WO2003058173A1 - System and method for using magneto-resistive sensors as dual purpose sensors - Google Patents

System and method for using magneto-resistive sensors as dual purpose sensors Download PDF

Info

Publication number
WO2003058173A1
WO2003058173A1 PCT/US2002/038698 US0238698W WO03058173A1 WO 2003058173 A1 WO2003058173 A1 WO 2003058173A1 US 0238698 W US0238698 W US 0238698W WO 03058173 A1 WO03058173 A1 WO 03058173A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing device
magnetoresistive element
sensing
dual purpose
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2002/038698
Other languages
English (en)
French (fr)
Inventor
Hong Wan
Lakshman S. Withanawasam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to EP02794140.0A priority Critical patent/EP1459038B1/en
Priority to AU2002359592A priority patent/AU2002359592A1/en
Priority to CA002471864A priority patent/CA2471864A1/en
Priority to JP2003558436A priority patent/JP4458849B2/ja
Priority to KR1020047010217A priority patent/KR100983128B1/ko
Publication of WO2003058173A1 publication Critical patent/WO2003058173A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/10AC or DC measuring bridges
    • G01R17/105AC or DC measuring bridges for measuring impedance or resistance

Definitions

  • the present invention relates in general to magnetic field sensors. More
  • the present invention relates to using magneto-resistive sensors as multi ⁇
  • Magnetoresistive sensors are examples of sensing small magnetic fields and their perturbations.
  • nickel-iron (permalloy) thin film deposited on a silicon wafer or other types of
  • the resistance of the strip depends on the angle between the magnetization and the direction of the applied current, and is maximized when the
  • the field influences the magnetization, rotating it and thereby
  • the maximum change in resistance due to rotation of the magnetic field is two to three percent of the nominal resistance.
  • the easy axis (a preferred direction of magnetization) is set
  • magnetic field is typically applied to restore, or set, the sensor's characteristics.
  • large external magnets can be placed to reset the sensor's settings.
  • set-reset straps and offset straps may be used to restore the sensor's characteristics.
  • set-reset straps and offset straps may be used to restore the sensor's characteristics.
  • current straps in a magnetic field sensing device is discussed
  • giant magnetoresistive (“GMR”) sensors are often used in many applications that require measurements of a relatively small
  • GMR sensors are composed of a
  • substrate or any other substrate, can be configured as resistors, resistor pairs, half
  • GMR sensors often do
  • LCD LCD
  • consumer and recreation products such as a compass or
  • GPS global positioning system
  • temperature sensors play a key role in maintaining the reliability of the
  • RTDs resistive temperature detectors
  • thermocouples thermocouples, and sensor integrated circuits (“ICs”). Resistive temperature sensors
  • a sensing element whose resistance varies with temperature.
  • a sensing element whose resistance varies with temperature.
  • a sensing element whose resistance varies with temperature.
  • platinum resistive temperature detector consists of a platinum wire coil that is wound
  • thermocouple around a film of platinum deposited on a substrate.
  • magnetoresistive element has a first sensing terminal and a second sensing terminal.
  • the first magnetoresistive element is connected to a first sensing terminal associated
  • the first sensing terminal associated with the second magnetoresistive element associated with the second magnetoresistive element.
  • the first sensing element is further connected to a power source.
  • the integrated dual purpose sensing device is adaptable to
  • Figure 1 is an electrical schematic diagram illustrating a sensor in a Wheatstone
  • Figure 2 is an integrated circuit layout for the sensor illustrated in Figure 1 ;
  • Figure 3 is an electrical schematic diagram illustrating a multi-purpose sensor
  • Figure 4 is an electrical schematic diagram illustrating a multi-purpose sensor
  • Figure 5 is an electrical schematic diagram illustrating a multi-purpose sensor
  • Figure 6 is an electrical schematic diagram illustrating a multi-purpose sensor
  • Figure 7 is a block diagram illustrating an exemplary cross-section for a layer
  • Figure 8 is an electrical schematic diagram illustrating a current strap
  • Figure 9 is an electrical schematic diagram illustrating a current strap
  • Figure 1 is an electrical schematic diagram illustrating a sensor 100 that may be
  • the sensor 100 is used in accordance with one embodiment of the present invention.
  • the sensor 100 is a sensor used in accordance with one embodiment of the present invention.
  • sensing terminals 110, 112, 116, and 118 With a bridge power
  • output of the bridge may be measured between te ⁇ ninals 112 and 118.
  • the senor consists of four magnetoresistive elements having the same resistance R, and the bridge supply voltage causes a current to flow through the
  • resistance in the magnetoresistive elements 104 and 108 may increase to R+ ⁇ R.
  • magnetoresistive elements 102 and 106 rotates away from the current and results in a
  • Figure 2 illustrates a layout for an integrated circuit 200 that may be employed as
  • the integrated circuit 200 includes a substrate 202, a sensing structure 204, and sensing terminals 206,
  • the sensing structure 204 may be configured as a resistance bridge such as the Wheatstone bridge 100 illustrated in Figure 1.
  • Figure 2 also
  • set-reset strap 216 illustrates a set-reset strap 216 and an offset strap 218. Also illustrated are set-reset
  • the magnetic flux generated around the set-reset strap 216 may reset the
  • sensing structure 204 into a single magnetic domain.
  • the sensing structure 204 may bias the sensing structure 204 to compensate for background magnetic fields.
  • the current in the offset strap 218 may generate a magnetic flux that is
  • the offset strap 218 may be also configured to
  • a sensing device such as a sensing device having a
  • Figure 3 is an electrical schematic diagram illustrating a multi-purpose sensor
  • magnetoresistive elements 304 and 308 in the presence of an applied magnetic field
  • Each magnetoresistive element 306 may decrease to R - ⁇ R.
  • Each magnetoresistive element includes a first sensing
  • magnetoresistive elements could also be used in exemplary embodiments, and the
  • exemplary embodiments are not limited to magnetoresistive elements. Further,
  • the 300 includes four sensing terminals 310, 312, 314, and 316.
  • the sensing terminals 310, 312, 314, and 316 are connected to The sensing terminals 310, 312, 314, and 316.
  • 312, 314 and 316 are formed by connecting a second sensing terminal associated with
  • the element 306 to a first sensing terminal associated with the element 308, and, further,
  • the sensing terminal 310 is connected to a power
  • the power source 318 includes a current source that supplies a
  • the senor 300 provides two output
  • the multi-purpose sensor readings include a magnetic sensor reading and a
  • the Noutl provides a magnetic
  • ⁇ R is a magnetoresistance
  • S is a bridge sensitivity related to magnetoresistive
  • the Noutl value is used to determine
  • a temperature sensor reading According to an exemplary embodiment,
  • magnetoresistive or giant magnetoresistive materials that are employed for dual-purpose
  • a temperature sensor reading may be determined by measuring the value of the resistance.
  • the Nout2 may be computed using the following equation:
  • Eq. 2 for Noutl, Eq. 5 for Nout2 may be employed to determine a temperature sensor
  • a temperature sensor reading may be calculated as
  • the sensing functionality of the bridge may be controlled by
  • two output channels may be
  • microprocessor may employ a look-up table or a polynomial that may be used to
  • two outputs from the sensor can be input to a
  • A/D analog to digital
  • the sensing element may be implemented using hardware, software, firmware elements,
  • Figure 4 is an electrical schematic diagram illustrating a multi-purpose sensor
  • a power supply of the bridge includes a voltage source 324 connected to
  • power sources may be external or internal.
  • the voltage source may be any type of power sources.
  • the resistive element may be incorporated into the sensor, or may be external to the sensor.
  • the resistive element may be incorporated into the sensor, or may be external to the sensor.
  • resistor having a very low temperature coefficient, or being insensitive to
  • resistive elements described herein may be internal resistive elements
  • the senor 350 provides two
  • S is a bridge sensitivity related to the magnetoresistive ratio
  • H is a bridge sensitivity related to the magnetoresistive ratio
  • V is the voltage of the constant voltage source 324
  • the first output voltage may be
  • Nout3 (N-Nout4)x SxH Eq. 8
  • Nout4 may be computed using the following equation:
  • N - Nout4 Nout4xR/r
  • N-Nout4 Nout4xRox (l+CxT)/r Eq. 10
  • Eq. 10 may be employed to determine a temperature sensor's reading. Referring
  • the logical sensing element may be employed to determine the temperature
  • sensors including only two magnetoresistive elements, or a half Wheatstone bridge
  • Figure 5 is an electrical schematic diagram illustrating a dual-purpose sensor 400
  • the output voltage Nout5 may be computed using the
  • the sensing terminals 310 and 314. the sensing terminals 310 and 314.
  • Nout6 value is employed to determine a temperature sensor reading.
  • Nout6 may be computed using the following
  • a magnetic sensor reading may be computed using Eq. 13, and a magnetic sensor reading may be
  • Figure 6 is an electrical schematic diagram 450 of a half Wheatstone bridge
  • the half Wheatstone bridge configuration includes two magnetoresistive
  • the source 324 is connected to the sensing terminal 310 via the resistive element 322 including for example, a resistor having a very low temperature coefficient or being
  • the first voltage measurement (Nout7) is employed to determine a
  • Vout7 may be computed using the following equation:
  • the Nout8 measurement is taken across the resistive element 322 and may be computed using the following equation:
  • a temperature (T) reading may be determined using Eq. 15, and a magnetic field sensor
  • the logical element may be implemented using a
  • processor and/or hardware, software, firmware elements, or a combination thereof.
  • a sensor may include metal
  • metal straps metal straps
  • current straps known as set-reset and offset straps
  • offset and set/reset straps are deposited as two metal layers in
  • Figure 7 is a block diagram illustrating an exemplary cross-section 700 of the
  • the senor includes a
  • permalloy layer 712 composed of nickel and iron, for instance. Further, the sensor
  • insulator layer 710 includes an insulator layer 710, and electrical conductors in the form of pads 718, 720
  • the sensor 700 further includes an
  • offset strap 714 placed between two dielectric layers 704 and 716. The sensor furthermore
  • a Barber Pole/interconnect bar 704 arranged to provide barber pole biasing.
  • the barber pole biasing may cause the current to flow at 45-degree angle in
  • the sensor may further include a set/reset strap 708, and a passivation nitride
  • metal straps deposited on an MR/GMR sensor such as the set/reset or
  • FIG. 8 is an electrical schematic diagram of a metal (or current) strap configuration 800 that may be
  • strap 806 such as a set/reset strap or an offset strap, is connected to two sensing
  • the output voltage Vout9 may be computed according to the following equation:
  • Eq. 16 may be used to determine the temperature sensor's reading, and the
  • magnetic sensor reading may be determined using the methods described above.
  • magnetoresistive elements included in
  • multi-purpose sensors described in reference to the preceding figures may include
  • anisotropic magnetoresistive elements or giant magnetoresistive elements for instance.
  • Figure 9 is an electrical schematic diagram of a current strap configuration 900
  • exemplary embodiment employing a constant voltage source.
  • a current strap 910 such as a set/reset strap or an
  • offset strap is connected to two sensing terminals 908 and 912, with the sensing
  • the sensing terminal 908 is connected to a constant voltage source 902 via a resistive element 906 and a sensing terminal 904.
  • the resistive element 906 may include a resistor having a very low
  • measurements "NoutlO” and “Noutll” may be taken to determine a temperature sensor
  • NoutlO and Noutl l may be computed using the following equations:
  • Eq. 18 may be used to determine the temperature sensor's reading, and the magnetic
  • sensor reading may be dete ⁇ nined using the methods described above.
  • Magnetic sensors enable and enhance a wide variety of applications, including
  • sensors such as tilt, accelerometer, gyro, angular rate, or pressure sensors. Most likely
  • the range of the operating temperature is narrow, and the temperature change, rather than the absolute temperature, is often sufficient to implement the
  • the constant current implementation of the dual-purpose sensor leads to a simplified form. For example, differentiating both
  • configurations could be single-chip configuration or multi-chip configurations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Magnetic Variables (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Hall/Mr Elements (AREA)
PCT/US2002/038698 2001-12-26 2002-12-03 System and method for using magneto-resistive sensors as dual purpose sensors Ceased WO2003058173A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02794140.0A EP1459038B1 (en) 2001-12-26 2002-12-03 System and method for using magneto-resistive sensors as dual purpose sensors
AU2002359592A AU2002359592A1 (en) 2001-12-26 2002-12-03 System and method for using magneto-resistive sensors as dual purpose sensors
CA002471864A CA2471864A1 (en) 2001-12-26 2002-12-03 System and method for using magneto-resistive sensors as dual purpose sensors
JP2003558436A JP4458849B2 (ja) 2001-12-26 2002-12-03 多重目的センサとして磁気抵抗センサを使用するシステム及び装置
KR1020047010217A KR100983128B1 (ko) 2001-12-26 2002-12-03 이중목적센서로서 자기저항센서를 이용한 시스템 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/035,957 2001-12-26
US10/035,957 US6667682B2 (en) 2001-12-26 2001-12-26 System and method for using magneto-resistive sensors as dual purpose sensors

Publications (1)

Publication Number Publication Date
WO2003058173A1 true WO2003058173A1 (en) 2003-07-17

Family

ID=21885767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/038698 Ceased WO2003058173A1 (en) 2001-12-26 2002-12-03 System and method for using magneto-resistive sensors as dual purpose sensors

Country Status (7)

Country Link
US (1) US6667682B2 (enExample)
EP (1) EP1459038B1 (enExample)
JP (1) JP4458849B2 (enExample)
KR (1) KR100983128B1 (enExample)
AU (1) AU2002359592A1 (enExample)
CA (1) CA2471864A1 (enExample)
WO (1) WO2003058173A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114727A (ja) * 2003-10-09 2005-04-28 Hewlett-Packard Development Co Lp 複合化された2重目的磁気抵抗センサならびに電流および温度の測定方法
DE102004009267B3 (de) * 2004-02-26 2005-09-22 Siemens Ag Ausleseeinrichtung wenigstens eines magnetoresistiven Elementes
CN106225959A (zh) * 2016-07-04 2016-12-14 电子科技大学 一种柔性薄膜热流传感器及其制备方法
RU2617454C1 (ru) * 2016-02-17 2017-04-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ изготовления магниторезистивного датчика

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
US6999339B2 (en) * 2003-04-22 2006-02-14 Micron Technology, Inc. Integrated circuit including sensor to sense environmental data, method of compensating an MRAM integrated circuit for the effects of an external magnetic field, MRAM integrated circuit, and method of testing
US7476816B2 (en) * 2003-08-26 2009-01-13 Allegro Microsystems, Inc. Current sensor
US20060219436A1 (en) * 2003-08-26 2006-10-05 Taylor William P Current sensor
US7709754B2 (en) * 2003-08-26 2010-05-04 Allegro Microsystems, Inc. Current sensor
DE102004062474A1 (de) * 2004-03-23 2005-10-13 Siemens Ag Vorrichtung zur potenzialfreien Strommessung
JP2006047004A (ja) * 2004-08-02 2006-02-16 Denso Corp 温度センサおよび磁気抵抗素子を用いたセンサ
JP4482667B2 (ja) * 2004-09-13 2010-06-16 独立行政法人産業技術総合研究所 冷却効果を持つ配線構造
JP4360998B2 (ja) * 2004-10-01 2009-11-11 Tdk株式会社 電流センサ
US7777607B2 (en) * 2004-10-12 2010-08-17 Allegro Microsystems, Inc. Resistor having a predetermined temperature coefficient
JP4105142B2 (ja) * 2004-10-28 2008-06-25 Tdk株式会社 電流センサ
US7409878B2 (en) * 2005-04-08 2008-08-12 Honeywell International Inc. Torqueshaft magnetic field measurement systems for gas turbine engines
US7511990B2 (en) * 2005-09-30 2009-03-31 Everspin Technologies, Inc. Magnetic tunnel junction temperature sensors
US7510883B2 (en) * 2005-09-30 2009-03-31 Everspin Technologies, Inc. Magnetic tunnel junction temperature sensors and methods
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
JP2009531706A (ja) * 2006-03-30 2009-09-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 温度センサとしての磁気抵抗センサ
US20070279053A1 (en) * 2006-05-12 2007-12-06 Taylor William P Integrated current sensor
JP2008008883A (ja) * 2006-06-02 2008-01-17 Denso Corp 磁気センサ及びセンサ
US7795862B2 (en) 2007-10-22 2010-09-14 Allegro Microsystems, Inc. Matching of GMR sensors in a bridge
US8269491B2 (en) * 2008-02-27 2012-09-18 Allegro Microsystems, Inc. DC offset removal for a magnetic field sensor
DE102008013427A1 (de) * 2008-03-10 2009-11-05 Siemens Aktiengesellschaft Anordnung zum Messen einer Stromstärke, Schaltanordnung sowie Verfahren zum Messen einer Stromstärke
US7816905B2 (en) 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
US8093670B2 (en) 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US7973527B2 (en) 2008-07-31 2011-07-05 Allegro Microsystems, Inc. Electronic circuit configured to reset a magnetoresistance element
US8063634B2 (en) * 2008-07-31 2011-11-22 Allegro Microsystems, Inc. Electronic circuit and method for resetting a magnetoresistance element
DE102009028958A1 (de) 2009-08-28 2011-03-03 Robert Bosch Gmbh Magnetfeld- und Temperatursensor mit einer Wheatstoneschen Widerstands-Messbrücke und Verfahren zur Messung von Magnetfeld und Temperatur
US8952686B2 (en) * 2011-10-25 2015-02-10 Honeywell International Inc. High current range magnetoresistive-based current sensor
CN102540113B (zh) * 2011-11-11 2014-07-02 江苏多维科技有限公司 磁场传感器
CN102419393B (zh) * 2011-12-30 2013-09-04 江苏多维科技有限公司 一种电流传感器
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9588194B2 (en) * 2012-02-01 2017-03-07 MCube Inc. Method and device for magnetoresistive sensor
US9417297B2 (en) * 2012-02-16 2016-08-16 Honeywell International Inc. Tunneling magneto-resistive device with set/reset and offset straps
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9347837B2 (en) 2012-04-17 2016-05-24 Honeywell International Inc. Multi-phase brushless DC motor control integrated circuit having magnetic sensor and band-gap temperature sensor formed thereon
US10345343B2 (en) 2013-03-15 2019-07-09 Allegro Microsystems, Llc Current sensor isolation
US9190606B2 (en) 2013-03-15 2015-11-17 Allegro Micosystems, LLC Packaging for an electronic device
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9013838B1 (en) 2013-10-01 2015-04-21 Allegro Microsystems, Llc Anisotropic magnetoresistive (AMR) sensors and techniques for fabricating same
US8885302B1 (en) * 2013-10-01 2014-11-11 Allegro Microsystems, Llc Anisotropic magnetoresistive (AMR) sensors and techniques for fabricating same
JP6115501B2 (ja) * 2014-03-19 2017-04-19 株式会社デンソー 電流センサ
US9354284B2 (en) 2014-05-07 2016-05-31 Allegro Microsystems, Llc Magnetic field sensor configured to measure a magnetic field in a closed loop manner
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
US11448659B2 (en) * 2015-09-29 2022-09-20 Honeywell International Inc. AMR speed and direction sensor for use with magnetic targets
CN106872914B (zh) * 2015-11-27 2019-09-10 爱盛科技股份有限公司 磁场感测装置及感测方法
JP6309067B2 (ja) * 2016-10-31 2018-04-11 三菱電機株式会社 磁気検出装置
RU2666582C2 (ru) * 2016-11-29 2018-09-11 Акционерное общество "Зеленоградский нанотехнологический центр" Цифровой измеритель тока
DE102017127578B4 (de) 2017-11-22 2020-11-05 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur Nutzung eines anisotrop magnetoresistiven Sensors zur Bestimmung von Magnetfeldern und Temperaturen
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
DE102018216131B4 (de) * 2018-09-21 2020-06-04 Hochschule Karlsruhe-Technik Und Wirtschaft Verfahren und Vorrichtung zur gleichzeitigen Bestimmung der Temperatur- und Widerstandsänderung von Sensorwiderständen einer als Viertel- oder Halbbrücke ausgebildeten Brückenschaltung
DE102018216136B4 (de) * 2018-09-21 2021-04-01 Hochschule Karlsruhe-Technik Und Wirtschaft Zwei Verfahren und eine Vorrichtung zur gleichzeitigen Bestimmung der Temperatur- und Widerstandsänderung von Sensorwiderständen einer Brückenschaltung
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
CN110631611B (zh) * 2019-09-20 2022-05-13 贵州雅光电子科技股份有限公司 一种amr传感器芯片敏感单元结构
US11366182B2 (en) * 2020-01-24 2022-06-21 Vanguard International Semiconductor Corporation Magnetoresistive devices and methods for forming the same
US11187764B2 (en) 2020-03-20 2021-11-30 Allegro Microsystems, Llc Layout of magnetoresistance element
US11800813B2 (en) 2020-05-29 2023-10-24 Allegro Microsystems, Llc High isolation current sensor
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame
US12248039B2 (en) 2023-08-08 2025-03-11 Allegro Microsystems, Llc Interleaving sub-arrays of magnetoresistance elements based on reference directions to compensate for bridge offset

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131431A1 (de) * 1981-08-07 1983-02-24 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung mit einer widerstandsbruecke
GB2251948A (en) 1991-01-12 1992-07-22 Westland Aerostructures Ltd System for measuring two variable quantities
US5351003A (en) * 1993-04-02 1994-09-27 General Motors Corporation Temperature compensated magnetoresistive position sensor
DE19810369C1 (de) * 1998-03-10 1999-08-12 Siemens Ag Vorrichtung zur Messung des Ventilhubes
US6262574B1 (en) 1999-03-12 2001-07-17 The United States Of America As Represented By The Secretary Of The Navy Sensor for measuring magnetic field strength and temperature for an electric motor

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3054978A (en) * 1960-07-13 1962-09-18 Thompson Ramo Wooldridge Inc Heat responsive superconductive switching devices
US3569895A (en) * 1966-08-15 1971-03-09 Int Trade & Industry Japan Inhomogeneous magnetoresistance devices
NL7414829A (nl) * 1973-11-17 1975-05-21 Sony Corp Magnetoresistief element.
DE2658528A1 (de) * 1976-12-23 1978-06-29 Siemens Ag Vorrichtung zur galvanomagnetischen lagerueckmeldung fuer elektrodynamische antriebe
US4506220A (en) * 1980-11-10 1985-03-19 Canon Kabushiki Kaisha Temperature compensated magnetoresistive effect thin film magnetic sensor
DE3820475C1 (enExample) 1988-06-16 1989-12-21 Kernforschungsanlage Juelich Gmbh, 5170 Juelich, De
US4847584A (en) 1988-10-14 1989-07-11 Honeywell Inc. Magnetoresistive magnetic sensor
US5589768A (en) * 1990-07-30 1996-12-31 Mitsubishi Steel Mfg. Co., Ltd. Magnetoresistance-effect magnetic sensor of the temperature compensating type
US5247278A (en) 1991-11-26 1993-09-21 Honeywell Inc. Magnetic field sensing device
JP2784457B2 (ja) 1993-06-11 1998-08-06 インターナショナル・ビジネス・マシーンズ・コーポレイション 磁気抵抗センサ装置
JPH0766033A (ja) 1993-08-30 1995-03-10 Mitsubishi Electric Corp 磁気抵抗素子ならびにその磁気抵抗素子を用いた磁性薄膜メモリおよび磁気抵抗センサ
EP0663661B1 (en) 1994-01-12 1999-06-23 Eastman Kodak Company Magnetically capped dual magnetoresistive reproduce head and method of making same
US5712751A (en) 1994-03-17 1998-01-27 Kabushiki Kaisha Toshiba Magnetic sensor and magnetic recording-reproducing head and magnetic recording-reproducing apparatus using same
US5561368A (en) 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
JPH08242027A (ja) * 1995-03-03 1996-09-17 Mitsubishi Electric Corp 磁気抵抗素子回路
DE19619806A1 (de) * 1996-05-15 1997-11-20 Siemens Ag Magnetfeldempfindliche Sensoreinrichtung mit mehreren GMR-Sensorelementen
US5820924A (en) 1996-05-16 1998-10-13 Honeywell Inc. Method of fabricating a magnetoresistive sensor
US5742162A (en) 1996-07-17 1998-04-21 Read-Rite Corporation Magnetoresistive spin valve sensor with multilayered keeper
US5869963A (en) 1996-09-12 1999-02-09 Alps Electric Co., Ltd. Magnetoresistive sensor and head
JP3827789B2 (ja) 1996-12-27 2006-09-27 株式会社東芝 磁気抵抗効果ヘッド
US5952825A (en) * 1997-08-14 1999-09-14 Honeywell Inc. Magnetic field sensing device having integral coils for producing magnetic fields
US6313973B1 (en) 1998-06-30 2001-11-06 Kabushiki Kaisha Toshiba Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
JP3623367B2 (ja) * 1998-07-17 2005-02-23 アルプス電気株式会社 巨大磁気抵抗効果素子を備えたポテンショメータ
US6282068B1 (en) 1999-03-30 2001-08-28 International Business Machines Corporation Antiparallel (AP) pinned read head with improved GMR
JP3793669B2 (ja) 1999-08-26 2006-07-05 株式会社日立グローバルストレージテクノロジーズ 巨大磁気抵抗効果ヘッド、薄膜磁気ヘッドならびに磁気記録再生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131431A1 (de) * 1981-08-07 1983-02-24 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung mit einer widerstandsbruecke
GB2251948A (en) 1991-01-12 1992-07-22 Westland Aerostructures Ltd System for measuring two variable quantities
US5351003A (en) * 1993-04-02 1994-09-27 General Motors Corporation Temperature compensated magnetoresistive position sensor
DE19810369C1 (de) * 1998-03-10 1999-08-12 Siemens Ag Vorrichtung zur Messung des Ventilhubes
US6262574B1 (en) 1999-03-12 2001-07-17 The United States Of America As Represented By The Secretary Of The Navy Sensor for measuring magnetic field strength and temperature for an electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114727A (ja) * 2003-10-09 2005-04-28 Hewlett-Packard Development Co Lp 複合化された2重目的磁気抵抗センサならびに電流および温度の測定方法
DE102004009267B3 (de) * 2004-02-26 2005-09-22 Siemens Ag Ausleseeinrichtung wenigstens eines magnetoresistiven Elementes
RU2617454C1 (ru) * 2016-02-17 2017-04-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ изготовления магниторезистивного датчика
CN106225959A (zh) * 2016-07-04 2016-12-14 电子科技大学 一种柔性薄膜热流传感器及其制备方法

Also Published As

Publication number Publication date
AU2002359592A1 (en) 2003-07-24
KR100983128B1 (ko) 2010-09-17
US6667682B2 (en) 2003-12-23
EP1459038B1 (en) 2017-06-21
JP2005514611A (ja) 2005-05-19
US20030117254A1 (en) 2003-06-26
CA2471864A1 (en) 2003-07-17
KR20040078654A (ko) 2004-09-10
EP1459038A1 (en) 2004-09-22
JP4458849B2 (ja) 2010-04-28

Similar Documents

Publication Publication Date Title
US6667682B2 (en) System and method for using magneto-resistive sensors as dual purpose sensors
EP1004033B1 (en) Magnetic field sensing device
EP2267470B1 (en) Integrated three-dimensional magnetic sensing device and fabrication method
US7859255B2 (en) Matching of GMR sensors in a bridge
US7810398B2 (en) Concept for detecting a change of a physical quantity by means of a conductor structure
EP2442117B1 (en) Magnetic balance current sensor
US7323870B2 (en) Magnetoresistive sensor element and method of assembling magnetic field sensor elements with on-wafer functional test
US9465056B2 (en) Current sensor with temperature-compensated magnetic tunnel junction bridge
US7474093B2 (en) Magnetic field sensor apparatus
EP0369160B1 (en) Magnetoresistive magnetic field sensor
EP2284555B1 (en) Magnetic sensor including a bridge circuit
US6717403B2 (en) Method and system for improving the efficiency of the set and offset straps on a magnetic sensor
JP2002516999A (ja) 磁場検出デバイス
JPH06235759A (ja) 磁化切換え形閉ループ磁力計
JPWO2005081007A1 (ja) 磁界検出器、これを用いた電流検出装置、位置検出装置および回転検出装置
EP2521890A1 (en) Method and structure for testing and calibrating magnetic field sensing device
WO2009058290A1 (en) Magnetic field angular sensor with a full angle detection
CN113740787A (zh) 监测磁性传感器的方法
WO2002068979A1 (en) Improved polarity sensitive magnetic sensors
Li et al. Cross axis effect of amr sensors and single sensitive-axis compass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047010217

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003558436

Country of ref document: JP

Ref document number: 2471864

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2002794140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002794140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028282671

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002794140

Country of ref document: EP