JP2018189620A - Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging) - Google Patents

Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging) Download PDF

Info

Publication number
JP2018189620A
JP2018189620A JP2017102117A JP2017102117A JP2018189620A JP 2018189620 A JP2018189620 A JP 2018189620A JP 2017102117 A JP2017102117 A JP 2017102117A JP 2017102117 A JP2017102117 A JP 2017102117A JP 2018189620 A JP2018189620 A JP 2018189620A
Authority
JP
Japan
Prior art keywords
discharge
discharging
frequency
corona
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017102117A
Other languages
Japanese (ja)
Inventor
東平 山本
Tohei Yamamoto
東平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO ENG KK
YAMAMOTO ENGINEERING KK
Original Assignee
YAMAMOTO ENG KK
YAMAMOTO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO ENG KK, YAMAMOTO ENGINEERING KK filed Critical YAMAMOTO ENG KK
Priority to JP2017102117A priority Critical patent/JP2018189620A/en
Publication of JP2018189620A publication Critical patent/JP2018189620A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To learn the progression of corona discharging by continuously measuring a high frequency current generated from the corona discharging for a long term and to learn the deterioration conditions of electrical facility/cables and the repairing period thereof by estimating the remaining life based on a deteriorated bus-tub curve of an insulator.SOLUTION: A micro discharge current of the high frequency generated by the corona discharging is detected by the Rogowskii coil or high frequency detection coils CT6-1, 6-2, and 6-3, and the specific frequency band different in frequencies generated respectively from partial discharging, corona discharging and creeping discharging is always detected through a filter, and converted into a DC voltage and numerically recorded in a logger 8 over a long period so as to periodically display the record such as the logger in a display device 9 such as the PC, and assumes and learns the remaining life by comparing with the deterioration bus-tub from the increasing tendency from the actually measured voltage.SELECTED DRAWING: Figure 1

Description

本発明は、コロナ放電等から発生する微弱な高周波電流を検知し、電気機器およびケーブルの絶縁物劣化を早期に発見し、電気/電子機器の修理時期や余寿命を予測し、改修することで突然の事故、故障、停電、火災発生および波及事故を未然に防ぐためのコロナ放電等の検知測定装置を提供する。The present invention detects weak high-frequency currents generated from corona discharge, etc., detects the deterioration of insulators in electrical equipment and cables at an early stage, predicts the repair time and remaining life of electrical / electronic equipment, and repairs them. To provide a detection and measurement device for corona discharge to prevent sudden accidents, breakdowns, power outages, fires and spillovers.

電気機器・ケーブルの中には経年劣化が進み、製品寿命を過ぎていても改修されることなく稼働しているものも多く、最近は、この傾向が顕著である。
その為、電気機器が突然絶縁破壊を起こし、事故・故障から、波及事故に至り、大停電による人的・経済的損失と復旧に長時間を要する事が顕在化している。大震災以降、電力供給がひっ迫している中で、発送配電のトラブルは極めて社会的影響が大きいため、電気設備管理技術者の点検業務は重要度を増している。
現制度で定められた電気設備の点検内容は、電気設備の劣化が適切に判断できない方式が、従来通り繰り返されている。
さらに、最近は、電気管理技術有資格者の数と電気設備の数にアンバランスが生じており、実態として的確な電気設備の性能検査・点検が十分に実施できない状態が続いており、再生可能エネルギー設備の増加と2020年度電力完全自由化を含めると、当該電気設備保全の制度自体も崩壊しかねない状態に至っている。
Some electrical devices and cables have deteriorated over time, and many of them have been in operation without being refurbished even after the end of their product life. Recently, this tendency is remarkable.
As a result, electrical equipment suddenly breaks down, leading to spillovers from accidents and breakdowns, and it has become obvious that human and economic losses due to major power outages and recovery take a long time. Since the power supply has been tight since the Great East Japan Earthquake, the problems of shipping and distribution have a great social impact, so the inspection work of electrical equipment management engineers has become more important.
As for the inspection contents of the electrical equipment defined in the current system, a method in which deterioration of the electrical equipment cannot be properly judged is repeated as before.
In addition, recently, there has been an imbalance between the number of qualified electric management technicians and the number of electrical facilities, and as a matter of fact, it is still impossible to conduct adequate performance inspections and inspections of electrical facilities. Including the increase in energy facilities and the complete liberalization of electricity in FY2020, the electrical equipment maintenance system itself may have collapsed.

現状の点検業務で利用されている電気機器測定器では、絶縁物の劣化を進行させるコロナ放電等を簡単に、しかも電気を通電中に連続して、長期間測定し、絶縁物の劣化進行過程を把握することで余寿命を予測することは、現状では、行われていない。また、計測可能な計測器は皆無である。Electrical equipment measuring instruments used in the current inspection work can easily measure corona discharge, etc., which causes deterioration of the insulation, and continuously measure electricity for a long period of time. At present, the remaining life is not predicted by grasping the above. There are no measuring instruments that can be measured.

稼働中の電気機器のコロナ放電等検知方法は数種類存在するが、いづれも現地で連続測定は、行われていない。一般的には重要設備機器の常時監視用として検査機器も工場などに設置されているものがほとんどである。従って、現地において、課電状態で放電等検知が出来ること望まれている。There are several detection methods such as corona discharge for electrical equipment in operation, but none of them are continuously measured locally. In general, most inspection equipment is installed in factories or the like for continuous monitoring of important equipment. Accordingly, it is desired that discharge and the like can be detected in the applied state at the site.

一部に携帯型コロナ放電等検知器が存在するが、コロナ放電等から発生する「音」を検知する方法である。ケーシング内に納められた電気機器およびケーブルから発生する放電による「音」の変化を保護ケーシングにセンサーを直接接触検知する方式であり、「音」測定のため、不特定多数の機器の中から、コロナ放電等からの発生箇所を探し出す測定方法である。この方法は、周囲の騒音レベルが高く、その判別は、非常に困難であり、かつ、連続計測は、できない。(以下、電気・電子機器収納箱をケーシングと称する)Although some detectors such as portable corona discharge exist, this is a method of detecting “sound” generated by corona discharge or the like. It is a method to detect the change of "sound" due to electric discharges generated from electrical equipment and cables stored in the casing, and to directly contact the sensor with the protective casing. For the "sound" measurement, This is a measurement method for finding out the occurrence point from corona discharge or the like. In this method, the ambient noise level is high, the determination is very difficult, and continuous measurement is not possible. (Hereinafter, the electrical / electronic device storage box is referred to as a casing)

受変電配電設備に組み込まれている遮断機・変圧器などの電気機器・ケーブルなどの点検は、盤の扉を開けて機器の異常の有無を調査しなければならない。この時、コロナ放電等が発生していないかを定量的・連続的に、かつ、簡単に測定できるセンサーが望まれている。Inspecting electrical equipment and cables such as circuit breakers and transformers installed in the power receiving / transforming / distribution equipment, open the door of the panel and investigate whether there is any abnormality in the equipment. At this time, a sensor that can easily and quantitatively measure whether corona discharge or the like has occurred is desired.

特に無しNone

前述の背景技術では、従来のコロナ放電等測定に関し、その測定量は、クーロン単位で表示されるため、「コロナ放電等電流×時間」=クーロン量に変換されなければならない。したがって、コンデンサで積分しなければならないが、直接コンデンサーで受信することは、重要な周波数特性が消滅することになり、測定感度が低下し、電源ノイズなどの問題で制約が大きく現地での測定が難しい。本発明は、コロナ放電等から発生する高周波電流を長期連続的に計測することで、コロナ放電等の進行過程を把握し、絶縁物の劣化バスタブカーブをベースに余寿命を推定することで、電気設備・ケーブルの劣化状況とその改修時期を把握することである。In the above-described background art, regarding the conventional measurement of corona discharge or the like, since the measurement amount is displayed in units of coulombs, it has to be converted into “corona discharge current etc. × time” = coulomb amount. Therefore, it is necessary to integrate with a capacitor, but receiving with a capacitor directly results in the loss of important frequency characteristics, resulting in a decrease in measurement sensitivity and limitations such as power supply noise. difficult. The present invention measures the high-frequency current generated from corona discharge, etc. for a long period of time, grasps the progress of corona discharge, etc., and estimates the remaining life based on the deterioration bathtub curve of the insulator. It is to grasp the deterioration status of equipment / cable and the time of repair.

従来の「法」で定めた精密点検は、停電を伴うため、絶縁物のコロナ放電等は、停止状態になる。したがって、実態のあるのコロナ放電等は、計測できない。当発明は、コロナ放電等が発生している状態を作り出す課電状態で計測することに意味があり、そのために、検出コイルとして、ロゴスキーコイルおよび高周波検出用CTの採用が必要になる。Since the precise inspection specified by the conventional “law” is accompanied by a power failure, the corona discharge of the insulator is stopped. Therefore, actual corona discharge cannot be measured. The present invention is meaningful for measurement in an applied state that creates a state in which corona discharge or the like is generated. For this reason, it is necessary to employ a Rogowski coil and a high-frequency detection CT as a detection coil.

図において、電気機器およびケーブル:2内で発生したコロナ放電等発生部位:3から放射されたコロナ放電等電流:10は、矢印に示すように、電気機器実装ケース(ケーシング等):1を通り、
I.A種接地極:4−1の場合は、コロナ放電等の放電電流は、大地ないしは、空間を電磁波として、特高・高圧電源側;5に還流する。この放電電流は高周波検出用CTコイル:6−1で検出される。
II.C種、D種接地極:4−2の場合は、当該放電電流は、大地ないしは、空間を通り、B種接地極を経由して電源側に還流し、高周波検出用CTコイル:6−2で、それぞれ検出される。
III.B種接地極:4−3の場合は、上記2項(C種+D種)接地極のそれぞれの放電電流の合計が高周波検出用CTコイル6−3で検出される
検出された放電電流は、7で波形処理されて、直流の電圧信号に変換し、ロガー8:でデータを蓄積し、そのトレンド記録をPC:9でデータ処理することで、コロナ放電等のトレンドを観測することができる。
In the figure, electrical device and cable: Corona discharge etc. generated in 2: Corona discharge etc. generated from 3 Current: 10 as shown by the arrow Electrical equipment mounting case (casing etc.): 1 ,
I. In the case of Class A grounding electrode: 4-1, discharge current such as corona discharge returns to the extra high / high voltage power source side; 5 using the earth or space as electromagnetic waves. This discharge current is detected by a high frequency detection CT coil: 6-1.
II. In the case of the C type and D type grounding electrode: 4-2, the discharge current passes through the ground or space and returns to the power source side through the B type grounding electrode, and the high frequency detection CT coil: 6-2 And detected respectively.
III. In the case of the B type grounding electrode: 4-3, the detected discharge current in which the sum of the discharge currents of the above-mentioned item 2 (C type + D type) grounding electrode is detected by the high frequency detection CT coil 6-3 is: 7 is subjected to waveform processing, converted into a DC voltage signal, data is accumulated by the logger 8 :, and the trend recording such as corona discharge can be observed by data processing of the trend recording by the PC: 9.

電気機器・ケーブルの各接地線引出口直近にコロナ放電等検出用CTコイルをセットすることで、コロナ放電等が発生している電気機器・ケーブルの特定が可能となる。By setting a CT coil for detecting corona discharge or the like in the vicinity of each ground wire outlet of the electric device / cable, it is possible to identify the electric device / cable in which corona discharge or the like is generated.

コロナ放電等の放電電流の検出するための回路図Circuit diagram for detecting discharge current such as corona discharge

1 電気設備機器ケーシング
2 電気設備機器およびケーブル
3 コロナ放電等発生部位
4−1 A種接地極
4−2 C種接地極、D種接地極
4−3 B種接地極
5 特高、、高圧電源
6−1 A種接地線高周波検出用CTコイル
6−2 C種,D種接地線高周波検出用CTコイル
6−3 B種接地線高周波用検出用CTコイル
7 コロナ放電等放電電流検出/整形回路
8 ロガー
9 PC等表示装置
10 コロナ放電等の放電電流のルート
DESCRIPTION OF SYMBOLS 1 Electrical equipment equipment casing 2 Electrical equipment equipment and cable 3 Corona discharge generation part 4-1 Class A grounding electrode 4-2 Class C grounding electrode, Class D grounding electrode 4-3 Class B grounding electrode 5 Extra high, high voltage power supply 6-1 CT coil for class A grounding line high frequency detection 6-2 CT coil for class C and class D grounding line high frequency detection CT coil for type B grounding line high frequency detection 7 Discharge current detection / shaping circuit for corona discharge, etc. 8 Logger 9 Display device such as PC 10 Route of discharge current such as corona discharge

Claims (4)

電気機器およびケーブルの絶縁物に課電することで発生する部分放電、コロナ放電や沿面放電(以下コロナ放電等と表記)により発生する広帯域の微小高周波電流の長期的増加傾向を連続的に検知出来る測定回路方式を採用することによる絶縁物の劣化のバスタブ特性を電気機器およびケーブルの設置場所で、簡易に、連続計測できる絶縁物の余寿命(電気設備の余寿命に直接繋がる)を観測できる測定装置It can continuously detect the long-term trend of increasing high-frequency current in a wide band generated by partial discharge, corona discharge, and creeping discharge (hereinafter referred to as corona discharge, etc.) generated by applying electricity to electrical equipment and cable insulation. Measurement that can measure the remaining life of the insulation (which directly leads to the remaining life of the electrical equipment) that can easily and continuously measure the bathtub characteristics of the deterioration of the insulation due to the adoption of the measurement circuit method at the installation location of electrical equipment and cables apparatus コロナ放電等により発生する高周波の微小な放電電流をロゴスキーコイルまたは、高周波検出用CTで検出し、コロナ放電等に含まれる部分放電、コロナ放電、沿面放電から、それぞれ発生する周波数の異なる特定周波数帯をフィルターを通し、常時、検出するとともに、直流電圧に変換し、数値化して、長期にわたって、ロガー等に記録し、定期的にロガー等の記録をPC等画像表示装置に表示し、実測した電圧の増加傾向から、劣化バスタブカーブと照らし合わせることによる余寿命を推定・把握する測定装置A specific frequency with a different frequency generated from partial discharge, corona discharge, and creeping discharge contained in corona discharge, etc., detected by a Rogowski coil or high-frequency detection CT, which detects a minute high-frequency discharge current generated by corona discharge, etc. The band is always detected through a filter, converted to DC voltage, digitized, recorded on a logger, etc. over a long period of time, and the record of the logger, etc. is periodically displayed on an image display device such as a PC and measured. A measuring device that estimates and grasps the remaining life by comparing with the deterioration bathtub curve from the increasing trend of voltage [請求項2]で示す方法で検出したコロナ放電等から発生する特定の周波数帯を有する放電電流と基準周波数により、ビートを取り、平滑して直流電圧信号を検出し、[請求項2]と同じ方法でロガー等に記憶させ、余寿命を推定・把握する測定装置According to a discharge current having a specific frequency band generated from a corona discharge detected by the method shown in [Claim 2] and a reference frequency, a beat is taken and smoothed to detect a DC voltage signal; [Claim 2] Measuring device that can be stored in a logger, etc. using the same method to estimate and grasp the remaining life 絶縁物中に発生するコロナ放電等の大きさは、放電電荷量:Q(単位:ピコ・クーロン)で表示されることから、放電電荷量Q=Σ放電電荷量(ai)とし、素放電量(ai)に相当する高周波(fi)を持つ高周波電流:Ii(ai、fi)が発生するIi(ai、fi)を[請求項2]に示す検出方式で、高周波電流(I)=ΣIi(ai、fi)と一括に連続検出し、波形処理した後、積分回路を通し、直流電圧検出信号に変換し、放電電荷量Q=(Σai)∝高周波電流(I)∝直流電圧検出信号として連続的に計測する方式を採用することで放電電荷量Qを観測する計測方式を採用する。
コロナ放電等の放電現象解析には、コンデンサー回路が利用されるため、計測された高周波の放電電流と放電電荷量の関係は、電荷(Q)=電流(I)×時間(t)、周波数の単位は(1/時間:t),さらに、放電の応答時間と周波数は逆比例の式が成立するため、放電電荷量:Q、放電電流:I、周波数:f間の関係式から、直流電圧検出信号と放電電荷量:Qの関係式が、成立することで、電気機器およびケーブルの設置場所で、簡易に、連続的・定量的計測が可能なコロナ放電等の放電電流センサーを提供する。
計測された直流電圧検出信号は[請求項2]と同じ方法でロガー等に記憶させ、そのトレンド記録から余寿命を推定・把握する測定装置
Since the magnitude of the corona discharge generated in the insulator is indicated by the discharge charge amount: Q (unit: pico-coulomb), the discharge charge amount Q = Σ discharge charge amount (ai), and the elementary discharge amount A high frequency current having a high frequency (fi) corresponding to (ai): Ii (ai, fi) generated by Ii (ai, fi) is detected by the detection method shown in [Claim 2], and the high frequency current (I) = ΣIi ( ai, fi) are collectively detected and processed in a waveform, and then converted into a DC voltage detection signal through an integration circuit, and the discharge charge amount Q = (Σai) ∝high frequency current (I) ∝continuous as a DC voltage detection signal. A measurement method for observing the discharge charge amount Q is adopted by adopting a method for measuring automatically.
Since a capacitor circuit is used for analysis of discharge phenomena such as corona discharge, the relationship between the measured high-frequency discharge current and the amount of discharge charge is: charge (Q) = current (I) × time (t), frequency The unit is (1 / time: t), and the discharge response time and the frequency are inversely proportional. Therefore, from the relational expression between the discharge charge amount: Q, the discharge current: I, and the frequency: f, the DC voltage By establishing the relational expression of the detection signal and the amount of discharge charge: Q, a discharge current sensor such as corona discharge that can be easily and continuously measured at the installation location of the electric equipment and cable is provided.
The measured DC voltage detection signal is stored in a logger or the like in the same manner as [Claim 2], and the remaining life is estimated and grasped from the trend record.
JP2017102117A 2017-05-08 2017-05-08 Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging) Pending JP2018189620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017102117A JP2018189620A (en) 2017-05-08 2017-05-08 Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017102117A JP2018189620A (en) 2017-05-08 2017-05-08 Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging)

Publications (1)

Publication Number Publication Date
JP2018189620A true JP2018189620A (en) 2018-11-29

Family

ID=64478503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102117A Pending JP2018189620A (en) 2017-05-08 2017-05-08 Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging)

Country Status (1)

Country Link
JP (1) JP2018189620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967602A (en) * 2019-11-28 2020-04-07 南方电网科学研究院有限责任公司 Composite insulator aging degree evaluation method, device, equipment and storage medium
CN112213582A (en) * 2020-09-29 2021-01-12 北京智芯微电子科技有限公司 Detection system, detection method, detection device and storage medium for electronic module
CN117077065A (en) * 2023-10-16 2023-11-17 南京文道自动化系统有限公司 High-voltage direct-current transmission grounding electrode detection and early warning method and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967602A (en) * 2019-11-28 2020-04-07 南方电网科学研究院有限责任公司 Composite insulator aging degree evaluation method, device, equipment and storage medium
CN112213582A (en) * 2020-09-29 2021-01-12 北京智芯微电子科技有限公司 Detection system, detection method, detection device and storage medium for electronic module
CN112213582B (en) * 2020-09-29 2024-05-10 北京智芯微电子科技有限公司 Detection system, detection method, detection device and storage medium for electronic module
CN117077065A (en) * 2023-10-16 2023-11-17 南京文道自动化系统有限公司 High-voltage direct-current transmission grounding electrode detection and early warning method and system
CN117077065B (en) * 2023-10-16 2024-01-26 南京文道自动化系统有限公司 High-voltage direct-current transmission grounding electrode detection and early warning method and system

Similar Documents

Publication Publication Date Title
Lee et al. An online groundwall and phase-to-phase insulation quality assessment technique for AC-machine stator windings
JP2013013075A (en) Electrical substation fault monitoring and diagnostics
JP2006170815A (en) Partial discharge diagnostic method and system of gas insulating apparatus
US20120330871A1 (en) Using values of prpd envelope to classify single and multiple partial discharge (pd) defects in hv equipment
JP6633006B2 (en) Partial discharge monitoring device and partial discharge monitoring method
JP2020003277A (en) Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
JP2018189620A (en) Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging)
KR101550689B1 (en) A arc or corona detection system for a distributing board with the acoustic emission sensor and noise removal function
JP2015075482A (en) Partial discharge detection probe, portable partial discharge measurement device and measurement method
Grubic et al. A survey of testing and monitoring methods for stator insulation systems in induction machines
JP5719970B2 (en) Scintillation estimation method
Ushakov et al. Diagnostics of High-Voltage Cable Lines
JP7227846B2 (en) Diagnosis method and device for switchgear
Carvalho et al. Virtual instrumentation for high voltage power capacitors assessment through capacitance monitoring and acoustic partial discharge detection
JP2016080503A (en) Detection device, electric power supply system and detection method
JP6030518B2 (en) Method for measuring cathodic protection of buried pipelines
EP3095520A1 (en) Method for monitoring the signal quality of an electrostatic precipitator and electrostatic precipitator
JP2013113837A (en) Sensor for detecting corona discharge, portable measuring device, and measuring method
Dmitriev et al. Partial Discharges in Hydroelectric Generators
JP2018025523A (en) Measuring device for measuring remaining life of insulator by detecting partial discharge, corona discharge, and creeping discharge (hereinafter referred to as corona discharge)
RU2814857C1 (en) System for monitoring and diagnosing state of turbine generator
Ramirez-Niño et al. Monitoring network for online diagnosis of power generators
Fuangpian et al. Partial Discharge Severity Analysis Based on Repetition Rate, Amplitude and Gap Distance in MV Motor
KR20190056924A (en) Apparatus for analyzing moisture absorption of power generator stator winding and method thereof
Gataullin Online Monitoring of the Porcelain Insulator Units State