JP2013113837A - Sensor for detecting corona discharge, portable measuring device, and measuring method - Google Patents

Sensor for detecting corona discharge, portable measuring device, and measuring method Download PDF

Info

Publication number
JP2013113837A
JP2013113837A JP2011270646A JP2011270646A JP2013113837A JP 2013113837 A JP2013113837 A JP 2013113837A JP 2011270646 A JP2011270646 A JP 2011270646A JP 2011270646 A JP2011270646 A JP 2011270646A JP 2013113837 A JP2013113837 A JP 2013113837A
Authority
JP
Japan
Prior art keywords
corona discharge
casing
electrical
sensor
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011270646A
Other languages
Japanese (ja)
Inventor
Tohei Yamamoto
東平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO ENGINEERING KK
Original Assignee
YAMAMOTO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO ENGINEERING KK filed Critical YAMAMOTO ENGINEERING KK
Priority to JP2011270646A priority Critical patent/JP2013113837A/en
Publication of JP2013113837A publication Critical patent/JP2013113837A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting a high-frequency current generated from corona discharge with high sensitivity, irrelevant to the material of a casing.SOLUTION: In the case that a casing 1 for an electrical or electronic apparatus has insulation properties, probe terminals 9 and 10 of a corona discharge detector 12 are closely contacted with a protective insulation plate 16 for electrical shock prevention so as to detect a corona discharge current flowing through a capacitance between the casing 1 and the protective insulation plate 16 for electrical shock prevention. In the case that a casing 1 for an electrical or electronic apparatus is formed of metal, the probe terminals 9 and 10 of the corona discharge detector 12 are closely contacted with an external wall of the casing.

Description

本発明は、コロナ放電の微弱な電流を検知し電気機器の絶縁劣化を早期に発見し電気/電子機器の修理や交換時期を予測させ突然の故障や停電を未然に防ぐため役立つコロナ放電検知測定器を提供する。The present invention detects a weak current of corona discharge, detects insulation deterioration of electrical equipment at an early stage, predicts repair / replacement time of electrical / electronic equipment, and prevents coronary discharge detection and power failure. Provide a bowl.

電気機器の中には経年劣化が進み、製品寿命を過ぎていても交換されることなく稼動しているものも有る。
その為、数多くの電気機器が突然絶縁破壊を起こし故障し、場合によっては、波及事故に発展し、広域停電に至り、復旧に長時間を要する事もある。
最近、電力供給がひっ迫している中でこのような停電や、発送電のトラブルは極めて社会的影響が大きいため電気設備技術者の日常点検は重要度を増している。
Some electrical devices have deteriorated over time, and some have been operated without being replaced even after the product lifetime has passed.
As a result, many electrical devices suddenly break down and break down, and in some cases, they develop into spillovers, leading to wide-area power outages, which can take a long time to recover.
In recent years, power supply is tight, and such power outages and problems with dispatched power have a great social impact, so daily inspections of electrical equipment engineers are becoming increasingly important.

日常点検や定期点検する場合は、現状ある電気機器測定器で測定し判断している。
しかし、コロナ放電劣化を簡単に、しかも電気を通電中(機器稼働中)に測定することが出来ないのが現状である。
For daily and periodic inspections, measurements are made using existing electrical equipment measuring instruments.
However, the current situation is that it is not possible to measure the deterioration of corona discharge easily and while electricity is being supplied (during operation of the equipment).

稼働中の電気機器のコロナ放電検知方法は数種類有るが、いづれも携帯型検知機ではない。一般的には重要設備機器の常時監視用として検査機器も工場などに設置されているものがほとんどである。従って日常点検時に携帯出来き、活線状態で放電検知が出来ることが望まれている。There are several methods for detecting corona discharge in electrical equipment in operation, but none are portable detectors. In general, most inspection equipment is installed in factories or the like for continuous monitoring of important equipment. Therefore, it is desired that it can be carried at the time of daily inspection and can detect discharge in a live state.

一部に携帯型コロナ放電検知機が有るが、ケーシング内に納められた電気機器の放電電圧の変化をケーシングにセンサーを接触検知するやり方である。
本来は、設備検査技術者が行っている騒音測定などで不特定多数の機器の中から異音発生箇所を探し当てるようにコロナ放電発生箇所を探し出せる測定器が望まれている。 (以下、電気・電子機器収納箱をケーシングと称する)
There is a portable corona discharge detector in part, but it is a method of detecting a change in the discharge voltage of an electric device housed in the casing by contacting the sensor with the casing.
Originally, there is a demand for a measuring device that can find a corona discharge occurrence location so that an abnormal noise occurrence location can be found from an unspecified number of devices in noise measurement performed by equipment inspection engineers. (Hereinafter, the electrical / electronic device storage box is referred to as a casing)

電気設備には欠くことの出来ない電源盤や分電盤に組み込まれているブレーカーや避雷器等の点検は、盤の扉を開けて機器の異常の有無を調査しなければならない。
この時、コロナ放電が発生していないかを盤類の外部から、近づけるか接触することで判定できるセンサーが望まれている。
ちなみにブレーカーや避雷器の外装は樹脂製であるからここから放電する現象を検知出来るセンサーを持った測定器が望まれている。
Inspecting circuit breakers and lightning arresters installed in power boards and distribution boards, which are indispensable for electrical equipment, must open the doors of the boards and investigate whether there are any malfunctions.
At this time, there is a demand for a sensor that can determine whether corona discharge has occurred from the outside of the panel by approaching or contacting it.
By the way, since the exterior of the breaker and lightning arrester is made of resin, a measuring instrument with a sensor that can detect the phenomenon of discharge from here is desired.

電源盤の検査で、避雷器が正常かどうかの判定はアース線に漏れ電流が発生して無いかを測定する。しかし、近年避雷器も酸化亜鉛式からギャップ式も混在する状況になっているので、漏電検知だけでなく、コロナ放電しているか否かも故障判定に加えることが望ましい。In the inspection of the power supply panel, whether or not the lightning arrester is normal is measured by checking whether there is any leakage current in the ground wire. However, since lightning arresters and zinc oxide type to gap type are also mixed in recent years, it is desirable to add not only leakage detection but also whether or not corona discharge has occurred to failure determination.

トランスの劣化を調査する為には、電気を止めてトランスの中の油を抜き取り成分分析し劣化具合判定している。電気を止めずにもっと簡単に劣化診断出来る測定器が望まれている。OFケーブルでも同じ要望がある。In order to investigate the deterioration of the transformer, electricity is turned off, the oil in the transformer is extracted, the components are analyzed, and the degree of deterioration is judged. There is a need for a measuring instrument that can more easily diagnose deterioration without turning off electricity. The same demand exists for OF cables.

電力ケーブルは、ピットなどにおいて、多数敷設されており、その中から電力ケーブルのどこから放電現象を起こしているか特定するのは非常に難しい。
その難しい初期の放電現象を検知出来る測定器が望まれている。
A large number of power cables are laid in a pit or the like, and it is very difficult to specify from where the discharge phenomenon occurs in the power cable.
A measuring instrument that can detect the difficult initial discharge phenomenon is desired.

前述の背景技術の鑑みて、従来のコロナ放電測定においてはコロナ放電電流をコンデンサで積分することによるその電荷量を測定する方式のため、重要な周波数特性が消滅することで測定感度が低下し、電源ノイズなどの問題で制約が大きく現地での測定が難しい。本発明は、コロナ放電から発生する高周波電流をケーシングの材質に無関係に高感度で検出する測定方法を提供するIn view of the above-mentioned background art, in the conventional corona discharge measurement, because the charge amount is measured by integrating the corona discharge current with a capacitor, the measurement sensitivity is lowered by the disappearance of an important frequency characteristic, There are many restrictions such as power supply noise, making it difficult to measure locally. The present invention provides a measurement method for detecting high-frequency current generated from corona discharge with high sensitivity regardless of the material of the casing.

本発明は、従来以上の高感度なセンサーなので、初期のコロナ放電劣化がある電気機器を多数の機器の中から特定出来る測定器である。
これによりコロナ放電で絶縁劣化が進展し、突然の停電などを未然に防ぐことが出来ることとなる。
Since the present invention is a sensor having a higher sensitivity than before, it is a measuring instrument that can identify an electrical device having an initial corona discharge deterioration from a number of devices.
As a result, the deterioration of the insulation progresses due to the corona discharge, and a sudden power failure can be prevented in advance.

ケーシングが絶縁性材質ないしは、ケーシングがない場合
図1において、コロナ放電電流:6は、矢印に示すようにコロナ放電点:3から放出された10〜40MHzの高周波電流は、コロナ放電点:3とケーシング:1の内面で構成されるコンデンサー:4、ケーシング自体のコンデンサー:7、ケーシング:1の外壁と感電防止用保護絶縁板(アダプターを兼ねる。以下アダプターと称する):16間に構成されるコンデンサ:14、アダプターのインピーダンス:Zfを経由してコロナ放電検出器のプローブ:9で受信され、当該検出器を通り、プローブ:10、アダプターのインピーダンスZf、コンデンサ:15→8→5を経由してコロナ放電発生点:3のコロナ放電エネルギーの供給点に戻る。
ケーシングが金属製の場合
図2の場合は、ケーシングが鋼材など金属材料で構成されているため、コロナ放電電流は、ケーシングの外面からは、大気中に電気力線が放出されないため、コロナ放電検出器のプローブ9,10は、ケーシングに直接接触させるか必要があり、コロナ放電電流:6のコロナ放電検出器への電流ルートは、コロナ放電点:3→4→7(ケーシングの塗装を含むインピーダンス:z)→プローブ:9で受信→プローブ:10→8→5→コロナ放電発生点:3のエネルギー供給点に戻る
この場合でも、アダプターを使用して検出は可能であり、アダプターは、ケーシングの外壁に密着させることで達成できる。
構成としては、図1のコンデンサ:14、15が無い状態と同じになる。
In the case where the casing is not made of an insulating material or has no casing, in FIG. 1, the corona discharge current: 6 indicates that the high frequency current of 10 to 40 MHz emitted from the corona discharge point: 3 is the corona discharge point: 3 Casing: Capacitor composed of the inner surface of the casing: 4, Capacitor of the casing itself: 7, Casing: The outer wall of the casing 1 and a protective insulating plate for preventing electric shock (also serving as an adapter; hereinafter referred to as adapter): Capacitor configured between 16 : 14, adapter impedance: via Zf, probe of corona discharge detector: 9 is received and passes through the detector, probe: 10, adapter impedance Zf, capacitor: 15 → 8 → 5 Corona discharge occurrence point: Return to the supply point of 3 corona discharge energy.
When the casing is made of metal In the case of FIG. 2, since the casing is made of a metal material such as steel, the corona discharge current is detected from the outer surface of the casing, since electric lines of force are not released into the atmosphere. The probes 9 and 10 of the detector must be in direct contact with the casing, and the current route to the corona discharge detector of corona discharge current: 6 is the corona discharge point: 3 → 4 → 7 (impedance including casing coating). : Z) → Probe: Received at 9 → Probe: 10 → 8 → 5 → Corona discharge generation point: Return to 3 energy supply point Even in this case, detection is possible using an adapter. This can be achieved by closely contacting the outer wall.
The configuration is the same as the state without the capacitors 14 and 15 in FIG.

早期に放電現象を検知する必要な電気設備としては、受変電設備をはじめ、被服された
電線/ケーブル、発電機、モータ、直撃雷保護用の避雷器等また、電子機器がある。

Figure 2013113837
コロナ放電を検知出来る。
感電防止用保護絶縁版:16は、検出のためのアダプターとしての機能も有し、センサーとセットとして被検出体に近づけることによる電界分布を変えることなく測定できる機能を有している。
コロナ放電検出対象電気・電子機器装置の外形構造に則したアダプターを構成することで検出の確度を保障できる。Electrical equipment that needs to detect the discharge phenomenon at an early stage includes receiving / transforming equipment, covered wires / cables, generators, motors, lightning arresters for direct lightning protection, and other electronic devices.
Figure 2013113837
Corona discharge can be detected.
The protective insulating plate 16 for preventing electric shock also has a function as an adapter for detection, and has a function capable of measuring without changing the electric field distribution by being brought close to the detection object as a set with the sensor.
The accuracy of detection can be assured by configuring an adapter that conforms to the external structure of the electrical / electronic device device subject to corona discharge detection.

電気・電子機器ケーシングが絶縁物の場合の図 電気・電子機器のケーシングが塩化ビニルなどの絶縁物で構成しているの場合のコロナ放電電流の検出方法を示す。感電防止用保護用絶縁版は、検出ためのアダプターを兼ねている。Illustration when the electrical / electronic equipment casing is an insulator The method for detecting the corona discharge current when the electrical / electronic equipment casing is made of an insulator such as vinyl chloride is shown. The protective insulating plate for preventing electric shock also serves as an adapter for detection. 電気・電子機器のケーシングが金属材料の場合の図 図2には、ケーシングが鋼材など金属材料で構成されている場合のコロナ放電電流の検出方法を示す。FIG. 2 shows a method for detecting the corona discharge current when the casing is made of a metal material such as steel.

1電気・電子機器のケーシング
2電気・電子機器本体
3コロナ放電発生源
4コロナ放電発生源とケーシング間の静電容量(外部浮遊容量)
5コロナ放電発生源とケーシング間の静電容量(外部浮遊容量)
6コロナ放電電流:I
7ケーシングのインピーダンス
図1:絶縁性ケーシングの場合は、コンデンサ
図2:金属製ケーシングの場合は、インピーダンス
8ケーシングのインピーダンス
図1:絶縁性ケーシングの場合は、コンデンサ
図2:金属製ケーシングの場合は、インピーダンス
9コロナ放電電流検出器のプローブ端子:A
10コロナ放電電流検出器のプローブ端子:B
11コロナ放電電流検出コイル
12コロナ放電検出器
13コロナ放電電流受信回路及び表示回路
14電気・電子機器用ケーシングと感電防止用保護絶縁板間の静電容量
15電気・電子機器用ケーシングと感電防止用保護絶縁板間の静電容量
16感電防止用保護絶縁板:インピーダンス
Zfとし、コロナ放電電流の検出用アダプターを兼ねる。
1 Electrical / electronic equipment casing 2 Electrical / electronic equipment body 3 Corona discharge source 4 Capacitance between the corona discharge source and the casing (external stray capacitance)
5Capacitance between corona discharge source and casing (external stray capacitance)
6 corona discharge current: I
7 Impedance of casing Fig. 1: Capacitor in the case of insulating casing Fig. 2: Impedance of casing 8 in the case of metal casing Fig. 1: Capacitor in the case of insulating casing Fig. 2: In the case of metallic casing , Impedance 9 Corona discharge current detector probe terminal: A
Probe terminal of 10 corona discharge current detector: B
11 Corona discharge current detection coil 12 Corona discharge detector 13 Corona discharge current receiving circuit and display circuit 14 Capacitance between casing for electrical / electronic device and protective insulating plate for preventing electric shock 15 Casing for electrical / electronic device and for preventing electric shock Capacitance between protective insulating plates 16 Protective insulating plate for preventing electric shock: Impedance Zf, which also serves as an adapter for detecting corona discharge current.

Claims (2)

電気機器のコロナ放電や部分放電(以下コロナ放電と称する表記)による微小高周波電流の変化を検知出来る測定回路方式と検査供試品の内部で発生するコロナ放電による微小高周波電流を外部浮遊容量を利用することによる高感度センサー回路。Measuring circuit method that can detect changes in minute high-frequency current due to corona discharge or partial discharge (hereinafter referred to as corona discharge) of electrical equipment and external high-frequency capacitance using minute high-frequency current due to corona discharge generated inside the test specimen High sensitivity sensor circuit. 上記センサーで大気中の微小な放電電流の変化を検知し、不特定多数な電気機器の中から、放電の源を探知出来る携帯型測定器。
センサーから入力されるアナログ信号をデジタル信号に変換するA/D変換器を有し、表示部に放電電流の強弱を多段階に切り替えて表示出来る携帯型測定器。
A portable measuring instrument that can detect changes in the discharge current in the atmosphere with the above sensor and detect the source of discharge from an unspecified number of electrical devices.
A portable measuring instrument that has an A / D converter that converts an analog signal input from a sensor into a digital signal, and that can display the intensity of the discharge current in multiple stages on the display.
JP2011270646A 2011-11-24 2011-11-24 Sensor for detecting corona discharge, portable measuring device, and measuring method Pending JP2013113837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270646A JP2013113837A (en) 2011-11-24 2011-11-24 Sensor for detecting corona discharge, portable measuring device, and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270646A JP2013113837A (en) 2011-11-24 2011-11-24 Sensor for detecting corona discharge, portable measuring device, and measuring method

Publications (1)

Publication Number Publication Date
JP2013113837A true JP2013113837A (en) 2013-06-10

Family

ID=48709482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270646A Pending JP2013113837A (en) 2011-11-24 2011-11-24 Sensor for detecting corona discharge, portable measuring device, and measuring method

Country Status (1)

Country Link
JP (1) JP2013113837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901329A (en) * 2014-04-11 2014-07-02 国家电网公司 Method for determining corona discharge ultraviolet detection sensitivity of high-voltage electrical equipment
CN107991526A (en) * 2017-11-17 2018-05-04 广西电网有限责任公司防城港供电局 A kind of transmission line lightning stroke monitors system
CN109884570A (en) * 2017-12-07 2019-06-14 广东电网有限责任公司东莞供电局 A kind of electronic current lift

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901329A (en) * 2014-04-11 2014-07-02 国家电网公司 Method for determining corona discharge ultraviolet detection sensitivity of high-voltage electrical equipment
CN107991526A (en) * 2017-11-17 2018-05-04 广西电网有限责任公司防城港供电局 A kind of transmission line lightning stroke monitors system
CN107991526B (en) * 2017-11-17 2020-05-05 广西电网有限责任公司防城港供电局 Transmission line monitoring system that is struck by lightning
CN109884570A (en) * 2017-12-07 2019-06-14 广东电网有限责任公司东莞供电局 A kind of electronic current lift

Similar Documents

Publication Publication Date Title
Cleary et al. UHF and current pulse measurements of partial discharge activity in mineral oil
KR101290294B1 (en) Partial discharge diagnostic system of power apparatus using contactless phase measurement sensor
JP2015075482A (en) Partial discharge detection probe, portable partial discharge measurement device and measurement method
CN108152694A (en) A kind of GIS disc insulators detection method for local discharge
US10520539B2 (en) System for detecting and indicating partial discharges and voltage in high-voltage electric power distribution systems
Davies et al. Testing distribution switchgear for partial discharge in the laboratory and the field
JP2013113837A (en) Sensor for detecting corona discharge, portable measuring device, and measuring method
CN110389287A (en) A kind of method for early warning and system of the electric discharge of high-tension switch cabinet interior insulation
CN118033477A (en) Insulation electric leakage detection system and detection method
JP2018189620A (en) Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging)
Ju et al. An analysis of partial discharge characteristics due to transformer bushing failure
CN114895158A (en) Gas insulated power equipment and metal particle discharge fault detection structure and method
Rao et al. Ultra-high frequency (UHF) based partial discharge measurement in gas insulated switchgear (GIS)
JP5543877B2 (en) Partial discharge discrimination method and partial discharge measuring instrument
Zajadatz et al. Partial discharge diagnostics on medium-voltage switchgears measurement methods and benefits
Cheng et al. On-site partial discharge measurement of uderground cable system
JP2018025523A (en) Measuring device for measuring remaining life of insulator by detecting partial discharge, corona discharge, and creeping discharge (hereinafter referred to as corona discharge)
Morozova et al. Concerning partial discharge detection in cable lines using high-frequency sensors
Xu et al. On-line and on-site PD monitoring and diagnosis of power transformer
JPH04212076A (en) Method and device for abnormal diagnostic method of electrical equipment
Hussain et al. Hybrid Sensing of Partial Discharge Faults in Air Insulated Switchgear
Prabakaran et al. PD test in gas insulated substation using UHF method
Tatizawa et al. Proposal of a partial discharge detection method for laboratory and field conditions
Su Smart condition monitoring
JP2009109228A (en) Method and apparatus for diagnosing partial discharge of gas insulation switching device