JP2007256023A - Method and circuit for measuring loss current by displacement current bypass method - Google Patents

Method and circuit for measuring loss current by displacement current bypass method Download PDF

Info

Publication number
JP2007256023A
JP2007256023A JP2006079628A JP2006079628A JP2007256023A JP 2007256023 A JP2007256023 A JP 2007256023A JP 2006079628 A JP2006079628 A JP 2006079628A JP 2006079628 A JP2006079628 A JP 2006079628A JP 2007256023 A JP2007256023 A JP 2007256023A
Authority
JP
Japan
Prior art keywords
signal
current
resistor
detection
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006079628A
Other languages
Japanese (ja)
Inventor
Kazuyuki Toyama
和之 遠山
Tomoaki Imai
友章 今井
Noriyuki Akiyama
則行 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
J Power Systems Corp
Original Assignee
Institute of National Colleges of Technologies Japan
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, J Power Systems Corp filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006079628A priority Critical patent/JP2007256023A/en
Publication of JP2007256023A publication Critical patent/JP2007256023A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit and method for measuring loss current by a displacement current bypass method capable of measuring the loss current at high sensitivity and high accuracy without being affected by noise even if a sample of a measured object has large size. <P>SOLUTION: The loss current measuring circuit 10 comprises a signal detecting section 20 and displacement current bypass section 30 interconnected through an optical fiber 11, detects a current flowing in a sample 1 from a voltage applying transformer 2 to which voltage V1 from a 2-channel signal transmitter 3 is applied with the signal detecting section 20, and outputs, to a monitor 4, loss current obtained by canceling the displacement current component from the detection signal with the displacement current bypass section 30. The signal detecting section 20 comprises a detection resistor 21 connected to the sample 1 in series, an amplifier 23, and an E/O converter 24. The displacement current bypass section 30 comprises an O/E converter 31 for converting input light into an electric signal, a resistor 32 connected to the output end thereof, and a bypass resistor 33 for adjusting the output amount to the resistor 32 of voltage V2 by negative polar cosine wave. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力ケーブルの水トリー(water tree)劣化診断方法に適用できる損失電流測定方法およびその損失電流測定回路に関し、特に、架橋ポリエチレン絶縁電力ケーブル(以下、CVケーブルという)の絶縁体中を流れる損失電流成分を高精度に測定できる変位電流バイパス法による損失電流測定方法およびその損失電流測定回路に関するものである。   The present invention relates to a loss current measuring method and a loss current measuring circuit applicable to a method for diagnosing water tree degradation of a power cable, and more particularly, in an insulator of a crosslinked polyethylene insulated power cable (hereinafter referred to as CV cable). The present invention relates to a loss current measuring method by a displacement current bypass method capable of measuring a flowing loss current component with high accuracy and a loss current measuring circuit thereof.

代表的な電力ケーブルであるCVケーブルの主な劣化形態は、水トリー劣化である。この水トリー劣化は、CVケーブル絶縁体中に存在する水分と電界の作用により発生する絶縁体中の変質であり、この変質が時間の経過と共に増大することにより、CVケーブルの絶縁性能を低下させて絶縁破壊に至る場合がある。この水トリー劣化を診断するための劣化診断技術が検討されている。   The main deterioration form of a CV cable which is a typical power cable is water tree deterioration. This water tree deterioration is an alteration in the insulator caused by the action of moisture and electric field present in the CV cable insulator, and this alteration increases with the passage of time, thereby reducing the insulation performance of the CV cable. May lead to dielectric breakdown. Degradation diagnostic techniques for diagnosing this water tree degradation are being studied.

例えば、高電圧を発生する変圧器と試料(測定対象)のCVケーブルの間に変流器を接続し、更に標準コンデンサを変流器の変圧器側に接続し、変圧器からCVケーブルに高電圧の交流電圧を印加して、標準コンデンサに流れる電流と、CVケーブルに接続された変流器により検出されたケーブル絶縁体中を流れる電流とを、損失電流測定ブリッジに入力して検出電流中の変位電流成分(変位電流成分)を除去して損失電流成分のみを抽出し、更に、その損失電流中に含まれる第3高調波成分に基づいてCVケーブルの劣化を診断する劣化診断方法が知られている(例えば、特許文献1参照)。   For example, a current transformer is connected between the transformer that generates high voltage and the CV cable of the sample (measurement target), and a standard capacitor is connected to the transformer side of the current transformer. Applying an alternating voltage of the voltage, the current flowing in the standard capacitor and the current flowing in the cable insulator detected by the current transformer connected to the CV cable are input to the loss current measurement bridge and detected. A degradation diagnostic method is known in which only the loss current component is extracted by removing the displacement current component (displacement current component) of the CV cable, and further, the degradation of the CV cable is diagnosed based on the third harmonic component included in the loss current. (For example, refer to Patent Document 1).

しかし、特許文献1に記載された従来の損失電流測定方法では、高電圧側に設けた変流器はリアクトルを応用しているため、CVケーブル等の試料の静電容量やその他の浮遊容量との組み合わせにより、CVケーブル、変流器を含む検出回路が共振現象を起こし、検出信号の周波数特性が変化して波形歪みを生じる。このため劣化信号の波形解析に誤差が生じる。更に、静電容量がCVケーブルの試料毎に変化、すなわち試料毎に共振周波数が変化するため、測定条件が試料毎に変わるという問題もある。   However, in the conventional loss current measuring method described in Patent Document 1, since the current transformer provided on the high voltage side applies a reactor, the capacitance of a sample such as a CV cable or other stray capacitance As a result of this combination, the detection circuit including the CV cable and the current transformer causes a resonance phenomenon, and the frequency characteristic of the detection signal is changed to cause waveform distortion. For this reason, an error occurs in the waveform analysis of the deteriorated signal. Furthermore, since the capacitance changes for each sample of the CV cable, that is, the resonance frequency changes for each sample, there is also a problem that the measurement conditions change for each sample.

このCVケーブル等の試料の静電容量やその他の浮遊容量に左右されない従来の劣化診断方法として、例えば、任意波形発生装置を用い、試料に流れる電流信号と、任意波形発生装置で作った変位電流と逆位相の信号を加算(合成)処理して試料に流れる電流から変位電流成分を打消すことにより、損失電流を検出する方法が知られている(例えば、非特許文献1参照)。   As a conventional degradation diagnosis method that is not affected by the capacitance of the sample such as the CV cable or other stray capacitance, for example, an arbitrary waveform generator is used, and a current signal flowing through the sample and a displacement current generated by the arbitrary waveform generator are used. A method is known in which a loss current is detected by adding (synthesizing) signals having opposite phases to each other and canceling the displacement current component from the current flowing through the sample (see, for example, Non-Patent Document 1).

図6は、非特許文献1に記載された損失電流測定装置を示す。損失電流測定回路100は、非特許文献1の図2に示される原理に基づいて構成したものであり、この損失電流測定回路100と、二次巻線2bにCVケーブル等の試料1を接続し高電圧を発生する課電トランス2と、正弦波の交流電圧V1及び負極性余弦波の交流電圧V2を発生する2チャンネル信号発信器3と、損失電流測定回路100からの信号を観測及び処理するモニタ4との組み合わせにより、損失電流測定装置を構成している。   FIG. 6 shows a loss current measuring apparatus described in Non-Patent Document 1. The loss current measuring circuit 100 is configured based on the principle shown in FIG. 2 of Non-Patent Document 1, and a sample 1 such as a CV cable is connected to the loss current measuring circuit 100 and the secondary winding 2b. An electric transformer 2 that generates a high voltage, a two-channel signal transmitter 3 that generates a sine wave AC voltage V1 and a negative cosine wave AC voltage V2, and a signal from the loss current measurement circuit 100 are observed and processed. The combination with the monitor 4 constitutes a loss current measuring device.

損失電流測定回路100は、試料1の遮蔽層等の外側導電部に接続される入力部101と、入力部101に入力端が接続された増幅器102と、入力部101と接地間に接続された検出抵抗103と、入力部101と2チャンネル信号発信器3の交流電圧V2の出力端の間に接続されたバイパス抵抗104とを備える。   The loss current measuring circuit 100 includes an input unit 101 connected to an outer conductive portion such as a shielding layer of the sample 1, an amplifier 102 having an input terminal connected to the input unit 101, and connected between the input unit 101 and the ground. A detection resistor 103 and a bypass resistor 104 connected between the input unit 101 and the output terminal of the AC voltage V2 of the two-channel signal transmitter 3 are provided.

図6において、2チャンネル信号発信器3は、交流電圧V1を課電トランス2の一次巻線2aに印加するとともに、交流電圧V2を損失電流測定回路100のバイパス抵抗104と抵抗103を介してアース間に印加する。   In FIG. 6, the two-channel signal transmitter 3 applies the AC voltage V <b> 1 to the primary winding 2 a of the power transformer 2 and grounds the AC voltage V <b> 2 via the bypass resistor 104 and the resistor 103 of the loss current measuring circuit 100. Apply between.

交流電圧V1が課電トランス2の一次巻線2aに印加されると、その巻線比に応じた高電圧が二次巻線2bに発生し、その電圧は試料1の芯線に印加される。この電圧の印加にともない、二次巻線2b〜試料1〜検出抵抗103〜二次巻線2bの通電ループ5が形成され、試料1の水トリー劣化の度合いに応じて試料1の絶縁体部分を通して外側導電部に流れる電流iにより、検出抵抗103に電圧降下が生じる。一方、2チャンネル信号発信器3からの交流電圧V2は、バイパス抵抗104を介して検出抵抗103に印加される。   When the AC voltage V1 is applied to the primary winding 2a of the voltage transformer 2, a high voltage corresponding to the winding ratio is generated in the secondary winding 2b, and the voltage is applied to the core wire of the sample 1. With the application of this voltage, the energization loop 5 of the secondary winding 2b to the sample 1 to the detection resistor 103 to the secondary winding 2b is formed, and the insulator portion of the sample 1 according to the degree of water tree deterioration of the sample 1 A voltage drop occurs in the detection resistor 103 due to the current i flowing through the outer conductive portion through the detection resistor 103. On the other hand, the AC voltage V <b> 2 from the two-channel signal transmitter 3 is applied to the detection resistor 103 via the bypass resistor 104.

試料1からの電流により検出抵抗103に生じた電圧と交流電圧V2とは、増幅器102の入力端において加算され、これにより試料1に流れる電流に対して変位電流成分が打ち消される。加算結果に対して増幅器102による増幅が行われ、その増幅出力がモニタ4により観測される。
特開2004−354093号公報 平成17年電気学会全国大会2−S10(17〜20頁)
The voltage generated in the detection resistor 103 by the current from the sample 1 and the AC voltage V2 are added at the input terminal of the amplifier 102, thereby canceling the displacement current component with respect to the current flowing through the sample 1. The addition result is amplified by the amplifier 102, and the amplified output is observed by the monitor 4.
JP 2004-354093 A 2005 IEEJ National Convention 2-S10 (17-20 pages)

上記非特許文献1に記載された従来の損失電流測定装置は、小サイズの試料に適用した場合には通電ループ5のループが小さいので、信号減衰や外部侵入ノイズの影響を受けることなく損失電流を高感度に測定することができる。しかし、実線路に布設されたCVケーブル試料に適用すると、損失電流測定回路の増幅器と課電圧の印加点との距離が離れるため、通電ループ5が大きくなり、信号減衰や外部侵入ノイズの影響を受けやすくなり、損失電流を高感度で測定することが期待できない。また、増幅器と課電圧の印加点を近接させるためには、厳重な安全対策が必要になるため、実用性に乏しい。   When the conventional loss current measuring apparatus described in Non-Patent Document 1 is applied to a small-sized sample, since the loop of the energization loop 5 is small, the loss current is not affected by signal attenuation or external intrusion noise. Can be measured with high sensitivity. However, when applied to a CV cable sample installed on a real line, the distance between the amplifier of the loss current measurement circuit and the application point of the applied voltage is increased, so that the energization loop 5 becomes large, and the effects of signal attenuation and external intrusion noise are affected. It is not easy to measure the loss current with high sensitivity. In addition, in order to bring the amplifier and the applied voltage application point close to each other, strict safety measures are required, so that the practicality is poor.

従って、本発明の目的は、CVケーブル試料が大サイズであっても、信号減衰や外部侵入ノイズの影響を受けることなく、高感度、高精度に損失電流を測定することが可能な変位電流バイパス法による損失電流測定方法およびその損失電流測定回路を提供することにある。   Accordingly, an object of the present invention is to provide a displacement current bypass capable of measuring a loss current with high sensitivity and high accuracy without being affected by signal attenuation or external intrusion noise even when a CV cable sample is large. It is an object of the present invention to provide a loss current measurement method and a loss current measurement circuit thereof.

本発明は、上記目的を達成するため、測定時に課電される測定対象物に検出抵抗を直列接続し、前記検出抵抗に流れる電流によって前記検出抵抗の両端に生じた電圧を増幅して検出信号として出力し、前記検出信号から変位電流成分を除去する信号をバイパス抵抗に印加して前記バイパス抵抗に流れた変位電流成分の除去信号を前記検出信号に重畳して損失電流を生成することを特徴とする変位電流バイパス法による損失電流測定方法を提供する。   In order to achieve the above-described object, the present invention provides a detection signal by connecting a detection resistor in series to a measurement object charged during measurement and amplifying a voltage generated at both ends of the detection resistor by a current flowing through the detection resistor. And a signal for removing the displacement current component from the detection signal is applied to the bypass resistor, and the loss current is generated by superimposing the displacement current component removal signal flowing through the bypass resistor on the detection signal. A loss current measurement method using a displacement current bypass method is provided.

本発明は、上記目的を達成するため、測定時に課電される測定対象物に直列接続される検出抵抗と、前記検出抵抗に流れる電流によって前記検出抵抗の両端に生じた電圧を増幅して検出信号として出力する増幅部とを有する信号検出部と、
前記信号検出部からの前記検出信号から変位電流成分を除去する信号が印加されるバイパス抵抗を有し、前記バイパス抵抗に流れた変位電流成分の除去信号を前記検出信号に重畳して損失電流を生成する変位電流バイパス部とを備えたことを特徴とする変位電流バイパス法による損失電流測定回路を提供する。
In order to achieve the above object, the present invention amplifies and detects a detection resistor connected in series to a measurement object charged during measurement and a voltage generated at both ends of the detection resistor by a current flowing through the detection resistor. A signal detection unit having an amplification unit that outputs the signal;
A bypass resistor to which a signal for removing a displacement current component from the detection signal from the signal detection unit is applied, and a loss current is calculated by superimposing a displacement current component removal signal flowing through the bypass resistor on the detection signal; Provided is a loss current measuring circuit using a displacement current bypass method, characterized in that it includes a displacement current bypass section to be generated.

本発明の損失電流測定回路および損失電流測定方法によれば、測定対象物の形状にかかわらず信号検出部を測定対象物の近傍に設置することが可能になり、測定対象物と信号検出部の間の距離を短くできることにより信号減衰や外部ノイズの侵入が防止され、損失電流を高感度、高精度に測定できる。   According to the loss current measuring circuit and the loss current measuring method of the present invention, it becomes possible to install the signal detection unit in the vicinity of the measurement target regardless of the shape of the measurement target, and the measurement target and the signal detection unit By shortening the distance between them, signal attenuation and intrusion of external noise can be prevented, and loss current can be measured with high sensitivity and high accuracy.

本発明は、測定対象物が大サイズであっても、信号減衰や外部ノイズの影響を受けることなく、高感度、高精度に損失電流を測定することが可能な変位電流バイパス法による損失電流測定回路およびその損失電流測定方法を提供することができる。   The present invention provides a loss current measurement by a displacement current bypass method that can measure a loss current with high sensitivity and high accuracy without being affected by signal attenuation or external noise even when a measurement object is large. A circuit and a loss current measuring method thereof can be provided.

(変位電流バイパス法による損失電流測定装置の構成)
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る損失電流測定装置を示す。この損失電流測定装置は、二次巻線2bにCVケーブル等の試料1を接続し高電圧を発生する課電トランス2と、正弦波の交流電圧V1及び負極性余弦波の交流電圧V2を発生する2チャンネル信号発信器3と、損失電流を測定する損失電流測定回路10と、損失電流測定回路10からの信号を観測及び処理するモニタ4とを備える。
(Configuration of loss current measuring device by displacement current bypass method)
[First Embodiment]
FIG. 1 shows a loss current measuring apparatus according to a first embodiment of the present invention. This loss current measuring device generates a high voltage by connecting a sample 1 such as a CV cable to a secondary winding 2b, and generates a sine AC voltage V1 and a negative cosine AC voltage V2. A two-channel signal transmitter 3, a loss current measuring circuit 10 for measuring a loss current, and a monitor 4 for observing and processing a signal from the loss current measuring circuit 10.

損失電流測定回路10は、CVケーブルによる試料1及び課電トランス2に接続された信号検出部20と、信号検出部20及び2チャンネル信号発信器3に入力部が接続され、出力端にモニタ4が接続された変位電流バイパス部30とを備えて構成されている。信号検出部20の出力端と変位電流バイパス部30の入力端とは、光伝送媒体である光ファイバ11によって接続されている。   The loss current measuring circuit 10 has a signal detection unit 20 connected to the sample 1 and the power transformer 2 by a CV cable, an input unit connected to the signal detection unit 20 and the 2-channel signal transmitter 3, and a monitor 4 at the output end. The displacement current bypass unit 30 is connected to the displacement current bypass unit 30. The output end of the signal detection unit 20 and the input end of the displacement current bypass unit 30 are connected by an optical fiber 11 that is an optical transmission medium.

2チャンネル信号発信器3は、正弦波による交流電圧V1をチャンネル1として出力し、負極性余弦波(−cosθ)による交流電圧V2をチャンネル2として出力する構成を有する。   The two-channel signal transmitter 3 has a configuration in which an alternating voltage V1 based on a sine wave is output as a channel 1 and an alternating voltage V2 based on a negative cosine wave (-cos θ) is output as a channel 2.

モニタ4は、観測波形を画面に表示するディスプレイのほか、入力信号をFFT(高速フーリエ変換)により処理する回路を備えている。   The monitor 4 includes a display for displaying the observed waveform on the screen and a circuit for processing the input signal by FFT (Fast Fourier Transform).

(信号検出部の構成)
信号検出部20は、課電トランス2の二次巻線2bの高電位側に接続された高電位端Hと試料1の芯線に接続された低電位端Lの間に直列接続された検出抵抗21と、この検出抵抗21に並列接続されたアレスタ22と、高電位端H及び低電位端Lに一対の入力端が接続された増幅部としての増幅器23と、増幅器23の出力端に接続されたE/O変換器24と、増幅器23及びE/O変換器24の電子回路部に電源を供給するDC電源部25とを備える。
(Configuration of signal detector)
The signal detection unit 20 includes a detection resistor connected in series between a high potential end H connected to the high potential side of the secondary winding 2 b of the voltage transformer 2 and a low potential end L connected to the core wire of the sample 1. 21, an arrester 22 connected in parallel to the detection resistor 21, an amplifier 23 as an amplifier having a pair of input terminals connected to the high potential terminal H and the low potential terminal L, and an output terminal of the amplifier 23. And an E / O converter 24 and a DC power supply unit 25 for supplying power to the electronic circuit unit of the amplifier 23 and the E / O converter 24.

検出抵抗21は、試料1に流れる電流iによって所定の電圧降下が得られる抵抗値に設定される。   The detection resistor 21 is set to a resistance value at which a predetermined voltage drop is obtained by the current i flowing through the sample 1.

アレスタ22は、必要に応じて挿入する回路保護用素子である。アレスタ22は、非線形特性を有し、試料1の絶縁破壊等により検出抵抗21の両端に過大電圧(サージ)が発生したとき、検出抵抗21の両端の電圧が規定値内に納まるように抑制する。アレスタ22の動作開始電圧は、試料に流れる変位電流によって波形歪みが生じないように、検出抵抗21の両端に現れる検出電圧よりも十分に高く(例えば、2倍以上)、かつ、増幅器23の耐サージ電圧よりも低い値にする。   The arrester 22 is an element for circuit protection that is inserted as necessary. The arrester 22 has non-linear characteristics, and suppresses the voltage across the detection resistor 21 to fall within a specified value when an overvoltage (surge) occurs across the detection resistor 21 due to dielectric breakdown of the sample 1 or the like. . The operation start voltage of the arrester 22 is sufficiently higher (for example, twice or more) than the detection voltage appearing at both ends of the detection resistor 21 so that waveform distortion is not caused by the displacement current flowing in the sample, and the withstand voltage of the amplifier 23 is increased. Set the value lower than the surge voltage.

増幅器23は、検出抵抗21の両端に生じた電圧を入力信号とし、この入力信号を所定のレベルに増幅して検出信号として出力する構成を有する。   The amplifier 23 has a configuration in which a voltage generated at both ends of the detection resistor 21 is used as an input signal, and the input signal is amplified to a predetermined level and output as a detection signal.

E/O変換器24は、増幅器23の出力信号(検出信号)を電気信号から光信号に変換し、この光信号を光ファイバ11へ出力する回路構成を有する。   The E / O converter 24 has a circuit configuration for converting the output signal (detection signal) of the amplifier 23 from an electrical signal to an optical signal and outputting the optical signal to the optical fiber 11.

DC電源部25には、電源のための配線が不要で、移動性に優れ、外来ノイズの影響を受けないバッテリーが適している。   For the DC power supply unit 25, a battery that does not require wiring for a power supply, has excellent mobility, and is not affected by external noise is suitable.

(変位電流バイパス部の構成)
変位電流バイパス部30は、E/O変換器24からの光信号を電気信号に変換するO/E変換器31と、O/E変換器31の出力端と接地間に接続された抵抗32と、2チャンネル信号発信器3の交流電圧V2の出力端とO/E変換器31の出力端との間に接続された変位電流成分を除去する信号が印加されるバイパス抵抗33とを備える。
(Configuration of displacement current bypass section)
The displacement current bypass unit 30 includes an O / E converter 31 that converts an optical signal from the E / O converter 24 into an electrical signal, and a resistor 32 that is connected between the output terminal of the O / E converter 31 and the ground. A bypass resistor 33 to which a signal for removing a displacement current component connected between the output terminal of the AC voltage V2 of the two-channel signal transmitter 3 and the output terminal of the O / E converter 31 is applied.

O/E変換器31の出力信号は、抵抗32の両端に発生する。このうち、2チャンネル信号発信器3の出力信号をバイパス抵抗33と抵抗32の分圧比できまる信号が抵抗32に重畳される。このため、O/E変換器31の出力信号中の変位電流信号と同じ大きさにV2交流電圧を分圧すれば、変位電流の影響はなくなり、損失電流のみが検出される。   An output signal of the O / E converter 31 is generated at both ends of the resistor 32. Among these, a signal obtained by dividing the output signal of the two-channel signal transmitter 3 by the voltage dividing ratio of the bypass resistor 33 and the resistor 32 is superimposed on the resistor 32. For this reason, if the V2 AC voltage is divided to the same magnitude as the displacement current signal in the output signal of the O / E converter 31, the influence of the displacement current is eliminated and only the loss current is detected.

(変位電流バイパス法による損失電流測定方法)
(第1の実施の形態の動作)
次に、図1の損失電流測定装置の動作について説明する。図1において、2チャンネル信号発信器3から課電トランス2の一次巻線2aに高電圧の交流電圧V1が印加されると、これにより二次巻線2bに発生した交流電圧は、信号検出部20の高電位端Hと接地間に印加される。この印加電圧により、電流iが、二次巻線2b〜検出抵抗21〜試料1の芯線〜試料1の遮蔽層等の外側導電部〜二次巻線2bを経由する通電ループ5で流れ、検出抵抗21に電圧降下が生じる。検出抵抗21の両端に生じた電圧は、増幅器23によって増幅され検出信号として出力された後、その増幅出力(検出信号)がE/O変換器24によって光信号に変換され、光ファイバ11へ出力される。
(Loss current measurement method using displacement current bypass method)
(Operation of the first embodiment)
Next, the operation of the loss current measuring apparatus in FIG. 1 will be described. In FIG. 1, when a high-voltage AC voltage V1 is applied from the 2-channel signal transmitter 3 to the primary winding 2a of the power transformer 2, the AC voltage generated in the secondary winding 2b is 20 is applied between the high potential end H and the ground. Due to this applied voltage, the current i flows in the energization loop 5 passing through the secondary winding 2b, the detection resistor 21 to the core wire of the sample 1, the outer conductive portion such as the shielding layer of the sample 1, and the secondary winding 2b. A voltage drop occurs in the resistor 21. The voltage generated at both ends of the detection resistor 21 is amplified by the amplifier 23 and output as a detection signal, and then the amplified output (detection signal) is converted into an optical signal by the E / O converter 24 and output to the optical fiber 11. Is done.

変位電流バイパス部30では、信号検出部20からの光信号を光ファイバ11を介してO/E変換器31で受信して電気信号に変換し、これを検出信号Sdとして抵抗32に印加する。同時に、変位電流バイパス部30は、バイパス抵抗33を介して2チャンネル信号発信器3からの交流電圧V2を取り込み、抵抗32に印加する。   In the displacement current bypass unit 30, the optical signal from the signal detection unit 20 is received by the O / E converter 31 through the optical fiber 11 and converted into an electrical signal, which is applied to the resistor 32 as the detection signal Sd. At the same time, the displacement current bypass unit 30 takes in the AC voltage V <b> 2 from the two-channel signal transmitter 3 via the bypass resistor 33 and applies it to the resistor 32.

課電電圧(V1)の波形を正弦波にした場合、変位電流は、理論的に余弦波(cosθ)であることが知られている。そこで、交流電圧V1の正弦波形に対して、負極性余弦波(−cosθ)による変位電流成分を除去する信号の交流電圧V2をバイパス抵抗33で出力調整し、このバイパス抵抗33に流れた変位電流成分の除去信号の電圧を試料1からの検出信号Sdに重畳することにより変位電流成分がキャンセルされ、損失電流のみが生成・検出される。この損失電流の信号は、モニタ4へ出力される。なお、バイパス抵抗33による出力調整は、変位電流バイパス部30の出力をモニタ4で観測しながら、変位電流波形のピーク位相(正弦波のゼロクロス位置)が0になるようにする。   It is known that when the waveform of the applied voltage (V1) is a sine wave, the displacement current is theoretically a cosine wave (cos θ). Therefore, with respect to the sine waveform of the AC voltage V1, the output of the AC voltage V2 of the signal for removing the displacement current component due to the negative cosine wave (−cos θ) is adjusted by the bypass resistor 33, and the displacement current flowing through the bypass resistor 33 is adjusted. By superimposing the voltage of the component removal signal on the detection signal Sd from the sample 1, the displacement current component is canceled and only the loss current is generated and detected. This loss current signal is output to the monitor 4. The output adjustment by the bypass resistor 33 is performed so that the peak phase of the displacement current waveform (zero cross position of the sine wave) becomes 0 while observing the output of the displacement current bypass unit 30 with the monitor 4.

図2は、図1のモニタ4で観測された出力信号波形を示す。ここでは、課電電圧を1〜8kV/mmまで、1kVづつ上昇させて8点の測定を行って、1、2、3、4、5、6,7、8kV/mmのそれぞれに対応する波形41〜48を得た。図2から明らかなように、課電電圧を上昇させるにつれて損失電流が変化し、かつ波形歪が大きくなる傾向がわかる。   FIG. 2 shows an output signal waveform observed by the monitor 4 of FIG. Here, the applied voltage is increased by 1 kV from 1 to 8 kV / mm and measured at 8 points, and waveforms corresponding to 1, 2, 3, 4, 5, 6, 7, and 8 kV / mm, respectively. 41-48 were obtained. As can be seen from FIG. 2, the loss current changes and the waveform distortion tends to increase as the applied voltage increases.

(第1の実施の形態の効果)
第1の実施の形態によれば、次の効果を奏する。
(イ)増幅器23を備える信号検出部20を課電トランス2及びCVケーブルの試料1の近くに設置できるため、試料1の直近での信号検出及び増幅が可能になる。この結果、課電トランス2〜検出抵抗21〜試料1〜接地〜課電トランス2の経路による通電ループ5が小さくなるため、外部ノイズの侵入を抑制することができる。外部ノイズは、通電ループ5の大きさ(インダクタンス)が大きいほど顕著になるが、本実施の形態は、従来に比べて通電ループ5が小さいため、外部ノイズの低減効果が高くなる。このため、ノイズ環境の悪い場所で測定を行っても信号検出を高感度に行うことができる。
(ロ)検出抵抗21による検出信号を試料1の近傍で増幅器23により増幅するため、その後の信号伝送の減衰による検出感度の低下を避けることができる。
(ハ)検出抵抗21により検出信号を検出するため、LとCによる共振現象による検出信号の歪みが生じないため、検出信号の周波数特性の変化を防止することができる。
(ニ)損失電流測定回路10を信号検出部20と変位電流バイパス部30の2つに物理的に分け、これらの間を電気的に絶縁して光伝送したことにより、従来の損失電流測定回路100に比べ、試料1の高電位端H側からの信号検出を容易かつ簡単に行うことができる。
(ホ)変位電流バイパス部30をモニタ4の近傍に設置できるため、モニタ4を使用しながらバイパス抵抗33の調整が行えるので、測定を効率的に進めることができる。
(Effects of the first embodiment)
According to the first embodiment, the following effects are obtained.
(A) Since the signal detection unit 20 including the amplifier 23 can be installed near the power transformer 2 and the sample 1 of the CV cable, signal detection and amplification in the immediate vicinity of the sample 1 can be performed. As a result, the energization loop 5 along the path of the voltage transformer 2 to the detection resistor 21 to the sample 1 to the ground to the voltage transformer 2 becomes small, so that intrusion of external noise can be suppressed. External noise becomes more prominent as the size (inductance) of the energization loop 5 increases. However, since the energization loop 5 is smaller in the present embodiment than in the prior art, the external noise reduction effect is enhanced. For this reason, signal detection can be performed with high sensitivity even if measurement is performed in a place with a poor noise environment.
(B) Since the detection signal from the detection resistor 21 is amplified by the amplifier 23 in the vicinity of the sample 1, it is possible to avoid a decrease in detection sensitivity due to subsequent attenuation of signal transmission.
(C) Since the detection signal is detected by the detection resistor 21, the detection signal is not distorted due to the resonance phenomenon caused by L and C, so that the change in the frequency characteristic of the detection signal can be prevented.
(D) The loss current measurement circuit 10 is physically divided into two parts, a signal detection unit 20 and a displacement current bypass unit 30, and the conventional loss current measurement circuit is obtained by optically insulating between them. Compared to 100, signal detection from the high potential end H side of the sample 1 can be performed easily and easily.
(E) Since the displacement current bypass unit 30 can be installed in the vicinity of the monitor 4, the bypass resistor 33 can be adjusted while using the monitor 4, so that the measurement can proceed efficiently.

[第2の実施の形態]
図3は、本発明の第2の実施の形態に係る損失電流測定装置を示す。本実施の形態は、第1の実施の形態において、試料1と信号検出部20の配置を入れ換えて試料1の低電位側から信号を検出するとともに、信号検出部20と変位電流バイパス部30との接続をケーブル等による接続線13で接続したものであり、その他の構成は、第1の実施の形態と同様である。
[Second Embodiment]
FIG. 3 shows a loss current measuring apparatus according to the second embodiment of the present invention. In this embodiment, in the first embodiment, the arrangement of the sample 1 and the signal detection unit 20 is replaced to detect a signal from the low potential side of the sample 1, and the signal detection unit 20, the displacement current bypass unit 30, Are connected by a connection line 13 such as a cable, and the other configuration is the same as that of the first embodiment.

信号検出部20と変位電流バイパス部30を接続線13で接続した構成にともない、信号検出部20においては、第1の実施の形態からE/O変換器24及びDC電源部25aを用いず、変位電流バイパス部30においては、第1の実施の形態からO/E変換器31を用いない構成である。   With the configuration in which the signal detection unit 20 and the displacement current bypass unit 30 are connected by the connection line 13, the signal detection unit 20 does not use the E / O converter 24 and the DC power supply unit 25a from the first embodiment. The displacement current bypass unit 30 does not use the O / E converter 31 from the first embodiment.

(第2の実施の形態の動作)
本実施の形態においては、2チャンネル信号発信器3から交流電圧V1が課電トランス2に印加されると、二次巻線2b〜試料1〜検出抵抗21〜二次巻線2bによる通電ループ5により電流iが流れ、検出抵抗21に電圧降下が生じる。検出抵抗21の両端に生じた電圧は、増幅器23によって増幅され検出信号として出力された後、その検出信号が接続線13を介して変位電流バイパス部30へ伝送される。
(Operation of Second Embodiment)
In the present embodiment, when the AC voltage V1 is applied from the two-channel signal transmitter 3 to the voltage applying transformer 2, the energization loop 5 by the secondary winding 2b to the sample 1 to the detection resistor 21 to the secondary winding 2b. Current i flows, and a voltage drop occurs in the detection resistor 21. The voltage generated at both ends of the detection resistor 21 is amplified by the amplifier 23 and output as a detection signal, and then the detection signal is transmitted to the displacement current bypass unit 30 via the connection line 13.

変位電流バイパス部30では、信号検出部20からの検出信号を抵抗32に印加すると同時に、バイパス抵抗33を介して2チャンネル信号発信器3からの変位電流成分を除去する信号の交流電圧V2を取り込み、抵抗32に印加する。このとき、バイパス抵抗33の抵抗値、及び2チャンネル信号発信器3の交流電圧V2の出力を調整して、抵抗32に印加する交流電圧V2を調整し、このバイパス抵抗32に流れた変位電流成分の除去信号の電圧を試料1からの検出信号Sdに重畳することにより変位電流成分をキャンセルした損失電流のみを生成・検出する。この損失電流の信号は、モニタ4へ出力される。   In the displacement current bypass unit 30, the detection signal from the signal detection unit 20 is applied to the resistor 32, and at the same time, the AC voltage V 2 of the signal for removing the displacement current component from the two-channel signal transmitter 3 is taken in via the bypass resistor 33. And applied to the resistor 32. At this time, the resistance value of the bypass resistor 33 and the output of the AC voltage V2 of the two-channel signal transmitter 3 are adjusted to adjust the AC voltage V2 applied to the resistor 32, and the displacement current component that has flowed through the bypass resistor 32 Only the loss current from which the displacement current component is canceled is generated and detected by superimposing the voltage of the removal signal on the detection signal Sd from the sample 1. This loss current signal is output to the monitor 4.

(第2の実施の形態の効果)
図4は、第2の実施の形態と図6に示した従来の損失電流測定装置との損失電
流の検出特性を示す。同図中、特性51は第2の実施の形態による課電電圧−損失電流特性、特性52は図6に示した従来の損失電流測定装置による課電電圧−損失電流特性である。
(Effect of the second embodiment)
FIG. 4 shows loss current detection characteristics of the second embodiment and the conventional loss current measuring apparatus shown in FIG. In the figure, a characteristic 51 is an applied voltage-loss current characteristic according to the second embodiment, and a characteristic 52 is an applied voltage-loss current characteristic obtained by the conventional loss current measuring apparatus shown in FIG.

図4を参照すると、第2の実施の形態による特性51では、損失電流は課電電圧の上昇に比例して増加する。これに対し、従来の特性52では、2μA(3.5kV課電)以下における電流値の電圧依存性が見られない。これは、従来の損失電流測定回路100の検出感度が悪く、外部ノイズレベルが高いためである。   Referring to FIG. 4, in the characteristic 51 according to the second embodiment, the loss current increases in proportion to the increase of the applied voltage. On the other hand, in the conventional characteristic 52, the voltage dependency of the current value at 2 μA (3.5 kV applied voltage) or less is not observed. This is because the conventional loss current measurement circuit 100 has poor detection sensitivity and a high external noise level.

図4から明らかなように、図6の従来の損失電流測定装置と同様に試料1の低電位側から信号検出を行う構成にしながら、高感度に損失電流を測定することができる。これは、検出抵抗21及び増幅器23を試料1の近傍に設置できることにより、通電ループ5を小さくできるためである。その他の効果は、第1の実施の形態の(ロ)(ハ)及び(ホ)と同様である。   As is clear from FIG. 4, the loss current can be measured with high sensitivity while the signal detection is performed from the low potential side of the sample 1 as in the conventional loss current measuring apparatus of FIG. This is because the energization loop 5 can be reduced by installing the detection resistor 21 and the amplifier 23 in the vicinity of the sample 1. Other effects are the same as (b), (c), and (e) in the first embodiment.

[第3の実施の形態]
図5は、本発明の第3の実施の形態に係る損失電流測定装置を示す。本実施の形態は、2チャンネル信号発信器3を用いない構成にしたものである。そのために、課電トランス2は三次巻線2cを有する構成とし、さらに三次巻線2cとバイパス抵抗33の間に積分器12を接続した構成にしたものであり、その他の構成は第1の実施の形態と同様である。
[Third Embodiment]
FIG. 5 shows a loss current measuring apparatus according to the third embodiment of the present invention. In this embodiment, the two-channel signal transmitter 3 is not used. For this purpose, the power transformer 2 has a configuration having the tertiary winding 2c, and further has a configuration in which the integrator 12 is connected between the tertiary winding 2c and the bypass resistor 33, and the other configuration is the first embodiment. It is the same as the form.

積分器12は、課電トランス2への課電時に、三次巻線2cから出力される課電電圧位相情報を積分し、その積分結果をバイパス抵抗33に注入する構成を有している。   The integrator 12 integrates the applied voltage phase information output from the tertiary winding 2 c when applying power to the applying transformer 2 and injects the integration result into the bypass resistor 33.

(第3の実施の形態の動作)
図5の構成において、課電電圧は、図示しない任意の課電手段によって、課電トランス2の一次巻線2aに印加される。二次巻線2bに生じた交流の高電圧は、高電位端Hと試料1の低電位側との間に印加され、二次巻線2b〜検出抵抗21〜試料1の芯線〜試料1の遮蔽層等の外側導電部〜二次巻線2bを経由する通電ループ5により電流iが流れることにより、検出抵抗21に電圧降下が生じる。この検出抵抗21の両端に生じた電圧は、増幅器23で増幅されて検出信号として出力され、その検出信号がさらにE/O変換器24で光信号に変換されて変位電流バイパス部30に伝送される。
(Operation of the third embodiment)
In the configuration of FIG. 5, the applied voltage is applied to the primary winding 2 a of the applied transformer 2 by an optional application means (not shown). The alternating high voltage generated in the secondary winding 2b is applied between the high potential end H and the low potential side of the sample 1, and the secondary winding 2b to the detection resistor 21 to the core of the sample 1 to the sample 1 When the current i flows through the energization loop 5 passing through the outer conductive portion such as the shielding layer and the secondary winding 2b, a voltage drop occurs in the detection resistor 21. The voltage generated across the detection resistor 21 is amplified by the amplifier 23 and output as a detection signal. The detection signal is further converted to an optical signal by the E / O converter 24 and transmitted to the displacement current bypass unit 30. The

同時に、課電トランス2の三次巻線2cから課電電圧位相情報が積分器12に入力され、積分が行われる。この積分器12の出力信号は、変位電流成分を除去する信号として変位電流バイパス部30のバイパス抵抗33に印加される。   At the same time, the applied voltage phase information is input to the integrator 12 from the tertiary winding 2c of the applying transformer 2, and integration is performed. The output signal of the integrator 12 is applied to the bypass resistor 33 of the displacement current bypass unit 30 as a signal for removing the displacement current component.

変位電流バイパス部30では、信号検出部20からの光信号をO/E変換器31により電気信号に変換し、これを検出信号Sdとして抵抗32に印加する。また、バイパス抵抗33を調整して積分器12から抵抗32に印加する出力電圧を調整し、この調整された変位電流成分の除去信号を検出信号Sdに重畳すると抵抗32を流れる変位電流成分をキャンセルする。これにより生成・検出された損失電流の信号は、モニタ4へ出力され、モニタ4により観測される。   In the displacement current bypass unit 30, the optical signal from the signal detection unit 20 is converted into an electric signal by the O / E converter 31, and this is applied to the resistor 32 as the detection signal Sd. Further, the bypass resistor 33 is adjusted to adjust the output voltage applied from the integrator 12 to the resistor 32. When the adjusted displacement current component removal signal is superimposed on the detection signal Sd, the displacement current component flowing through the resistor 32 is canceled. To do. The loss current signal generated and detected in this way is output to the monitor 4 and observed by the monitor 4.

(第3の実施の形態の効果)
第3の実施の形態によれば、次の効果を奏する。
(イ)2チャンネル信号発信器3を省略できることにより、測定に伴う結線変更作業を少なくすることができる。
(ロ)電源電圧が歪んでいた揚合でも、三次巻線2c及び積分器12により、波形歪に追従した変位電流成分の除去信号が得られるため、第1の実施の形態に比べ、電源ノイズの影響を受けにくくすることができる。
その他の効果は、第1の実施の形態と同様である。
(Effect of the third embodiment)
According to the third embodiment, the following effects are obtained.
(A) Since the two-channel signal transmitter 3 can be omitted, it is possible to reduce the connection change work accompanying the measurement.
(B) Even when the power supply voltage is distorted, the tertiary winding 2c and the integrator 12 can obtain a displacement current component removal signal that follows the waveform distortion. Therefore, compared with the first embodiment, the power supply noise Can be less affected by
Other effects are the same as those of the first embodiment.

なお、第3の実施の形態において、課電波形が正弦波以外の場合には、積分器12に代えて、「反転増幅器+微分器」の構成による回路を用いることができる。   In the third embodiment, when the applied waveform is other than a sine wave, a circuit having a configuration of “inverting amplifier + differentiator” can be used instead of the integrator 12.

[他の実施の形態]
なお、本発明は、上記各実施の形態に限定されず、その要旨を変更しない範囲内で種々な変形が可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

例えば、上記各実施の形態において、光伝送を無線伝送に変更することができる。   For example, in each of the above embodiments, optical transmission can be changed to wireless transmission.

また、上記第1及び第3実施の形態においては、信号検出部20を課電トランス2と試料1の間に接続したが、第2の実施の形態のように、信号検出部20を図3に示す試料1と入れ換えてもよい。すなわち、試料1を課電トランス2に接続し、試料1と接地間に信号検出部20を接続することができる。   In the first and third embodiments, the signal detection unit 20 is connected between the power transformer 2 and the sample 1. However, as in the second embodiment, the signal detection unit 20 is not shown in FIG. The sample 1 shown in FIG. That is, the sample 1 can be connected to the power transformer 2, and the signal detector 20 can be connected between the sample 1 and the ground.

また、DC電源部25は、バッテリーに代えて太陽電池等に置き換えることができ、これにより、屋外設備のオンライン用損失電流測定装置として使用できる。この場合、屋外設備のオンライン用損失電流測定装置を用いて、損失電流値の定期測定を行うことにより、その測定のトレンド情報の傾向から、絶縁劣化診断を行うことができる。   Further, the DC power supply unit 25 can be replaced with a solar cell or the like instead of the battery, and thus can be used as an on-line loss current measuring device for outdoor equipment. In this case, by performing a periodic measurement of the loss current value using an on-line loss current measuring device for outdoor equipment, an insulation deterioration diagnosis can be performed from the trend of the trend information of the measurement.

本発明の第1の実施の形態に係る損失電流測定装置の回路図である。It is a circuit diagram of the loss current measuring device concerning a 1st embodiment of the present invention. 図1のモニタで観測された出力信号波形を示す波形図である。It is a wave form diagram which shows the output signal waveform observed with the monitor of FIG. 本発明の第2の実施の形態に係る損失電流測定装置の回路図である。It is a circuit diagram of the loss current measuring device concerning a 2nd embodiment of the present invention. 本発明の第2の実施の形態と従来の損失電流の検出特性を示す特性図である。It is a characteristic view which shows the detection characteristic of the 2nd Embodiment of this invention and the conventional loss current. 本発明の第3の実施の形態に係る損失電流測定装置の回路図である。It is a circuit diagram of the loss current measuring device concerning a 3rd embodiment of the present invention. 非特許文献1に記載された損失電流測定装置の回路図である。It is a circuit diagram of the loss current measuring device indicated in nonpatent literature 1.

符号の説明Explanation of symbols

1 試料
2 課電トランス
2a 一次巻線
2b 二次巻線
2c 三次巻線
3 2チャンネル信号発信器
4 モニタ
5 通電ループ
10 損失電流測定回路
11 光ファイバ
12 積分器
13 接続線
20 信号検出部
21 検出抵抗
22 アレスタ
23 増幅器
24 E/O変換器
25 DC電源部
30 変位電流バイパス部
31 O/E変換器
32 抵抗
33 バイパス抵抗
100 損失電流測定回路
101 入力部
102 増幅器
103 抵抗
104 バイパス抵抗
H 高電位端
L 低電位端
DESCRIPTION OF SYMBOLS 1 Sample 2 Electric power transformer 2a Primary winding 2b Secondary winding 2c Tertiary winding 3 2 channel signal transmitter 4 Monitor 5 Current supply loop 10 Loss current measuring circuit 11 Optical fiber 12 Integrator 13 Connection line 20 Signal detection part 21 Detection Resistor 22 Arrester 23 Amplifier 24 E / O converter 25 DC power supply unit 30 Displacement current bypass unit 31 O / E converter 32 Resistor 33 Bypass resistor 100 Loss current measuring circuit 101 Input unit 102 Amplifier 103 Resistor 104 Bypass resistor H High potential end L Low potential end

Claims (7)

測定時に課電される測定対象物に検出抵抗を直列接続し、
前記検出抵抗に流れる電流によって前記検出抵抗の両端に生じた電圧を増幅して検出信号として出力し、
前記検出信号から変位電流成分を除去する信号をバイパス抵抗に印加して前記バイパス抵抗に流れた変位電流成分の除去信号を前記検出信号に重畳して損失電流を生成することを特徴とする変位電流バイパス法による損失電流測定方法。
A sensing resistor is connected in series to the object to be charged during measurement,
Amplifies the voltage generated at both ends of the detection resistor by the current flowing through the detection resistor and outputs it as a detection signal;
A displacement current is generated by applying a signal that removes a displacement current component from the detection signal to a bypass resistor, and superimposing a displacement current component removal signal that has flowed through the bypass resistor on the detection signal. Loss current measurement method by bypass method.
前記損失電流の生成は、負極性余弦波による除去信号を用いて前記変位電流成分を除去することを特徴とする請求項1に記載の変位電流バイパス法による損失電流測定方法。   The loss current measurement method according to claim 1, wherein the generation of the loss current is performed by removing the displacement current component using a removal signal based on a negative cosine wave. 前記損失電流の生成は、前記課電を行う課電トランスから得た課電電圧位相情報を積分処理した除去信号を用いて前記変位電流成分を除去することを特徴とする請求項1または2に記載の変位電流バイパス法による損失電流測定方法。   The generation of the loss current is performed by removing the displacement current component using a removal signal obtained by integrating the applied voltage phase information obtained from the applying transformer that performs the applying electric power. The loss current measuring method by the displacement current bypass method described. 測定時に課電される測定対象物に直列接続される検出抵抗と、前記検出抵抗に流れる電流によって前記検出抵抗の両端に生じた電圧を増幅して検出信号として出力する増幅部とを有する信号検出部と、
前記信号検出部からの前記検出信号から変位電流成分を除去する信号が印加されるバイパス抵抗を有し、前記バイパス抵抗に流れた変位電流成分の除去信号を前記検出信号に重畳して損失電流を生成する変位電流バイパス部とを備えたことを特徴とする変位電流バイパス法による損失電流測定回路。
A signal detection unit having a detection resistor connected in series to a measurement object charged during measurement, and an amplification unit that amplifies a voltage generated at both ends of the detection resistor by a current flowing through the detection resistor and outputs the detection signal as a detection signal And
A bypass resistor to which a signal for removing a displacement current component from the detection signal from the signal detection unit is applied, and a loss current is calculated by superimposing a displacement current component removal signal flowing through the bypass resistor on the detection signal; A loss current measuring circuit according to a displacement current bypass method, characterized by comprising a displacement current bypass section to be generated.
前記変位電流バイパス部は、負極性余弦波による除去信号を用いて前記変位電流成分を除去することを特徴とする請求項4に記載の変位電流バイパス法による損失電流測定回路。   5. The loss current measuring circuit according to claim 4, wherein the displacement current bypass unit removes the displacement current component using a removal signal generated by a negative cosine wave. 前記変位電流バイパス部は、前記課電を行う課電トランスから得た課電電圧位相情報を積分処理した除去信号を用いて前記変位電流成分を除去することを特徴とする請求項4または5に記載の変位電流バイパス法による損失電流測定回路。   6. The displacement current bypass unit removes the displacement current component by using a removal signal obtained by integrating the applied voltage phase information obtained from the applying transformer that performs the applying electric power. Loss current measurement circuit by the displacement current bypass method described. 前記信号検出部は、前記増幅部の出力を電気信号から光信号に変換する電気−光変換器を備え、
前記変位電流バイパス部は、前記信号検出部の前記電気−光変換器からの前記光信号を電気信号に変換する光−電気変換器を備え、
前記電気−光変換器と前記光−電気変換器との間を光伝送媒体で接続することを特徴とする請求項4から6のいずれか1項に記載の変位電流バイパス法による損失電流測定回路。
The signal detection unit includes an electro-optical converter that converts an output of the amplification unit from an electric signal to an optical signal,
The displacement current bypass unit includes an optical-electrical converter that converts the optical signal from the electrical-optical converter of the signal detection unit into an electrical signal,
The loss current measuring circuit according to any one of claims 4 to 6, wherein the electro-optic converter and the opto-electric converter are connected by an optical transmission medium. .
JP2006079628A 2006-03-22 2006-03-22 Method and circuit for measuring loss current by displacement current bypass method Pending JP2007256023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079628A JP2007256023A (en) 2006-03-22 2006-03-22 Method and circuit for measuring loss current by displacement current bypass method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079628A JP2007256023A (en) 2006-03-22 2006-03-22 Method and circuit for measuring loss current by displacement current bypass method

Publications (1)

Publication Number Publication Date
JP2007256023A true JP2007256023A (en) 2007-10-04

Family

ID=38630425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079628A Pending JP2007256023A (en) 2006-03-22 2006-03-22 Method and circuit for measuring loss current by displacement current bypass method

Country Status (1)

Country Link
JP (1) JP2007256023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168638A (en) * 2008-01-16 2009-07-30 Institute Of National Colleges Of Technology Japan Water tree degradation diagnostic method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436768A (en) * 1977-08-26 1979-03-17 Norio Akamatsu Instantaneous sine wave detector
JPS61155866A (en) * 1984-12-28 1986-07-15 Toshiba Corp Reactive power transducer
JPS63250569A (en) * 1987-04-07 1988-10-18 Yokogawa Electric Corp High voltage current detecting circuit
JPH02173579A (en) * 1988-12-27 1990-07-05 Showa Electric Wire & Cable Co Ltd Deciding method for insulation deterioration
JPH03149915A (en) * 1989-11-06 1991-06-26 Toshiba Corp 90× phase shifter
JPH06138169A (en) * 1992-10-23 1994-05-20 Daiden Co Ltd Measuring method for partial degradation of insulation of cable
JPH0894701A (en) * 1991-02-22 1996-04-12 Showa Electric Wire & Cable Co Ltd Signal measuring instrument of power cable
JPH08166421A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Method for measuring partial discharge
JP2002196030A (en) * 2000-12-25 2002-07-10 Furukawa Electric Co Ltd:The Method for diagnosing deterioration of power cable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436768A (en) * 1977-08-26 1979-03-17 Norio Akamatsu Instantaneous sine wave detector
JPS61155866A (en) * 1984-12-28 1986-07-15 Toshiba Corp Reactive power transducer
JPS63250569A (en) * 1987-04-07 1988-10-18 Yokogawa Electric Corp High voltage current detecting circuit
JPH02173579A (en) * 1988-12-27 1990-07-05 Showa Electric Wire & Cable Co Ltd Deciding method for insulation deterioration
JPH03149915A (en) * 1989-11-06 1991-06-26 Toshiba Corp 90× phase shifter
JPH0894701A (en) * 1991-02-22 1996-04-12 Showa Electric Wire & Cable Co Ltd Signal measuring instrument of power cable
JPH06138169A (en) * 1992-10-23 1994-05-20 Daiden Co Ltd Measuring method for partial degradation of insulation of cable
JPH08166421A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Method for measuring partial discharge
JP2002196030A (en) * 2000-12-25 2002-07-10 Furukawa Electric Co Ltd:The Method for diagnosing deterioration of power cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168638A (en) * 2008-01-16 2009-07-30 Institute Of National Colleges Of Technology Japan Water tree degradation diagnostic method

Similar Documents

Publication Publication Date Title
JP6616193B2 (en) Lightning arrester leakage current detection method, lightning arrester leakage current detection device, and lightning arrester leakage current monitoring device
CN103969554A (en) Online failure positioning device for high voltage cable line and positioning method thereof
US10027105B2 (en) Overcurrent protection device and method
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
WO2009002120A2 (en) Measuring instrument for a resistive electric leakage current
CN103257263A (en) Non-contacting-type power frequency voltage measuring device
KR101407864B1 (en) Impedance calculation appratus and sinusoidal insulation monitoring apparatus comprising the voltage sensing
KR100498927B1 (en) Method and Device for measuring resistive leakage current by time-delay synthesis method in deciding the deterioration diagnosis of arrester
Zhao et al. Testing and modelling of voltage transformer for high order harmonic measurement
KR20100036567A (en) Apparatus for detecting partial discharging signal and method for driving the same
KR100538081B1 (en) Lightning arrester analyzer and analyzing method
CN102650654A (en) Operation performance on-line assessment method for power transformer iron core and clamping piece grounding current monitoring device
JP2007256023A (en) Method and circuit for measuring loss current by displacement current bypass method
JP4406193B2 (en) Degradation diagnosis method for power cable and degradation diagnosis device for power cable
CN105223422A (en) Digital dielectric loss measurement system device and method
JP4092645B2 (en) Degradation diagnosis method for power cables
Rose et al. Digital optical CT application to HVDC earthing line fault measurements
KR20110066693A (en) Static monitoring device for high voltage motor
KR20120095757A (en) Pulse driven ground performance analyzer
JP5154235B2 (en) Water tree deterioration diagnosis method
JP2007256022A (en) Method and device for measuring loss current by high-potential-side detection type-displacement current bypass method
RU2807018C1 (en) High-voltage direct-connection electric energy meter
JP2011252779A (en) Detection method of partial discharge of electrical device using magnetic field probe
TWI676808B (en) System for measuring electrical characteristics of electrical cable
RU2399920C1 (en) Method for contactless measurement of coefficient of non-linear distortion of voltage and current in overhead system of electric railway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130