JP6600567B2 - Vacuum valve vacuum degree monitoring device and monitoring method - Google Patents
Vacuum valve vacuum degree monitoring device and monitoring method Download PDFInfo
- Publication number
- JP6600567B2 JP6600567B2 JP2016009056A JP2016009056A JP6600567B2 JP 6600567 B2 JP6600567 B2 JP 6600567B2 JP 2016009056 A JP2016009056 A JP 2016009056A JP 2016009056 A JP2016009056 A JP 2016009056A JP 6600567 B2 JP6600567 B2 JP 6600567B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- degree
- electromagnetic wave
- vacuum valve
- detection sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Measuring Fluid Pressure (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
本発明の実施形態は、接離自在の一対の接点を有する真空バルブの真空度を監視する真空バルブの真空度監視装置および監視方法に関する。 Embodiments described herein relate generally to a vacuum valve monitoring device and a monitoring method for a vacuum valve that monitors the vacuum of a vacuum valve having a pair of contactable and separable contacts.
受配電設備に用いられる真空遮断器には、優れた遮断性能と絶縁性能を有する真空バルブが用いられている。しかしながら、真空度が劣化すると、これらの性能を発揮することが困難となる。 The vacuum valve which has the outstanding interruption | blocking performance and insulation performance is used for the vacuum circuit breaker used for a power distribution equipment. However, when the degree of vacuum deteriorates, it becomes difficult to exhibit these performances.
このため、従来から真空度を監視する提案が多々なされている。例えば、真空度の劣化に伴って発生する放電をアンテナで検出するものが知られている(例えば、特許文献1参照)。しかしながら、放電の連続性や継続時間を検出してノイズ除去をしているものの、外来ノイズが重畳し易く真空バルブ内の放電との区分けが困難であり検出感度の向上には限界があった。また、アンテナで検出した信号に閾値を設けてノイズ除去を行うものが知られている(例えば、特許文献2参照)。しかしながら、閾値を下回る微弱な放電を検出することが困難であり、検出感度の向上には限界があった。 For this reason, there have been many proposals for monitoring the degree of vacuum. For example, what detects the discharge which generate | occur | produces with deterioration of a vacuum degree with an antenna is known (for example, refer patent document 1). However, although noise removal is performed by detecting the continuity and duration of discharge, there is a limit to improving the detection sensitivity because external noise is easily superimposed and it is difficult to distinguish from discharge in the vacuum bulb. In addition, there is known one that performs noise removal by providing a threshold value for a signal detected by an antenna (see, for example, Patent Document 2). However, it is difficult to detect a weak discharge below the threshold, and there is a limit to improving detection sensitivity.
また、真空バルブにアンテナを近接して設置し、電磁波を検出するものが知られている(例えば、特許文献3参照)。しかしながら、信号処理にバンドパスフィルタを用い、真空度の劣化に伴って発生するマイクロ波帯を検出するようにしているので、検出する周波数帯が限定され、検出感度の向上には限界があった。また、ノイズとなる外部放電をローパスフィルタで減衰させ、真空バルブからの内部放電をアンテナで受信するものが知られている(例えば、特許文献4参照)。しかしながら、数MHz〜数100MHzと高い周波数帯域を検出し、真空度の劣化判定に閾値を設けているので、閾値を下回るような放電を検出することが困難であり、検出感度の向上には限界があった。 In addition, there is known one that detects an electromagnetic wave by installing an antenna close to a vacuum valve (see, for example, Patent Document 3). However, a bandpass filter is used for signal processing, and the microwave band generated as the degree of vacuum is deteriorated is detected. Therefore, the frequency band to be detected is limited, and there is a limit to improving the detection sensitivity. . Further, there is known a technique in which external discharge that becomes noise is attenuated by a low-pass filter, and internal discharge from a vacuum bulb is received by an antenna (see, for example, Patent Document 4). However, since a high frequency band of several MHz to several hundred MHz is detected and a threshold value is provided for determining the degree of vacuum deterioration, it is difficult to detect discharge that falls below the threshold value, and there is a limit to improving detection sensitivity. was there.
更には、真空バルブからの電磁波をアンテナで検出し、その信号を周波数分析し、真空度の推定を行うものが知られている(例えば、特許文献5参照)。しかしながら、主回路に印加した電圧の位相を複数に分割し、分割した位相においてそれぞれ周波数解析をしているので、解析装置が複雑になっていた。 Furthermore, there is known one that detects electromagnetic waves from a vacuum valve with an antenna, analyzes the frequency of the signal, and estimates the degree of vacuum (for example, see Patent Document 5). However, the phase of the voltage applied to the main circuit is divided into a plurality of parts, and frequency analysis is performed for each of the divided phases, so that the analysis apparatus is complicated.
このため、印加電圧の位相を分割するような複雑な装置を用いることなく、アンテナで検出した電磁波を簡素な方法で周波数解析するとともに、ノイズ除去のために回路にフィルタなどを接続したり、判定に閾値などを設けたりせず、真空バルブの真空度を高感度で検出することができるものが望まれていた。 For this reason, without using a complicated device that divides the phase of the applied voltage, the electromagnetic wave detected by the antenna is frequency-analyzed by a simple method, and a filter or the like is connected to the circuit for noise removal, or judgment There has been a demand for a sensor that can detect the degree of vacuum of a vacuum valve with high sensitivity without providing a threshold value or the like.
本発明が解決しようとする課題は、真空バルブから発生する電磁波をフィルタや閾値などを設けたりせず、微弱な電磁波を直接、アンテナにて高感度で検出し、真空度を監視することができる真空バルブの真空度監視装置および監視方法を提供することにある。 The problem to be solved by the present invention is that the electromagnetic wave generated from the vacuum valve can be directly detected with high sensitivity by the antenna without using a filter or a threshold, and the degree of vacuum can be monitored. An object of the present invention is to provide a vacuum degree monitoring device and a monitoring method for a vacuum valve.
上記課題を解決するために、実施形態の真空バルブの真空度監視装置は、真空バルブに所定間隔を保って配置された電磁波検出センサと、前記電磁波検出センサに接続された真空度判定装置とを有し、前記真空度判定装置は、電磁波検出センサで検出された電磁波のピーク電圧値と第1波の立ち上り時間とを求める電磁波検出部と、前記ピーク電圧値と前記第1波の立ち上り時間とを予め求めておいた真空度曲線と比較する波形比較部と、前記波形比較部での判定に基づき前記真空バルブの真空度を判定する真空度判定部と、で構成されることを特徴とする。 In order to solve the above-described problem, a vacuum degree monitoring device for a vacuum valve according to an embodiment includes an electromagnetic wave detection sensor disposed at a predetermined interval on a vacuum valve, and a vacuum degree determination device connected to the electromagnetic wave detection sensor. The vacuum degree determination device includes: an electromagnetic wave detection unit that obtains a peak voltage value of the electromagnetic wave detected by the electromagnetic wave detection sensor and a rise time of the first wave; and a rise time of the peak voltage value and the first wave. A waveform comparison unit that compares with a previously obtained vacuum degree curve, and a vacuum degree determination unit that determines the degree of vacuum of the vacuum valve based on the determination by the waveform comparison unit. .
以下、図面を参照して本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
先ず、本発明の実施例1に係る真空バルブの真空度監視装置を図1〜図7を参照して説明する。図1は、本発明の実施例1に係る本発明の実施例1に係る真空バルブの真空度監視装置の構成を示す概略図、図2は、本発明の実施例1に係る真空度と信号のピーク電圧値の関係を説明する図、図3は、本発明の実施例1に係る真空度と信号の立ち上り時間の関係を説明する図、図4は、本発明の実施例1に係る信号のピーク電圧値と立ち上り時間の関係を説明する図、図5は、本発明の実施例1に係る電磁波の測定例、図6は、本発明の実施例1に係る電磁波検出センサの角度を説明する図、図7は、本発明の実施例1に係る電磁波検出センサの角度と出力電圧の関係を説明する図である。 First, a vacuum degree monitoring device for a vacuum valve according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a configuration of a vacuum degree monitoring device for a vacuum valve according to a first embodiment of the present invention, and FIG. 2 shows a vacuum degree and a signal according to the first embodiment of the present invention. FIG. 3 is a diagram for explaining the relationship between the degree of vacuum and the signal rise time according to the first embodiment of the present invention, and FIG. 4 is a signal for explaining the relationship between the peak voltage values of the first embodiment of the present invention. FIG. 5 illustrates an example of electromagnetic wave measurement according to the first embodiment of the present invention, and FIG. 6 illustrates an angle of the electromagnetic wave detection sensor according to the first embodiment of the present invention. FIG. 7 is a diagram for explaining the relationship between the angle and the output voltage of the electromagnetic wave detection sensor according to the first embodiment of the present invention.
図1に示すように、金属製の箱体1内には、真空遮断器に搭載された真空バルブ2が収納されている。真空バルブ2には、これに近接してループアンテナのような電磁波検出センサ3が配置されている。電磁波検出センサ3の出力は、箱体1外に設けられた真空度判定装置4に接続されている。真空度判定装置4は、電磁波検出センサ3の出力に接続された電磁波のピーク電圧値と第1波の立ち上り時間を検出する電磁波検出部5、電磁波検出部5で検出した電磁波を真空度曲線と比較する波形比較部6、波形比較部6での情報に基づき真空度の劣化を判定する真空度判定部7で構成されている。 As shown in FIG. 1, a vacuum valve 2 mounted on a vacuum circuit breaker is housed in a metal box 1. An electromagnetic wave detection sensor 3 such as a loop antenna is disposed in the vacuum valve 2 in the vicinity thereof. The output of the electromagnetic wave detection sensor 3 is connected to a vacuum degree determination device 4 provided outside the box 1. The degree-of-vacuum determination device 4 includes an electromagnetic wave detection unit 5 that detects the peak voltage value of the electromagnetic wave connected to the output of the electromagnetic wave detection sensor 3 and the rise time of the first wave, and the electromagnetic wave detected by the electromagnetic wave detection unit 5 as a vacuum degree curve. A waveform comparison unit 6 to be compared and a vacuum level determination unit 7 that determines deterioration of the vacuum level based on information in the waveform comparison unit 6 are configured.
次に、電磁波検出センサで検出される電磁波と真空度の関係を図2〜図4を参照して説明する。各図は、両対数目盛である。 Next, the relationship between the electromagnetic wave detected by the electromagnetic wave detection sensor and the degree of vacuum will be described with reference to FIGS. Each figure is a logarithmic scale.
真空バルブ2の容器内の真空度を変化させ、放電による電磁波をループアンテナで検出すると、図2に示すように、真空度が劣化して大気圧に近づくと、電磁波のピーク電圧値は上昇する。ピーク電圧値は、第1波に形成され易いものの、第1波に限定されるものではない。また、図3に示すように、真空度が劣化して大気圧に近づくと、第1波の立ち上り時間は短くなる。 When the degree of vacuum in the container of the vacuum bulb 2 is changed and an electromagnetic wave due to discharge is detected by a loop antenna, the peak voltage value of the electromagnetic wave increases when the degree of vacuum deteriorates and approaches atmospheric pressure as shown in FIG. . Although the peak voltage value is easily formed in the first wave, it is not limited to the first wave. Further, as shown in FIG. 3, when the degree of vacuum deteriorates and approaches atmospheric pressure, the rise time of the first wave is shortened.
これより、電磁波のピーク電圧値と第1波の立ち上り時間の関係は、図4に示すように、第1波の立ち上り時間が短くなるにつれてピーク電圧値が上昇する。即ち、真空度の変化によって、第1波の立ち上り時間とピーク電圧値が変化する真空度曲線を得ることができる。この真空度曲線上に、公知のパッセェン曲線から放電開始電圧が上昇して安定する真空度(10−1Pa以下)での値をプロットするとA点(20mV、0.5μS)となる。A点は、代表的な真空バルブ2からの電磁波である。 As a result, the relationship between the peak voltage value of the electromagnetic wave and the rise time of the first wave increases as the rise time of the first wave becomes shorter, as shown in FIG. That is, it is possible to obtain a vacuum degree curve in which the rise time of the first wave and the peak voltage value change according to the change in the degree of vacuum. On this vacuum degree curve, plotting a value at a degree of vacuum (10 −1 Pa or less) at which the discharge start voltage rises and stabilizes from a known Passenger curve gives point A (20 mV, 0.5 μS). Point A is an electromagnetic wave from a typical vacuum valve 2.
図5(a)(b)に示すような真空度を変化させたときの値を図4の真空度曲線上にプロットすると、よく一致している。これらのデータは、フィルタなどを用いず、電磁波検出センサ3で直接検出した電磁波のピーク電圧と立ち上り時間を求めたものである。電磁波検出センサ3は、指向性を有し、また、電界と比較して高周波でシールドされ難い磁界成分を検出するので、高感度となる。周波数帯域は、真空放電(低真空から高真空)を基準とする30kHz〜200MHzである。 The values obtained when the degree of vacuum as shown in FIGS. 5A and 5B is changed are plotted on the vacuum degree curve shown in FIG. These data are obtained by obtaining the peak voltage and rise time of the electromagnetic wave directly detected by the electromagnetic wave detection sensor 3 without using a filter or the like. Since the electromagnetic wave detection sensor 3 has directivity and detects a magnetic field component that is difficult to shield at a high frequency as compared with an electric field, it has high sensitivity. The frequency band is 30 kHz to 200 MHz based on vacuum discharge (from low vacuum to high vacuum).
なお、真空度の変化に伴って発生する電磁波のピーク電圧値と第1波の立ち上り時間は、アークシールドや電極など放電部位によって変化するので、予め代表的な放電部位での真空度曲線を求めておくものとする。一般的な真空バルブ2では、立ち上り時間0.5μS以上、ピーク電圧値20mV以下において良好な真空度となる。ここで、電磁波が発生しない場合は、極めて良好な真空度である。 Since the peak voltage value of the electromagnetic wave generated with the change in the degree of vacuum and the rise time of the first wave vary depending on the discharge part such as the arc shield and the electrode, a vacuum degree curve at a representative discharge part is obtained in advance. Shall be kept. The general vacuum valve 2 has a good degree of vacuum when the rise time is 0.5 μS or more and the peak voltage value is 20 mV or less. Here, when no electromagnetic wave is generated, the degree of vacuum is very good.
次に、電磁波検出センサ3の出力変化を図6〜図7を参照して説明する。 Next, the output change of the electromagnetic wave detection sensor 3 will be described with reference to FIGS.
図6に示すように、真空バルブ2の軸方向に対し、電磁波検出センサ3のループ全体の断面を直交させて配置し、角度θを変化させると、図7に示すように出力電圧はコサイン曲線となる。ここで、一般的にノイズが重畳され易いこの種のものでは、測定誤差を1%に抑えれば充分であり、出力電圧をこの測定誤差内に収めようとすると、電磁波検出センサ3の角度はθ=±8度変化させてもよいことになり、作業性を向上させることができる。また、真空バルブ2の軸方向に対する電磁波検出センサ3のループ全体の断面も±8度で配置することができる。なお、電磁波検出センサ3は、真空バルブ2から放電が点弧しない程度に充分に距離を確保した。 As shown in FIG. 6, when the cross section of the entire loop of the electromagnetic wave detection sensor 3 is arranged perpendicular to the axial direction of the vacuum valve 2 and the angle θ is changed, the output voltage is a cosine curve as shown in FIG. It becomes. Here, in this type of device in which noise is generally easily superimposed, it is sufficient to suppress the measurement error to 1%. When the output voltage is to be within this measurement error, the angle of the electromagnetic wave detection sensor 3 is θ = ± 8 degrees may be changed, and workability can be improved. Moreover, the cross section of the entire loop of the electromagnetic wave detection sensor 3 with respect to the axial direction of the vacuum valve 2 can also be arranged at ± 8 degrees. In addition, the electromagnetic wave detection sensor 3 secured a sufficient distance to prevent discharge from starting from the vacuum bulb 2.
これらを、電磁波検出センサ3の断面を真空バルブ2の軸方向に対して所定角度でねじれ配置すると称する。 These are referred to as a twisted arrangement of the cross section of the electromagnetic wave detection sensor 3 at a predetermined angle with respect to the axial direction of the vacuum valve 2.
上記実施例1の真空バルブの真空度監視装置によれば、真空バルブ2の放電に伴って発生する電磁波を電磁波検出センサ3で検出し、真空度測定装置4でピーク電圧値と第1波の立ち上り時間を求め、予め求めておいた真空度曲線と比較して真空度を判定しているので、ノイズ除去用のフィルタなどを必要とせず、高感度で真空バルブ2の真空度を監視することができる。また、真空度測定装置4では、ピーク電圧値と第1波の立ち上り時間だけの検出でよいので、解析装置を簡素化させることができる。 According to the vacuum degree monitoring device of the vacuum valve of the first embodiment, the electromagnetic wave generated with the discharge of the vacuum bulb 2 is detected by the electromagnetic wave detection sensor 3, and the peak voltage value and the first wave of the first wave are detected by the vacuum degree measuring device 4. Since the rise time is obtained and the degree of vacuum is judged in comparison with the previously obtained degree of vacuum curve, the degree of vacuum of the vacuum valve 2 can be monitored with high sensitivity without the need for a noise removal filter or the like. Can do. Moreover, in the vacuum degree measuring apparatus 4, since it is sufficient to detect only the peak voltage value and the rise time of the first wave, the analysis apparatus can be simplified.
次に、本発明の実施例2に係る真空バルブの真空度監視装置を図8、図9を参照して説明する。図8は、本発明の実施例2に係る真空バルブの真空度監視装置の構成を示す概略図、図9は、本発明の実施例2に係る印加電圧と放電パルスの関係を説明する図である。なお、この実施例2が実施例1と異なる点は、主回路に変流器を設けて放電の判定をするようにしたことである。図8において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。 Next, a vacuum valve vacuum degree monitoring apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 8 is a schematic diagram showing the configuration of a vacuum degree monitoring device for a vacuum valve according to Embodiment 2 of the present invention, and FIG. 9 is a diagram for explaining the relationship between the applied voltage and the discharge pulse according to Embodiment 2 of the present invention. is there. The second embodiment is different from the first embodiment in that a current transformer is provided in the main circuit to determine discharge. In FIG. 8, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
図8に示すように、真空バルブ2の周りには、所定の間隔を保って環状のCT8を設け、分圧器9を介して真空度判定装置4に接続している。真空度判定装置4では、図9に示すように、主回路の運転電圧要素を取出し、CT8で検出される放電による重畳電流信号を検出する。 As shown in FIG. 8, an annular CT 8 is provided around the vacuum valve 2 at a predetermined interval, and is connected to the vacuum degree determination device 4 via a voltage divider 9. As shown in FIG. 9, the degree-of-vacuum determination device 4 takes out the operating voltage element of the main circuit and detects the superimposed current signal due to the discharge detected at CT8.
これにより、真空度の監視とともに、放電による重畳信号を検出しているので、真空度を確実に監視することができる。三相回路では、運転電圧の位相が異なるので、相を特定することができる。また、真空バルブ2の放電では、運転電圧の零クロス位相付近で同極性のパルス状の重畳信号が出るので、真空度の劣化を判定し易くなる。 Thereby, since the superimposition signal by discharge is detected with the monitoring of the degree of vacuum, the degree of vacuum can be reliably monitored. In the three-phase circuit, the phase of the operating voltage is different, so that the phase can be specified. Further, in the discharge of the vacuum valve 2, since a pulsed superimposed signal having the same polarity is output in the vicinity of the zero cross phase of the operating voltage, it is easy to determine the deterioration of the degree of vacuum.
上記実施例2の真空バルブの真空度監視装置によれば、実施例1による効果のほかに、真空度をより確実に検出することができる。 According to the vacuum degree monitoring device for a vacuum valve of the second embodiment, in addition to the effects of the first embodiment, the degree of vacuum can be detected more reliably.
次に、本発明の実施例3に係る真空バルブの真空度監視装置を図10を参照して説明する。図10は、本発明の実施例3に係る真空バルブの真空度監視装置の構成を示す概略図である。なお、この実施例3が実施例1と異なる点は、主回路に分圧器を設けて放電の判定をおこなうようにしたことである。図10において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。 Next, a vacuum valve vacuum degree monitoring apparatus according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 10 is a schematic diagram illustrating a configuration of a vacuum degree monitoring device for a vacuum valve according to Embodiment 3 of the present invention. The third embodiment is different from the first embodiment in that a voltage divider is provided in the main circuit to determine the discharge. In FIG. 10, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
図10に示すように、真空バルブ2の周りには、所定の間隔を保ってVT10を設け、C分担のような分圧器9を介して真空度判定装置4に接続している。真空度判定装置4では、図9と同様に主回路の運転電圧要素を取出し、VT10で検出される放電による重畳信号を検出する。 As shown in FIG. 10, a VT 10 is provided around the vacuum valve 2 at a predetermined interval, and is connected to the vacuum degree determination device 4 via a voltage divider 9 such as C sharing. In the degree-of-vacuum determination device 4, the operation voltage element of the main circuit is taken out as in FIG.
上記実施例3の真空バルブの真空度監視装置によれば、実施例2と同様の効果を得ることができる。 According to the vacuum degree monitoring device for a vacuum valve of the third embodiment, the same effect as that of the second embodiment can be obtained.
以上述べたような実施形態によれば、真空バルブから放電に伴って発生する電磁波のピーク電圧値と第1波の立ち上り時間を電磁波検出センサで直接検出し、予め求めておいた真空度曲線に乗せて真空度を判定しているので、ノイズが重畳し難く、フィルタなどを不要とした簡素な装置で真空度を高感度で監視することができる。 According to the embodiment as described above, the peak voltage value of the electromagnetic wave generated by the discharge from the vacuum bulb and the rise time of the first wave are directly detected by the electromagnetic wave detection sensor, and the previously obtained vacuum degree curve is obtained. Since the degree of vacuum is determined by placing it, it is difficult to superimpose noise, and the degree of vacuum can be monitored with high sensitivity with a simple device that does not require a filter or the like.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1 箱体
2 真空バルブ
3 電磁波検出センサ
4 真空度判定装置
5 電磁波検出部
6 波形比較部
7 真空度判定部
8 CT
9 分圧器
10 VT
DESCRIPTION OF SYMBOLS 1 Box body 2 Vacuum valve 3 Electromagnetic wave detection sensor 4 Vacuum degree determination apparatus 5 Electromagnetic wave detection part 6 Waveform comparison part 7 Vacuum degree determination part 8 CT
9 Voltage divider 10 VT
Claims (8)
前記電磁波検出センサに接続された真空度判定装置とを有し、
前記真空度判定装置は、電磁波検出センサで検出された電磁波のピーク電圧値と第1波の立ち上り時間とを求める電磁波検出部と、
前記ピーク電圧値と前記第1波の立ち上り時間とを予め求めておいた真空度曲線と比較する波形比較部と、
前記波形比較部での判定に基づき前記真空バルブの真空度を判定する真空度判定部と、で構成されることを特徴とする真空バルブの真空度監視装置。 An electromagnetic wave detection sensor arranged at a predetermined interval in a vacuum valve;
A degree of vacuum determination device connected to the electromagnetic wave detection sensor,
The vacuum degree determination device includes an electromagnetic wave detection unit that obtains a peak voltage value of an electromagnetic wave detected by an electromagnetic wave detection sensor and a rise time of the first wave;
A waveform comparison unit that compares the peak voltage value and the rise time of the first wave with a previously obtained vacuum curve;
A vacuum degree monitoring device for a vacuum valve, comprising: a vacuum degree determination unit that determines a vacuum degree of the vacuum valve based on the determination in the waveform comparison unit.
先ず、前記電磁波検出センサで検出した電磁波のピーク電圧値と第1波の立ち上り時間とを求め、
次に、前記ピーク電圧値と前記第1波の立ち上り時間とを予め求めておいた真空度曲線と比較して前記真空バルブの真空度を判定することを特徴とする真空バルブの真空度監視装置の真空度監視方法。 An electromagnetic wave detection sensor is arranged at a predetermined interval in the vacuum valve,
First, the peak voltage value of the electromagnetic wave detected by the electromagnetic wave detection sensor and the rise time of the first wave are obtained,
Next, the degree of vacuum of the vacuum valve is determined by comparing the peak voltage value and the rise time of the first wave with a previously obtained degree of vacuum curve. Vacuum degree monitoring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016009056A JP6600567B2 (en) | 2016-01-20 | 2016-01-20 | Vacuum valve vacuum degree monitoring device and monitoring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016009056A JP6600567B2 (en) | 2016-01-20 | 2016-01-20 | Vacuum valve vacuum degree monitoring device and monitoring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017130353A JP2017130353A (en) | 2017-07-27 |
JP6600567B2 true JP6600567B2 (en) | 2019-10-30 |
Family
ID=59395679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016009056A Active JP6600567B2 (en) | 2016-01-20 | 2016-01-20 | Vacuum valve vacuum degree monitoring device and monitoring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6600567B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110887603B (en) * | 2019-11-11 | 2021-11-16 | 合肥晶弘电器有限公司 | Vacuum degree monitoring device |
CN111237986B (en) * | 2020-01-13 | 2022-01-04 | 广东积微科技有限公司 | Air conditioner display device and air conditioner |
-
2016
- 2016-01-20 JP JP2016009056A patent/JP6600567B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017130353A (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10444273B2 (en) | Partial discharge measurement device | |
JP5819012B2 (en) | Vacuum deterioration monitoring device | |
WO2006019164A1 (en) | Device and method for detecting partial discharge of rotary electric machine | |
JP2009115505A (en) | Winding inspection device and inspection method | |
EP1993181A2 (en) | Arc detector | |
WO2017187481A1 (en) | Partial discharge detector | |
JP6600567B2 (en) | Vacuum valve vacuum degree monitoring device and monitoring method | |
KR20160109121A (en) | Inductive Displacement Sensor Using Frequency Modulation | |
JP2019135455A (en) | Partial discharge detector using multi-sensor | |
JP2010276365A (en) | Insulation diagnosis device for electric power apparatus | |
KR20170111040A (en) | Apparatus for partial discharge of power cable on live state | |
JP6605992B2 (en) | Insulation diagnostic apparatus and insulation diagnostic method for power equipment | |
US10910923B2 (en) | Rotating electric machine and defect detection method for rotating electric machine | |
CN106199346B (en) | Device for monitoring partial discharges in an electrical network | |
JP2011252778A (en) | Method for detecting partial discharge of electrical device using magnetic field probe | |
JP2008215864A (en) | Partial discharge detection device and partial discharge detection method of rotary electric machine | |
JP5518259B2 (en) | Tank type switchgear | |
CN113678007B (en) | Short circuit detection device and short circuit detection method | |
JP2011252780A (en) | Detection method of partial discharge of electrical device using magnetic field probe | |
CN113960421A (en) | Method for detecting electric discharge in electrical device and system thereof | |
US12007444B2 (en) | Spark discharge detection device having waveform extension circuit and spark discharge detection method | |
RU2795115C1 (en) | Partial discharge registration | |
JP2009047663A (en) | Partial discharge detecting technique for electric equipment and device thereof | |
JP2014102148A (en) | Insulation inspection device | |
JP4324125B2 (en) | Partial discharge determination device and partial discharge determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160422 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20180221 Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180314 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190909 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6600567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |