value detection / comparison unit 14 for the first and second discharge signals that have been combined and extracted (st4-1, st4-2). Then, the change with time of the first and second peak values is compared (st5). For continuous discharge, a short time comparison is sufficient, but when sudden noise is considered, a long time of several seconds is compared. FIG. 7 shows a case where there is no discharge due to insulation deterioration. The circles indicate the characteristics of the first peak value of the first discharge signal, and the triangles indicate the characteristics of the second peak value of the second discharge signal, but change with the same tendency as time elapses. In other words, the first peak value rises at time t1, but the second peak value also rises in the same manner, so it can be considered that this is due to the intrusion of external noise.

図8には、箱体1の内部で放電が起こった場合を示す。丸印、三角印は、図7と同様であり、時間t1に第1の尖頭値に上昇がみられるが、第2の尖頭値には上昇がみられない。即ち、箱体1内部で放電が起こり、第1の尖頭値は上昇したものの、第2の尖頭値は箱体1外でありその影響を受けなかったものと考えられる。このため、第1、第2の尖頭値の時間的変化をみることで絶縁診断することができる。   FIG. 8 shows a case where a discharge occurs inside the box 1. The circle marks and triangle marks are the same as those in FIG. 7, and the first peak value increases at time t1, but the second peak value does not increase. That is, it is considered that discharge occurred inside the box 1 and the first peak value increased, but the second peak value was outside the box 1 and was not affected by it. For this reason, insulation diagnosis can be performed by observing temporal changes in the first and second peak values.

次に、第1、第2の放電信号(第1、第2の尖頭値)を周波数の時間的変化を解析するウェーブレット変換部15で公知技術の連続ウェーブレット、離散ウェーブレット、マザーウェーブレットなどを用い、それぞれウェーブレット変換し(st6−1、st6−2)、絶縁劣化の判定を行う(st7)。ウェーブレット変換では、より確実に放電信号を解析することができ、周波数を特定することで真空放電、ボイド放電、気中放電など放電部位を特定することができる。   Next, the first and second discharge signals (first and second peak values) are analyzed by a wavelet transform unit 15 that analyzes temporal changes in frequency, using known continuous wavelets, discrete wavelets, mother wavelets, and the like. Then, wavelet transformation is performed (st6-1, st6-2), and insulation deterioration is determined (st7). In the wavelet transform, the discharge signal can be analyzed more reliably, and the discharge site such as vacuum discharge, void discharge, or air discharge can be specified by specifying the frequency.

これらのことより、箱体1の内側には第1の電磁波センサ8、外側には第2の電磁波センサ9を設けて絶縁劣化に伴う放電信号を検出し、この放電信号を波形合成抽出部13においてそれぞれ所定サイクルで波形合成し、波高値の高いものを抽出して、尖頭値検出比較部14で尖頭値を検出した後、尖頭値の時間的変化を比較しているので、先ず、箱体1のような構造物で内部に侵入するノイズを物理的に遮断することができる。また、尖頭値の時間的変化より、時間軸に対してランダムに発生するノイズと、一定の規則で発生する絶縁劣化に伴う放電信号を確実に区分けすることができる。更に、感度よく検出した放電信号をウェーブレット変換することにより、放電部位を特定することができる。   Accordingly, the first electromagnetic wave sensor 8 is provided inside the box body 1 and the second electromagnetic wave sensor 9 is provided outside and the discharge signal due to the insulation deterioration is detected. After the waveform synthesis in each predetermined cycle, the one having a high peak value is extracted, the peak value is detected by the peak value detection / comparison unit 14, and the temporal change of the peak value is compared. The noise that enters the inside of the structure such as the box 1 can be physically blocked. Further, it is possible to reliably discriminate between a noise generated randomly with respect to the time axis and a discharge signal accompanying an insulation deterioration generated according to a certain rule from the temporal change of the peak value. Furthermore, the discharge site can be specified by wavelet transforming the discharge signal detected with high sensitivity.

上記実施例の電力機器の絶縁診断装置によれば、箱体1の内外にそれぞれ電磁波センサ8、9を設けて放電信号を検出し、この放電信号の波形合成、抽出を行って尖頭値を検出して時間経過による変化を測定しているので、箱体1内部での放電信号とノイズを確実に区分けすることができ、電力機器の絶縁劣化を未然に防ぐことができる。   According to the insulation diagnosis apparatus for power equipment of the above embodiment, the electromagnetic wave sensors 8 and 9 are respectively provided inside and outside the box 1 to detect the discharge signal, and the waveform is synthesized and extracted to obtain the peak value. Since the change over time is detected and the discharge signal is measured, the discharge signal and the noise inside the box 1 can be reliably distinguished, and the insulation deterioration of the power equipment can be prevented beforehand.

上記実施例では、尖頭値検出比較部14の出力にウェーブレット変換部15、判定部16を接続して絶縁診断することで説明したが、ウェーブレット変換部15をパスして、尖頭値検出比較部14の出力に判定部16を直接、接続しても絶縁診断を行うことができる。尖頭値検出比較部14によって放電信号とノイズを効率よく区分けすることができるためである。   In the above embodiment, the wavelet transform unit 15 and the determination unit 16 are connected to the output of the peak value detection / comparison unit 14 for insulation diagnosis. However, the wavelet transform unit 15 is passed and the peak value detection comparison is performed. The insulation diagnosis can be performed even if the determination unit 16 is directly connected to the output of the unit 14. This is because the peak value detection / comparison unit 14 can efficiently distinguish the discharge signal from the noise.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 箱体
2 変流器
3 ケーブルヘッド
4 変成器
5 断路器
6 遮断器
7 母線
8 第1の電磁波センサ
9 第2の電磁波センサ
10 絶縁診断装置
11 フィルタ
12 アンプ
13 波形合成抽出部
14 尖頭値検出比較部
15 ウェーブレット変換部
16 絶縁判定部
DESCRIPTION OF SYMBOLS 1 Box 2 Current transformer 3 Cable head 4 Transformer 5 Disconnector 6 Breaker 7 Busbar 8 1st electromagnetic wave sensor 9 2nd electromagnetic wave sensor 10 Insulation diagnostic apparatus 11 Filter 12 Amplifier 13 Waveform composition extraction part 14 Peak value Detection comparison unit 15 Wavelet transform unit 16 Insulation determination unit

Claims (7)

箱体の内側に設けた第1の電磁波センサと、
前記箱体の外側に設けた第2の電磁波センサと、
前記第1の電磁波センサと前記第2の電磁波センサとが接続された絶縁診断装置とを備え、
前記絶縁診断装置は、所定サイクル分の放電信号を1サイクルに合成するとともに、所定の時間幅で重なり合った放電信号をカットして波高値の高い放電信号を抽出する波形合成抽出部と、
前記波高値の高い放電信号の尖頭値を検出するとともに、前記第1の電磁波センサと前記第2の電磁波センサとで検出した尖頭値の時間的変化を比較する尖頭値検出比較部と、
前記尖頭値の時間的変化の増減から絶縁診断を行う絶縁判定部と、を備えたことを特徴とする電力機器の絶縁診断装置。
A first electromagnetic wave sensor provided inside the box;
A second electromagnetic wave sensor provided outside the box;
An insulation diagnostic apparatus to which the first electromagnetic wave sensor and the second electromagnetic wave sensor are connected;
The insulation diagnostic apparatus synthesizes a discharge signal for a predetermined cycle into one cycle, a waveform synthesis extraction unit that extracts a discharge signal having a high peak value by cutting discharge signals that overlap each other with a predetermined time width, and
A peak value detection comparing unit for detecting a peak value of the discharge signal having a high peak value and comparing temporal changes of the peak values detected by the first electromagnetic wave sensor and the second electromagnetic wave sensor; ,
An insulation diagnosis device for a power device, comprising: an insulation determination unit that performs insulation diagnosis based on increase and decrease of the temporal change of the peak value.
前記尖頭値検出比較部で検出した放電信号をウェーブレット変換部に接続することを特徴とする請求項1に記載の電力機器の絶縁診断装置。   The insulation diagnosis apparatus for a power device according to claim 1, wherein the discharge signal detected by the peak value detection / comparison unit is connected to a wavelet transform unit. 前記第1の電磁波センサと前記第2の電磁波センサとは、それぞれ35kHz〜180MHzの周波数帯域を有することを特徴とする請求項1または請求項2に記載の電力機器の絶縁診断装置。   The insulation diagnosis apparatus for a power device according to claim 1 or 2, wherein the first electromagnetic wave sensor and the second electromagnetic wave sensor each have a frequency band of 35 kHz to 180 MHz. 箱体の内側に第1の電磁波センサ、前記箱体の外側に第2の電磁波センサを設け、
前記第1の電磁波センサでは第1の放電信号、前記第2の電磁波センサでは第2の放電信号を取得し、
前記第1の放電信号と前記第2の放電信号とも所定サイクル分の放電信号を1サイクルに合成するとともに、所定の時間幅で重なり合った放電信号をカットして波高値の高い放電信号を抽出し、
前記第1の放電信号では第1の尖頭値、前記第2の放電信号では第2の尖頭値を所定の時間内で検出し、
前記第1の尖頭値と前記第2の尖頭値との時間的変化から絶縁劣化を診断することを特徴とする電力機器の絶縁診断方法。
A first electromagnetic wave sensor is provided inside the box, and a second electromagnetic wave sensor is provided outside the box,
The first electromagnetic wave sensor obtains a first discharge signal, the second electromagnetic wave sensor obtains a second discharge signal,
The first discharge signal and the second discharge signal are combined into one cycle of discharge signals for a predetermined cycle, and the discharge signals overlapping in a predetermined time width are cut to extract a discharge signal having a high peak value. ,
Detecting a first peak value in the first discharge signal and a second peak value in the second discharge signal within a predetermined time;
An insulation diagnosis method for a power device, wherein insulation deterioration is diagnosed from a temporal change between the first peak value and the second peak value.
前記第1の尖頭値と前記第2の尖頭値とをウェーブレット変換し、放電部位を特定することを特徴とする請求項4に記載の電力機器の絶縁診断方法。   The insulation diagnosis method for a power device according to claim 4, wherein the first peak value and the second peak value are subjected to wavelet transform to specify a discharge site. 前記第1の尖頭値と前記第2の尖頭値との時間的変化において、前記第1の尖頭値が前記第2の尖頭値よりも大きく上昇した場合に絶縁劣化と判定することを特徴とする請求項4または請求項5に記載の電力機器の絶縁診断方法。   In the temporal change between the first peak value and the second peak value, when the first peak value is significantly higher than the second peak value, the insulation deterioration is determined. The insulation diagnosis method for a power device according to claim 4 or 5, wherein: 第1の放電信号と前記第2の放電信号とが時間30μs以内で重なり合ったとき、波高値の低い方の放電信号をカットすることを特徴とする請求項4乃至請求項6のいずれか1項に記載の電力機器の絶縁診断方法。   7. The discharge signal having a lower peak value is cut when the first discharge signal and the second discharge signal overlap each other within a time of 30 μs. 8. An insulation diagnosis method for power equipment as described in 1.
JP2016040205A 2016-03-02 2016-03-02 Insulation diagnostic apparatus and insulation diagnostic method for power equipment Active JP6605992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040205A JP6605992B2 (en) 2016-03-02 2016-03-02 Insulation diagnostic apparatus and insulation diagnostic method for power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040205A JP6605992B2 (en) 2016-03-02 2016-03-02 Insulation diagnostic apparatus and insulation diagnostic method for power equipment

Publications (2)

Publication Number Publication Date
JP2017156238A JP2017156238A (en) 2017-09-07
JP6605992B2 true JP6605992B2 (en) 2019-11-13

Family

ID=59809510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040205A Active JP6605992B2 (en) 2016-03-02 2016-03-02 Insulation diagnostic apparatus and insulation diagnostic method for power equipment

Country Status (1)

Country Link
JP (1) JP6605992B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211431A (en) * 2018-06-08 2019-12-12 株式会社東芝 Partial discharge detector, method for detecting partial discharge, partial discharge detection system, and computer program
CN111505467B (en) * 2020-06-16 2024-02-27 国网天津市电力公司电力科学研究院 Positioning system and method for abnormal discharge signals in partial discharge test of transformer
KR102612726B1 (en) * 2021-05-03 2023-12-12 (주)아르비젼 Partial discharge diagnosis apparatus and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185697A (en) * 2001-12-21 2003-07-03 Toshiba Corp Electric apparatus and its interior diagnosing apparatus
KR100572670B1 (en) * 2004-08-31 2006-04-24 심관식 A method for estimating parameter of time series data by fourier transform
JP2009222537A (en) * 2008-03-17 2009-10-01 Meidensha Corp Partial discharge detecting method by electromagnetic wave measurement
JP5228558B2 (en) * 2008-03-25 2013-07-03 株式会社明電舎 Partial discharge detection device by electromagnetic wave detection and detection method thereof
KR100968519B1 (en) * 2008-07-14 2010-07-08 (주) 피에스디테크 Apparatus for noise gating from partial discharge and detecting partial discharge area of powr equipment

Also Published As

Publication number Publication date
JP2017156238A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6514332B2 (en) Partial discharge detection system
JP4735470B2 (en) Insulation diagnostic device and insulation diagnostic method
JP6704898B2 (en) Method for detecting an arc in a photovoltaic system and apparatus for detecting an arc
JP6605992B2 (en) Insulation diagnostic apparatus and insulation diagnostic method for power equipment
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
JPWO2016157912A1 (en) Insulation diagnostic apparatus and insulation diagnostic method for power equipment
JP2009300289A (en) Partial discharge detection method by electromagnetic wave measurement
JP2017529818A5 (en)
KR101151991B1 (en) Distributing cable partial dishcarge detection method and apparatus
JP2019135455A (en) Partial discharge detector using multi-sensor
JP5599982B2 (en) Insulation degradation diagnosis device for high-voltage power receiving equipment
JP2008051566A (en) Partial discharge measuring method for mold type instrument transformer by ae sensor
JP2009222537A (en) Partial discharge detecting method by electromagnetic wave measurement
JP5120133B2 (en) Partial discharge detection method by magnetic field measurement
JP2005147890A (en) Insulation abnormality diagnostic device
JP7067922B2 (en) Partial discharge detection device and partial discharge detection method
KR20170111040A (en) Apparatus for partial discharge of power cable on live state
KR101771554B1 (en) Distributing Board having a Partial Discharge Detecting Device
JP2010032450A (en) Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus
JP2008191113A (en) Partial discharge detector for cable end terminal part
JP6008833B2 (en) Partial discharge detection method and partial discharge detection apparatus
JP6600567B2 (en) Vacuum valve vacuum degree monitoring device and monitoring method
JP4663846B2 (en) Pattern recognition type partial discharge detector
JP5256483B2 (en) Method and apparatus for detecting partial discharge of electrical equipment
JP4353840B2 (en) Method for detecting partial discharge of electric circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180221

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6605992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150