JP2009168638A - Water tree degradation diagnostic method - Google Patents

Water tree degradation diagnostic method Download PDF

Info

Publication number
JP2009168638A
JP2009168638A JP2008007460A JP2008007460A JP2009168638A JP 2009168638 A JP2009168638 A JP 2009168638A JP 2008007460 A JP2008007460 A JP 2008007460A JP 2008007460 A JP2008007460 A JP 2008007460A JP 2009168638 A JP2009168638 A JP 2009168638A
Authority
JP
Japan
Prior art keywords
signal
current
resistor
capacitance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008007460A
Other languages
Japanese (ja)
Other versions
JP5154235B2 (en
Inventor
Kazuyuki Toyama
和之 遠山
Tomoaki Imai
友章 今井
Noriyuki Akiyama
則行 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
J Power Systems Corp
Original Assignee
Institute of National Colleges of Technologies Japan
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, J Power Systems Corp filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2008007460A priority Critical patent/JP5154235B2/en
Publication of JP2009168638A publication Critical patent/JP2009168638A/en
Application granted granted Critical
Publication of JP5154235B2 publication Critical patent/JP5154235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water tree degradation diagnostic method that measures loss current of a cable under commercial operation and improves the diagnostic accuracy by reducing the influence of external noise. <P>SOLUTION: A detection resistor 41 is connected to a sample 20 such as a CV cable in series, electricity is applied from a commercial power supply line 30, voltage reduction is caused at both ends of the detection resistor 41 by the current flowing in the detection resistor 41 by electricity application, and this voltage is amplified by an amplifier 43. Applied voltage phase information is obtained from the commercial power supply line 30 by a transformer for an instrument 50, this is differentiated by a differentiator 60 to create a signal for removing displacement current component, and the voltage obtained by level-adjusting the signal for removing displacement current component with a cancel resistor 72 is input into the amplifier 73 with a detected signal from the amplifier 43. The amplifier 73 superimposes the signal for removing displacement current component on the detected signal, removes the displacement current component in the detected signal, and outputs the loss current. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CVケーブル等の試料の水トリー劣化を電気的に診断する水トリー劣化診断方法に関する。   The present invention relates to a water tree deterioration diagnosis method for electrically diagnosing water tree deterioration of a sample such as a CV cable.

代表的な電力ケーブルである架橋ポリエチレン絶縁電力ケーブル(以下、CVケーブルという)の主な劣化形態は、水トリー(water tree)劣化である。この水トリー劣化は、CVケーブル絶縁体中に存在する水分と電界の作用により発生する絶縁体中の変質であり、この変質が時間の経過と共に増大することにより、CVケーブルの絶縁性能を低下させて絶縁破壊に至る場合がある。この水トリー劣化を診断するための劣化診断技術が検討されている。   A main deterioration form of a crosslinked polyethylene insulated power cable (hereinafter referred to as a CV cable), which is a typical power cable, is water tree deterioration. This water tree deterioration is an alteration in the insulator caused by the action of moisture and electric field present in the CV cable insulator, and this alteration increases with the passage of time, thereby reducing the insulation performance of the CV cable. May lead to dielectric breakdown. Degradation diagnostic techniques for diagnosing this water tree degradation are being studied.

例えば、高電圧を発生する変圧器と試料(測定対象)であるCVケーブルとの間に変流器を接続し、更に、標準コンデンサを変流器の変圧器側に接続し、変圧器からCVケーブルに高電圧の交流電圧を印加して、標準コンデンサに流れる電流と、CVケーブルに接続された変流器により検出されたケーブル絶縁体中を流れる電流とを、損失電流測定ブリッジに入力して検出電流中の変位電流成分(容量性電流成分)を除去して損失電流成分のみを抽出し、更に、その損失電流中に含まれる第3高調波成分に基づいてCVケーブルの劣化を診断する劣化診断方法が知られている(例えば、特許文献1参照)。   For example, a current transformer is connected between a transformer that generates a high voltage and a CV cable that is a sample (measurement target), and a standard capacitor is connected to the transformer side of the current transformer. Apply a high voltage AC voltage to the cable and input the current flowing through the standard capacitor and the current flowing through the cable insulation detected by the current transformer connected to the CV cable to the loss current measurement bridge. Degradation of diagnosing the degradation of the CV cable based on the third harmonic component included in the loss current by extracting only the loss current component by removing the displacement current component (capacitive current component) from the detected current A diagnostic method is known (see, for example, Patent Document 1).

しかし、特許文献1に記載された従来の損失電流測定方法では、高電圧側に設けた変流器はリアクトルを応用しているため、CVケーブル等の試料の静電容量やその他の浮遊容量との組み合わせにより、CVケーブル、変流器を含む検出回路が共振現象を起こし、検出信号の周波数特性が変化して波形歪みを生じる。このため、劣化信号の波形解析に誤差が生じる。更に、静電容量がCVケーブルの試料毎に変化、すなわち試料毎に共振周波数が変化するため、測定条件が試料毎に変わるという問題もある。   However, in the conventional loss current measuring method described in Patent Document 1, since the current transformer provided on the high voltage side applies a reactor, the capacitance of a sample such as a CV cable or other stray capacitance As a result of this combination, the detection circuit including the CV cable and the current transformer causes a resonance phenomenon, and the frequency characteristic of the detection signal is changed to cause waveform distortion. For this reason, an error occurs in the waveform analysis of the deteriorated signal. Furthermore, since the capacitance changes for each sample of the CV cable, that is, the resonance frequency changes for each sample, there is also a problem that the measurement conditions change for each sample.

このCVケーブル等の試料の静電容量やその他の浮遊容量に左右されない従来の劣化診断方法として、例えば、2チャンネル信号発信器を用い、この2チャンネル信号発信器の出力端に試料の芯線を接続すると共に遮蔽層等の外側導電部と接地間に検出抵抗を接続して試料に電流を流し、更に、2チャンネル信号発信器で作った変位電流と逆位相の信号を試料電流に加算(合成)処理して、試料に流れる電流から変位電流成分を打消すことにより損失電流を検出する損失電流測定装置が知られている(例えば、非特許文献1参照)。
特開2004−354093号公報 平成17年電気学会全国大会2−S10(17〜20頁)
As a conventional degradation diagnosis method that does not depend on the capacitance of the sample such as the CV cable or other stray capacitance, for example, a 2-channel signal transmitter is used, and the sample core wire is connected to the output end of the 2-channel signal transmitter. At the same time, a detection resistor is connected between the outer conductive part such as the shielding layer and the ground, and a current is passed through the sample. Further, a displacement current and an opposite phase signal created by the 2-channel signal transmitter are added to the sample current (synthesis). A loss current measuring apparatus that detects a loss current by processing and canceling a displacement current component from a current flowing through a sample is known (see, for example, Non-Patent Document 1).
JP 2004-354093 A 2005 IEEJ National Convention 2-S10 (17-20 pages)

しかし、上記非特許文献1に記載された従来の損失電流測定装置によると、損失電流の測定時に、測定対象のケーブルの商用運転を停止して試料に検出器を接続する必要があるため、商用運転中(活線中)における測定は行えなかった。このため、ケーブルの劣化が判定された場合、診断精度の高い耐電圧法等による測定を改めて実施する必要があり、ケーブルに対して2回の停電作業が必要であった。また、損失電流を測定しているときに侵入する外部ノイズに対して対策を行おうとすると、多大な労力を費やす必要があった。   However, according to the conventional loss current measuring device described in Non-Patent Document 1, it is necessary to stop the commercial operation of the cable to be measured and connect the detector to the sample when measuring the loss current. Measurement during operation (live line) could not be performed. For this reason, when it is determined that the cable is deteriorated, it is necessary to carry out measurement again with a withstand voltage method or the like with high diagnostic accuracy, and the power outage work is required twice for the cable. In addition, it has been necessary to spend a great deal of effort to take measures against external noise that enters during the measurement of the loss current.

従って、本発明の目的は、商用運転中におけるケーブルの損失電流の測定が簡便に行えると共に、外部ノイズの影響を低減して診断精度を向上させることが可能な水トリー劣化診断方法を提供することにある。   Accordingly, an object of the present invention is to provide a water tree deterioration diagnosis method capable of easily measuring the loss current of a cable during commercial operation and reducing the influence of external noise to improve the diagnosis accuracy. It is in.

本発明は、上記目的を達成するため、測定対象物に検出抵抗を直列接続して商用電源から課電し、前記検出抵抗に流れる電流が前記検出抵抗の両端に生じさせた電圧を検出信号とし、前記商用電源から取得した課電圧位相情報を微分して変位電流成分除去用信号を生成し、前記変位電流成分除去用信号をレベル調整した信号を前記検出信号に重畳して前記検出信号中の変位電流成分を除去し、損失電流及び前記測定対象物に流れる高調波電流を測定することを特徴とする水トリー劣化診断方法を提供することにある。   In order to achieve the above object, the present invention uses a detection resistor connected in series to a measurement object and applies a voltage from a commercial power supply, and a voltage generated at both ends of the detection resistor by a current flowing through the detection resistor is used as a detection signal. , Differential voltage phase information obtained from the commercial power source is differentiated to generate a displacement current component removal signal, and a signal obtained by level-adjusting the displacement current component removal signal is superimposed on the detection signal. An object of the present invention is to provide a water tree deterioration diagnosis method characterized by removing a displacement current component and measuring a loss current and a harmonic current flowing in the measurement object.

また、本発明は、上記目的を達成するため、測定対象物に検出抵抗を直列接続して商用電源から課電し、前記検出抵抗に流れる電流が前記検出抵抗の両端に生じさせた電圧を検出信号とし、前記商用電源から取得した課電圧位相情報に基づいて生成(例えば微分処理)した変位電流成分除去用信号をレベル調整した信号を前記検出信号に重畳して前記検出信号中の変位電流成分を除去し、損失電流及び前記測定対象物に流れる高調波電流を測定し、前記損失電流または前記高調波電流と前記測定対象物の静電容量の比が、設定値を超えたときに前記測定対象物に欠陥有りと判定することを特徴とする水トリー劣化診断方法を提供することにある。   In order to achieve the above object, the present invention detects a voltage generated by connecting a detection resistor in series with a measurement object and applying power from a commercial power supply, and causing a current flowing through the detection resistor to be generated at both ends of the detection resistor. Displacement current component in the detection signal by superimposing a signal obtained by adjusting the level of the displacement current component removal signal generated based on the applied voltage phase information acquired from the commercial power supply (for example, differential processing) on the detection signal And measuring the loss current and the harmonic current flowing in the measurement object, and the measurement when the ratio of the loss current or the harmonic current and the capacitance of the measurement object exceeds a set value. An object of the present invention is to provide a water tree deterioration diagnosis method characterized by determining that an object is defective.

また、本発明は、上記目的を達成するため、測定対象物に検出抵抗を直列接続して商用電源から課電し、前記検出抵抗に流れる電流が前記検出抵抗の両端に生じさせた電圧を検出信号とし、前記商用電源から取得した課電圧位相情報に基づいて生成(例えば微分処理)した変位電流成分除去用信号をレベル調整した信号を前記検出信号に重畳して前記検出信号中の変位電流成分を除去し、損失電流及び前記測定対象物に流れる高調波電流を測定し、前記損失電流または前記高調波電流と前記測定対象物の静電容量とを定期的に測定して経時変化を監視し、前記損失電流または前記高調波電流の増加傾向及び前記静電容量の増加傾向に基づいて水トリー劣化の状態を判定することを特徴とする水トリー劣化診断方法を提供することにある。   In order to achieve the above object, the present invention detects a voltage generated by connecting a detection resistor in series with a measurement object and applying power from a commercial power supply, and causing a current flowing through the detection resistor to be generated at both ends of the detection resistor. Displacement current component in the detection signal by superimposing a signal obtained by adjusting the level of the displacement current component removal signal generated based on the applied voltage phase information acquired from the commercial power supply (for example, differential processing) on the detection signal The loss current and the harmonic current flowing through the object to be measured are measured, and the loss current or the harmonic current and the capacitance of the object to be measured are periodically measured to monitor a change with time. Another object of the present invention is to provide a water tree deterioration diagnosis method that determines the state of water tree deterioration based on the increasing tendency of the loss current or the harmonic current and the increasing tendency of the capacitance.

本発明の水トリー劣化診断方法によれば、商用運転中におけるケーブルの損失電流の測定が簡便に行えると共に、外部ノイズの影響を低減して診断精度を向上させることができる。   According to the water tree deterioration diagnosis method of the present invention, the loss current of a cable during commercial operation can be easily measured, and the influence of external noise can be reduced to improve diagnosis accuracy.

本発明の実施の形態を説明する前に、ケーブル線路のトレンド監視の有効性について説明する。図1は、トレンド監視の有効性の検証に用いた損失電流測定システムの構成を示す。この損失電流測定システム100は、2種類の電圧v1,v2を発生する2チャンネル信号発信器1と、2チャンネル信号発信器1に一次巻線2aが接続された課電トランス2と、課電トランス2の二次巻線2bの高電位端に接続された第1の測定電極3と、CVケーブル等の測定対象物としての試料20を挟んで第1の測定電極3に対向配置された第2の測定電極4と、第2の測定電極4と接地間に接続された検出抵抗(rd)5と、検出抵抗5の両端に一対の入力端が接続された増幅器6と、増幅器6の出力端と接地間に接続された抵抗7と、2チャンネル信号発信器1から出力される電圧v2を増幅する増幅器8と、増幅器8の出力端子と増幅器6の出力端子との間に接続されたキャンセル抵抗(可変抵抗)9と、抵抗7の出力端の波形を観測するオシロスコープ10と、抵抗7の端子電圧を電子データにして記録するデータレコーダ11と、抵抗7の端子電圧を高速フーリエ変換するFFT処理装置12とを備えて構成されている。   Before describing embodiments of the present invention, the effectiveness of cable line trend monitoring will be described. FIG. 1 shows the configuration of a loss current measurement system used for verifying the effectiveness of trend monitoring. The loss current measuring system 100 includes a two-channel signal transmitter 1 that generates two kinds of voltages v1 and v2, a power transformer 2 having a primary winding 2a connected to the two-channel signal transmitter 1, and a power transformer. The second measurement electrode 3 connected to the high potential end of the second secondary winding 2b and the second measurement electrode 3 disposed opposite to the first measurement electrode 3 with the sample 20 as a measurement object such as a CV cable interposed therebetween. The measurement electrode 4, the detection resistor (rd) 5 connected between the second measurement electrode 4 and the ground, the amplifier 6 having a pair of input terminals connected to both ends of the detection resistor 5, and the output terminal of the amplifier 6 A resistor 7 connected between the amplifier 8 and the ground, an amplifier 8 for amplifying the voltage v2 output from the two-channel signal transmitter 1, and a cancel resistor connected between the output terminal of the amplifier 8 and the output terminal of the amplifier 6. (Variable resistor) 9 and the wave at the output end of resistor 7 The and oscilloscope 10 to observe, the data recorder 11 to the terminal voltage of the resistor 7 recorded in the electronic data, and the terminal voltage of the resistor 7 is constituted by a FFT processor 12 for fast Fourier transform.

2チャンネル信号発信器1は、信号源であり、変位電流除去用の電圧v2(−cosθ)と、課電トランス2に印加する課電用の電圧v1(sinθ)との2チャンネルの信号を、同期をとりながら出力する構成を有する。   The two-channel signal transmitter 1 is a signal source, and outputs a two-channel signal of a voltage v2 (−cos θ) for displacement current removal and a voltage v1 (sin θ) for voltage application to the voltage transformer 2. It has a configuration that outputs while synchronizing.

増幅器6は、検出抵抗5の両端に生じた電圧を入力信号とし、この入力信号を所定のレベルに差動増幅して出力する差動増幅器である。なお、増幅器6は、外部ノイズの侵入を防止するため、検出抵抗5とともに、できるだけ試料20に近い場所に設置するのが好ましい。   The amplifier 6 is a differential amplifier that uses the voltage generated across the detection resistor 5 as an input signal, differentially amplifies the input signal to a predetermined level, and outputs it. The amplifier 6 is preferably installed as close to the sample 20 as possible together with the detection resistor 5 in order to prevent intrusion of external noise.

(トレンド監視の有効性の検証)
図1の損失電流測定システム100において、試料20の損失電流を測定する場合、試料20を第2の測定電極4の上面に設置し、二次巻線2bに接続済みの第1の測定電極3を試料20の上面に設置する。
(Verification of the effectiveness of trend monitoring)
When measuring the loss current of the sample 20 in the loss current measurement system 100 of FIG. 1, the sample 20 is placed on the upper surface of the second measurement electrode 4 and the first measurement electrode 3 connected to the secondary winding 2b. Is placed on the upper surface of the sample 20.

次に、2チャンネル信号発信器1から課電トランス2の一次巻線2aにsinθの電圧v1を課電用として印加し、二次巻線2bに巻線比に応じた高電圧を発生させる。同時に、増幅器8に変位電流除去用の電圧v2(−cosθ)を印加する。   Next, the sin θ voltage v1 is applied to the primary winding 2a of the voltage transformer 2 from the 2-channel signal transmitter 1 for voltage application, and a high voltage corresponding to the winding ratio is generated in the secondary winding 2b. At the same time, a voltage v2 (−cos θ) for displacement current removal is applied to the amplifier 8.

課電トランス2の二次巻線2bに発生した高圧交流電圧は、第1の測定電極3と接地間に印加される。この印加電圧により、試料20の劣化状態に応じた電流iが、第1の測定電極3、試料20、第2の測定電極4及び検出抵抗5を経由して流れ、検出抵抗5に電圧降下が生じる。検出抵抗5に流れる電流iは、試料20の静電容量に流れる変位電流と、試料20の抵抗に流れる損失電流とが合成されたものである。ここで、損失電流は、課電電圧と同位相の基本周波数電流波形である。従って、損失電流を測定するためには、この検出抵抗5を流れる電流iから変位電流を差し引けばよい。   The high-voltage AC voltage generated in the secondary winding 2b of the electric transformer 2 is applied between the first measurement electrode 3 and the ground. With this applied voltage, a current i corresponding to the deterioration state of the sample 20 flows through the first measurement electrode 3, the sample 20, the second measurement electrode 4, and the detection resistor 5, and a voltage drop occurs in the detection resistor 5. Arise. The current i flowing through the detection resistor 5 is a combination of the displacement current flowing through the capacitance of the sample 20 and the loss current flowing through the resistance of the sample 20. Here, the loss current is a fundamental frequency current waveform in phase with the applied voltage. Therefore, in order to measure the loss current, the displacement current may be subtracted from the current i flowing through the detection resistor 5.

そこで、2チャンネル信号発信器1により、変位電流成分除去用の電圧v2を、キャンセル抵抗9を介して抵抗7に印加し、増幅器6から出力される試料20の変位電流成分を変位電流成分除去用の電圧v2をキャンセル抵抗9で調整した電圧によりキャンセルする。   Therefore, the voltage v2 for displacement current component removal is applied to the resistor 7 via the cancel resistor 9 by the two-channel signal transmitter 1, and the displacement current component of the sample 20 output from the amplifier 6 is used for displacement current component removal. Is canceled by the voltage adjusted by the cancel resistor 9.

課電トランス2による課電圧を正弦波と見たとき、試料20の静電容量に流れる変位電流は、余弦波(単に電圧波形の90°進み位相=cosθ)で表現される。このため、余弦波に相当するキャンセル信号Scのレベルを変えて、検出抵抗5の電流から差し引けばよい。このとき、抵抗7に印加するキャンセル信号Scのレベル調整は、「検出抵抗電流−変位電流」波形の位相が課電圧波形に一致するようにする。この調整により得られた差分波形が、損失電流波形になる。   When the applied voltage by the applying transformer 2 is regarded as a sine wave, the displacement current flowing in the capacitance of the sample 20 is expressed by a cosine wave (simply a 90 ° advance phase of the voltage waveform = cos θ). For this reason, the level of the cancel signal Sc corresponding to the cosine wave may be changed and subtracted from the current of the detection resistor 5. At this time, the level of the cancel signal Sc applied to the resistor 7 is adjusted so that the phase of the “detection resistance current-displacement current” waveform matches the applied voltage waveform. The differential waveform obtained by this adjustment becomes a loss current waveform.

試料20の静電容量を流れる変位電流のレベルは、キャンセル信号Scのレベルに一致する。このため、静電容量は、キャンセル抵抗9の値に反比例して変化する。即ち、キャンセル抵抗9が大きくなると、キャンセル信号Scが小さくなる。換言すれば、静電容量が小さくなると変位電流も小さくなる。従って、キャンセル抵抗9の値を把握すれば、試料20の静電容量も把握できることになる。   The level of the displacement current flowing through the capacitance of the sample 20 matches the level of the cancel signal Sc. For this reason, the capacitance changes in inverse proportion to the value of the cancel resistor 9. That is, as the cancel resistance 9 increases, the cancel signal Sc decreases. In other words, the displacement current decreases as the capacitance decreases. Therefore, if the value of the cancel resistor 9 is grasped, the capacitance of the sample 20 can also be grasped.

抵抗7に生じた損失電流の波形は、オシロスコープ10によって測定者により観測され、また、データレコーダ11によりデータが保存される。更に、FFT処理装置12によりトレンド監視(管理)に必要な解析処理が実施される。   The waveform of the loss current generated in the resistor 7 is observed by the measurer with the oscilloscope 10, and the data is stored with the data recorder 11. Further, analysis processing necessary for trend monitoring (management) is performed by the FFT processing device 12.

(課電試験の検証)
図2は、課電周波数を500Hzとした加速劣化試験における損失電流の経時変化を示す。また、図3は、キャンセル抵抗の値から求めた静電容量の経時変化を示す。図2から明らかなように、損失電流は24日目頃から急増しており、劣化の進行している様子が分かる。これに対して、静電容量は、図3から明らかなように、課電開始3日目までは急激に変化しているものの、その後の増加量は、小さくなっていることが分かる。
(Verification of electricity test)
FIG. 2 shows the change over time in the loss current in the accelerated deterioration test with the applied frequency set at 500 Hz. FIG. 3 shows a change with time of the capacitance obtained from the value of the cancel resistance. As is apparent from FIG. 2, the loss current has increased rapidly from around the 24th day, and it can be seen that the deterioration is progressing. On the other hand, as is clear from FIG. 3, it can be seen that although the capacitance has changed abruptly until the third day of power application, the subsequent increase amount has decreased.

図4は、損失電流の経時変化を35日目から49日目まで4時間毎に記録した結果である。図4から明らかなように、劣化信号レベルには日間変化が見られる。また、図2においても、測定日によって、前後日のデータと大きく変化している場合が見受けられる。以上から、1回の測定結果から劣化を判定するよりも、トレンド管理をした方が、より正確な劣化診断(劣化判定)が可能になることがわかる。   FIG. 4 shows the result of recording the change with time of the loss current every 4 hours from the 35th day to the 49th day. As is clear from FIG. 4, the deterioration signal level changes daily. Also in FIG. 2, it can be seen that there is a significant change from the previous and subsequent data depending on the measurement date. From the above, it can be seen that more accurate deterioration diagnosis (deterioration determination) is possible when trend management is performed than when deterioration is determined from a single measurement result.

(水トリー劣化の評価)
図5は、試料内部の水トリー発生状況を試料の静電容量及び損失電流に対応させて示したものである。例えば、未劣化若しくは軽劣化試料の場合、損失電流、静電容量共に小さい値である。これに対して、長大な水トリーが存在した場合や水トリーが数多く存在した場合には、損失電流の増加が見られる。しかし、損失電流のレベルだけでは、水トリーが大きいのか多いのかを判断できない。そこで、静電容量の情報を付加する。
(Evaluation of water tree degradation)
FIG. 5 shows the state of water tree generation inside the sample corresponding to the capacitance and loss current of the sample. For example, in the case of an undegraded or lightly degraded sample, both the loss current and the capacitance are small values. On the other hand, when there is a long water tree or when there are many water trees, the loss current increases. However, it is not possible to judge whether the water tree is large or large only by the level of the loss current. Therefore, capacitance information is added.

なお、静電容量(C)は、下記式(1)により求めることができる。
変位電流(=変位電流除去信号)は、[変位電流=2π×課電周波数×静電容量×課電電圧]で表される。従って、静電容量(C)は、
C=変位電流/(2π×課電周波数×課電電圧)・・・式(1)となる。
The capacitance (C) can be obtained by the following formula (1).
The displacement current (= displacement current removal signal) is represented by [displacement current = 2π × voltage applied frequency × capacitance × voltage applied voltage]. Therefore, the capacitance (C) is
C = displacement current / (2π × applied frequency × applied voltage) (1)

静電容量は、理論上、試料20の電極面積が同じ場合、誘電率と絶縁厚さに依存する。例えば、短い水トリーが数多く発生すれば、見掛けの絶縁厚さが薄くなったと見なされ、静電容量が増大することになる。一方、長い水トリーが少数発生した場合、絶縁体の厚みの薄い部分の電極面積が小さいため、静電容量の増加量は前者に比べて小さくなる。このような考えをもとに、同じ損失電流であれば、静電容量の増加量が小さいほど危険な水トリーと判断できる。また、同じ静電容量であれば、損失電流が大きいほど危険な水トリーと判断できる。   The capacitance theoretically depends on the dielectric constant and the insulation thickness when the electrode area of the sample 20 is the same. For example, if a lot of short water trees are generated, it is considered that the apparent insulation thickness is reduced, and the capacitance increases. On the other hand, when a small number of long water trees are generated, since the electrode area of the thin portion of the insulator is small, the amount of increase in capacitance is smaller than the former. Based on this idea, if the loss current is the same, it can be determined that the water tree is more dangerous as the increase in capacitance is smaller. If the capacitance is the same, it can be determined that the water tree is more dangerous as the loss current is larger.

例えば、図5において、Aは試料20が未(軽)劣化の特性域、Bは長大な水トリーが局部的に発生したときの特性域、Cは長めの水トリーが少数発生したときの特性域、Dは短小の水トリーが多数発生したときの特性域、Eは長めの水トリーが多数発生したときの特性域、Fは長めの水トリーが多数発生し且つ長大な水トリーが局部的に発生したときの特性域である。   For example, in FIG. 5, A is a characteristic region where the sample 20 is not (lightly) deteriorated, B is a characteristic region when a long water tree is locally generated, and C is a characteristic when a small number of long water trees are generated. Area, D is a characteristic area when many short water trees are generated, E is a characteristic area when many long water trees are generated, F is a long water tree and many long water trees are localized This is the characteristic range when it occurs.

また、静電容量と損失電流の関係で言えば、Aの特性域(判定域)は静電容量及び損失電流が共に小さい場合であり、Bの特性域は損失電流が大きく静電容量が小さい場合であり、Cの特性域はBの特性域に比べて損失電流が小さく静電容量が大きい場合であり、Dの特性域はCの特性域に比べて損失電流が小さく静電容量が大きい場合であり、Eの特性域は損失電流がBの特性域とCの特性域との間にあり且つ静電容量がDの特性域より大きい場合であり、Fの特性域は静電容量がDの特性域より大きく且つ損失電流がBの特性域より大きい場合である。   Speaking of the relationship between the capacitance and the loss current, the A characteristic range (determination range) is a case where both the capacitance and the loss current are small, and the B characteristic range is a large loss current and a small capacitance. This is a case where the C characteristic region has a smaller loss current and a larger capacitance than the B characteristic region, and the D characteristic region has a smaller loss current and a larger capacitance than the C characteristic region. The characteristic region of E is a case where the loss current is between the characteristic region of B and the characteristic region of C and the capacitance is larger than the characteristic region of D, and the characteristic region of F has a capacitance of This is a case where the characteristic range of D is larger and the loss current is larger than the characteristic range of B.

以上から、測定結果が、EやFの特性域になった場合を「重大欠陥有り」として判定することができる。このような判定は、予め損失電流及び静電容量の各値に対して段階的に設定値(損失電流と前記測定対象物の静電容量の比)を設けておき、それぞれの設定値を損失電流及び静電容量の測定値の比が超えたときに、図5及び表1の分類に従って実施する。   From the above, the case where the measurement result is in the characteristic range of E or F can be determined as “serious defect”. In such a determination, a set value (ratio of the loss current and the capacitance of the object to be measured) is set in advance for each value of loss current and capacitance, and each set value is lost. When the ratio of the measured values of current and capacitance is exceeded, it is carried out according to the classification of FIG.

Figure 2009168638
Figure 2009168638

表1は、図5に基づいて水トリー劣化を評価した結果を示す。破壊電圧若しくは水トリー長の関係を記録及び蓄積し、この結果を表1及び図5に照らし合わせることにより、残存破壊電圧や残存絶縁厚さの推定が可能になる。   Table 1 shows the results of evaluating water tree degradation based on FIG. By recording and accumulating the relationship between the breakdown voltage or the water tree length and comparing this result with Table 1 and FIG. 5, it is possible to estimate the remaining breakdown voltage and the remaining insulation thickness.

なお、図5では、損失電流及び静電容量を絶対値としているが、これを初期値からの変化量(率)としてデータ整理して、残存破壊電圧や残存絶縁厚さを推定する方法、或いは、図6に示すように、損失電流と静電容量の変化の推移から水トリー劣化を判定することも可能である。   In FIG. 5, the loss current and the capacitance are absolute values, but the data is arranged as the amount of change (rate) from the initial value to estimate the residual breakdown voltage and the residual insulation thickness, or As shown in FIG. 6, it is also possible to determine water tree deterioration from the transition of changes in loss current and capacitance.

図6は、ケーブルにおける損失電流と静電容量の関係を示す。図6は、試料1,2,3の3つの試料における損失電流−静電容量特性を示しており、それぞれの試料は、共に、損失電流が静電容量に比例することがわかる。例えば、試料3は静電容量2.0を超えるレベルから急激に損失電流が増えている。この特性変化から、水トリー劣化を判定することができる。   FIG. 6 shows the relationship between the loss current and the capacitance in the cable. FIG. 6 shows loss current-capacitance characteristics in three samples, Samples 1, 2, and 3. It can be seen that the loss current is proportional to the capacitance of each sample. For example, the loss current of the sample 3 suddenly increases from a level exceeding the capacitance of 2.0. From this characteristic change, water tree deterioration can be determined.

なお、図1に示した構成は、2チャンネル信号発信器1を信号源に用いているため、商用運転で活線状態にある試料20の損失電流を測定することができない。そこで、商用運転で測定が可能な実施の形態について、以下に説明する。   The configuration shown in FIG. 1 uses the two-channel signal transmitter 1 as a signal source, and thus cannot measure the loss current of the sample 20 in a live line state during commercial operation. Therefore, an embodiment capable of measurement in commercial operation will be described below.

[実施の形態]
(損失電流測定装置の構成)
図7は、本発明の実施の形態に係る損失電流測定装置の構成を示す。この損失電流測定装置200は、商用電源線30及び上記試料(CVケーブル)20に接続されて損失電流を測定する信号検出部40と、計器用変圧器50に接続された微分器60と、微分器60及び信号検出部40に接続されて変位電流をキャンセルする容量性電流キャンセル部70とを備えて構成されている。信号検出部40の出力端と容量性電流キャンセル部70の入力端とは、光ファイバ90によって接続されている。また、損失電流測定装置200には、モニタ80が接続されている。
[Embodiment]
(Configuration of loss current measuring device)
FIG. 7 shows the configuration of the loss current measuring apparatus according to the embodiment of the present invention. The loss current measuring apparatus 200 includes a signal detection unit 40 that is connected to the commercial power line 30 and the sample (CV cable) 20 and measures a loss current, a differentiator 60 that is connected to an instrument transformer 50, a differential And a capacitive current canceling unit 70 connected to the signal detector 60 and the signal detection unit 40 to cancel the displacement current. The output end of the signal detection unit 40 and the input end of the capacitive current cancellation unit 70 are connected by an optical fiber 90. A monitor 80 is connected to the loss current measuring apparatus 200.

微分器60は、商用電源線30による線路に設置された計器用変圧器(PT)50から課電圧の電圧位相情報を取り込み、微分処理して変位電流成分キャンセル用信号を生成する回路構成を有する。   The differentiator 60 has a circuit configuration that takes in the voltage phase information of the applied voltage from an instrument transformer (PT) 50 installed on the line by the commercial power line 30 and differentiates it to generate a displacement current component cancellation signal. .

モニタ80は、例えば、観測波形を画面に表示するLCD(液晶表示器)等のディスプレイを備えて構成され、更に、損失電流測定装置200からの信号を観測及び処理する手段、例えば、データ蓄積手段、損失電流をFFTにより処理する手段等を備えている。   The monitor 80 includes, for example, a display such as an LCD (liquid crystal display) that displays an observation waveform on a screen, and further, means for observing and processing a signal from the loss current measuring apparatus 200, for example, data storage means. And means for processing the loss current by FFT.

(信号検出部の構成)
信号検出部40は、商用電源線30に接続された高電位端Hと試料20の芯線に接続された低電位端Lの間に直列接続された検出抵抗41と、この検出抵抗41に並列接続された開閉器42と、高電位端H及び低電位端Lに一対の入力端が接続された増幅器43と、増幅器43の出力端に接続されたE/O変換器44と、増幅器43及びE/O変換器44の電子回路部に電源を供給するバッテリー等からなるDC電源部45とを備える。
(Configuration of signal detector)
The signal detection unit 40 includes a detection resistor 41 connected in series between a high potential end H connected to the commercial power line 30 and a low potential end L connected to the core wire of the sample 20, and a parallel connection to the detection resistor 41. Switch 42, amplifier 43 having a pair of input terminals connected to high potential terminal H and low potential terminal L, E / O converter 44 connected to the output terminal of amplifier 43, amplifiers 43 and E A DC power supply unit 45 including a battery for supplying power to the electronic circuit unit of the / O converter 44.

検出抵抗41は、検出抵抗41及び試料20に流れる電流iによって所定の電圧降下が得られる抵抗値に設定される。   The detection resistor 41 is set to a resistance value at which a predetermined voltage drop is obtained by the current i flowing through the detection resistor 41 and the sample 20.

開閉器42は、検出抵抗41に大きな負荷電流(検出電流)が流れたときに検出抵抗41が発熱するのを防止できるように、また、非測定時に検出抵抗41が線路にとって負荷とならないように、自動的に或いは手動により検出抵抗41を短絡できるように構成されている。   The switch 42 prevents the detection resistor 41 from generating heat when a large load current (detection current) flows through the detection resistor 41, and prevents the detection resistor 41 from becoming a load on the line during non-measurement. The detection resistor 41 can be short-circuited automatically or manually.

増幅器43は、検出抵抗41の両端に生じた電圧を入力信号とし、この入力信号を所定のレベルに増幅して検出信号として出力する差動増幅器の構成を有する。   The amplifier 43 has a configuration of a differential amplifier that uses the voltage generated at both ends of the detection resistor 41 as an input signal, amplifies the input signal to a predetermined level, and outputs it as a detection signal.

E/O変換器44は、増幅器43の出力信号(検出信号)を電気信号から光信号に変換し、この光信号を光ファイバ90へ出力する回路構成を有する。   The E / O converter 44 has a circuit configuration for converting the output signal (detection signal) of the amplifier 43 from an electric signal to an optical signal and outputting the optical signal to the optical fiber 90.

(容量性電流キャンセル部の構成)
容量性電流キャンセル部70は、E/O変換器44からの光信号を電気信号に変換するO/E変換器71と、微分器60の出力信号を調整して出力するキャンセル抵抗(可変抵抗)72と、O/E変換器71の出力端に一方の入力端が接続され、キャンセル抵抗72の出力端に他方の入力端が接続された増幅器73と、増幅器73の他方の入力端と接地間に接続された抵抗74とを備えて構成されている。容量性電流キャンセル部70は、光ファイバ90を介して信号検出部40から信号を受信しているため、電気ノイズの影響を受けにくくなっている。
(Configuration of capacitive current canceling unit)
The capacitive current canceling unit 70 is an O / E converter 71 that converts an optical signal from the E / O converter 44 into an electric signal, and a cancel resistor (variable resistor) that adjusts and outputs the output signal of the differentiator 60. 72, one input terminal connected to the output terminal of the O / E converter 71, the other input terminal connected to the output terminal of the cancel resistor 72, and the other input terminal of the amplifier 73 and the ground. And a resistor 74 connected to the. Since the capacitive current canceling unit 70 receives a signal from the signal detecting unit 40 via the optical fiber 90, the capacitive current canceling unit 70 is less susceptible to electrical noise.

(損失電流測定方法)
次に、図7の損失電流測定装置の動作について説明する。図7において、損失電流測定を行うときには、測定者等により開閉器42を“開”にし、商用電源線30から、交流電圧v1を検出抵抗41に印加する。交流電圧v1の印加により、試料20の劣化状態に応じた電流iが、商用電源線30〜検出抵抗41〜試料20の芯線〜試料20の遮蔽層等の外側導電部〜商用電源線30を経由する通電ループLで流れ、検出抵抗41に電圧降下が生じる。検出抵抗41の両端に生じた電圧は、増幅器43によって増幅されて検出信号として出力された後、その増幅出力(検出信号)がE/O変換器44によって光信号に変換され、光ファイバ90へ出力される。
(Loss current measurement method)
Next, the operation of the loss current measuring apparatus in FIG. 7 will be described. In FIG. 7, when measuring the loss current, the switch 42 is “opened” by a measurer or the like, and the AC voltage v <b> 1 is applied to the detection resistor 41 from the commercial power line 30. By applying the AC voltage v1, the current i corresponding to the deterioration state of the sample 20 passes through the commercial power supply line 30 to the detection resistor 41 to the core wire of the sample 20 to the outer conductive portion such as the shielding layer of the sample 20 to the commercial power supply line 30. Flowing through the energizing loop L, and a voltage drop occurs in the detection resistor 41. The voltage generated at both ends of the detection resistor 41 is amplified by the amplifier 43 and output as a detection signal, and then the amplified output (detection signal) is converted into an optical signal by the E / O converter 44 to the optical fiber 90. Is output.

容量性電流キャンセル部70では、信号検出部40のE/O変換器44からの光信号を光ファイバ90を介してO/E変換器71により受信して電気信号に変換し、これを検出信号Sdとして抵抗74に印加する。同時に、容量性電流キャンセル部70は、キャンセル抵抗72を介して微分器60からの交流電圧v2を取り込み、抵抗74に印加する。   In the capacitive current canceling unit 70, the optical signal from the E / O converter 44 of the signal detecting unit 40 is received by the O / E converter 71 through the optical fiber 90 and converted into an electrical signal, which is detected signal. Sd is applied to the resistor 74. At the same time, the capacitive current canceling unit 70 takes in the AC voltage v <b> 2 from the differentiator 60 through the cancel resistor 72 and applies it to the resistor 74.

微分器60により計器用変圧器50の出力電圧(課電圧位相情報)を微分する理由は、仮に課電圧波形に高調波成分や気中コロナパルスなどが重畳している場合、変位電流成分も高調波成分やパルス信号を含むことになるため、課電圧波形を微分すれば、実際に則した変位電流のキャンセル信号が得られることにある。従って、微分器60による出力信号を用いることにより、変位電流のキャンセルと同時に、これらノイズの除去も同時に行うことができる。   The reason for differentiating the output voltage (voltage applied phase information) of the instrument transformer 50 by the differentiator 60 is that if a harmonic component, an air corona pulse or the like is superimposed on the applied voltage waveform, the displacement current component is also higher. Since a wave component and a pulse signal are included, if the applied voltage waveform is differentiated, an actual displacement current cancel signal can be obtained. Therefore, by using the output signal from the differentiator 60, these noises can be removed simultaneously with the cancellation of the displacement current.

計器用変圧器50から出力される交流電圧v2は、静電容量の変位電流成分を除去するための負極性余弦波(−cosθ)であり、この交流電圧v2はキャンセル抵抗72により出力調整された後、増幅器73の他方の入力端に印加される。増幅器73は、O/E変換器71からの検出信号Sdをキャンセル信号Sc(−cosθ)に重畳して変位電流成分(cosθ)をキャンセルし、損失電流成分のみを出力する。この損失電流成分の信号は、モニタ80及び図示を省略しているデータレコーダへ出力され、表示及び記録が行われる。なお、キャンセル抵抗72による出力調整は、容量性電流キャンセル部70の出力をモニタ80で観測しながら、変位電流波形のピーク位相(正弦波のゼロクロス位置)が0になるようにすればよい。   The AC voltage v <b> 2 output from the instrument transformer 50 is a negative cosine wave (−cos θ) for removing the displacement current component of the capacitance, and this AC voltage v <b> 2 is output adjusted by the cancel resistor 72. Thereafter, it is applied to the other input terminal of the amplifier 73. The amplifier 73 cancels the displacement current component (cos θ) by superimposing the detection signal Sd from the O / E converter 71 on the cancel signal Sc (−cos θ), and outputs only the loss current component. This loss current component signal is output to the monitor 80 and a data recorder (not shown) for display and recording. Note that the output adjustment by the cancel resistor 72 may be performed so that the peak phase of the displacement current waveform (zero cross position of the sine wave) becomes 0 while observing the output of the capacitive current cancel unit 70 with the monitor 80.

上記(1)式で示したように、静電容量Cは、C=変位電流/(2π×課電周波数×課電電圧)により算出することができる。変位電流の大きさはバランスが取れた時のキャンセル信号Scと同じであるから、課電周波数及び試料20への印加電圧(課電電圧)、及びキャンセル信号の大きさから容易に静電容量Cを算出することができる。   As shown in the above equation (1), the capacitance C can be calculated by C = displacement current / (2π × voltage applied frequency × voltage applied voltage). Since the magnitude of the displacement current is the same as the cancel signal Sc when balanced, the capacitance C can be easily determined from the applied frequency, the voltage applied to the sample 20 (applied voltage), and the magnitude of the cancel signal. Can be calculated.

モニタ80及びデータレコーダでは、図2〜図4に示したように各種の経時変化を観測及び記録することにより損失電流及び静電容量のデータとして蓄積し、このデータに基づいて、図5及び表1に示したようにしてトレンド監視を実行する。なお、各回の測定においては、測定終了後、開閉器42を“閉”にし、負荷への課電が行えるようする。   In the monitor 80 and the data recorder, as shown in FIG. 2 to FIG. 4, various time-dependent changes are observed and recorded, and accumulated as loss current and capacitance data. Based on this data, FIG. Trend monitoring is executed as shown in FIG. In each measurement, after the measurement is completed, the switch 42 is “closed” so that power can be applied to the load.

(第1の実施の形態の効果)
第1の実施の形態によれば、次の効果を奏する。
(イ)検出抵抗41を試料20と商用電源線30の間に接続し、試料20の外側導電部を接地できる構成にし、かつ、損失電流の測定時には検出抵抗41を開閉器42で試料20の芯線に接続できるようにしたため、活線状態において頻繁に損失電流の測定が行えるようになり、トレンド(傾向)監視が可能になる。
これに対して、従来の測定方法は、頻繁な測定や、定期的に同じ条件(気象条件や気温など)で測定することが困難なため、測定値の単純比較だけでは水トリー劣化以外の要因による誤差を把握できず、測定値の変化が明確に表れなければ劣化診断を行うことができない。
(Effects of the first embodiment)
According to the first embodiment, the following effects are obtained.
(A) The detection resistor 41 is connected between the sample 20 and the commercial power supply line 30 so that the outer conductive portion of the sample 20 can be grounded, and the detection resistor 41 is connected to the sample 20 by the switch 42 when measuring the loss current. Since it can be connected to the core wire, the loss current can be frequently measured in a live line state, and trend monitoring becomes possible.
On the other hand, the conventional measurement method is difficult to measure frequently and regularly under the same conditions (such as weather conditions and temperature). The error cannot be grasped, and the deterioration diagnosis cannot be performed unless the change in the measured value clearly appears.

(ロ)計器用変圧器50からの課電圧位相情報を微分した信号により変位電流成分をキャンセルさせるため、高調波成分、気中コロナパルス等が商用電源に混入していて電圧波形に歪みが生じた場合でも、それに則した変位電流キャンセル信号を得ることができる。この結果、変位電流のキャンセルと同時に、高調波成分や気中コロナパルス等のノイズを除去することができる。 (B) Since the displacement current component is canceled by the signal obtained by differentiating the voltage applied phase information from the instrument transformer 50, harmonic components, air corona pulses, etc. are mixed into the commercial power supply, resulting in distortion of the voltage waveform. Even in such a case, it is possible to obtain a displacement current cancel signal in accordance with it. As a result, noise such as harmonic components and airborne corona pulses can be removed simultaneously with the cancellation of the displacement current.

(ハ)損失電流値と試料の静電容量値が把握できるため、これら2値若しくはこれら2値の増加傾向から試料内部の水トリーの状況を、図5及び表1のように推定することができる。これにより、試料20の余寿命を推定する基礎データを得ることができる。 (C) Since the loss current value and the capacitance value of the sample can be grasped, the state of the water tree inside the sample can be estimated as shown in FIG. it can. Thereby, basic data for estimating the remaining life of the sample 20 can be obtained.

(ニ)本実施の形態を1次スクリーニングとして活用すれば、活線状態で随時線路の状態監視ができ、更に、劣化の兆候のある線路にのみ信頼性の高い耐電圧法による2次スクリーニングを行えば、1度の停止作業で信頼度の高い劣化診断(劣化判定)を行うことができる。 (D) If this embodiment is used as primary screening, the state of the line can be monitored at any time in a live line state, and further, secondary screening by the withstand voltage method with high reliability can be performed only on the line with signs of deterioration. If it carries out, highly reliable deterioration diagnosis (deterioration judgment) can be performed by one stop operation.

[他の実施の形態]
なお、本発明は、上記各実施の形態に限定されず、本発明の技術思想を逸脱あるいは変更しない範囲内で種々な変形が可能である。
[Other embodiments]
The present invention is not limited to the above embodiments, and various modifications can be made without departing from or changing the technical idea of the present invention.

例えば、測定対象を損失電流に代えて、或いは、損失電流と共に高調波電流を測定するようにしてもよい。これにより、損失電流(=課電電圧と同位相の基本周波数電流)値からマクロ的な劣化状況を把握でき、また、高調波電流(試料20に流れる全電流に含まれる高調波電流成分)から局部劣化状況を把握することができる。このとき、課電電圧上の高調波電流は、増幅器73において、微分器60及びキャンセル抵抗72からのキャンセル信号Scによりキャンセルされるが、試料20で発生した高調波成分は、損失電流成分と共にO/E変換器71及び増幅器73を介してモニタ80に出力され、これにより局部的な劣化状況を把握することができる。   For example, the harmonic current may be measured in place of the loss current or together with the loss current. Thereby, it is possible to grasp the macro degradation state from the loss current (= basic frequency current having the same phase as the applied voltage), and from the harmonic current (a harmonic current component included in the total current flowing through the sample 20). The local deterioration situation can be grasped. At this time, the harmonic current on the applied voltage is canceled by the cancel signal Sc from the differentiator 60 and the cancel resistor 72 in the amplifier 73, but the harmonic component generated in the sample 20 is O along with the loss current component. The signal is output to the monitor 80 via the / E converter 71 and the amplifier 73, whereby the local deterioration state can be grasped.

また、高調波やパルス信号をキャンセルし、変位電流についてはキャンセルしない構成も可能であり、この場合には、微分器60からは高調波やパルス信号をキャンセルに対応したキャンセル信号Scのみを出力すればよい。したがって、例えば、キャンセル信号Scとして予想される高調波やパルス信号の周波数域をバンドパスフィルタ等で抽出し、その逆位相の波形をキャンセル信号Scとして用いることも可能である。   In addition, a configuration is possible in which the harmonics and pulse signals are canceled and the displacement current is not canceled. In this case, only the cancel signal Sc corresponding to the cancellation of the harmonics and pulse signals is output from the differentiator 60. That's fine. Therefore, for example, it is possible to extract a harmonic or pulse signal frequency range expected as the cancel signal Sc by a band-pass filter or the like, and use the waveform of the opposite phase as the cancel signal Sc.

また、耐電圧試験法の際に、本発明の実施の形態に係る損失電流測定を組合せれば、商用運転電界よりも高電界下での劣化信号の有無が判断できるため、通常の耐電圧法よりも更に信頼性の高い診断が可能になる。   In addition, when the withstand voltage test method is combined with the loss current measurement according to the embodiment of the present invention, it is possible to determine the presence or absence of a deterioration signal under a higher electric field than the commercial operation electric field. This makes it possible to perform diagnosis with higher reliability.

トレンド監視の有効性の検証に用いた損失電流測定システムの構成を示す回路図である。It is a circuit diagram which shows the structure of the loss current measurement system used for verification of the effectiveness of trend monitoring. 課電周波数を500Hzとした加速劣化試験における損失電流の経時変化を示す特性図である。It is a characteristic view which shows the time-dependent change of the loss current in the accelerated deterioration test which made the applied frequency 500Hz. キャンセル抵抗の値から求めた静電容量の経時変化を示す特性図である。It is a characteristic view which shows the time-dependent change of the electrostatic capacitance calculated | required from the value of cancellation resistance. 損失電流の経時変化を所定時間毎に記録した結果を示す特性図である。It is a characteristic view which shows the result of having recorded the time-dependent change of loss current for every predetermined time. 試料内部の水トリー発生状況を試料静電容量及び損失電流に対応させて示した説明図である。It is explanatory drawing which showed the water tree generation | occurrence | production condition inside a sample corresponding to the sample electrostatic capacitance and loss current. ケーブルにおける損失電流と静電容量の関係を示す特性図である。It is a characteristic view which shows the relationship between the loss current and electrostatic capacitance in a cable. 本発明の実施の形態に係る損失電流測定装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the loss current measuring apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 2チャンネル信号発信器
2 課電トランス
2a 一次巻線
2b 二次巻線
3 第1の測定電極
4 第2の測定電極
5 検出抵抗
6 増幅器
7 抵抗
8 増幅器
9 キャンセル抵抗
10 オシロスコープ
11 データレコーダ
12 FFT処理装置
20 試料
30 商用電源線
40 信号検出部
41 検出抵抗
42 開閉器
43 増幅器
44 E/O変換器
45 DC電源部
50 計器用変圧器(PT)
60 微分器
70 容量性電流キャンセル部
71 O/E変換器
72 キャンセル抵抗
73 増幅器
74 抵抗
80 モニタ
90 光ファイバ
100 損失電流測定システム
200 損失電流測定装置
DESCRIPTION OF SYMBOLS 1 2 channel signal transmitter 2 Power transformer 2a Primary winding 2b Secondary winding 3 1st measurement electrode 4 2nd measurement electrode 5 Detection resistance 6 Amplifier 7 Resistance 8 Amplifier 9 Cancel resistance 10 Oscilloscope 11 Data recorder 12 FFT Processing device 20 Sample 30 Commercial power line 40 Signal detection part 41 Detection resistor 42 Switch 43 Amplifier 44 E / O converter 45 DC power supply part 50 Transformer for instrument (PT)
60 Differentiator 70 Capacitive Current Cancellation Unit 71 O / E Converter 72 Cancellation Resistance 73 Amplifier 74 Resistance 80 Monitor 90 Optical Fiber 100 Loss Current Measurement System 200 Loss Current Measurement Device

Claims (4)

測定対象物に検出抵抗を直列接続して商用電源から課電し、
前記検出抵抗に流れる電流が前記検出抵抗の両端に生じさせた電圧を検出信号とし、
前記商用電源から取得した課電圧位相情報を微分して変位電流成分除去用信号を生成し、
前記変位電流成分除去用信号をレベル調整した信号を前記検出信号に重畳して前記検出信号中の変位電流成分を除去し、損失電流及び前記測定対象物に流れる高調波電流を測定することを特徴とする水トリー劣化診断方法。
A sensing resistor is connected in series to the object to be measured and charged from a commercial power source.
The detection signal is a voltage generated at both ends of the detection resistor by the current flowing through the detection resistor.
Differentiating the applied voltage phase information acquired from the commercial power source to generate a displacement current component removal signal,
A signal obtained by level-adjusting the displacement current component removal signal is superimposed on the detection signal, the displacement current component in the detection signal is removed, and a loss current and a harmonic current flowing through the measurement object are measured. Water tree deterioration diagnosis method.
測定対象物に検出抵抗を直列接続して商用電源から課電し、
前記検出抵抗に流れる電流が前記検出抵抗の両端に生じさせた電圧を検出信号とし、
前記商用電源から取得した課電圧位相情報に基づいて生成した変位電流成分除去用信号をレベル調整した信号を前記検出信号に重畳して前記検出信号中の変位電流成分を除去し、損失電流及び前記測定対象物に流れる高調波電流を測定し、
前記損失電流または前記高調波電流と前記測定対象物の静電容量の比が、設定値を超えたときに前記測定対象物に欠陥有りと判定することを特徴とする水トリー劣化診断方法。
A sensing resistor is connected in series to the object to be measured and charged from a commercial power source.
The detection signal is a voltage generated at both ends of the detection resistor by the current flowing through the detection resistor.
A signal obtained by level-adjusting the displacement current component removal signal generated based on the applied voltage phase information acquired from the commercial power supply is superimposed on the detection signal to remove the displacement current component in the detection signal. Measure the harmonic current flowing through the measurement object,
A water tree deterioration diagnosis method, wherein the measurement object is determined to have a defect when a ratio of the loss current or the harmonic current and the capacitance of the measurement object exceeds a set value.
測定対象物に検出抵抗を直列接続して商用電源から課電し、
前記検出抵抗に流れる電流が前記検出抵抗の両端に生じさせた電圧を検出信号とし、
前記商用電源から取得した課電圧位相情報に基づいて生成した変位電流成分除去用信号をレベル調整した信号を前記検出信号に重畳して前記検出信号中の変位電流成分を除去し、損失電流及び前記測定対象物に流れる高調波電流を測定し、
前記損失電流または前記高調波電流と前記測定対象物の静電容量とを定期的に測定して経時変化を監視し、前記損失電流または前記高調波電流の増加傾向及び前記静電容量の増加傾向に基づいて水トリー劣化の状態を判定することを特徴とする水トリー劣化診断方法。
A sensing resistor is connected in series to the object to be measured and charged from a commercial power source.
The detection signal is a voltage generated at both ends of the detection resistor by the current flowing through the detection resistor.
A signal obtained by level-adjusting the displacement current component removal signal generated based on the applied voltage phase information acquired from the commercial power supply is superimposed on the detection signal to remove the displacement current component in the detection signal. Measure the harmonic current flowing through the measurement object,
The loss current or the harmonic current and the capacitance of the measurement object are periodically measured to monitor changes over time, and the increase tendency of the loss current or the harmonic current and the increase tendency of the capacitance are monitored. A method for diagnosing water tree deterioration, wherein the state of water tree deterioration is determined based on the method.
前記静電容量は、前記変位電流成分除去用信号と前記商用電源からの課電電圧とに基づいて算出することを特徴とする請求項2又は請求項3に記載の水トリー劣化診断方法。   4. The water tree deterioration diagnosis method according to claim 2, wherein the capacitance is calculated based on the displacement current component removal signal and an applied voltage from the commercial power source. 5.
JP2008007460A 2008-01-16 2008-01-16 Water tree deterioration diagnosis method Expired - Fee Related JP5154235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007460A JP5154235B2 (en) 2008-01-16 2008-01-16 Water tree deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007460A JP5154235B2 (en) 2008-01-16 2008-01-16 Water tree deterioration diagnosis method

Publications (2)

Publication Number Publication Date
JP2009168638A true JP2009168638A (en) 2009-07-30
JP5154235B2 JP5154235B2 (en) 2013-02-27

Family

ID=40969972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007460A Expired - Fee Related JP5154235B2 (en) 2008-01-16 2008-01-16 Water tree deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP5154235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049133A (en) * 2014-06-04 2014-09-17 上海申瑞继保电气有限公司 Method for calculating harmonic current loss of distribution network three-phase four-wire system electric transmission line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257279A (en) * 1988-04-06 1989-10-13 Tohoku Electric Power Co Inc Cable diagnosing apparatus
JP2000321318A (en) * 1999-05-11 2000-11-24 Chubu Electric Power Co Inc Method and apparatus for measuring leaked current for arrester
JP2002196030A (en) * 2000-12-25 2002-07-10 Furukawa Electric Co Ltd:The Method for diagnosing deterioration of power cable
JP2007256023A (en) * 2006-03-22 2007-10-04 Institute Of National Colleges Of Technology Japan Method and circuit for measuring loss current by displacement current bypass method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257279A (en) * 1988-04-06 1989-10-13 Tohoku Electric Power Co Inc Cable diagnosing apparatus
JP2000321318A (en) * 1999-05-11 2000-11-24 Chubu Electric Power Co Inc Method and apparatus for measuring leaked current for arrester
JP2002196030A (en) * 2000-12-25 2002-07-10 Furukawa Electric Co Ltd:The Method for diagnosing deterioration of power cable
JP2007256023A (en) * 2006-03-22 2007-10-04 Institute Of National Colleges Of Technology Japan Method and circuit for measuring loss current by displacement current bypass method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049133A (en) * 2014-06-04 2014-09-17 上海申瑞继保电气有限公司 Method for calculating harmonic current loss of distribution network three-phase four-wire system electric transmission line

Also Published As

Publication number Publication date
JP5154235B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US7292048B2 (en) Method and apparatus for measuring a dielectric response of an electrical insulating system
JP4267713B2 (en) Degradation diagnosis method for power cables
US20200241081A1 (en) Ground-wall insulation aging monitoring and locating method for converter transformer
RU2700368C1 (en) Method for determining technical state of a digital transformer based on parameters of partial discharges in insulation
Majchrzak et al. Application of the acoustic emission method for diagnosis in on-load tap changer
US10175268B2 (en) Actively calibrated capacitively coupled electrostatic device for high voltage measurement
KR101093171B1 (en) Device and method for measuring the leakage current
JP6303240B2 (en) Detection device, power supply system, and detection method
Zarbita et al. A new approach of fast fault detection in HV-B transmission lines based on detail spectrum energy analysis using oscillographic data
Carvalho et al. Virtual instrumentation for high voltage power capacitors assessment through capacitance monitoring and acoustic partial discharge detection
JP5154235B2 (en) Water tree deterioration diagnosis method
Palangar et al. Online condition monitoring of overhead insulators using pattern recognition algorithm
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
Gómez-Luna et al. Experimentally obtaining on-line FRA in transformers by injecting controlled pulses: Obtención experimental de FRA on-line en transformadores mediante la inyección de pulsos controlados
KR20000037145A (en) A new diagnostic technique and equipment for lightning arrester by leakage current harmonic analysis on power service
KR20130028302A (en) On-line power cable insulation monitoring system and methods
JP2018189620A (en) Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging)
JP4316428B2 (en) Non-destructive deterioration diagnosis method for cables
FI3929600T3 (en) Method for broadband ultrasonic detection of electrical discharges
CN111880057A (en) Cable insulation detection method for dielectric constant distribution display of insulating layer
Guastavino et al. A study about partial discharge measurements performed applying to insulating systems square voltages with different rise times
Gómez-Luna et al. Non-invasive monitoring of transformers using the frequency response from controlled transient signals
JP2011252779A (en) Detection method of partial discharge of electrical device using magnetic field probe
JP2007256023A (en) Method and circuit for measuring loss current by displacement current bypass method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees