JP5599982B2 - Insulation degradation diagnosis device for high-voltage power receiving equipment - Google Patents

Insulation degradation diagnosis device for high-voltage power receiving equipment Download PDF

Info

Publication number
JP5599982B2
JP5599982B2 JP2009078626A JP2009078626A JP5599982B2 JP 5599982 B2 JP5599982 B2 JP 5599982B2 JP 2009078626 A JP2009078626 A JP 2009078626A JP 2009078626 A JP2009078626 A JP 2009078626A JP 5599982 B2 JP5599982 B2 JP 5599982B2
Authority
JP
Japan
Prior art keywords
circuit
power receiving
signal
voltage power
frequency current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009078626A
Other languages
Japanese (ja)
Other versions
JP2010230497A (en
Inventor
昇 滝
Original Assignee
一般財団法人関東電気保安協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人関東電気保安協会 filed Critical 一般財団法人関東電気保安協会
Priority to JP2009078626A priority Critical patent/JP5599982B2/en
Publication of JP2010230497A publication Critical patent/JP2010230497A/en
Application granted granted Critical
Publication of JP5599982B2 publication Critical patent/JP5599982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高圧受電設備内の部分放電を検出して、高圧受電設備の絶縁劣化を診断する高圧受電設備の絶縁劣化診断装置に関する。   The present invention relates to an insulation deterioration diagnosis device for a high-voltage power receiving facility that detects partial discharge in the high-voltage power receiving facility and diagnoses the insulation deterioration of the high-voltage power receiving facility.
送受配電設備の高圧受電設備は、絶縁体の経年劣化や塵埃が湿気を含むことで絶縁劣化を起こし、重大な絶縁破壊の前駆現象としての部分放電を起こすことが知られている。この部分放電により、高周波の電流変化及び可聴周波や超音波の音波が発生する。高周波電流変化は一部は電路の電流として放出され、一部は電波として放出される。   It is known that a high-voltage power receiving facility of a power transmission / reception power facility causes deterioration of insulation due to aging of an insulator or dust containing moisture, and partial discharge as a precursor of a serious dielectric breakdown. This partial discharge generates a high-frequency current change and an audible or ultrasonic sound wave. A part of the high-frequency current change is emitted as a current in the electric circuit, and a part is emitted as a radio wave.
高圧受電設備に使用されている絶縁物の劣化は、グロー放電から始まり、部分放電の初期段階を経て、中期段階、後期段階と進み、やがて火花放電から橋絡に移行し、さらに劣化が進むと絶縁破壊に至ることが知られている。   Degradation of insulators used in high-voltage power receiving equipment begins with glow discharge, goes through the initial stage of partial discharge, progresses to the middle stage, and later stage, and eventually shifts from spark discharge to a bridge, and further deterioration progresses. It is known to lead to dielectric breakdown.
この高周波の電流変化、可聴周波や超音波の音波を捉え、これらが一定レベル以上になったときに、部分放電を初期状態で検出し、部分放電が発生したとして警報を出力することにより、高圧受電設備が重大な事故に到る前に対策を採ることが行われている。
高圧受電設備の引込みケーブルの両端、高圧母線の分岐部や高圧機器の前後などに高周波CTを取付け、放電信号の波高値の減衰方向を測定器で検出することによって、高圧受電設備内の劣化機器の特定又は外来ノイズとの弁別を行い、需要家を停電にしないで電気機器の劣化を特定することができるようにしたものがある(例えば、特許文献1参照)。
By capturing this high-frequency current change, audible and ultrasonic sound waves, and when they exceed a certain level, the partial discharge is detected in the initial state, and an alarm is output to indicate that a partial discharge has occurred. Measures are taken before the power receiving equipment reaches a serious accident.
By installing high-frequency CT at both ends of the lead-in cable of the high-voltage power receiving equipment, the branch of the high-voltage bus or before and after the high-voltage equipment, and detecting the decay direction of the peak value of the discharge signal with a measuring instrument, Identification or discrimination from external noise, and it is possible to identify deterioration of electrical equipment without causing the customer to lose power (for example, see Patent Document 1).
特開平11−352177号公報JP-A-11-352177
しかし、特許文献1のものでは、高圧受電設備内の劣化機器の特定又は外来ノイズとの弁別を行うことはできるが、部分放電を初期状態で検出することは困難である。部分放電を初期状態で検出し、絶縁破壊に至る前により適切に対応をとるためには、部分放電が発する高周波電流や音波の検出感度を上げなければならないが、そうすると、電源から電線を通して入ってくる高周波ノイズ、ラジオ等の電波ノイズ、周辺の音波の雑音も検出してしまうことになり、部分放電を正確に検出できない不都合があった。   However, although the thing of patent document 1 can identify the deterioration apparatus in a high voltage | pressure power receiving installation, or discriminate | determine from external noise, it is difficult to detect a partial discharge in an initial state. In order to detect partial discharges in the initial state and take appropriate measures before dielectric breakdown, it is necessary to increase the detection sensitivity of high-frequency currents and sound waves generated by partial discharges. It also detects high frequency noise, radio wave noise such as radio, and surrounding sound wave noise, and there is a disadvantage that partial discharge cannot be accurately detected.
本発明の目的は、高圧受電設備内の絶縁劣化に伴う部分放電の初期状態を精度良く診断できる高圧受電設備の絶縁劣化診断装置を提供するものである。   An object of the present invention is to provide an insulation deterioration diagnosis device for a high-voltage power receiving facility that can accurately diagnose an initial state of partial discharge accompanying insulation deterioration in the high-voltage power receiving facility.
請求項1の発明に係わる高圧受電設備の絶縁劣化診断装置は、高圧受電設備の引き込みケーブルのシースアース線に流れる高周波電流を高周波電流検出器で検出し前記高周波電流検出器で検出された高周波電流の検出信号を増幅する増幅器と、前記増幅器で増幅された前記シースアース線に流れる高周波電流の検出信号の包絡線の信号を整流検波する検波回路と、前記検波回路の出力信号を予め定めた2つの帯域の信号に分離する信号分離回路と、前記信号分離回路で分離された前記2つの帯域の信号の論理積をとるゲート回路と、前記ゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する判定回路と、前記判定回路が高圧受電設備内の部分放電の発生であると判定したときは警報を出力する警報出力回路とを備えたことを特徴とする。 The insulation deterioration diagnosis device for a high-voltage power receiving facility according to the first aspect of the invention is a high-frequency current detected by a high-frequency current detector that detects a high-frequency current flowing through a sheath ground wire of a lead-in cable of the high-voltage power receiving facility. An amplifier for amplifying the detection signal, a detection circuit for rectifying and detecting an envelope signal of the detection signal of the high-frequency current flowing through the sheath ground wire amplified by the amplifier, and an output signal of the detection circuit 2 Based on a signal separation circuit that separates signals in one band, a gate circuit that takes a logical product of the signals in the two bands separated by the signal separation circuit, and a pulse signal obtained by a logical product of the gate circuits A determination circuit for determining the occurrence of partial discharge in the high-voltage power receiving facility, and an alarm is output when the determination circuit determines that a partial discharge has occurred in the high-voltage power receiving facility. Characterized by comprising a multi-address output circuit.
請求項2の発明に係わる高圧受電設備の絶縁劣化診断装置は、請求項1の発明において、前記信号分離回路の予め定めた2つの帯域のうち、一方の帯域は、175Hz〜275Hzであり、他方の帯域は、3kHz〜5kHzであることを特徴とする。 An insulation deterioration diagnosis apparatus for a high-voltage power receiving facility according to the invention of claim 2 is the invention of claim 1, wherein one of the two predetermined bands of the signal separation circuit is 175 Hz to 275 Hz, and the other The bandwidth is 3 kHz to 5 kHz .
請求項3の発明に係わる高圧受電設備の絶縁劣化診断装置は、高圧受電設備内の電線に重畳する音波を音波検出器で検出し前記音波検出器で検出された音波の検出信号を増幅する増幅器と、前記増幅器で増幅された電線に重畳する音波の検出信号の包絡線の信号を整流検波する検波回路と、前記検波回路の出力信号を予め定めた2つの帯域の信号に分離する信号分離回路と、前記信号分離回路で分離された2つの帯域の信号の論理積をとるゲート回路と、前記ゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する判定回路と、前記判定回路が高圧受電設備内の部分放電の発生であると判定したときは警報を出力する警報出力回路とを備えたことを特徴とする。 An insulation deterioration diagnosis apparatus for a high-voltage power receiving facility according to a third aspect of the invention is an amplifier that detects a sound wave superimposed on an electric wire in the high-voltage power receiving facility with a sound wave detector and amplifies the detection signal of the sound wave detected by the sound wave detector A detection circuit for rectifying and detecting an envelope signal of a detection signal of a sound wave superimposed on the electric wire amplified by the amplifier, and a signal separation circuit for separating the output signal of the detection circuit into signals in two predetermined bands And determining the occurrence of partial discharge in the high-voltage power receiving equipment based on the pulse circuit obtained by the logical product of the signals in the two bands separated by the signal separation circuit and the logical product of the gate circuit And a warning output circuit that outputs a warning when the determination circuit determines that a partial discharge has occurred in the high-voltage power receiving facility.
請求項4の発明に係わる高圧受電設備の絶縁劣化診断装置は、請求項3の発明において、前記信号分離回路の予め定めた2つの帯域のうち、一方の帯域は、120Hz〜175Hzであり、他方の帯域は、3kHz〜5kHzであることを特徴とする。   According to a fourth aspect of the present invention, there is provided an insulation deterioration diagnosis device for a high-voltage power receiving facility according to the third aspect of the invention, wherein one of the two predetermined bands of the signal separation circuit is 120 Hz to 175 Hz, and the other The frequency band is 3 kHz to 5 kHz.
請求項5の発明に係わる高圧受電設備の絶縁劣化診断装置は、請求項1乃至請求項4のいずれか1項の発明において、前記判定回路は、前記ゲート回路の論理積により得られたパルス信号であるパルス数が所定期間内に所定個数以上である状態が一定時間以上継続したときは、高圧受電設備内の部分放電の発生であると判定することを特徴とする。 According to a fifth aspect of the present invention, there is provided an insulation deterioration diagnosis apparatus for a high-voltage power receiving facility according to any one of the first to fourth aspects, wherein the determination circuit is a pulse signal obtained by a logical product of the gate circuits. When a state where the number of pulses is equal to or greater than a predetermined number within a predetermined period continues for a certain period of time, it is determined that partial discharge has occurred in the high-voltage power receiving facility.
請求項6の発明に係わる高圧受電設備の絶縁劣化診断装置は、高圧受電設備の引き込みケーブルのシースアース線に流れる高周波電流を高周波電流検出器で検出し前記高周波電流検出器で検出された高周波電流の検出信号を増幅する第1の増幅器と、前記第1の増幅器で増幅された前記シースアース線に流れる高周波電流の検出信号の包絡線の信号を整流検波する第1の検波回路と、前記第1の検波回路の出力信号を予め定めた2つの帯域の信号に分離する第1の信号分離回路と、前記第1の信号分離回路で分離された前記2つの帯域の信号の論理積をとる第1のゲート回路と、前記第1のゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する第1の判定回路と、高圧受電設備内の電線に重畳する音波を音波検出器で検出し前記音波検出器で検出された音波の検出信号を増幅する第2の増幅器と、前記増幅器で増幅された電線に重畳する音波の検出信号の包絡線の信号を整流検波する第2の検波回路と、前記第2の検波回路の出力信号を予め定めた2つの帯域の信号に分離する第2の信号分離回路と、前記第2の信号分離回路で分離された2つの帯域の信号の論理積をとる第2のゲート回路と、前記第2のゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する第2の判定回路と、前記第1の判定回路または第2の判定回路にいずれかが高圧受電設備内の部分放電の発生であると判定したときは警報を出力する警報出力回路とを備えたことを特徴とする。 According to a sixth aspect of the present invention, there is provided an insulation deterioration diagnosis device for a high-voltage power receiving facility, wherein a high-frequency current flowing through a sheath ground wire of a lead-in cable of the high-voltage power receiving facility is detected by a high-frequency current detector. A first amplifier for amplifying the detection signal, a first detection circuit for rectifying and detecting an envelope signal of the detection signal of the high-frequency current flowing through the sheath ground wire amplified by the first amplifier, A first signal separation circuit that separates an output signal of one detection circuit into signals of two predetermined bands and a logical product of the signals of the two bands separated by the first signal separation circuit. 1 gate circuit, a first determination circuit that determines the occurrence of partial discharge in the high-voltage power receiving facility based on a pulse signal obtained by the logical product of the first gate circuit, and an electric wire in the high-voltage power receiving facility. Superposition A second amplifier for amplifying the sound wave detection signal detected by the sound wave detector and the sound wave detection signal detected by the sound wave detector, and an envelope signal of the sound wave detection signal superimposed on the electric wire amplified by the amplifier. The second detection circuit that performs rectification detection, the second signal separation circuit that separates the output signal of the second detection circuit into signals of two predetermined bands, and the second signal separation circuit. A second gate circuit that takes a logical product of signals of two bands, and a second gate circuit that determines the occurrence of partial discharge in the high-voltage power receiving facility based on a pulse signal obtained by the logical product of the second gate circuit A determination circuit; and an alarm output circuit that outputs an alarm when any of the first determination circuit and the second determination circuit determines that partial discharge has occurred in the high-voltage power receiving facility. And
本発明によれば、部分放電によって生じる高周波電流や音波について、検波回路により高周波電流や音波の波形の包絡線の信号を取り出し、予め定めた2つの帯域の信号に分離してノイズの影響を小さくし、その2つの信号の論理積により得られたパルス信号に基づいて警報を発生するので、絶縁異常の初期段階に伴う微弱な部分放電を的確に検出できる。 According to the present invention, for a high-frequency current or sound wave generated by partial discharge, an envelope signal of a high-frequency current or sound wave waveform is extracted by a detection circuit and separated into two predetermined band signals to reduce the influence of noise. Since the alarm is generated based on the pulse signal obtained by the logical product of the two signals, the weak partial discharge accompanying the initial stage of the insulation abnormality can be accurately detected.
その結果、絶縁異常による電気事故の発生の要因を初期状態で検知することで、高圧受電設備を含む送受配電線設備の損壊の防止、他の配電線に波及することによる停電事故の防止に寄与することができる。   As a result, by detecting the cause of electrical accidents due to insulation abnormalities in the initial state, it contributes to the prevention of power transmission accidents by spreading to other distribution lines and preventing damage to transmission / distribution distribution line facilities including high-voltage power distribution facilities. can do.
本発明の第1の実施の形態に係わる絶縁劣化診断装置の構成図。The block diagram of the insulation degradation diagnostic apparatus concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態に係わる絶縁劣化診断装置が適用された高圧受電設備の構成図。1 is a configuration diagram of a high-voltage power receiving facility to which an insulation deterioration diagnosis device according to a first embodiment of the present invention is applied. 高圧受電設備に実際に1000ピコクーロンに相当する擬似部分放電を起こしそれを観測した高周波電流の波形図。The waveform figure of the high frequency current which actually caused the pseudo partial discharge equivalent to 1000 picocoulombs in the high voltage power receiving equipment and observed it. 本発明の第2の実施の形態に係わる絶縁劣化診断装置の構成図。The block diagram of the insulation degradation diagnostic apparatus concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係わる絶縁劣化診断装置が適用された高圧受電設備の構成図。The block diagram of the high voltage | pressure power receiving equipment with which the insulation degradation diagnostic apparatus concerning the 2nd Embodiment of this invention was applied. 本発明の第3の実施の形態に係わる絶縁劣化診断装置の構成図。The block diagram of the insulation degradation diagnostic apparatus concerning the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係わる絶縁劣化診断装置が適用された高圧受電設備の構成図。The block diagram of the high voltage | pressure power receiving equipment with which the insulation degradation diagnostic apparatus concerning the 3rd Embodiment of this invention was applied.
以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わる絶縁劣化診断装置の構成図、図2は本発明の第1の実施の形態に係わる絶縁劣化診断装置が適用された高圧受電設備の構成図である。   Embodiments of the present invention will be described below. FIG. 1 is a block diagram of an insulation deterioration diagnosis apparatus according to the first embodiment of the present invention, and FIG. 2 is a block diagram of a high-voltage power receiving facility to which the insulation deterioration diagnosis apparatus according to the first embodiment of the present invention is applied. It is.
図2において、柱状開閉器11を介して送配電設備の配電線12から引き込みケーブル13にて高圧受電設備14内に電力が供給される。高圧受電設備14内では、引き込みケーブル13に接続された電力受給用計器用変成器15、断路器16、遮断器17を介して受電母線18に電力が供給される。   In FIG. 2, electric power is supplied into the high-voltage power receiving facility 14 by a lead-in cable 13 from a distribution line 12 of the power transmission / distribution facility via a column switch 11. In the high-voltage power receiving facility 14, power is supplied to the power receiving bus 18 through the power receiving instrument transformer 15, the disconnector 16, and the circuit breaker 17 connected to the lead-in cable 13.
断路器16と遮断器17との間から、高圧限流ヒューズ19、計器用変圧器20、ヒューズ21を介して、電圧計切替スイッチ22で3相各相の電圧を切り替えて計測する電圧計23が接続されている。また、遮断器17と受電母線18との間には計器用変流器24が設けられ、計器用変流器24で検出された電流が過電流であるときは遮断器17を開放する過電流継電器25が設けられている。さらに、計器用変流器24で検出された電流を電流計切替スイッチ26で3相各相の電流を切り替えて計測する電流計27が接続されている。   A voltmeter 23 that measures the voltage of each phase of the three phases with a voltmeter changeover switch 22 from between the disconnector 16 and the circuit breaker 17 via a high-voltage current limiting fuse 19, an instrument transformer 20, and a fuse 21. Is connected. An instrument current transformer 24 is provided between the circuit breaker 17 and the power receiving bus 18. When the current detected by the instrument current transformer 24 is an overcurrent, an overcurrent that opens the circuit breaker 17 is provided. A relay 25 is provided. Furthermore, an ammeter 27 is connected to measure the current detected by the current transformer 24 by switching the current of each of the three phases by the ammeter changeover switch 26.
受電母線18には、電力限流ヒューズ付高圧交流負荷開閉器28を介して受電変圧器29が接続され、受電変圧器29の二次側に配電用遮断器30を介して負荷31にそれぞれ電力が供給される。また、受電母線18には、電力限流ヒューズ付高圧交流負荷開閉器28を介して直列リアクトル32や進相コンデンサ33が接続される。   A power receiving transformer 29 is connected to the power receiving bus 18 via a high voltage AC load switch 28 with a current limiting fuse, and power is supplied to a load 31 via a distribution circuit breaker 30 on the secondary side of the power receiving transformer 29. Is supplied. In addition, a series reactor 32 and a phase advance capacitor 33 are connected to the power receiving bus 18 via a high voltage AC load switch 28 with a current limiting fuse.
また、絶縁劣化診断装置34は、高圧受電設備14の引き込みケーブル13のシースアース線35に流れる高周波電流を検出する高周波電流検出器36からの高周波電流を入力し、高圧受電設備14内の部分放電の発生を診断するものである。図1に示すように、高周波電流検出器36で検出された高周波電流は、絶縁劣化診断装置34の増幅器37に入力される。増幅器37は、高周波電流検出器36で検出された高周波電流の検出信号を増幅する。   In addition, the insulation deterioration diagnosis device 34 receives a high-frequency current from a high-frequency current detector 36 that detects a high-frequency current flowing through the sheath ground wire 35 of the lead-in cable 13 of the high-voltage power receiving facility 14, and the partial discharge in the high-voltage power receiving facility 14 The diagnosis of the occurrence of As shown in FIG. 1, the high-frequency current detected by the high-frequency current detector 36 is input to the amplifier 37 of the insulation deterioration diagnosis device 34. The amplifier 37 amplifies the detection signal of the high frequency current detected by the high frequency current detector 36.
ここで、高周波電流検出器36で引き込みケーブル13のシースアース線35に流れる高周波電流を検出するようにしたのは、引き込みケーブル13のシースアース線35には、引き込みケーブル13の劣化による漏洩電流のほか、電線との静電容量を通して、高圧受電設備内の回路の部分放電に伴う微小な高周波電流も流れるためである。すなわち、部分放電が発生すると、引き込みケーブル13のシースアース線35に広い帯域を持つ微弱な高周波電流が流れるためである。そこで、このシースアース線35から高周波電流検出器36を通して高周波電流を捉え、絶縁劣化診断装置34に入力する。   Here, the high-frequency current detector 36 detects the high-frequency current flowing through the sheath ground wire 35 of the lead-in cable 13 because the leakage current due to deterioration of the lead-in cable 13 is detected in the sheath ground wire 35 of the lead-in cable 13. In addition, a minute high-frequency current accompanying a partial discharge of a circuit in the high-voltage power receiving facility also flows through the capacitance with the electric wire. That is, when a partial discharge occurs, a weak high-frequency current having a wide band flows through the sheath ground wire 35 of the lead-in cable 13. Therefore, a high-frequency current is captured from the sheath ground wire 35 through the high-frequency current detector 36 and input to the insulation deterioration diagnosis device 34.
高周波電流検出器36で検出する高周波電流の周波数帯域は、比較的外来電波の影響が少なく、部分放電によって放出されている10MHz〜30MHzの周波数を使用する。図3は、実際に1000ピコクーロンに相当する擬似部分放電を起こし、それを観測した高周波電流の波形図である。図3から分かるように、10kHz〜30MHzの高周波電流が観測されたが、これらの周波数のうち値の大きい周波数を使用する。例えば、22MHzあるいは30MHzの周波数を使用する。これにより、外来ノイズの影響を受けない高周波電流により部分放電の発生を診断できることになる。増幅器37は、図示は省略しているが、スーパーヘテロダイン方式を採用し、増幅し易い中間周波数(例えば、445kHz)に変換して高感度の増幅を行う。   The frequency band of the high-frequency current detected by the high-frequency current detector 36 has a relatively low influence of external radio waves, and uses a frequency of 10 MHz to 30 MHz emitted by partial discharge. FIG. 3 is a waveform diagram of a high-frequency current in which a pseudo partial discharge corresponding to 1000 picocoulombs was actually generated and observed. As can be seen from FIG. 3, a high-frequency current of 10 kHz to 30 MHz was observed, and a frequency having a large value among these frequencies is used. For example, a frequency of 22 MHz or 30 MHz is used. As a result, the occurrence of partial discharge can be diagnosed with a high-frequency current that is not affected by external noise. Although not shown, the amplifier 37 adopts a superheterodyne method, converts it to an intermediate frequency (for example, 445 kHz) that is easy to amplify, and performs high-sensitivity amplification.
部分放電による高周波電流の振幅は、複雑な信号によって変調を受けており、高周波電流は一見ノイズのような広帯域の周波数成分を含む不規則な動きをしているので、本発明では、この高周波電流の波形の包絡線に着目し、包絡線の動きを解析することにより部分放電の発生を検出する。検波回路38は、増幅器37で増幅されたシースアース線35に流れる高周波電流の検出信号の包絡線の信号を整流検波する。この高周波電流の検出信号の波形を整流することにより振幅の変化を取り出す。   The amplitude of the high-frequency current due to the partial discharge is modulated by a complex signal, and the high-frequency current behaves irregularly including a wide-band frequency component such as noise at first glance. The occurrence of partial discharge is detected by analyzing the movement of the envelope focusing on the envelope of the waveform. The detection circuit 38 rectifies and detects the envelope signal of the detection signal of the high-frequency current flowing through the sheath ground wire 35 amplified by the amplifier 37. A change in the amplitude is extracted by rectifying the waveform of the detection signal of the high-frequency current.
検波回路38の出力信号は信号分離回路39に入力され、予め定めた2つの帯域の信号に分離される。すなわち、信号分離回路39は2つのバンドパスフィルタ40a、40bを有し、2つのバンドパスフィルタ40a、40bの出力信号は、それぞれ増幅器41a、41bで増幅され、それぞれのレベル判定回路42a、42bで所定値以上の信号がゲート回路43に出力される。   The output signal of the detection circuit 38 is input to the signal separation circuit 39 and separated into signals of two predetermined bands. That is, the signal separation circuit 39 has two bandpass filters 40a and 40b, and the output signals of the two bandpass filters 40a and 40b are amplified by the amplifiers 41a and 41b, respectively, and are respectively detected by the level determination circuits 42a and 42b. A signal equal to or greater than a predetermined value is output to the gate circuit 43.
例えば、バンドパスフィルタ40aは175Hz〜275Hzを通過させるバンドパスフィルタであり、バンドパスフィルタ40bは3kHz〜5kHzを通過させるバンドパスフィルタである。このように、部分放電による高周波電流の包絡線信号を2つの信号を分けて取り出し、狭帯域(175Hz〜275Hz、3kHz〜5kHz)で増幅することにより、ノイズの影響を小さくして信号を増幅できる。そして、増幅器41a、41bにより増幅した信号のうち、所定値以上の信号をレベル判定回路42a、42bで取り出しゲート回路43に出力する。これにより、2つの信号の双方がある一定のレベル以上になった信号がゲート回路43により論理積されてパルス信号として判定回路44に出力される。   For example, the bandpass filter 40a is a bandpass filter that passes 175 Hz to 275 Hz, and the bandpass filter 40b is a bandpass filter that passes 3 kHz to 5 kHz. As described above, the envelope signal of the high-frequency current due to the partial discharge is extracted by dividing the two signals and amplified in a narrow band (175 Hz to 275 Hz, 3 kHz to 5 kHz), thereby amplifying the signal with less influence of noise. . Then, of the signals amplified by the amplifiers 41a and 41b, signals having a predetermined value or more are taken out by the level determination circuits 42a and 42b and output to the gate circuit 43. As a result, a signal in which both of the two signals are at a certain level or higher is logically ANDed by the gate circuit 43 and output to the determination circuit 44 as a pulse signal.
ここで、部分放電による高周波電流の包絡線信号の動きを2周波数(175Hz〜275Hz、3kHz〜5kHz)に分解し、所定値以上の信号の論理積を取ることにより部分放電との関係が良く把握できることを実験的に確認した。   Here, the movement of the envelope signal of the high-frequency current due to the partial discharge is decomposed into two frequencies (175 Hz to 275 Hz, 3 kHz to 5 kHz), and the relation between the partial discharge and the partial discharge is well understood by taking the logical product of signals over a predetermined value. It was confirmed experimentally that it was possible.
ゲート回路43の出力信号はオンオフのパルス信号になっているので、判定回路44では、所定期間内のパルス数のカウントを行い、パルス数が所定期間内に所定個数以上である状態が一定時間以上継続したときは、高圧受電設備内の部分放電の発生であると判定し、警報出力回路45に警報信号を出力する。   Since the output signal of the gate circuit 43 is an on / off pulse signal, the determination circuit 44 counts the number of pulses within a predetermined period, and the state where the number of pulses is equal to or larger than the predetermined number within the predetermined period is longer than a certain time. If it continues, it is determined that partial discharge has occurred in the high-voltage power receiving facility, and an alarm signal is output to the alarm output circuit 45.
警報出力回路45が警報の自己保持回路を有している場合には、一旦、警報出力されると、警報が継続して出力されることになる。この場合、元の状態に復帰した場合には警報出力を復帰させるようにしてもよい。例えば、パルス数が所定期間内に所定個数以下となり、その状態が一定時間以上継続したときは、警報出力を復帰させる。この場合のパルス数や一定時間は、警報発生時の判定値と同じ値にしても良いし、安全を見込んだ値としてもよい。   When the alarm output circuit 45 has an alarm self-holding circuit, once the alarm is output, the alarm is continuously output. In this case, the alarm output may be restored when the original state is restored. For example, when the number of pulses falls below a predetermined number within a predetermined period and the state continues for a certain time or longer, the alarm output is returned. In this case, the number of pulses and the predetermined time may be set to the same value as the determination value at the time of alarm occurrence, or may be a value that allows for safety.
このように、判定回路44はパルス信号を扱うため、例えば、マイクロコンピュータで構成する。マイクロコンピュータを用いることにより、複雑な信号発生状況を演算して記録でき、また、過去のデータとの比較演算も容易に行うことができる。従って、過去のデータと比較しながら的確な警報を出すことができる。例えば、警報を出すパルス発生パターンを実測データの積み重ねで最適なものに修正することが容易である。   Thus, since the determination circuit 44 handles a pulse signal, the determination circuit 44 is configured by a microcomputer, for example. By using a microcomputer, a complicated signal generation situation can be calculated and recorded, and comparison with past data can be easily performed. Therefore, an accurate alarm can be issued while comparing with past data. For example, it is easy to correct a pulse generation pattern for issuing an alarm to an optimum one by accumulating measured data.
第1の実施の形態によれば、ノイズの影響の少ない帯域の高周波電流を検出して増幅するとともに、検出信号が時間で変化する振幅の変化に着目し、検出信号を整流検波することにより包絡線の信号を取り出し、整流検波された信号を信号分離回路39により2つの帯域の信号に分けて増幅し、ノイズの影響を少なくして増幅し、2つに分けた信号の論理積により得られたパルス信号に基づいて警報信号を出すようにしたので、部分放電の初期状態を精度良く検出できる。 According to the first embodiment, an envelope is obtained by detecting and amplifying a high-frequency current in a band that is less affected by noise, focusing on a change in amplitude of the detection signal that changes with time, and rectifying and detecting the detection signal. The signal of the line is taken out and amplified by dividing the rectified and detected signal into signals of two bands by the signal separation circuit 39, and is amplified by reducing the influence of noise, and obtained by the logical product of the signals divided into two. Since the alarm signal is issued based on the pulse signal, the initial state of partial discharge can be detected with high accuracy.
次に、本発明の第2の実施の形態を説明する。図4は本発明の第2の実施の形態に係わる絶縁劣化診断装置の構成図、図5は本発明の第2の実施の形態に係わる絶縁劣化診断装置が適用された高圧受電設備の構成図である。この第2の実施の形態は、第1の実施の形態に対し、高圧受電設備14の引き込みケーブル13のシースアース線35に流れる高周波電流を検出する高周波電流検出器36に代えて、高圧受電設備14内の電線に重畳する音波を検出する音波検出器46を設け、増幅器37は音波検出器46で検出された音波の検出信号を増幅し、検波回路38は増幅器37で増幅された電線に重畳する音波の検出信号の包絡線の信号を整流検波するようにしたものである。   Next, a second embodiment of the present invention will be described. FIG. 4 is a block diagram of an insulation deterioration diagnosis apparatus according to the second embodiment of the present invention, and FIG. 5 is a block diagram of a high-voltage power receiving facility to which the insulation deterioration diagnosis apparatus according to the second embodiment of the present invention is applied. It is. In contrast to the first embodiment, the second embodiment replaces the high-frequency current detector 36 that detects the high-frequency current flowing in the sheath ground wire 35 of the lead-in cable 13 of the high-voltage power receiving facility 14 with the high-voltage power receiving facility. 14 is provided. A sound wave detector 46 for detecting a sound wave superimposed on the electric wire in 14 is provided, an amplifier 37 amplifies the detection signal of the sound wave detected by the sound wave detector 46, and a detection circuit 38 is superimposed on the electric wire amplified by the amplifier 37. An envelope signal of a sound wave detection signal is rectified and detected.
図5において、図2に示した第1の実施の形態に対し、高周波電流検出器36に代えて、高圧受電設備14内の電線に重畳する音波を検出する複数の音波検出器46が設けられている。図5では、高圧受電設備14内に3個の音波検出器46が設けられた場合を示している。各々の音波検出器46で検出された高圧受電設備14内の電線に重畳する音波は、絶縁劣化診断装置34に入力される。   5, in place of the high-frequency current detector 36, a plurality of sound wave detectors 46 for detecting sound waves superimposed on the electric wires in the high-voltage power receiving facility 14 are provided in the first embodiment shown in FIG. ing. FIG. 5 shows a case where three sound wave detectors 46 are provided in the high-voltage power receiving facility 14. Sound waves superimposed on the electric wires in the high-voltage power receiving equipment 14 detected by the respective sound wave detectors 46 are input to the insulation deterioration diagnosis device 34.
図4に示すように、各々の音波検出器46で検出された音波は、絶縁劣化診断装置34の増幅器37に入力される。増幅器37は、各々の音波検出器46で検出された音波の検出信号を増幅する。各々の音波検出器46で検出する音波は超音波域の音波とする。これは、音波は可聴域や超音波域で空気振動により発生しているが、検出や増幅の容易さ及び周辺ノイズの除去の容易さから超音波域の音波を検出することとしている。
超音波の振幅は、複雑な信号によって変調を受けており、超音波は一見ノイズのような広帯域の周波数成分を含む不規則な動きをしているので、第1の実施の形態と同様に、この超音波の波形の包絡線に着目し、包絡線の動きを解析することにより部分放電の発生を検出する。検波回路38は、増幅器37で増幅された超音波の検出信号の包絡線の信号を整流検波する。この超音波の検出信号の波形を整流することにより振幅の変化を取り出す。
As shown in FIG. 4, the sound wave detected by each sound wave detector 46 is input to the amplifier 37 of the insulation deterioration diagnosis device 34. The amplifier 37 amplifies the sound wave detection signal detected by each sound wave detector 46. The sound wave detected by each sound wave detector 46 is a sound wave in the ultrasonic range. This is because the sound wave is generated by air vibration in the audible range and the ultrasonic range, but the ultrasonic wave is detected from the ease of detection and amplification and the ease of removing the peripheral noise.
Since the amplitude of the ultrasonic wave is modulated by a complex signal, and the ultrasonic wave moves irregularly including a wideband frequency component such as noise at first glance, as in the first embodiment, Focusing on the envelope of this ultrasonic waveform, the generation of partial discharge is detected by analyzing the movement of the envelope. The detection circuit 38 rectifies and detects the envelope signal of the ultrasonic detection signal amplified by the amplifier 37. A change in the amplitude is extracted by rectifying the waveform of the ultrasonic detection signal.
そして、超音波についても信号分離回路39で2つの信号に分離し、2つ信号のレベルが一定値に達したときゲート回路43で2つの信号の論理積をとり、ゲート回路43から論理積により得られたパルス信号を出力し、判定回路44に送る。判定回路44は、第1の実施の形態と同様に、マイクロコンピュータにより構成され、パルス信号の演算を行い警報を出力する。この場合、バンドパスフィルタ40aのバンド幅は120Hz〜175Hzとし、バンドパスフィルタ40bのバンド幅は3kHz〜5kHzとした。これにより、部分放電との関係が良く把握できることを実験的に確認した。第2の実施の形態においても第1の実施の形態と同様な効果が得られる。 The ultrasonic signal is also separated into two signals by the signal separation circuit 39. When the level of the two signals reaches a certain value , the gate circuit 43 takes the logical product of the two signals, and the gate circuit 43 performs the logical product. The obtained pulse signal is output and sent to the determination circuit 44. As in the first embodiment, the determination circuit 44 is configured by a microcomputer, calculates a pulse signal, and outputs an alarm. In this case, the bandpass filter 40a has a bandwidth of 120 Hz to 175 Hz, and the bandpass filter 40b has a bandwidth of 3 kHz to 5 kHz. As a result, it was experimentally confirmed that the relationship with the partial discharge can be well understood. In the second embodiment, the same effect as in the first embodiment can be obtained.
次に、本発明の第3の実施の形態を説明する。図6は本発明の第3の実施の形態に係わる絶縁劣化診断装置の構成図、図7は本発明の第3の実施の形態に係わる絶縁劣化診断装置が適用された高圧受電設備の構成図である。この第3の実施の形態は、第1の実施の形態に対し、第2の実施の形態の音波検出器46を設けたものである。   Next, a third embodiment of the present invention will be described. FIG. 6 is a block diagram of an insulation deterioration diagnosis apparatus according to the third embodiment of the present invention. FIG. 7 is a block diagram of a high-voltage power receiving facility to which the insulation deterioration diagnosis apparatus according to the third embodiment of the present invention is applied. It is. In the third embodiment, the sound wave detector 46 of the second embodiment is provided with respect to the first embodiment.
図7において、図2に示した第1の実施の形態に対し、高周波電流検出器36に加え、高圧受電設備14内の電線に重畳する音波を検出する複数の音波検出器46が追加して設けられている。図6では、高圧受電設備14内に3個の音波検出器46が追加して設けられた場合を示している。各々の音波検出器46で検出された高圧受電設備14内の電線に重畳する音波は、絶縁劣化診断装置34に入力される。   7, in addition to the high-frequency current detector 36, a plurality of sound wave detectors 46 for detecting sound waves superimposed on the electric wires in the high-voltage power receiving equipment 14 are added to the first embodiment shown in FIG. Is provided. FIG. 6 shows a case where three sound wave detectors 46 are additionally provided in the high-voltage power receiving facility 14. Sound waves superimposed on the electric wires in the high-voltage power receiving equipment 14 detected by the respective sound wave detectors 46 are input to the insulation deterioration diagnosis device 34.
図6に示すように、高周波電流検出器36で検出された高周波電流は、絶縁劣化診断装置34の増幅器37に入力される。増幅器37は、高周波電流検出器36で検出された高周波電流の検出信号を増幅する。増幅器37は、高周波電流検出器36で検出された高周波電流の検出信号を増幅する。   As shown in FIG. 6, the high frequency current detected by the high frequency current detector 36 is input to the amplifier 37 of the insulation deterioration diagnosis device 34. The amplifier 37 amplifies the detection signal of the high frequency current detected by the high frequency current detector 36. The amplifier 37 amplifies the detection signal of the high frequency current detected by the high frequency current detector 36.
高周波電流検出器36で検出する高周波電流の周波数帯域は、比較的外来電波の影響が少なく、部分放電によって放出されている10MHz〜30MHzの周波数を使用する。高周波電流の振幅は、複雑な信号によって変調を受けており、高周波電流は一見ノイズのような広帯域の周波数成分を含む不規則な動きをしているので、この高周波電流の波形の包絡線に着目し、包絡線の動きを解析することにより部分放電の発生を検出する。検波回路38は、増幅器37で増幅されたシースアース線35に流れる高周波電流の検出信号の包絡線の信号を整流検波する。この高周波電流の検出信号の波形を整流することにより振幅の変化を取り出す。   The frequency band of the high-frequency current detected by the high-frequency current detector 36 has a relatively low influence of external radio waves, and uses a frequency of 10 MHz to 30 MHz emitted by partial discharge. The amplitude of the high-frequency current is modulated by a complex signal, and the high-frequency current behaves irregularly including a wide-band frequency component such as noise, so pay attention to the waveform envelope of this high-frequency current. Then, the occurrence of partial discharge is detected by analyzing the movement of the envelope. The detection circuit 38 rectifies and detects the envelope signal of the detection signal of the high-frequency current flowing through the sheath ground wire 35 amplified by the amplifier 37. A change in the amplitude is extracted by rectifying the waveform of the detection signal of the high-frequency current.
そして、信号分離回路39で2つの信号に分離し、2つ信号のレベルが一定値に達したときゲート回路43で2つの信号の論理積をとり、ゲート回路43から論理積により得られたパルス信号を出力し判定回路44に送る。判定回路44は、第1の実施の形態と同様に、マイクロコンピュータにより構成され、パルス信号の演算を行いOR回路47を介して警報を出力する。この場合、バンドパスフィルタ40aのバンド幅は175Hz〜275Hzとし、バンドパスフィルタ40bのバンド幅は3kHz〜5kHzとしている。これは、部分放電との関係が良く把握できることを実験的に確認した結果に基づくものである。 Then, the signal is separated into two signals by the signal separation circuit 39. When the levels of the two signals reach a certain value , the gate circuit 43 takes the logical product of the two signals, and the pulse obtained from the gate circuit 43 by the logical product. A signal is output and sent to the determination circuit 44. As in the first embodiment, the determination circuit 44 is configured by a microcomputer, calculates a pulse signal, and outputs an alarm via the OR circuit 47. In this case, the bandwidth of the bandpass filter 40a is 175 Hz to 275 Hz, and the bandwidth of the bandpass filter 40b is 3 kHz to 5 kHz. This is based on the result of experimental confirmation that the relationship with the partial discharge can be well understood.
同様に、各々の音波検出器46で検出された音波は、絶縁劣化診断装置34の増幅器37に入力される。増幅器37は、各々の音波検出器46で検出された音波の検出信号を増幅する。各々の音波検出器46で検出する音波は超音波域の音波とする。これは、音波は可聴域や超音波域で空気振動により発生しているが、検出や増幅の容易さ及び周辺ノイズの除去の容易さから超音波域の音波を検出することとしている。
超音波の振幅は、複雑な信号によって変調を受けており、超音波は一見ノイズのような広帯域の周波数成分を含む不規則な動きをしているので、第1の実施の形態と同様に、この超音波の波形の包絡線に着目し、包絡線の動きを解析することにより部分放電の発生を検出する。検波回路38は、増幅器37で増幅された超音波の検出信号の包絡線の信号を整流検波する。この超音波の検出信号の波形を整流することにより振幅の変化を取り出す。
Similarly, the sound wave detected by each sound wave detector 46 is input to the amplifier 37 of the insulation deterioration diagnosis device 34. The amplifier 37 amplifies the sound wave detection signal detected by each sound wave detector 46. The sound wave detected by each sound wave detector 46 is a sound wave in the ultrasonic range. This is because the sound wave is generated by air vibration in the audible range and the ultrasonic range, but the ultrasonic wave is detected from the ease of detection and amplification and the ease of removing the peripheral noise.
Since the amplitude of the ultrasonic wave is modulated by a complex signal, and the ultrasonic wave moves irregularly including a wideband frequency component such as noise at first glance, as in the first embodiment, Focusing on the envelope of this ultrasonic waveform, the generation of partial discharge is detected by analyzing the movement of the envelope. The detection circuit 38 rectifies and detects the envelope signal of the ultrasonic detection signal amplified by the amplifier 37. A change in the amplitude is extracted by rectifying the waveform of the ultrasonic detection signal.
そして、超音波についても信号分離回路39で2つの信号に分離し、2つ信号のレベルが一定値に達したときゲート回路43で2つの信号の論理積をとり、ゲート回路43から論理積により得られたパルス信号を出力し、判定回路44に送る。判定回路44は、第2の実施の形態と同様に、マイクロコンピュータにより構成され、パルス信号の演算を行いOR回路47を介して警報を出力する。この場合、バンドパスフィルタ40aのバンド幅は120Hz〜175Hzとし、バンドパスフィルタ40bのバンド幅は3kHz〜5kHzとしている。これは、部分放電との関係が良く把握できることを実験的に確認した結果に基づくものである。
The ultrasonic signal is also separated into two signals by the signal separation circuit 39. When the level of the two signals reaches a certain value , the gate circuit 43 takes the logical product of the two signals, and the gate circuit 43 performs the logical product. The obtained pulse signal is output and sent to the determination circuit 44. As in the second embodiment, the determination circuit 44 is configured by a microcomputer, calculates a pulse signal, and outputs an alarm via the OR circuit 47. In this case, the band pass filter 40a has a bandwidth of 120 Hz to 175 Hz, and the band pass filter 40b has a bandwidth of 3 kHz to 5 kHz. This is based on the result of experimental confirmation that the relationship with the partial discharge can be well understood.
第3の実施の形態によれば、高周波電流検出器36で検出された高周波電流あるいは音波検出器46で検出された音波のいずれか一方で部分放電を検出できるので、より部分放電の検出の精度が向上する。   According to the third embodiment, since the partial discharge can be detected by either the high frequency current detected by the high frequency current detector 36 or the sound wave detected by the sound wave detector 46, the partial discharge can be detected more accurately. Will improve.
11…柱状開閉器、12…配電線、13…引き込みケーブル、14…高圧受電設備、15…電力受給用計器用変成器、16…断路器、17…遮断器、18…受電母線、19…高圧限流ヒューズ、20…計器用変圧器、21…ヒューズ、22…電圧計切替スイッチ、23…電圧計、24…計器用変流器、25…過電流継電器、26…電流計切替スイッチ、27…電流計、28…電力限流ヒューズ付高圧交流負荷開閉器、29…受電変圧器、30…配電用遮断器、31…負荷、32…直列リアクトル、33…進相コンデンサ、34…絶縁劣化診断装置、35…シースアース線、36…高周波電流検出器、37…増幅器、38…検波回路、39…信号分離回路、40…バンドパスフィルタ、41…増幅器、42…レベル判定回路、43…ゲート回路、44…判定回路、45…警報出力回路、46…音波検出器、47…OR回路 DESCRIPTION OF SYMBOLS 11 ... Column-shaped switch, 12 ... Distribution line, 13 ... Lead-in cable, 14 ... High voltage power receiving equipment, 15 ... Electric power receiving instrument transformer, 16 ... Disconnector, 17 ... Circuit breaker, 18 ... Power receiving bus, 19 ... High voltage Current limiting fuse, 20 ... instrument transformer, 21 ... fuse, 22 ... voltmeter changeover switch, 23 ... voltmeter, 24 ... instrument current transformer, 25 ... overcurrent relay, 26 ... ammeter changeover switch, 27 ... Ammeter, 28 ... High-voltage AC load switch with current-limiting fuse, 29 ... Power receiving transformer, 30 ... Power distribution breaker, 31 ... Load, 32 ... Series reactor, 33 ... Phase advance capacitor, 34 ... Insulation degradation diagnostic device 35 ... sheathed ground wire, 36 ... high frequency current detector, 37 ... amplifier, 38 ... detection circuit, 39 ... signal separation circuit, 40 ... band pass filter, 41 ... amplifier, 42 ... level judgment circuit, 43 ... gate circuit 44 ... judgment circuit, 45 ... alarm output circuit, 46 ... ultrasonic detector, 47 ... OR circuit

Claims (6)

  1. 高圧受電設備の引き込みケーブルのシースアース線に流れる高周波電流を高周波電流検出器で検出し前記高周波電流検出器で検出された高周波電流の検出信号を増幅する増幅器と、前記増幅器で増幅された前記シースアース線に流れる高周波電流の検出信号の包絡線の信号を整流検波する検波回路と、前記検波回路の出力信号を予め定めた2つの帯域の信号に分離する信号分離回路と、前記信号分離回路で分離された前記2つの帯域の信号の論理積をとるゲート回路と、前記ゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する判定回路と、前記判定回路が高圧受電設備内の部分放電の発生であると判定したときは警報を出力する警報出力回路とを備えたことを特徴とする高圧受電設備の絶縁劣化診断装置。 An amplifier for detecting a high-frequency current flowing through a sheath ground wire of a lead-in cable of a high-voltage power receiving facility by a high-frequency current detector and amplifying a detection signal of the high-frequency current detected by the high-frequency current detector, and the sheath amplified by the amplifier A detection circuit for rectifying and detecting an envelope signal of a detection signal of a high-frequency current flowing in the ground wire, a signal separation circuit for separating an output signal of the detection circuit into signals of two predetermined bands, and the signal separation circuit A gate circuit that takes a logical product of the separated signals of the two bands, a determination circuit that determines the occurrence of partial discharge in the high-voltage power receiving facility based on a pulse signal obtained by the logical product of the gate circuit, and Insulation of high-voltage power receiving equipment characterized by comprising an alarm output circuit that outputs an alarm when the judgment circuit determines that partial discharge has occurred in the high-voltage power receiving equipment Of diagnostic equipment.
  2. 前記信号分離回路の予め定めた2つの帯域のうち、一方の帯域は、175Hz〜275Hzであり、他方の帯域は、3kHz〜5kHzであることを特徴とする請求項1に記載の高圧受電設備の絶縁劣化診断装置。 2. The high-voltage power receiving equipment according to claim 1, wherein one of the two predetermined bands of the signal separation circuit is 175 Hz to 275 Hz, and the other band is 3 kHz to 5 kHz . Insulation deterioration diagnosis device.
  3. 高圧受電設備内の電線に重畳する音波を音波検出器で検出し前記音波検出器で検出された音波の検出信号を増幅する増幅器と、前記増幅器で増幅された電線に重畳する音波の検出信号の包絡線の信号を整流検波する検波回路と、前記検波回路の出力信号を予め定めた2つの帯域の信号に分離する信号分離回路と、前記信号分離回路で分離された2つの帯域の信号の論理積をとるゲート回路と、前記ゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する判定回路と、前記判定回路が高圧受電設備内の部分放電の発生であると判定したときは警報を出力する警報出力回路とを備えたことを特徴とする高圧受電設備の絶縁劣化診断装置。 An acoustic wave detector that detects the sound wave superimposed on the electric wire in the high-voltage power receiving facility and amplifies the sound wave detection signal detected by the sound wave detector, and the sound wave detection signal superimposed on the electric wire amplified by the amplifier A detection circuit that rectifies and detects an envelope signal, a signal separation circuit that separates an output signal of the detection circuit into two predetermined band signals, and a logic of two band signals separated by the signal separation circuit A gate circuit that takes a product, a determination circuit that determines the occurrence of partial discharge in the high-voltage power receiving facility based on a pulse signal obtained by a logical product of the gate circuit, and the determination circuit that performs partial discharge in the high-voltage power receiving facility. An insulation deterioration diagnosis device for high-voltage power receiving equipment, comprising: an alarm output circuit that outputs an alarm when it is determined that the occurrence has occurred.
  4. 前記信号分離回路の予め定めた2つの帯域のうち、一方の帯域は、120Hz〜175Hzであり、他方の帯域は、3kHz〜5kHzであることを特徴とする請求項3に記載の高圧受電設備の絶縁劣化診断装置。   4. The high-voltage power receiving equipment according to claim 3, wherein one of the two predetermined bands of the signal separation circuit is 120 Hz to 175 Hz, and the other band is 3 kHz to 5 kHz. Insulation deterioration diagnosis device.
  5. 前記判定回路は、前記ゲート回路の論理積により得られたパルス信号であるパルス数が所定期間内に所定個数以上である状態が一定時間以上継続したときは、高圧受電設備内の部分放電の発生であると判定することを特徴とする請求項1乃至請求項4のいずれか1項に記載の高圧受電設備の絶縁劣化診断装置。 The determination circuit generates a partial discharge in the high-voltage power receiving facility when the number of pulses, which are pulse signals obtained by the logical product of the gate circuits, continues for a predetermined time or more within a predetermined period. The insulation deterioration diagnosis apparatus for high-voltage power receiving equipment according to any one of claims 1 to 4, wherein it is determined that
  6. 高圧受電設備の引き込みケーブルのシースアース線に流れる高周波電流を高周波電流検出器で検出し前記高周波電流検出器で検出された高周波電流の検出信号を増幅する第1の増幅器と、前記第1の増幅器で増幅された前記シースアース線に流れる高周波電流の検出信号の包絡線の信号を整流検波する第1の検波回路と、前記第1の検波回路の出力信号を予め定めた2つの帯域の信号に分離する第1の信号分離回路と、前記第1の信号分離回路で分離された前記2つの帯域の信号の論理積をとる第1のゲート回路と、前記第1のゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する第1の判定回路と、高圧受電設備内の電線に重畳する音波を音波検出器で検出し前記音波検出器で検出された音波の検出信号を増幅する第2の増幅器と、前記増幅器で増幅された電線に重畳する音波の検出信号の包絡線の信号を整流検波する第2の検波回路と、前記第2の検波回路の出力信号を予め定めた2つの帯域の信号に分離する第2の信号分離回路と、前記第2の信号分離回路で分離された2つの帯域の信号の論理積をとる第2のゲート回路と、前記第2のゲート回路の論理積により得られたパルス信号に基づいて高圧受電設備内の部分放電の発生を判定する第2の判定回路と、前記第1の判定回路または第2の判定回路にいずれかが高圧受電設備内の部分放電の発生であると判定したときは警報を出力する警報出力回路とを備えたことを特徴とする高圧受電設備の絶縁劣化診断装置。 A first amplifier for detecting a high-frequency current flowing in a sheath ground wire of a lead-in cable of a high-voltage power receiving facility by a high-frequency current detector and amplifying a detection signal of the high-frequency current detected by the high-frequency current detector; and the first amplifier The first detection circuit for rectifying and detecting the envelope signal of the detection signal of the high-frequency current flowing through the sheath ground wire amplified in step S1 and the output signal of the first detection circuit are signals in two predetermined bands. resulting in the first signal separation circuit for separating a first gate circuit for ANDing the first signal separated by the separation circuit the said two bands of signals, the logical product of the first gate circuit A first determination circuit for determining the occurrence of partial discharge in the high-voltage power receiving facility based on the received pulse signal, and a sound wave superimposed on the electric wire in the high-voltage power receiving facility is detected by a sound wave detector and detected by the sound wave detector. Sound A second amplifier for amplifying the detection signal, a second detection circuit for rectifying and detecting the envelope signal of the sound wave detection signal superimposed on the electric wire amplified by the amplifier, and an output of the second detection circuit A second signal separation circuit that separates a signal into signals of two predetermined bands; a second gate circuit that takes a logical product of the signals of the two bands separated by the second signal separation circuit; The second determination circuit that determines the occurrence of partial discharge in the high-voltage power receiving facility based on the pulse signal obtained by the logical product of the second gate circuit, and the first determination circuit or the second determination circuit An insulation deterioration diagnosis apparatus for high-voltage power receiving equipment, comprising: an alarm output circuit that outputs an alarm when it is determined that the occurrence of partial discharge in the high-voltage power receiving equipment.
JP2009078626A 2009-03-27 2009-03-27 Insulation degradation diagnosis device for high-voltage power receiving equipment Active JP5599982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078626A JP5599982B2 (en) 2009-03-27 2009-03-27 Insulation degradation diagnosis device for high-voltage power receiving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078626A JP5599982B2 (en) 2009-03-27 2009-03-27 Insulation degradation diagnosis device for high-voltage power receiving equipment

Publications (2)

Publication Number Publication Date
JP2010230497A JP2010230497A (en) 2010-10-14
JP5599982B2 true JP5599982B2 (en) 2014-10-01

Family

ID=43046474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078626A Active JP5599982B2 (en) 2009-03-27 2009-03-27 Insulation degradation diagnosis device for high-voltage power receiving equipment

Country Status (1)

Country Link
JP (1) JP5599982B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2779340B1 (en) * 2013-03-15 2018-11-07 Sensata Technologies, Inc. Home run arc detection at the photovoltaic string level using multiple current sensors
CN108152653A (en) * 2017-12-29 2018-06-12 国网山东省电力公司日照供电公司 Transformer fault monitoring device and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455770A (en) * 1990-06-26 1992-02-24 Fuji Electric Co Ltd Partial discharge monitor
JPH09127181A (en) * 1995-10-30 1997-05-16 Kawasaki Steel Corp Detecting device for corona discharge of electric power equipment
JPH09229993A (en) * 1996-02-27 1997-09-05 Techno Create Kk Corona-noise detection apparatus and partial-discharge detection apparatus
US7285961B2 (en) * 2003-10-22 2007-10-23 Fujikura Ltd. Insulation degradation diagnostic device

Also Published As

Publication number Publication date
JP2010230497A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US9025287B2 (en) Arc fault detection equipment and method using low frequency harmonic current analysis
US4929903A (en) Method of and apparatus for assessing insulation conditions
EP2542903B1 (en) Evaluating noise and excess current on a power line
US8010239B2 (en) Partial discharge counter for diagnosis of gas insulated switchgear
KR101070832B1 (en) A method for detecting an abnormality of distributing board
JP2005147890A (en) Insulation abnormality diagnostic device
JP2009115505A (en) Winding inspection device and inspection method
US9366713B2 (en) Arc fault detection system and method
JP6704898B2 (en) Method for detecting an arc in a photovoltaic system and apparatus for detecting an arc
US9366716B2 (en) Sub-harmonic arc fault detection system and method
JP2009300289A (en) Partial discharge detection method by electromagnetic wave measurement
JP2017529818A5 (en)
KR20150003618A (en) Partial discharge diagnosis device for the cable
KR101007551B1 (en) Method For Detecting Arc In Power Distribution System And System For Alerting Arc Using The Same Method
JP2004347424A (en) Hot-line insulation deterioration diagnostic method and its device
KR100577347B1 (en) Detector for gis and detecting method thereof
JP5599982B2 (en) Insulation degradation diagnosis device for high-voltage power receiving equipment
JPH10104304A (en) Device and method for detecting defective insulation of device connected to power transmission or distribution network
JPH09127181A (en) Detecting device for corona discharge of electric power equipment
JP5120133B2 (en) Partial discharge detection method by magnetic field measurement
KR20130028302A (en) On-line power cable insulation monitoring system and methods
JP4353840B2 (en) Method for detecting partial discharge of electric circuit
JP2011237182A (en) Device and method for determining partial discharge
JP2005102351A (en) Insulation deterioration diagnostic equipment
JP2010230498A (en) High-pressure partial discharge measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140814

R150 Certificate of patent or registration of utility model

Ref document number: 5599982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250