WO2003055907A1 - Tumor-peptidantigene aus humanem cd19-protein - Google Patents

Tumor-peptidantigene aus humanem cd19-protein Download PDF

Info

Publication number
WO2003055907A1
WO2003055907A1 PCT/EP2002/014598 EP0214598W WO03055907A1 WO 2003055907 A1 WO2003055907 A1 WO 2003055907A1 EP 0214598 W EP0214598 W EP 0214598W WO 03055907 A1 WO03055907 A1 WO 03055907A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
peptide
oligopeptide
ztl
retro
Prior art date
Application number
PCT/EP2002/014598
Other languages
English (en)
French (fr)
Inventor
Matthias Theobald
Anne Cellary
Original Assignee
Immugenics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immugenics Ag filed Critical Immugenics Ag
Priority to AU2002360062A priority Critical patent/AU2002360062A1/en
Publication of WO2003055907A1 publication Critical patent/WO2003055907A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to a B-cell malignancy-associated oligopeptide which is recognized by CD8-positive cytotoxic T-lymphocytes (ZTL) as a peptide antigen and which causes ZTL-induced lysis and / or apoptosis of tumor or leukemia cells.
  • ZTL cytotoxic T-lymphocytes
  • CD8-positive ZTL represent effector cells of the cellular immune system. Their function consists in the specific elimination of infected or degenerate cells of the body.
  • the ZTL recognize, among other things, tumor-specific or tumor-associated peptide antigens (TAA), which are bound to major histocompatibility complex (MHC) molecules of class I and are presented on the surface of the degenerate cells.
  • TAA tumor-specific or tumor-associated peptide antigens
  • MHC major histocompatibility complex
  • the recognition of the peptide antigens in the context of MHC class I molecules is carried out by specific membrane-bound T cell receptors (TZR) of the ZTL.
  • TAA tumor-specific or tumor-associated peptide antigens
  • MHC major histocompatibility complex
  • ZR membrane-bound T cell receptors
  • the detection of target cells by ZTL is facilitated by the expression of the CD8 coreceptor on ZTL.
  • the CD8 coreceptor binds to conserved regions of the 2 and ⁇ 3 domains of the MHC class I molecule and thus contributes to the stabilization of the TCR-peptide-MHC complex.
  • the tumor-associated peptide antigens which are presented in the context of MHC class I molecules on the surface of tumor cells, include the human CD19 protein - which is not only found in normal B cells, but also in B lymphoid neoplasia (malignant haematological system diseases) eg, non-Hodgkin's lymphoma (-NHL) including Burkitt's lymphoma and CLL as well as acute lymphoblastic leukaemias of different stages of differentiation is expressed.
  • B lymphoid neoplasia malignant haematological system diseases
  • -NHL non-Hodgkin's lymphoma
  • Burkitt's lymphoma and CLL as well as acute lymphoblastic leukaemias of different stages of differentiation is expressed.
  • the - resulting from the cellular processing of the CD19 protein oligopeptides can in the context of MHC class I molecules of the allele variant A2, subtype A2.1 (short: A2.1; the most common MHC class I allele in the Caucasian population), are presented on the cell surface and represent attractive target structures for CD8-positive CTLs ,
  • the CD19 protein is expressed throughout B-cell ontogeny from early B-cell progenitor to mature B-cell stage, except for the terminally differentiated plasma cells, which no longer express CD 19 on the cell surface.
  • tumor antigens can be used as vaccines for inducing T cells in general and tumor-reactive T cells in particular with the aim that these T cells bring about the remission and eradication of a specific tumor.
  • tumor antigens In the case of melanoma are already. some peptide antigens are known which are used in this way for immunotherapy within clinical trials.
  • the object of the present invention is to provide B-cell tumor-associated peptide antigens which are recognized by CD8-positive ZTL and which induce a ZTL-induced lysis and / or apoptosis of tumor or leukemia cells.
  • oligopeptide which (a1) has the amino acid sequence KAWQPGWTV shown in Sequence Listing No. 1, which corresponds to amino acid positions 105 to 113 of the human CD19 protein (according to Stamenkovic and Seed, 1988), or the one amino acid sequence derivable by amino acid substitution, deletion, insertion, addition, inversion and / or by chemical or physical modification of one or more amino acids thereof, which is a functional equivalent to the amino acid sequence KAWQPGWTV, or (a2) which in Sequence listing No.
  • EIWEGEPPCV 2 amino acid sequence shown EIWEGEPPCV, which corresponds to amino acid positions 165 to 174 of the human CD19 protein (according to Stamenkovic and Seed, 1988), or the one by Has amino acid substitution, deletion, insertion, addition, inversion and / or amino acid sequence derived therefrom by chemical or physical modification of one or more amino acids, which is a functional equivalent to the amino acid sequence KAWQPGWTV, and (b) an epitope for CD8-positive ZTL, and (c) is suitable for a restricted (restricted) immune response of CD8-positive ' ZTL against tumor and to human leukocyte antigen of the molecular group "MHC class I", allele variant A2 (short: A2) To induce leukemia cells.
  • MHC class I molecular group
  • An equivalent solution consists in providing a retro-inverse peptide or pseudopeptide analogous to this oligopeptide according to the invention, which instead of the -CO-NH peptide bonds non-peptide bonds such as e.g. - Has NH-CO bonds (see Meziere et al. 1997).
  • oligopeptides CD19 105-113 and CD19 165-174 peptide antigens are provided for the first time, the amino acid sequence of which comes from the human CD19 protein (cf. Stamenkovic I. and Seed B., 1988).
  • the oligopeptides CD19 105-113 and CD19 165-174 and their derivatives represent B-cell-associated tumor antigens for ZTL and thus provide the molecular basis for CD19-specific immunotherapy for malignant B-lymphoid system diseases.
  • Oligopeptides (CD19 105-113 and CD 19 165-174 and their derivatives) can be used in the active and passive immunization of patients with malignant lymphohematopoietic neoplasms in which the CD 19 epitope 105-113 and / or the CD19 epitope 165-174 are in context of A2.1 is used to induce the induction, generation and expansion of CD19 105-113 and / or CD19 165-174 specific cytotoxic T-lymphocytes capable of targeting the tumor or leukemia cells of the specifically kill the patient concerned and thereby mediate a cure.
  • CD8-positive ZTL specifically the CD19 protein on the surface of malignant B-lymphoid cells recognize and kill them, while no ZTL-induced lysis occurs in normal B cells.
  • CD19 105-113 and CD19 165-174 and their derivatives this results in the advantage of a negligible risk of an undesirable attack on normal cells.
  • the derivatives of the oligopeptide CD19 105-113 and the oligopeptide CD19 165-174 and also the retro-inverse peptides or pseudopeptides derived therefrom have the advantage over the original oligopeptide itself in that it has a potential functional self-tolerance (compared to CD 19 105-113 or the CD 19 165-174 oligopeptide) can be circumvented at the T cell level. While the CD19 105-113 and the CD19 165-174 oligopeptide may be due to the (low) expression in some normal tissues.
  • the derivatives of these oligopeptides (CD19 105-113 and CD19 165-174) are usually recognized as antigens and induce activation and expansion by ZTL.
  • These derivative-induced CTLs generally have a high cross-reactivity to the CD 19 105-113 or CD 19 165-174 wild-type sequence in question and consequently also induce the lysis and / or apoptosis of such (tumor) cells, the CD19 105 -113 and / or CD19 165-174 (in the context of A2, especially of A2.1) on their surface.
  • CD19 105-113 and CD19 165-174 oligopeptides are those that occur naturally in other mammals or vertebrates, e.g. CD19 105-113 or CD19 165-174 homologue from the mouse.
  • the CD19 (protein) and peptide homologs and the nucleic acids coding therefor can be obtained from the respective organism relatively easily, namely directly and with common isolation processes.
  • oligopeptides CD19 105-113 and CD19 165-174 and their derivatives as well as the retro-inverse peptides or pseudopeptides can be produced by means of common peptide synthesis methods, and the nucleotide sequences coding for these oligopeptides can be obtained using known chemical or molecular biological methods.
  • a fusion protein from the above-described oligopeptides according to the invention, a flexible linker and a heavy chain of the HLA molecule, in such a way that the oligopeptide is capable of (that) Occupy peptide binding fears of the HLA molecule.
  • These fusion proteins and polynucleotides encoding them are particularly suitable as (active ingredient of) a diagnostic or therapeutic or prophylactic or in general for the detection and / or manipulation of T cells which contain one of the CD-ROMs shown in sequence listing No. 1 and No. 2. Recognize 19-oligopeptides.
  • the invention therefore also relates to a fusion protein which consists of one of the above-described oligopeptides, a heavy chain of the HLA molecule and a flexible linker and is constructed in such a way that the oligopeptide is suitable (capable or capable) which To occupy peptide binding for the HLA molecule, and which for use or for use as a diagnostic or therapeutic or prophylactic or in general for the detection and / or manipulation of T cells, which one of the in the sequence listing No. 1 and No. .2 recognize CD19 oligopetides shown is suitable.
  • the polynucleotides coding for this fusion protein are also the subject of the present invention.
  • oligopeptides according to the invention are suitable both for the in vivo induction of T lymphocytes in the patient and for in-patient vitro induction and expansion corresponding to reactive patient-internal or external T-lymphocytes.
  • Various methods can be considered for in vivo induction and expansion of T lymphocytes in the patient, for example (a) the injection of the CD19 105-113 and / or CD19 165-174 oligopeptide and / or one or more derivatives of one or more both of these oligopeptides and / or a retro-inverse peptide or pseudopeptide and / or a fusion protein described above - as a pure peptide or together with adjuvants or with cytokines or in a suitable release system such as liposomes, (b) the injection of one or more at least for the CD19 105-113 and / or the CD19 165-174 oligopeptide or their derivatives and / or for one of the retro inverse peptides or pseudopetides and / or nucleic acids coding for one of the fusion proteins - in "naked” or complexed form or in the form of viral or non-viral vectors or together with release systems such as cationic lipids or
  • the T lymphocytes obtained in vitro are then fed to the patient by infusion or injection or the like.
  • the invention therefore also relates to the use of the CD 19 105-113 and / or the CD19 165-174 oligopeptide and / or their derivatives and / or retro-inverse peptides or pseudopeptides analogous thereto and / or the fusion proteins described above and / or at least one Polynucleotide which encodes at least the CD19 105-113 and / or the CD19 165-174 oligopeptide and / or a derivative of one or both of these oligopeptides, for the production of diagnostics - in particular MHC tetramers or MHC dimers or other structures to which at least one such oligopeptide or retro-inverse peptide or pseudopeptide according to the invention is associated by covalent or non-covalent binding - and / or prophylactic and / or therapeutic agents (in particular vaccines) for the detection and / or influencing and / or generation and / or expansion and / or control of the activation and functional state of T cells, in particular CD8
  • vaccines or injections or infusion solutions which contain as active ingredient (a) the CD19 105-113 and / or the CD 19 165-174 oligopeptide and / or at least one derivative of one of these oligopeptides and / or at least contain a retro-inverse peptide or pseudopeptide analogous to one of these oligopeptides or their derivatives and / or at least one of the fusion proteins described above, and / or which (b) contain a nucleic acid which is at least suitable for CD19 105-113 and / or that CD19 165- 174 oligopeptide or at least a derivative of one of these oligopeptides coded, and / or (c) in vitro "generated T-lymphocytes which specifically ⁇ nd against the CD19 105-113 and / or 165-174 oligopeptide CD19 / or their derivative (s) and / or against a retro-inverse peptide or
  • Recombinant DNA or RNA vector molecules which contain one or more polynucleotide (s) which are suitable for at least the CD19 105-113 and / or the CD19 165-174 are also particularly suitable for the production of the diagnostic agents or also the therapeutic agents or the prophylactic agents Code oligopeptide and / or for at least one derivative of one of these oligopeptides, and which can be transcribed or expressed in cells of autologous, allogeneic, xenogeneic or microbiological origin.
  • the invention therefore also encompasses those recombinant DNA or RNA vector molecules and host cells which contain these vector molecules.
  • polyclonal, monoclonal or .alpha recombinant antibodies are used which against the CD 19 105-113 and / or the CD19 165-174 oligopeptide and / or against a derivative of one of these oligopeptides and / or against a retro-inverse peptide or pseudopeptide analogous to one of these oligopeptides or their derivatives and / or 'are directed against a fusion protein described above or which react with a complex of one of the oligopeptides in question or their derivatives or retro-inverse peptide (s) and / or pseudopeptide (s) and HLA-A2.
  • CD19 105-113 and / or the CD19 165-174 oligopeptide and / or a derivative of these oligopeptides and / or a retro-inverse peptide or pseudopeptide or a fusion protein analogous to one of these oligopeptides or a derivative of these oligopeptides for the preparation polyclonal, monoclonal or recombinant antibodies against such an oligopeptide according to the invention or retro-inverse peptide or pseudopeptide and the ⁇ ) antibody in question are consequently also part of the present invention.
  • T-cell receptors or functionally equivalent molecules can also be used according to the invention as a diagnostic or therapeutic or prophylactic or in general for the detection and / or manipulation of cells overexpressing CD19 105-113 and / or CD19 165-174 which are specific for the CD 19 105-113 and / or the CD19 165-174 oligopeptide and / or a derivative of one of these oligopeptides and / or for analogous retro-inverse peptides or pseudopeptides and / or for a fusion protein described above.
  • the T cell receptors or molecules which are functionally equivalent thereto can be of autologous, allogeneic or xenogeneic origin.
  • the subject matter of the present invention therefore also primarily includes:
  • Expression vectors with the ability to express these T cell receptors or their functionally equivalent molecules.
  • the invention also includes reagents for in-vivo or in-vitro activation of T cells, in particular CD8-positive ZTL, which are characterized in that they use the CD19 105-113 and / or the CD19 165-174 oligopeptide and / or at least one derivative of one of these oligopetides and / or at least one retro-inverse peptide or pseudopeptide or at least one of the fusion proteins described above and / or using at least one polynucleotide which encodes at least the oligopeptide or its derivative (s) and / or using the CD19 protein or homologues of other species.
  • These reagents can in particular be therapeutic agents, and above all vaccines.
  • A2 human leukocyte antigen of the molecular group A2 human leukocyte antigen of the molecular group
  • K b MHC class I molecule from ⁇ and ⁇ 2 domain from A2 and ⁇ 3 domain from K b
  • AML acute myeloid leukemia AML acute myeloid leukemia
  • HLA-A2.1 human leukocyte antigen of the molecular group "MHC class I" HLA-A2.1 human leukocyte antigen of the molecular group "MHC class I"
  • Fig. 1 Binding of selected synthetic CD19 peptides.
  • the relative A2.1 binding affinity (expressed as% inhibition) was determined by the ability of the respective peptide to inhibit the A2.1 binding of peptide p53 264-272. This was measured based on the inhibition of p53-specific CTL lysis of p53 264-272-loaded .EA2 target cells by CD19 peptides of different concentrations.
  • the inhibition values for the peptides Flu Ml 58-66 and VSV-N 52-59 were averaged from 6 independent experiments.
  • Fig. 2 A2.1-restricted immunogenicity of synthetic CD19 peptides in A2K b - or CD8 x A2K -transgenic mice. The immunogenicity was checked on the basis of the lytic activity of the ZTL induced by peptide immunization in these mice in a 4-hour cytotoxicity test. The target cells were with 2 ⁇ g
  • T2 or T2A2K b cells Peptide-loaded or unloaded T2 or T2A2K b cells are used. Representative specific lyses of individual ZTL cultures from an average of 4 immunized mice are shown.
  • Fig. 4 CD19.105-specific CTL lines: efficiency of peptide recognition and peptide specificity.
  • A2.1 and CD8 x A2K b transgenic mice were stimulated by repeated in vitro stimulation with the CD19.105 peptide or the peptide Flu With the CD 19-reactive ZTL lines A2 19.105 ( ⁇ ) and CD8 x A2K b 19.105 ( ⁇ ) as well as the Flu Ml 58-66-specific ZTL lines CD8 x A2K b Flu Ml 58-66 established and in a 4- hourly cytotoxicity test tested under the specified E: T ratios, target cells were: T2 cells incubated at the specified peptide concentrations (upper graph), CD19.105-loaded (•), Flu Ml 58-66-loaded ( ⁇ ) and unloaded ( O) T2 target cells (lower graphs).
  • CD19.165-specific CTL lines efficiency of peptide recognition and peptide specificity.
  • the CD19-reactive ZTL lines A2 19.165 ( ⁇ ) and CD8 x A2K b were derived from A2.1 and CDS x A2K b transgenic mice by repeated in vitro stimulation with the CD19.165 peptide or the peptide FluM 1 19.165 ( ⁇ ) and the Flu Ml 58-66-specific ZTL line CD8 x A2K b Flu Ml 58-66 and in a 4-hour cytotoxicity test under the specified E: T-
  • Target cells were: T2 cells incubated at the indicated peptide concentrations (upper graph), CD19.165-loaded (•), Flu Ml 58-66-loaded ( ⁇ ), HuWT p53.264-272-loaded (Q) and unloaded (O ) T2 target cells (lower graphics).
  • Fig. 6 ZTL detection of EA2 or EA2K b CD19 transfectants.
  • the A2.1-restricted and CD19.105-specific ZTL A2 and CD8 x A2K b 19.105 as well as the allo-A2.1-reactive ZTL CD8 allo A2 and the Flu Ml 58-66-specific ZTL CD8 x A2 Flu Ml were considered Effector cells tested under the specified E: T ratios in a 6-hour cytotoxicity test against the following target cells: EA2 ( ⁇ ), CD19-transfected EA2 cl 24 ( ⁇ ), EA2K b hygro ( ⁇ ) transfected with the hygromycin resistance gene and CD 19 transfected EA2K b cl 74 (A); Fig.
  • FIG. 8 CD19 expression of EA2 and EA2K b CD19 transfectants.
  • EA2 and EA2K b cells and CD19-transfected EA2 and EA2K b cells were analyzed for their CD19 expression after antibody labeling in the FACS.
  • the fluorescence intensities of the cells stained with the anti-hu-CD19 directly FITC-conjugated antibody (CD 19) and an anti-hu-CD8 directly FITC-conjugated antibody (bkgd) are shown.
  • the fluorescence intensity is given as CD19 expression.
  • ZTL detection of CD19-expressing A2-positive tumor cell lines ZTL CD8 x A2K b 19.105, ZTL CD8 allo A2 and ZTL A2 Flu Ml were used as effector cells under the specified E: T ratios in a 6-hour cytotoxicity test against the target cells ST 486 (A) (Burkitt lymphoma), UoC - Bl l (A) (pre-B-ALL), U 937 (#) (histiocytic lymphoma) and EA2 (O) tested.
  • ZTL detection of CD19-expressing A2-negative and A2-positive tumor cell lines ZTL CD8 x A2K b 19.105, ZTL CD8 allo A2 and ZTL A2 Flu ⁇ Ml were used as effector cells under the specified E: T ratios in a 6-hour cytotoxicity test against the A2-negative target cell Ramos (O) (Burkitt's lymphoma ), the A2-positive cell line Ramos-A2 (Q) and Ramos-A2 after loading with the peptide 19.105 ( ⁇ ) (lO ⁇ M) tested.
  • O target cell Ramos
  • Q Ramos-A2
  • lO ⁇ M Ramos-A2
  • Fig. 13 ZTL detection of A2.1 positive transformed lymphohemopoetic cells.
  • ZTL A2 19.105, ZTL CD8 x A2K b 19.105, CD8 allo- A2.1 -reactive ZTL and ZTL CD8 x A2K b Flu Ml were used as effector cells under the specified E: T ratios in a 6-hour cytotoxicity test against the following target cells tested: Con A blasts ( ⁇ ), PHA blasts ( ⁇ ) and LPS blasts A2K b
  • Fig. 14 ZTL detection of A2.1 positive resting lymphohemopoietic cells.
  • ZTL A2 19.105, ZTL CD8 x A2K b 19.105, ZTL CDS allo A2 and ZTL CD8 x A2K Flu Ml were used as effector cells.
  • E T ratios in a 6-hour cytotoxicity test against resting T cells ( ⁇ ), B cells (O) and the same cells loaded with the CD 19.105 peptide (10 ⁇ M) ( ⁇ , •) ,
  • Fig. 15 Plasmid pA71d coding for the CD19 protein.
  • Fig. 16 Plasmid ⁇ SV2-A2.1 coding for the molecule A2.1.
  • A2.1 K b (A2K b ) transgenic mice they are homozygous for a chimeric MHC class I transgene, which is derived from the human oci and ⁇ 2 domains of A2.1 and from the ⁇ 3 domain composed of H-2K b of the mouse, and for the H-2 b gene.
  • Non-desalted peptides from SNPE were basically dissolved in DMSO at 10 mg / ml. Storage took place in aliquots at -20 to -80 ° C.
  • a peptide that contains residues 128-140 of hepatitis was shown in Table 1, a peptide that contains residues 128-140 of hepatitis
  • TPAYRPPNAPIL B virus core protein represented (TPPAYRPPNAPIL), synthesized.
  • the monoclonal antibody produced by the hybridoma cell line PA2.1 (ATCC HB-117) was used to block A2.1.
  • the monoclonal antibody produced by the mouse hybridoma line BB7.2 (ATCC HB-82) was used for HLA typing of tumor cell lines and of A2 transgenic mice.
  • a FITC-conjugated polyclonal secondary antibody (goat anti-mouse IgG F (ab) 2 fragment; 1:30 dilution; Jackson [Dianova], Hamburg) was used to detect mouse monoclonal antibodies in flow cytometry.
  • CD 19 expression on human cells was carried out with a monoclonal FITC-conjugated antibody directed against human CD 19 (mouse anti-human IgG; 1:10 dilution; Pharmingen).
  • a monoclonal, FITC-conjugated antibody against human CD8 (mouse anti-human IgG; 1: 5 dilution; Becton & Dickinson) was used for the isotype control.
  • Murine CD19 expression was analyzed using FITC-conjugated monoclonal antibody against murine CD 19 (mouse anti-mouse IgG; 1: 10 ner thinning; Pharmingen)
  • PBS phosphate buffered saline
  • the medium Geneticin (G-418) (Gibco BRL) was added to the medium an effective concentration of 280-560 ⁇ g / ml.
  • hygromycin B (Merck) was added to the medium in an effective concentration of 800 ⁇ g / ml. All cells were at 37 ° C. and 5% CO 2 in steam-saturated Atmosphere cultivated in cell culture bottles or 24-hole plates (ZTL) (Corning Costar, Bodenheim).
  • LPS lymphoblasts
  • A2K b -transgenic mice were obtained by stimulating spleen cells from A2K b -transgenic mice with 25 ⁇ g / ml LPS (Sigma, Deisenhofen) and 7 ⁇ g / ml dextran sulfate (Pharmacia Biotech, Denmark) for 3 days.
  • the resting T and B cells were obtained after negative selection of A2-positive PBMZ with antibody-coated "beads" (Dynal, Hamburg).
  • the PBMZ were incubated according to the manufacturer's instructions with anti-CD 19 and anti-CD14 beads, and for isolating B cells with anti-CD2 and anti-CD14 beads.
  • the human A2.1-positive T2 cell line is a B / T-cell hybridoma of the fusion partners 721.147 (EBV-transformed B-cell line) and CEM (T-cell line) (Salter and Cresswell, 1986), - T2 cells, which according to Theobald et al., 1995, with the A2K b gene were transfected (T2A2K), the thymoma cell line EL4 from the C57BL / 6 mouse (Theobald et al., 1995), EL4 cells which were transfected with A2.1 or A2.1K b (EA2) (Theobald et al., 1995),
  • plasmid p71d In order to stably transfect mammalian cells with the CD19 gene, plasmid p71d according to FIG. 15 was used, into which the human CD19 cDNA (Tedder et al., 1989) was cloned. A second vector, A # 63d, which added the expression cassette, was necessary for the cloning. Expression vector A71d and vector A # 63d were kindly provided by Dr. Ashok Venkitaraman (LMB; Cambridge, UK) is available posed. The complete promoter of the human cytomegalovirus controlled the expression of the downstream gene.
  • A71d additionally contains a sequence which codes for a hygromycin resistance under the control of the SV40 promoter and thus allows a selection of transfectants with hygromycin.
  • the CD19 cDNA was cloned into the expression vector A71d in four steps.
  • the CD19 cDNA was excised from the plasmid pSP65 with the restriction endonuclease EcoRI (MBI Fermentas). As a result, a 2.1 kb fragment was obtained.
  • the CD19 DNA fragment was cloned into the EcoRI side of the prepared vector A # 63d. This cloning first had to take place in vector A # 63d, since the expression vector A71d has two EcoRI sites, which would result in four insertion options for the CD19-DNA fragment.
  • the expression cassette contained a CMV promoter and a polyadenylation sequence.
  • the CMV-CD19-poly A fragment was digested into the u / Sal site of the expression vector A71.
  • 10-100 ⁇ g fragment and plasmid nector were used in 2-3 batches in one
  • the ligation mixture also contained 2 ⁇ l ligase buffer (10-fold concentrated) and 1U T4 ligase (Gibco, Eggersheim). Incubation was at 16 ° C.
  • competent cells of the E. co / z ' strain DH5 ⁇ were produced using methods familiar to the person skilled in the art. DNA was added to the competent bacterial cells and, after 15 minutes of incubation on ice, the cells were subjected to a heat shock for 90 seconds at 42 ° C.
  • the cells were then harvested and subjected to a plasmid preparation.
  • the preparation was carried out using a "QIAprep Spin Miniprep Kit” according to the manufacturer (Qiagen, Hilden). Plasmid-bearing transformants were identified by restriction analysis with suitable restriction endonucleases and subsequent agarose gel electrophoresis. 0.6-2% agarose (w / v) was used as the gel material and was prepared in TAE buffer (Tris base, 0.5 M Na 2 EDTA, glacial acetic acid 96%, H 2 O). The positive transformants were then grown on a larger scale (main culture) in LB medium containing ampicillin at 37 ° C. overnight.
  • the plasmids were prepared with a "QIAGEN Plasmid Maxi Kit” according to the manufacturer's instructions (Qiagen). After renewed analytical restriction and agarose gel electrophoresis, the concentration of the DNA and the purity of the preparation were determined by photometric measurement of the absorption at a wavelength of 260 nm in quartz cells. The DNA was linearized for electroporation. The plasmid pA71d was cut with EcoRI (MBI Fermentas). The samples were analyzed by gel electrophoresis to control the restriction. An extraction was carried out in order to eliminate the restriction endonucleases from the DNA solutions.
  • a volume of phenol / chloroform / isoamyl alcohol 24: 24: 1, v / v / v; Roth, Düsseldorf
  • the DNA-containing aqueous upper phase was isolated and subjected to a new extraction.
  • 1/10 volume of Na acetate (3 M) was added to the DNA solution and, after mixing, with 2 volumes of ethanol (96%, v / v, -20 ° C.).
  • DNA of high purity was used, which had an OD quotient 260/280 nm of at least 1.8.
  • Electroporation To transfect the EA2 suspension cell line with the pA71d plasmid, 10 million EA2 cells were washed, resuspended in 0.5 ml RPMI 1640 (Biowhittaker, Verviers, Belgium) and 1% FCS (PAA Laboratories, Linz, Austria) and pipetted into 4 mm cuvettes (BioRad Laboratories, Kunststoff). 30 ⁇ g of uneareared DNA of the pA71d plasmid was added to the cells. The cells were electroporated at 1200 ⁇ Farad and 350 volts for 2 ms in a "Gene Pulser" (Fischer, Heidelberg).
  • the cells were then serially diluted in 96-well plates with cell culture medium (see 2.4) and cultured for 24 hours at 37 ° C. and 5% CO 2 with water vapor saturation. This was followed by the addition of hygromycin (Gibco BRL, Eggenstein) in an effective final concentration of 800 ⁇ g / ml. WöchenÜich the selection medium was changed. After about 2-3 weeks, the hygromycin-resistant transfectant clones were first transferred to 24-well plates and later into cell culture bottles until they were finally checked for the expression of CD 19.
  • hygromycin Gibco BRL, Eggenstein
  • the A2.1 expression of cells, cell lines and transfectants was measured in the fluorescence activated cell sorter (FACS) (Becton Dickinson, San Jose, CA). In each case 0.5 million cells were centrifuged and labeled with the anti-A2.1 monoclonal antibody BB7.2 (or RPMI 1640, 10% FCS, see 2.4) in a volume of 50 ⁇ l (Lustgarten et al., 1997).
  • FACS fluorescence activated cell sorter
  • FITC-conjugated anti-CD 19 antibody 0.5 million centrifuged cells were labeled with the FITC-conjugated anti-CD 19 antibody in a volume of 50 ⁇ l, incubated for one hour and washed twice with PBS. The fluorescence activity was then determined in the FACS. The same procedure was followed if the FITC-conjugated anti-CD8 antibody was used as an isotype control.
  • a competition test was used to determine the binding of the CD19 peptides to A2.1.
  • EA2 cells were loaded with 0.01 ⁇ g of the A2.1 -binding peptide p53 264-272 (Theobald et al., 1995) and 3 or 10 ⁇ g CD19 peptide.
  • the peptide 58-66 of the A / PR / 8/34 influenza virus matrix protein Ml (Flu Ml 58-66) (Theobald et al., 1995) served as a positive control
  • the H-2K b -binding peptide 52-59 des Vesicular stomatitis virus nucleoproteins (VSV-N 52-59) (Theobald et al., 1995) as a negative control.
  • the A2.1-restricted and p53 264-272-specific ZTL (CD8 x) A2 264 were tested at various effector to target cell (E: T) ratios for their lyrical activity towards peptide-loaded and unloaded EA2 target cells in a 4-hour period Cytotoxicity test examined (Theobald et al., 1995).
  • mice 8 ⁇ g-old A2.1-transgenic mice were given 100 ⁇ g of the respective test peptide and 120 ⁇ g HBV core 128-140 (an I-binding synthetic T-helper peptide) (Theobald et al., 1995), emulsified in 100 ⁇ l incomplete Freund's adjuvant (IFA; Difco Laboratories, Detroit, USA), injected subcutaneously into the tail (Theobald et al., 1995). After about 10 days the spleen was removed, ground and the spleen cell suspension washed twice (1500 rpm, 5 ° C., 7 min).
  • IFA incomplete Freund's adjuvant
  • the spleen cells were sown at 7 million / ml / well in a 24-well plate.
  • LPS-activated B cell blasts irradiated with 3000 Rad (cesium), loaded with 5 ⁇ g / ml of the respective test peptide and 10 ⁇ g / ml human ⁇ 2 -microglobu, were added as stimulator cells after washing twice at 3 million / ml / well (Theobald et al., 1995).
  • the LPS blasts were obtained by stimulating spleen cells (1 million / ml) from A2.1 transgenic mice with 25 ⁇ g / ml LPS (Salmonella typhosa) and 7 ⁇ g / ml dextran sulfate (Pharmacia Biotech, Freiburg) for three days.
  • the effector and stimulator cell batches were incubated for 6 days (1 ° cultures) and subjected to a cytotoxicity test.
  • Allo-A2.1-reactive 1 ° ZTL were generated by spleen cells from CD8-transgenic mice at 7 million / ml / hole (effector cells) together with irradiated spleen cells from A2.1-transgenic mice at 6 Mo / ml / hole (stimulator cells ) were incubated for 6 days. (5) Establishment of ZTL lines
  • Polyclonal peptide-specific ZTL lines with specificity for CD19.105 and CD19.165 (ZTL A2 19.105 and CD8 x A2K b 19.165) and for Flu Ml 58-66 (ZTL CD8 x A2K b Flu Ml, ZTL CD8 x A2 FLU Ml. And A2 FLU Ml) were established by weekly restimulation of the effect or line with peptide-loaded stimulator cells.
  • JA2 cells which were irradiated with 20,000 Rad, were used as stimulator cells, then loaded in RPMI 1640 (Biowhittaker, Verviers, Belgium) with 5 ⁇ g / ml of the respective peptide and 10 ⁇ g / ml human ⁇ 2 -microglobulin for about 40 min and finally twice were washed.
  • the effector cells were sown together with 0.5 million JA2 cells and 6 million C57BL / 6 spleen cells irradiated with 3000 Rad in a total volume of 2 ml / hole in a 24-hole plate.
  • Allo-A2.1-reactive CTL lines were induced by intraperitoneal immunization of CD8-transgenic mice with 20 million JA2 cells / mouse. After three weeks, the spleen cells were isolated and stimulated in vitro (7 million / ml / well) with irradiated JA2 cells (0.5 million / ml / hole) or spleen cells (6 million / ml / hole) A2.1 transgenic mice , Repeated weekly in v / ro restimulation with JA2 cells in the presence of irradiated C57BL / 6 spleen cells (6 million / ml / well) and 2-5% TCGF finally generated allo-A2.1-reactive ZTL lines.
  • T2 cells were used as target cells for peptide titration tests. 1-5 million target cells were labeled with 150 ⁇ Ci Na ( 51 Cr) O 4 (1 mCi ml) (NEN Life Science, Belgium) for 60-90 min. Before this labeling, the cells were given 2 ⁇ l peptide solution in peptide titration tests different concentrations and 15 ⁇ l FCS (PAA Laboratories, Linz, Austria) or FCS without peptide added. The marked target cells were washed four times and the cell number was set to 0.1 million / ml.
  • the effector cells were serially diluted 1: 3 with cell culture medium and seeded at 0.1 ml / well in 96-well plates. A total of five different E: T ratios were tested. Then 0.1 ml / well of the target cell suspension was added to the effector cells and the batches were incubated for 4-6 hours. The cells were then centrifuged off (1300 rpm, 5 ° C., 9 min), the supernatant (0.1 ml hole) was removed and the 51 Cr release was measured using a gamma counter (Canberra Packard, Dreieich). The percentage specific lysis (SL) was calculated using the following formula:
  • the maximum 51 Cr release corresponded to the total 51 Cr incorporation by the target cells
  • the spontaneous 51 Cr release corresponded to the target cell lysis in the absence of effector cells and was generally less than 10% of the maximum ⁇ Cr release.
  • the values for spontaneous and maximum lysing were averaged from four approaches and those for experimental lysing from two approaches.
  • Example 1 Experimental recovery of the oligopeptides CD19.105-113 and CD10.165-174
  • the CD19 peptides selected on the basis of their theoretical binding strength were examined for their actual binding affinity for A2.1.
  • a competitive binding test which was published in Theobald et al. (1995), the ability of the CD19 peptides to be tested functionally.
  • the binding results are summarized in Fig. 1.
  • Binding to A2.1 showed the influenza virus matrix peptide Ml (Flu Ml 58-66) (Theobald et al., 1995), while the H-2K b -binding peptide VSV-N 52-59 (Theobald et al., 1995) as a negative control showed no A2.1 binding activity.
  • the CD19 peptides were divided into 4 groups according to their binding strength. Out of a total of 35 peptides tested, 7 had high binding activity (at least 80% inhibition with 10 ⁇ g test peptide), 9 medium (40-79% inhibition), 12 weak (10-39%) and 7 no binding activity ( ⁇ 10% or no dose dependence of inhibition). The inhibition observed was dose-dependent, since the inhibition values for all A2.1 -binding peptides at 10 ⁇ g were significantly higher than those at 3 ⁇ g.
  • Example 2 Experimental detection of the suitability of the CD19 oligopeptides for generating a specific, ZTL-mediated immunity
  • A2K b chimeric molecule A2.1 / K b
  • ZTL induced with restriction for the A2K b transgene recognize the same peptide antigens that are also immunogenic in A2.1 positive humans.
  • the other strategy for enhancing the A2.1 restricted response was to create a double transgenic mouse "CD8 x A2.1 / K b " by crossing an A2K b transgenic with a huCD8 ⁇ / ß transgenic mouse. Expression of the ⁇ and ⁇ chains of the huCD8 molecule enables the generated CTL to interact with the ⁇ 3 domain of the A2.1 molecule in human cells.
  • A2 and CD8 x A2K b transgenic mice were immunized in order to obtain CD 19 peptide-reactive ZTL.
  • 9 to 11 days after immunization Spleen cells of the mice in question were stimulated in vitro with peptide-loaded syngeneic LPS blasts and examined 6 days later for an A2.1-restricted peptide-specific CTL response in a cytotoxicity test.
  • the results are summarized in Fig. 2.
  • the induction of A2.1-restricted ZTL was already known for the positive control Flu Ml 58-66 (Theobald et al., 1995).
  • CD19-specific CTL peptide specificity and efficiency of peptide recognition
  • the spleen cells were stimulated with peptide-loaded LPS blasts from A2.1 transgenic mice (1 ° culture) and after repeated restimulation in the cytotoxicity test against T2 target cells, incubated at different concentrations of synthetic peptides CD19.105 and CD19.165, tested (FIGS. 4 and 5 above).
  • the half-maximum lysis of the target cells by ZTL A2 and CD8 x A2K b CD19.105 was at a peptide concentration of 1 nM.
  • ZTL A2 and CD8 x A2K b CD 19.165 recognized their target cells loaded with peptide almost 100 times worse. Can be deduced from the difference in the efficiency of peptide recognition that the peptide CD 19.105 can induce ZTL with a higher affinity than the peptide CD19.165.
  • CD19-negative tumor cells EA2, EA2 b
  • the detection of the resulting CD19-expressing transfectants by CD19.105 and CD19.165-specific CTL is an indication of the endogenous production of the peptides CD19.105 and CD19.165.
  • the tumor cell lines EA2 and EA2K b were selected for the transfection with the CD19 gene, and EL4 cell lines transfected with the genes for A2.1 and A2.1K, respectively.
  • EL4 is a mouse thymoma line with no CD19 expression.
  • the expression of CD 19 was analyzed by flow cytometry (Fig. 8). While the parental cells showed no CD19 expression, the cells transfected with the CD19 gene expressed significant amounts of CD 19 (FIG. 8). A sufficient expression of A2 is a prerequisite for an effective presentation of the CD19 peptides.
  • the flow cytometric analysis of the CD19 transfectants showed a comparable A2 expression of the EA2 cl 24 and EA2K b cl 74 cell lines and of the parental cells (data not shown).
  • the CD19 transfectants were tested for their detection by A2.1-restricted CD19.105 and CD19.165 -specific ZTL.
  • the EA2 and EA2K b transfectants EA2 cl 24 and EA2K b cl 74 were efficiently lysed by CD 19.105 and CD19.165-reactive ZTL A2 and CD8 x A2K b , while the parental lines EA2 and EA2K b as well as those with only the resistance gene for Hygromycin-transfected cell line EA2K b hygro were not recognized and consequently were not lysed (FIGS. 6 and 7).
  • the ZTL line CD8 allo A2 served as a positive control. Both the CD 19 transfectants and the parental and hygromycin-transfected cells were lysed by the aüo-A2.1-reactive effector cells (FIGS. 6 and 7). Since these alloreactive CTLs were peptide-specific, ie A2.1 molecules were only recognized in the context of (processed) self-peptides (but not signal peptides) (results not shown). B. be virtually excluded in the transport system of the cells examined. The A2.1-restricted ZTL line CD8 x A2K b Flu Ml, which did not lyse any of the cells tested (FIGS. 6 and 7), acted as a negative control.
  • Expression plasmid transfected (Fig. 15). This codes for the CD19 protein and additionally for the hygromycin resistance, which acts as a selection marker.
  • CD19.105 and CD19.165 processed endogenously and were presented in the context of A2.1 and thus represented the epitope for the CD19-reactive ZTL. Since these ZTL were populations, the presence of T cell subpopulations with specificity for peptides processed from the hygromycin resistance could not be excluded. However, the lack of recognition of EA2K b hygro controls by CD19.165-peptide-specific CTL, which, like the CD19 transfectants, express hygromycin resistance, spoke against lysis of the CD19 transfectants by potential subpopulations with specificity for hygromycin resistance. Fig. 6).
  • CD19.105 and CD19.165 are not epitopes from other processed self-proteins.
  • Example 5 Use of CD19.105 and CDi9.165-specific ZTL for the specific recognition and lysis of human tumor cells
  • CD19 protein expressing and A2-positive human tumor ZeUinien were lysed efficiently used in the following specific CD19.165-as target cells for CTL CD19.105- and 10 demonstrate that not only CD19-transfected, • but also non-transfected tumor cells become.
  • the ZTL line A2 CD19.105 showed lyric activity against the above-mentioned transformed cells, while the CD19-negative cell line EA2 was not recognized.
  • the ZTL line CDS x A2K CD19.105 recognized the histiocytic lymphoma U937
  • the lytic activity of the ZTL CD8 x A2K b CD19.105 against BN 173 targets could be blocked by 10% with the pA2.1 antibody (FIG. 10).
  • a target cell which had no A2 phenotype in the flow cytometric analysis, but which expressed CD 19 (data not shown). It was not lysed either by the CD19.105-specific ZTL line CD8 x A2K b CD 19.105 or by the A2.1 -alloreactive ZTL line CD8 allo A2, whereas the A2.1-transfected cell line Ramos A2 with and was detected by both ZTL lines without peptide loading (FIG. 12).
  • Example ö Use of CD19-specific ZTL for the selective recognition and lysis of normal human cells
  • CD19-specific CTL-mediated immunotherapy it is desirable that normal cells not be lysed.
  • the CD 19 protein is expressed by normal B cells as well as in malignant B cell associated haematological diseases.
  • Dormant and activated lymphohemopoietic cells were subsequently used as target cells for A2-restricted CTLs with specificity for CD19.105.
  • A2-positive PHA and Con A transformed blasts were from ZTL CD8 x A2K b CD19.105 and ZTL A2
  • CD 19.105 was not lysed, although they expressed CD 19 on their surface.
  • LPS-activated blasts of the A2K b mouse were not recognized because they carry the murine CD 19 on their surface (FIG. 13).
  • the allo-A2.1-reactive ZTL serving as a positive control recognized all ZeU types, whereas there was none of the Flu ML-specific ZTL acting as a negative control
  • ZTL recognition could be reconstituted by exogenous peptide CD 19.105, which confirmed sufficient A2 expression (FIGS. 13 and 14).
  • Example 7 Production of A2.1-restricted T cell receptors which are specific for the oligopeptides CD19.105 and CD19.165 according to the invention
  • A2.1 transgenic mice are immunized with the oligopeptides CD 19.105 and CD19.165 according to the invention.
  • the spleen is removed after 10 days.
  • the spleen cells are prepared with A2.
  • I -positive antigen-presenting cells which are loaded with the ougopeptide according to the invention are stimulated in vitro.
  • the production of these 2.1 positive antigen presenting cells was carried out with those in the prior art Techniques known and familiar to those skilled in the art.
  • the T cells are checked for their peptide and tumor recognition, peptide specificity and A2.1 restriction. After successful testing, the T cell line is cloned. The resulting T cell clones are tested again for peptide and tumor recognition, peptide specificity and A2, 1 restriction.
  • the total mRNA is prepared.
  • the T cell receptor ⁇ and ⁇ chains are amplified by RT-PCR.
  • the respective chains are first cloned into bacterial plasmids and sequenced.
  • the chains are partially humanized by replacing the constant mouse regions with the homologous human regions.
  • the resulting constructs are then cloned into suitable retroviral vectors.
  • CD19-specific ⁇ / ⁇ -T cell receptor chains are cloned into vectors that have the ability to infect patient T cells in vivo. These infected T cells express CD19-specific T cell receptors and are therefore able to recognize and kill CD19-expressing tumor cells of the patient.
  • CD19 is a component of a signal transducting complex on the surface of B cells that incudes CD21, TAPA-1 and Leu-13. FASEB J. 5: A1335
  • the CD 19 signal transduction molecule is a response regulator of B-lymphocyte differentiation. Proc. Natl. Acad. Be. 92: 11558-11562

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die Erfindung betrifft ein B-Zell Malignom-assoziiertes Oligopeptid, das von CD8-positiven zytotoxischen T-Lymphozyten (ZTL) als Peptidantigen erkannt wird und das eine ZTL-induzierte Lyse und/oder Apoptose von Tumor- oder Leukämiezellen herbeiführt. Die Oligopeptide weisen Aminosäuresequenzen auf, die Teilsequenzen des humanen CD19-Proteins entsprechen. Jedes Oligopeptid stellt ein Epitot für CD8-positive ZTL dar und ist dazu geeignet, eine auf humanes Leukozyten-Antigen der Molekülgruppe "MHC Klasse I", Allelvariante A2 (kurz: A2) eingeschränkte (restringierte) Immunantwort von CD8-positiven ZTL Tumor- und Lukämiezellen zu induzieren.

Description

Tumor-Peptidantigene aus humanem CD 19-Protein
B e s c h r e i b u n g
Die Erfindung betrifft ein B-Zell-Malignom-assoziiertes Oligopeptid, das von CD8- positiven zytotoxischen T-Lymphozyten (ZTL) als Peptidantigen erkannt wird und das eine ZTL-induzierte Lyse und/oder Apoptose von Tumor- oder Leukämiezellen herbeifuhrt.
CD8-positive ZTL stellen Effektorzellen des zellulären Immunsystems dar. Ihre Funktion besteht in der spezifischen Eliminierung von infizierten oder entarteten körpereigenen Zellen. Die ZTL erkennen unter anderem tumorspezifische oder tumorassoziierte Peptidantigene (TAA), die an Haupthistokompatibilitätskomplex (MHC)-Moleküle der Klasse I gebunden und auf der Oberfläche der entarteten Zellen präsentiert sind. Die Erkennung der Peptidantigene im Kontext von MHC Klasse I-Molekülen erfolgt durch spezifische membranständige T-Zellrezeptoren (TZR) der ZTL. Nach Erkennung wird die betreffende Zelle abgetötet, indem die ZTL die Zielzellen lysieren und/oder den programmierten Zelltod (Apoptose) dieser Zielzellen induzieren oder Cytokine freisetzen. Die Erkennung von Zielzellen durch ZTL wird durch die Expression des CD8- Korezeptors auf ZTL erleichtert. Der CD8-Korezeptor bindet an konservierte Regionen der 2- und α3 -Domänen des MHC Klasse I-Moleküls und trägt damit zur Stabilisierung des TZR-Peptid-MHC-Komplexes bei.
Zu den tumorassoziierten Peptidantigenen, die im Kontext von MHC Klasse I-Molekülen auf der Oberfläche von Tumorzellen präsentiert werden, gehört das humane CD19- Protein- das nicht nur von normalen B-Zellen, sondern auch bei B-lymphoiden Neoplasien (malignen hämatologischen Systemerkrankungen) z.B, Non-Hodgkin- Lymphomen (-NHL) einschließlich Burkitt-Lymphom und CLL sowie akuten lymphatischen Leukämien unterschiedlicher Differenzierungsstadien exprimiert wird. Die - aus der zellulären Prozessierung des CD19-Proteins resultierenden Oligopeptide können im Kontext von MHC Klasse I Molekülen der Allelvariante A2, Subtyp A2.1 (kurz: A2.1; das häufigste MHC-Klasse I -Allel in der kaukasischen Bevölkerung), auf der Zelloberfläche präsentiert werden und repräsentieren attraktive Zielstrukturen für CD8- positive ZTL. Das CD19-Protein.wird während der gesamten B-Zell-Ontogenese vom frühen B-Zell-Progenitor bis zum reifen B-Zell-Stadium exprimiert, mit Ausnahme der terminal differenzierten Plasmazellen, die CD 19 auf der Zelloberfläche nicht mehr exprimieren.
Voraussetzung für die Entwicklung immuntherapeutischer Verfahren zur Behandlung von bösartigen Tumorerkrankungen ist die Identifizierung immunogener Tumorantigene. Solche Tumorantigene können unter bestimmten Voraussetzungen als Impfstoff zur Induktion von T-Zellen im allgemeinen und von Tumor-reaktiven T-Zellen im besonderen eingesetzt werden mit dem Ziel, daß diese T-Zellen die Remission und Eradikation eines bestimmten Tumors herbeifuhren. Im Fall von Melanomen sind bereits . einige Peptidantigene bekannt, die auf diese Weise zur Immuntherapie innerhalb klinischer Prüfungen verwendet werden.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, B-Zell-Tumorassoziierte Peptidantigene bereitzustellen, die von CD8-positiven ZTL erkannt werden und eine ZTL-induzierte Lyse und/oder Apoptose von Tumor- oder Leukämiezellen herbeiführen.
Eine Lösung dieser Aufgabe besteht in der Bereitstellung eines Oligopeptids, das (al) die im Sequenzprotokoll Nr. 1 dargestellte Aminosäuresequenz KAWQPGWTV aufweist, die den Aminosäurepositionen 105 bis 113 des humanen CD19-Proteins (gemäß Stamenkovic and Seed, 1988) entspricht, oder das eine durch Aminosäure-Substitution, - Deletion, -Insertion, -Addition, -Inversion und/oder durch chemische oder physikalische Modifikation einer oder mehrerer Aminosäuren davon ableitbare Aminosäuresequenz aufweist, die ein fünktionelles Äquivalent zu der Aminosäuresequenz KAWQPGWTV darstellt, oder das (a2) die im Sequenzprotokoll Nr.2 dargestellte Aminosäuresequenz EIWEGEPPCV aufweist, die den Aminosäurepositionen 165 bis 174 des humanen CD19-Proteins (gemäß Stamenkovic and Seed, 1988) entspricht, oder das eine durch Aminosäure-Substitution, -Deletion, -Insertion, -Addition, -Inversion und/oder durch chemische oder physikalische Modifikation einer oder mehrerer Aminosäuren davon ableitbare Aminosäuresequenz aufweist, die ein funktionelles Äquivalent zu der Aminosäuresequenz KAWQPGWTV darstellt, und das (b) ein Epitop für CD8-positive ZTL darstellt, und (c) dazu geeignet ist, eine auf humanes Leukozyten-Antigen der Molekülgruppe "MHC Klasse I", Allelvariante A2 (kurz: A2) eingeschränkte (restringierte) Immunantwort von CD8-positiven ' ZTL gegen Tumor- und Leukämiezellen zu induzieren.
Eine äquivalente Lösung besteht in der Bereitstellung eines zu diesem erfindungsgemäßen Oligopeptid analogen retro-inversen Peptids oder Pseudopeptids, das anstelle der -CO-NH-Peptidbindungen Nichtpeptidbindungen wie z.B. - NH-CO-Bindungen aufweist (vgl. Meziere et al. 1997).
Mit den Oligopeptiden CD19 105-113 und CD19 165-174 werden erstmals Peptidantigene bereitgestellt, deren Aminosäuresequenz aus dem humanen CD19-Protein stammt (vgl. Stamenkovic I. and Seed B., 1988). Die Oligopeptide CD19 105-113 und CD19 165-174 und ihre Derivate stellen B-Zell-assoziierte Tumorantigene für ZTL dar und liefern damit die molekulare Grundlage für eine CD19-spezifische Immuntherapie maligner B-lymphoider System-Erkrankungen.
Die erfindungsgemäßen. Oligopeptide (CD19 105-113 und CD 19 165-174 und deren Derivate) können in der aktiven und passiven Immunisierung von Patienten mit bösartigen lymphohämopoetischen Neoplasien, bei denen das CD 19 Epitop 105-113 und/oder das CD19 Epitop 165-174 im Kontext von A2.1 präsentiert wird/werden, eingesetzt werden, um die Induktion, Generierung und Expandierung von CD19 105-113 und/oder CD19 165-174 spezifischen zytotoxischen T-Lymphozyten herbeizuführen, die in der Lage sind, die Tumor- oder Leukämiezellen der betreffenden Patienten spezifisch abzutöten und dadurch eine Heilung zu vermitteln.
Im Zuge der vorliegenden Erfindung zeigte sich überraschenderweise, daß CD8-positive ZTL das CD19-Protein auf der Oberfläche von malignen B-lymphoiden Zellen spezifisch erkennen und diese abtöten, während bei normalen B-Zellen keine ZTL-induzierte Lyse auftritt. Für die Oligopeptide CD19 105-113 und CD19 165-174 und deren Derivate ergibt sich daraus der Vorteil eines vernachlässigbar geringen Risikos eines unerwünschten Angriffs auf Normalzellen. . .
Die Derivate des Oligopeptids CD19 105-113 und des Oligopeptids CD19 165-174 und auch die davon abgeleiteten retro-inversen Peptide oder Pseudopeptide haben gegenüber dem jeweils ursprünglichen Oligopeptid selbst den Vorteil, daß damit eine potentielle funktioneile Selbsttoleranz (gegenüber dem CD 19 105-113 bzw. dem CD 19 165-174 Oligopeptid) auf T-Zellebene umgangen werden kann. Während das CD19 105-113 bzw. das CD19 165-174 Oligopeptid aufgrund der (geringen) Expression in einigen Normalgeweben u.U. in dem betreffenden Organismus (Patientenkörper) ein sogenanntes Tolerogen darstellt und für die organismuseigenen (patienteneigenen) ZTL nicht immunogen ist, werden die Derivate dieser Oligopeptide (CD19 105-113 und CD19 165- 174) im Regelfall als Antigene erkannt und induzieren die Aktivierung und Expandierung von ZTL. Diese Derivat-induzierten ZTL weisen in der Regel eine hohe Kreuzreaktivität gegenüber der betreffenden CD 19 105-113 bzw. CD 19 165-174 Wildtypsequenz auf und induzieren infolgedessen auch die Lyse und/oder Apoptose von solchen (Tumor-)Zellen, die CD19 105-113 und/oder CD19 165-174 (im Kontext von A2, insbesondere von A2.1) auf ihrer Oberfläche präsentieren.
Besonders bevorzugte Derivate des CD19 105-113 bzw. des CD19 165-174 Oligopeptids sind solche, die natürlicherweise in anderen Säuge- oder Wirbeltieren vorkommen, z.B. CD19 105-113- bzw. CD19 165-174 -Homologe aus der Maus. Die CD19-(Protein-) und Peptid-Homologe und die dafür kodierenden Nukleinsäuren können relativ leicht, nämlich direkt und mit geläufigen Isolationsverfahren aus dem jeweiligen Organismus gewonnen werden.
Die Oligopeptide CD19 105-113 und CD19 165-174 und deren Derivate sowie die retro- inversen Peptide oder Pseudopeptide können mittels gängiger Peptidsyntheseverfahren hergestellt werden, und die für diese Oligopeptide kodierenden Nukleotidsequenzen können mit bekannten chemischen oder mit molekularbiologischen Verfahren gewonnen werden.
Es besteht zudem, die Möglichkeit, aus den vorstehend beschriebenen erfindungsgemäßen Oligopeptiden, einem flexiblem Linker und einer schweren Kette des HLA-Moleküls ein Fusionsprotein zu konstruieren, und zwar derart, daß das Oligopeptid dazu befähigt (in der Lage bzw. geeignet) ist, die Peptid-Bindungsfürche des HLA-Moleküls zu besetzen. Diese Fusionsproteine und dafür kodierende Polynukleotide eignen sich insbesondere als (Wirkstoff von einem) Diagnostikum oder Therapeutikum oder Prophylaktikum oder allgemein für eine Detektion und/oder Manipulation von T-Zellen, die eines der in den Sequenzprotokollen Nr.l und Nr.2 dargestellten CD-19-Oligopeptide erkennen. Die Erfindung betrifft deshalb auch ein Fusionsprotein, welches aus einem der vorstehend beschriebenen Oligopeptide, aus einer schweren Kette des HLA-Moleküls und aus einem flexiblem Linker besteht und derart konstruiert ist, daß das Oligopeptid geeignet (in der Lage bzw. befähigt) ist, die Peptid-Bindungsfürche des HLA-Moleküls zu besetzen, und welches zur Verwendung bzw. für den Einsatz als Diagnostikum oder Therapeutikum oder Prophylaktikum oder allgemein für eine Detektion und/oder Manipulation von T- Zellen, die eines der in den Sequenzprotokollen Nr.l und Nr.2 dargestellten CD19-Oligopetide erkennen, geeignet ist. Die für dieses Fusionsprotein kodierende Polynukleotide sind ebenfalls Gegenstand vorliegender Erfindung.
Die erfindungsgemäßen Oligopeptide (CD19 105-113 und CD19 165-174 und deren Derivate) sowie die retro-inversen Peptide oder Pseudopetide und die vorstehend beschriebenen Fusionsproteine eignen sich sowohl zur in-vivo-Induktion von T- Lymphozyten im Patienten als auch zur in-vitro-Induktion und -Expansion entsprechend reaktiver patienteneigener oder patientenfremder T-Lymphozyten.
Für eine in-vivo-Induktion und -Expansion von T-Lymphozyten im Patienten kommen verschiedene Verfahren in Betracht, beispielsweise (a) die Injektion des CD19 105-113 und/oder CD19 165-174 Oligopeptids und/oder eines oder mehrerer Derivate eines oder beider dieser Oligopeptide und/oder eines retro-inversen Peptids oder Pseudopetids und/oder eines vorstehend beschriebenen Fusionsproteins - als reines Peptid oder zusammen mit Adjuvantien oder mit Cytokinen oder in einem geeigneten Freisetzungssystem wie z.B. Liposomen, (b) die Injektion einer oder mehrerer mindestens für das CD19 105-113 und/oder das CD19 165-174 Oligopeptid oder deren Derivate und/oder für eines der retro-inversen Peptide oder Pseudopetide und/oder für eines der Fusionsproteine kodierenden Nukleinsäuren - in "nackter" oder komplexierter Form oder in Form von viralen oder nichtviralen Vektoren oder zusammen mit Freisetzungssystemen wie kationischen Lipiden oder kationischen Polymeren, (c) die Beladung von Zellen autologen, allogenen, xenogenen oder mikrobiologischen Ursprungs mit dem CD19 105-113 und/oder dem CD19 165-174 Oligopeptid oder deren Derivaten oder dazu analogen retro-inversen Peptiden oder Pseudopeptiden, (d) die Beladung von Zellen autologen, allogenen, xenogenen oder mikrobiologischen Ursprungs mit dem CD19-Protein oder Homologen anderer Spezies, so daß infolgedessen das CD19 105-113 und/oder das CD19 165-174 Oligopeptid und/oder Derivate eines oder beider dieser Oligopeptide auf den jeweiligen Zellen präsentiert wird, oder (e) die Transfektion oder Infektion von Zellen autologen, allogenen, xenogenen oder mikrobiologischen Ursprungs mit den mindestens für das CD19 105-113 und/oder das CD19 165-174 Oligopeptid oder deren Derivate oder für ein davon abgeleitetes retro-inverses Peptid oder Pseudopetid oder für ein vorstehen beschriebenes Fusionsprotein kodierenden Nukleinsäuren (wiederum entweder in "nackter" oder komplexierter Form oder in Form von viralen oder nichtviralen Vektoren).
Im Fall einer in-vitro-Induktion und -Expansion werden die in-vitro gewonnenen T- Lymphozyten anschließend dem Patienten per Infusion oder Injektion o. ä Verfahren zugeführt.
Die Erfindung betrifft deshalb auch die Verwendung des CD 19 105-113 und/oder des CD19 165-174 Oligopeptids und/oder deren Derivate und/oder dazu analoger retro- inverser Peptide oder Pseudopeptide und/oder der vorstehen beschriebenen Fusionsproteine und/oder wenigstens eines Polynukleotids, das mindestens für das CD19 105-113 und/oder das CD19 165-174 Oligopeptid und/oder ein Derivat eines oder beider dieser Oligopeptide kodiert, zur Herstellung von Diagnostika - insbesondere MHC-Tetramere oder MHC-Dimere oder andere Strukturen, an die wenigstens ein solches erfmdungsgemäßes Oligopeptid oder retro-inverses Peptid oder Pseudopeptid durch kovalente oder nicht-kovalente Bindung assoziiert ist - und/oder Prophylaktika und/oder Therapeutika (insbesondere Impfstoffe) für den Nachweis und/oder die Beeinflussung und/oder Generierung und/oder Expandierung und/oder Steuerung des Aktivierungs- und Funktionszustands von T-Zellen, insbesondere CD8-positiven ZTL.
Als Therapeutika und/oder Prophylaktika kommen insbesondere Impfstoffe oder Injektionen oder Infüsionslösungen in Betracht, die als Wirkstoff (a) das CD19 105-113 und/oder das CD 19 165-174 Oligopeptid und/oder wenigstens ein Derivat eines dieser Oligopeptide und/oder wenigstens ein zu einem dieser Oligopeptide oder zu deren Derivate analoges retro-inverses Peptid oder Pseudopeptid und/oder wenigstens eines der vorstehend beschriebenen Fusionsproteine enthalten, und/oder die (b) eine Nukleinsäure enthalten, die mindestens für das CD19 105-113 und/oder das CD19 165- 174 Oligopeptid oder mindestens für ein Derivat eines dieser Oligopeptide kodiert, und/oder die (c) in-vitro " erzeugte T-Lymphozyten, welche spezifisch gegen das CD19 105-113 und/oder das CD19 165-174 Oligopeptid μnd/oder deren Derivat(e) und/oder gegen ein zu einem dieser Oligopeptide oder zu einem Derivat dieser Oligopeptide analoges retro-inverses Peptid oder Pseudopeptid gerichtet sind, enthalten.
Zur Herstellung der Diagnostika oder auch der Therapeutika oder auch der Prophylaktika eignen sich insbesondere auch rekombinante DNS- oder RNS-Vektormoleküle, die ein oder mehrere Polynukleotid(e) enthalten, welche für mindestens das CD19 105-113 und/oder das CD19 165-174 Oligopeptid und/oder für mindestens ein Derivat eines dieser Oligopeptide kodieren, und die in Zellen autologen, allogenen, xenogenen oder mikrobiologischen Ursprungs transkribierbar bzw. exprimierbar sind. Die Erfindung umfaßt deshalb auch solche rekombinanten DNS- oder RNS-Vektormoleküle und Wirtszellen, die diese Vektormoleküle enthalten.
Als Diagnostikum oder Therapeutikum oder Prophylaktikum oder allgemein für eine Detektion und/oder Manipulation von CD19 105-113 und/oder das CD19 165-174 überexprimierenden Zellen können erfindungsgemäß auch polyklonale, monoklonale oder rekombinante Antikörper eingesetzt werden, die gegen das CD 19 105-113 und/oder das CD19 165-174 Oligopeptid und/oder gegen ein Derivat eines dieser Oligopeptide und/oder gegen ein zu einem dieser Oligopeptide oder deren Derivate analoges retro- inverses Peptid oder Pseudopeptid und/oder' gegen ein vorstehend beschriebenes Fusiosnprotein gerichtet sind oder die mit einem Komplex aus einem der betreffenden Oligopeptide bzw. dessen Derivate bzw. dazu retro-inversen Peptid(en) und/oder Pseudopeptid(en) und HLA-A2 reagieren.
Die Verwendung des CD19 105-113 und/oder des CD19 165-174 Oligopeptids und/oder eines Derivates dieser Oligopeptide und/oder eines zu einem dieser Oligopeptide oder zu einem Derivat dieser Oligopeptide analogen retro-inversen Peptids oder Pseudopeptids oder eines Fusionsproteins für die Herstellung polyklonaler, monoklonaler oder rekombinanter Antikörper gegen ein solches erfindungsgemäßes Oligopeptid bzw. retro- inverses Peptid oder Pseudopeptid und der/die betreffende^) Antikörper an sich sind folglich ebenfalls Teil der vorliegenden Erfindung.
Als Diagnostikum oder Therapeutikum oder Prophylaktikum oder allgemein für eine Detektion und/oder Manipulation von CD19 105-113 und/oder CD19 165-174 überexprimierenden Zellen können erfindungsgemäß auch polyklonale, monoklonale oder rekombinante A2-restringierte T-Zellrezeptoren oder dazu fünktionell äquivalente Moleküle eingesetzt werden, die spezifisch für das CD 19 105-113 und/oder das CD19 165-174 Oligopeptid und/oder ein Derivat eines dieser Oligopeptide und/oder für dazu analoge retro-inverse Peptide oder Pseudopeptide und/oder für ein vorstehend beschriebenes Fusionsprotein sind. Die T-Zellrezeptoren oder dazu fünktionell äquivalenten Moleküle können autologen, allogenen oder xenogenen Ursprungs sein. Zum Gegenstand vorliegender Erfindung gehört folglich vorrangig auch:
• die Verwendung des CD19 105-113 und/oder des CD19 165-174 Oligopeptids und/oder eines Derivates eines dieser Oligopeptide und/oder dazu analoger retro- inverser Peptide oder Pseudopeptide oder die Verwendung von Polynukleotiden mit einer Nukleotidsequenz, die mindestens für das CD19 105-113 und/oder das CD19 165-174 Oligopeptid und/oder ein Derivat dieser Oligopeptide kodiert, zur
Herstellung polyklonaler, monoklonaler oder rekombinanter A2-restringierter T-Zellrezeptoren oder dazu fünktionell äquivalenter Moleküle mit Spezifität für ein solches erfindungsgemäßes Oligopeptid bzw. retro-inverses Peptid oder
Pseudopeptid, der/die betreffende(n) T-Zellrezeptor(en) an sich und dazu fünktionell äquivalente
Moleküle, sowie Polynukleotide, die für diese T-Zellrezeptoren oder dazu fünktionell äquivalenten Moleküle kodieren,
Expressionsvektoren mit der Fähigkeit zur Expression dieser T-Zellrezeptoren oder dazu fünktionell äquivalenten Moleküle.
Die Erfindung umfaßt außerdem Reagenzien zur in-vivo- oder in-vitro-Aktivierung von T-Zellen, insbesondere CD8-positiven ZTL, die dadurch gekennzeichnet sind, daß sie unter Verwendung des CD19 105-113 und/oder des CD19 165-174 Oligopeptids und/oder wenigstens eines Derivates eines dieser Oligopetide und/oder wenigstens eines dazu analogen retro-inversen Peptids oder Pseudopeptids oder wenigstens eines vorstehend beschriebenen Fusionsproteiήs und/oder unter Verwendung wenigstens eines Polynukleotids, das mindestens für das Oligopeptid oder dessen Derivat(e) kodiert und/oder unter Verwendung des CD19-Proteins oder dazu Homologen anderer Spezies, hergestellt sind. Bei diesen Reagenzien kann es sich insbesondere um Therapeutika, und dabei vor allem um Impfstoffe handeln.
Im folgenden wird die Erfindung anhand von Herstellungs- und Anwendungsbeispielen mit Figuren näher erläutert. Die verwendeten Abkürzungen bedeuten:
A2 humanes Leukozyten- Antigen der Molekülgruppe
"MHC Klasse I", Allelvariante "A2"
A2.1 humanes Leukozyten- Antigen der Molekülgruppe
"MHC Klasse I", Allelvariante " A2", Subtyp " A2.1 "
A2Kb A2.1 Kb = MHC Klasse I-Molekül aus α und α2-Domäne von A2 und α3-Domäne von Kb
ALL akute lymphatische Leukämie
AML akute myeloische Leukämie
APS Ammoniumpersulfat
APZ antigenpräsentierende Zelle ATCC American Type Culture Collection
ATP Adenosin-5 ' -triphosphat
B-ALL B-Zell-ALL bkgd unspezifische Fluoreszenzintensität bp Basenpaare
BSA . Rinderserumalbumin
C-terminal Carboxyl-terminal
CD Differenzierungscluster
CD8 humaner CD8α/ß-Korezeptor
CDR komplementaritätsbestimmende Region
CLL chronisch lymphatische Leukämie
CML chronisch myeloische Leukämie
CMN Cytomegalievirus
Con A Concanavalin A
DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure
DSMZ Deutschen Sammlung von Mikroorganismen und Zellkulturen
DTT Dithiothreitol
DZ dendritische Zellen
E:T Effektor- zu Zielzeil- Verhältnis
EBV Epstein-Barr- Virus
EDTA Ethylendiamintetraacetat
ER Endoplasmatisches Retikulum
FACS Fluoreszenz-aktivierter Zeil- S ortierer
FCS fötales Kälberserum
FITC Fluoreszein-Isothiocyanat
Flu Ml A/PR/8/34 Influenza Virus-Matrixprotein Ml
G-418 Geneticin (Neomycin-Antibiotikum)
GM-CSF Granulozyten-Makrophagen-colony stimulating factor
HBV pol Hepatitis B Virus-Polymerase
HEPES N-(2-Hydroxyethyl)piperizan-N'-ethansulfonsäure
HLA humanes Leukozyten-Antigen
HLA-A2.1 humanes Leukozyten-Antigen der Molekülgruppe "MHC Klasse I"
Allelvariante "A2", Subtyp "A2.1"
HPLC Hochdruck-Flüssigkeits-Chromatographie
IFA inkomplettes Freundsches Adjuvans
IFN Interferon
Ig Immunglobulin
IL Interleukin kb Kilobasenpaare
Kb. H-2Kb kDa kilo Dalton
LB Luria-Bertani
LCL lymphoblastoide Zellinie
LMP low molecular mass polypeptide
LPS Lipopolysaccharid MHC Haupthistokompatibilitätskomplex
Mio Million mut mutiert
N-terminal Amino-terminal
OD optische Dichte
PBMC mononukleäre Zellen des peripheren Bluts
PBS Phosphat-gepufferte Kochsalzlösung
PG-E2 Prostaglandin E
PHA Phytohämagglutinin
PMSF Phenylmethylsulfonylfluorid
PVDF Polyvinylidendifluorid
Rad radiation absorbed dose
RP reverse phase
SDS Natriumdodecylsulfat
SDS-PAGE SDS-Polyacrylamid-Gelelektrophorese
SL spezifische Lyse
SV-40 Simian Virus-40
TAA tumorassoziierte(s) Antigen(e)
TAP Transporter assoziiert mit Antigenprozessierung
TBE Tris-Borsäure-EDTA
TE Tris-EDTA
TEMED N, N, N', N'-Tetramethylethylendiamin
TFA Trifluoressigsäure
TEL Tumor-infiltrierende Lymphozyten
TNF-α Tumor Nekrosis Faktor-α
Tris Tris-(hydroxymethyl)-aminomethan
TZR .T-Zellrezeptor u internationale Einheiten (units)
Upm Umdrehungen pro Minute
VSV-N Vesikuläres Stomatitis-Virus-Nukleoprotein v/v Volumen pro Volumen wt Wildtyp w/v Masse pro Volumen
ZTL zytotoxische T-Lymphozyten
Abkürzungen für Aminosäuren:
A Alanin
C Cystein
D Aspartat
E Glutamat
F Phenylalanin
G Glycin
H EQstidin
I Isoleucin K Lysin
L Leucin
M ' Methionin
N Asparagin
P Prolin
Q Glutamin
R Ar ginin
S Serin
T Threonin
V Valin w Tryptophan
Y Tyrosin
Die Figuren zeigen:
Fig. 1: Bindung selektierter synthetischer CD19-Peptide. Die relative A2.1- Bindungsaffinität (angegeben als % Inhibition) wurde bestimmt durch die Fähigkeit des jeweiligen Peptids, die A2.1-Bindung des Peptids p53 264-272 zu inhibieren. Dies wurde anhand der Inhibition der p53-spezifischen ZTL-Lyse von p53 264-272-beladenen .EA2-Zielzellen durch CD19-Peptide unterschiedlicher Konzentration gemessen. Die Inhibitionswerte für die Peptide Flu Ml 58-66 und VSV-N 52-59 wurden aus 6 unabhängigen Experimenten gemittelt.
Fig. 2: A2.1 -restringierte Immunogenität synthetischer CD19-Peptide in A2Kb- oder CD8 x A2K -transgenen Mäusen. Die Immunogenität wurde anhand der lytischen Aktivität der in diesen Mäusen durch Peptid-Immunisierung induzierten ZTL in einem 4-stündigen Zytotoxizitätstest überprüft. Als Zielzellen wurden mit 2 μg
Peptid beladene oder unbeladene T2 bzw. T2A2Kb-Zellen eingesetzt. Dargestellt sind repräsentative spezifische Lysen individueller ZTL-Kulturen aus durchschnittlich 4 immunisierten Mäusen.
Fig. 3: H-2b-restringierte Immunogenität synthetischer CD19-Peptide in A2Kb- oder CD 8 x A2Kb-transgenen Mäusen. Die Immunogenität wurde anhand der lytischen Aktivität der in diesen Mäusen durch Peptid-Immunisierung induzierten ZTL in einem 4-stündigen Zytotoxizitätstest überprüft. Als Zielzellen wurden mit 2 μg Peptid beladene oder unbeladene EL4-Zellen eingesetzt. Die Daten repräsentieren die spezifischen Lysen der in Abb. 2 ausgewählten ZTL-Kulturen.
Fig. 4: CD19.105-spezifische ZTL-Linien: Effizienz der Peptiderkennung und Peptidspezifität. Aus A2.1- und CD8 x A2Kb-transgenen Mäusen wurden durch wiederholte in vitro- Stimulation mit dem CD19.105-Peptid bzw. dem Peptid Flu Ml die CD 19-reaktiven ZTL-Linien A2 19.105 (■) und CD8 x A2Kb 19.105 (□) sowie die Flu Ml 58-66-spezifische ZTL-Linie CD8 x A2Kb Flu Ml 58-66 etabliert und in einem 4-stündigen Zytotoxizitätstest unter den angegebenen E:T- Verhältnissen getestet, Zielzellen waren: bei den angegebenen Peptidkonzentrationen inkubierte T2-Zellen (obere Graphik), CD19.105- beladene (•), Flu Ml 58-66-beladene (Δ) und unbeladene (O) T2-Zielzellen (untere Graphiken).
Fig. 5: CD19.165-spezifische ZTL-Linien: Effizienz der Peptiderkennung und Peptidspezifität. Aus A2.1- und CDS x A2Kb-transgenen Mäusen wurden durch wiederholte in vitro- Stimulation mit dem CD19.165-Peptid bzw. dem Peptid FluM 1 die CD19-reaktiven ZTL-Linien A2 19.165 (□) und CD8 x A2Kb 19.165 (■) sowie die Flu Ml 58-66-spezifische ZTL-Linie CD8 x A2Kb Flu Ml 58-66 etabliert und in einem 4-stündigen Zytotoxizitätstest unter den angegebenen E:T-
Verhältnissen getestet. Zielzellen waren: bei den angegebenen Peptidkonzentrationen inkubierte T2-Zellen (obere Graphik), CD19.165- beladene (•), Flu Ml 58-66-beladene (Δ), HuWT p53.264-272 beladene (Q) und unbeladene (O) T2-Zielzellen (untere Graphiken).
Fig. 6: ZTL-Erkennung von EA2 bzw. EA2Kb CD19-Transfektanten. Die A2.1- restringierten und CD19.105-sρezifischen ZTL A2 und CD8 x A2Kb 19.105 sowie die allo-A2.1 -reaktiven ZTL CD8 allo A2 und die Flu Ml 58-66- spezifischen ZTL CD8 x A2 Flu Ml wurden als Effektor-Zellen unter den angegebenen E:T-Verhältnissen in einem 6-stündigen Zytotoxizitätstest gegen folgende Zielzellen getestet: EA2 (□), CD19-transfizierte EA2 cl 24 (■), mit dem Hygromycin-Resistenzgen transfizierte EA2Kb Hygro (Δ) sowie CD 19- transfizierte EA2Kb cl 74 (A); Fig. 7: ZTL-Erkennung von EA2 bzw. EA2Kb CD19-Transfektanten. Die A2.1- restringierten und CD19.165-sρezifischen ZTL A2 und CDS x A2Kb 19.165 sowie die allo-A2.1 -reaktiven ZTL CD8 allo A2 und die Flu Ml 58-66- spezifischen ZTL CD8 x A2Kb Flu Ml wurden als Effektor-Zellen unter den angegebenen E:T-Verhältnissen in einem 6-stündigen Zytotoxizitätstest gegen folgende Zielzellen getestet: EA2 (□), CD19-transfizierte EA2 cl 24 (■), EA2Kb (Δ) sowie CD19-transfizierte EA2K cl 74 (A);
Fig. 8: CD19-Expression von EA2 und EA2Kb CD19-Transfektanten. EA2 und EA2Kb -Zellen sowie CD19-transfizierte EA2 und EA2Kb-Zellen (EA2 cl 24-Zellen und EA2Kb cl 74) wurden bezüglich ihrer CD19-Expression nach Antikörper- Markierung im FACS analysiert. Die Fluoreszenz-Intensitäten der mit dem anti- hu-CD19 direkt FITC-konjugierten Antikörper (CD 19) sowie einem anti-hu-CD8 direkt FITC-konjugierten Antikörper gefärbten Zellen (bkgd) sind dargestellt.
Die Fluoreszenz-Intensität ist als CD19-Expression angegeben.
Fig. 9: ZTL-Erkennung der CD19-exprimierenden A2-positiven EBV-transformierten B- lymphoiden Zellinien SY, JY und LG2. ZTL A2 19.105, ZTL CD8 x A2Kb
19.105, ZTL CD8 x A2Kb 19.165, ZTL CD8 allo A2 und ZTL A2 Flu Ml wurden als Effektor-Zellen unter den angegebenen E:T- Verhältnissen in einem 6- stündigen Zytotoxizitätstest gegen die Zellinien S Y (•), JY(A), LG 2 (■) sowie EA2 (O) getestet.
Fig. 10: ZTL-Erkennung einer CD19-exprimierenden A2-positiven Leukämie-Zellinie.
ZTL CD8 x A2Kb 19.105, ZTL CD8 allo A2 und ZTL A2 Flu Ml wurden als
Effektor-Zellen unter den angegebenen E:T- Verhältnissen in einem 6-stündigen Zytotoxizitätstest gegen die Zielzelle BV173 (A) (prä-B-ALL) getestet. Die Zielzelle wurde wie dargestellt (■) mit dem anti-A2.1 monoklonalen Antikörper PA2.1 behandelt.
Fig. 11: ZTL-Erkennung CD19-exprimierender A2-positiver Tumor-Zellinien. ZTL CD8 x A2Kb 19.105, ZTL CD8 allo A2 und ZTL A2 Flu Ml wurden als Effektor-Zellen unter den angegebenen E:T- Verhältnissen in einem 6-stündigen Zytotoxizitätstest gegen die Zielzellen ST 486 (A) (Burkitt-Lymphom), UoC- Bl l (A) (Prä-B-ALL), U 937 (#) (histiozytisches Lymphom) und EA2 (O) getestet.
Fig. 12: ZTL-Erkennung von CD19-exprimierenden A2-negativen und A2-positiven Tumor-Zellinien. ZTL CD8 x A2Kb 19.105, ZTL CD8 allo A2 und ZTL A2 Flu Ml wurden als Effektor-Zellen unter den angegebenen E:T- Verhältnissen in einem 6-stündigen Zytotoxizitätstest gegen die A2-negative Zielzelle Ramos (O) (Burkitt-Lymphom), die A2-positive Zellinie Ramos-A2 (Q) und Ramos-A2 nach Beladen mit dem Peptid 19.105 (■) (lOμM) getestet.
Fig. 13: ZTL-Erkennung von A2.1 -positiven transformierten lymphohämopoetischen Zellen. ZTL A2 19.105, ZTL CD8 x A2Kb 19.105, CD8 allo- A2.1 -reaktive ZTL und ZTL CD8 x A2Kb Flu Ml wurden als Effektor-Zellen unter den angegebenen E:T-Verhältnissen in einem 6-stündigen Zytotoxizitätstest gegen folgende Zielzellen getestet: Con A-Blasten (□), PHA-Blasten (Δ) und LPS-Blasten A2Kb
(O). Sämtliche Zielzellen wurden wie dargestellt (B,A,#) mit dem Peptid CD19.105 beladen (lOμM).
Fig. 14: ZTL-Erkennung von A2.1 -positiven ruhenden lymphohämopoetischen Zellen. ZTL A2 19.105, ZTL CD8 x A2Kb 19.105, ZTL CDS allo A2 und ZTL CD8 x A2K Flu Ml wurden als Effektor-Zellen . unter den angegebenen E:T-Verhältnissen in einem 6-stündigen Zytotoxizitätstest gegen ruhende T-Zellen (□), B-Zellen (O) und die gleichen Zellen beladen mit dem CD 19.105- Peptid (10 μM) (■,•) getestet.
Fig. 15: Für das CD19- Protein kodierende Plasmid pA71d .
Fig. 16: Für das Molekül A2.1 kodierendes Plasmid ρSV2-A2.1.
A) In den Beispielen erwähnte Materialien (1) Mäuse
Transgene Mäuse, die das humane MHC Klasse I-Transgen HLA-A2.1 (A2.1) exprimieren, wurden mit fachüblichen Methoden in den C57BL/6-Hintergrund eingekreuzt (Irwin et al., 1989). Hierfür wurden folgende Stämme verwendet:
1) A2.1 Kb (A2Kb)-transgene Mäuse - sie sind homozygot für ein chimäres MHC Klasse I-Transgen, das sich aus den humanen oci- und α2-Domänen von A2.1 und aus der α3-Domäne von H-2Kb der Maus zusammensetzt, sowie für das H-2b-Gen.
2) huCD8α/ß (CD8)-transgene Mäuse - sie sind homozygot für die α- und ß-Kette des humanen CD8-Korezeptors.
3) [huCD8α/ß x A2.1/Kb]Fι (CD8 x AZK^-transgene Mäuse - sie exprimieren heterozygpt das chimäre A2Kb-Molekül und zusätzlich die α- und ß-Kette des humanen CD8. Außerdem sind sie homozygot für H-2b. 4) A2.1-transgene Mäuse (([A2.1 x C57BL/6] x C57BL/6)Fι-transgen) - sie exprimieren die α,ι-, α2- und α3-Domänen des humanen A2.1 -Moleküls heterozygot und sind homozygot für H-2b.
5) C57BL/6-Mäuse - sie besitzen den H-2b-Phänotyp.
(2) Synthetische Peptide
Synthetische Peptide wurden vom "Scripps Research Institute" und von SNPE (Neosystem laboratoire, Straßburg, Frankreich) bezogen. Die Reinheit der vom "Scripps
Research Institute" mit dem automatischen Peptid-Synthese-Gerät 430A (Applied
Biosystems, Foster City, CA) synthetisierten Peptide betrug mindestens 70 %, die
Reinheit der von SNPE synthetisierten Peptide mindestens 75 %. Reinheit und korrekte
Aminosäurezusammensetzung aller Peptide wurde durch HPLC-Analyse sowie massenspektrometrisch überprüft. Lyophilisierte und entsalzte Peptide vom "Scripps
Research Institute" wurden nach Mengenkontrolle in Abhängigkeit von der
Peptidsequenz zu 10 mg/ml in DMSO, H2O oder in Gemischen aus 0,l%iger NaOH und
H2O gelöst. Nichtentsalzte Peptide von SNPE wurden grundsätzlich in DMSO zu 10 mg/ml gelöst. Die Lagerung erfolgte in Aliquots bei -20 bis -80 °C. Zusätzlich zu den in Tab. 1 dargestellten Peptiden wurde ein Peptid, das die Residuen 128-140 des Hepatitis
B -Virus Core-Proteins repräsentiert (TPPAYRPPNAPIL), synthetisiert.
(3) Antikörper
Für die Blockade von A2.1 wurde der von der Hybridom-Zellinie PA2.1 (ATCC HB- 117) produzierte monoklonale Antikörper verwendet .
Zur HLA-Typisierung von Tumor-Zellinien und von A2-transgenen Mäusen wurde der von der Maus-Hybridom-Linie BB7.2 (ATCC HB-82) produzierte monoklonale Antikörper eingesetzt. Zur Detektion von monoklonalen Antikörpern der Maus in der Durchflußzytometrie wurde ein FITC-konjugierter polyklonaler Sekundär-Antikörper (Ziege anti-Maus IgG F(ab)2-Fragment; 1:30- Verdünnung; Jackson [Dianova], Hamburg) eingesetzt.
Die Analyse der CD 19- Expression auf humanen Zellen wurde mit einem monoklonalen FITC-konjugierten, gegen humanes CD 19 gerichteten Antikörper (Maus anti-Human IgG; 1 : 10-Verdünnung; Pharmingen) durchgeführt.
Für die Isotypkontrolle wurde ein monoklonaler, FITC-konjugierter Antikörper gegen humanes CD8 eingesetzt (Maus anti-Human IgG; 1:5- Verdünnung; Becton & Dickinson).
Die Analyse der murinen CD19-Expression erfolgte mittels FITC-konjugiertem monoklonalen Antikörper gegen murines CD 19 (Maus anti-Maus IgG; 1:10- Nerdünnung; Pharmingen)
Alle Antikörper wurden in Phosphatgepufferter Kochsalzlösung (PBS) (Bio Whittaker, Walkersville, MA) verdünnt.
(4) Zellen, Zellinien und Transfektanten
Sämtliche Zellen und Zellinien wurden in RPMI 1640 (Biowhittaker, Nerviers, Belgien) in Gegenwart von 10 % hitzeinaktiviertem (30 min, 56 °C) FCS (PAA Laboratories, Linz, Österreich), 1 % 0,2 M L-Glutamin (Biowhittaker) und 50 μg/ml Gentamycin (Gibco BRL, Eggenstein) kultiviert. Zur Propagation von Zellen und ZTL-Linien aus der Maus wurde dem Medium zusätzlich ß-Mercaptoethanol in einer Endkonzentration von 5 x 10"5 M zugesetzt. Zur Kultivierung Νeomycin-transfizierter Zellen wurde dem Medium Geneticin (G-418) (Gibco BRL) in einer effektiven Konzentration von 280-560 μg/ml zugegeben. Zur Kultivierung Hygromycin-transfizierter Zellen wurde dem Medium Hygromycin B (Merck) in einer effektiven Konzentration von 800 μg/ml zugesetzt. Alle Zellen wurden bei 37 °C und 5 % CO2 in Wasserdampf-gesättigter Atmosphäre in Zellkulturflaschen oder 24-Loch-Platten (ZTL) (Corning Costar, Bodenheim) kultiviert.
(4.1) Zellen: Zur Gewinnung von mononukleären Zellen des peripheren Bluts (PBMZ) wurde das Blut eines gesunden A2-positiven Spenders mit PBS (Biowhittaker,
Walkersville, MA) im Verhältnis 1:3 verdünnt und mit dem gleichen Volumen Ficoll (Seromed Biochrom, Berlin) unterschichtet. Nach Zentrifugation (1500 Upm, 5 °C, 7 min) wurden die PBMZ aus der Interphase isoliert und gewaschen. Con A- und PHA-aktivierte Lymphoblasten wurden mit fachüblichen Verfahren (vgl. Theobald et al., 1995) durch 3-tägige Stimulation von A2-positiven PBMZ mit Con A (10 μg/ml) und PHA (1,5 % w/v) (Gibco BRL, Eggenstein) generiert. (LPS)-aktivierte Lymphoblasten wurden durch 3-tätige Stimulation von Milzzellen aus A2Kb-transgenen Mäusen mit 25 μg/ml LPS (Sigma, Deisenhofen) und 7 μg/ml Dextransulfat (Pharmacia Biotech, Dänemark) gewonnen. Die Gewinnung ruhender T- und B-Zellen erfolgte nach negativer Selektion von A2- positiven PBMZ mit Antikörper-beschichteten "beads" (Dynal, Hamburg). Zur Isolierung von T-Zellen wurden die PBMZ nach Anweisung des Herstellers mit anti-CD 19- und anti-CD14-"beads" inkubiert, zur Isolierung von B-Zellen mit anti-CD2- und anti-CD14~ "beads".
(4.2) Zellinien und Transfektanten: Für die hier beschriebenen Untersuchungen wurden die nachfolgend aufgelisteten, gemäß (4.1) hergestellten oder im Stand der Technik bekannten und jederzeit erhältlichen Zellinien und Transfektanten eingesetzt: - die humane A2.1-positive T2-Zellinie ist ein B/T-Zellhybridom der Fusionspartner 721.147 (EBV-transformierte B-Zellinie) und CEM (T-Zellinie) (Salter und Cresswell, 1986), - T2-Zellen, die gemäß Theobald et al., 1995, mit dem A2Kb-Gen transfiziert wurden (T2A2K ), - die Thymom-Zellinie EL4 aus der C57BL/6-Maus (Theobald et al., 1995), - EL4-Zellen, die mit A2.1 bzw. A2.1Kb transfiziert waren (EA2) (Theobald et al., 1995),
- Jurkat-Zellen (humane T-Zell-Leukämie), die mit A2.1 transfiziert waren (JA2) (Theobald et al., 1995), - die humane Leukämie-Linie UoC-Bl 1 (Prä-B-ALL, A2-positiv) (Zhou et al., 1995)
- die humane A2-positive Burkitt-Lymphom-Zellinie ST 486
- die A2-positive Zellinie Prä-B-ALL BV173 (DSM ACC 20; DSMZ, Braunschweig, Deutschland),
- die A2-positive histiozytische Lymphom-Zell nie U-937 (ATCC CRL-1593; Rockvüle, MA, USA), die EB V-transformierte lymphoblastoide und A2-positive Zellinie LG-2
- die EBV-transformierte lymphoblastoide, A2-positive Zellinie SY (GSF, München)
- die EBV-transformierte lymphoblastoide, A2-positive Zellinie JY (Terhorst et al., 1979) - die A2-negative Burkitt-Lymphom-Zellinie Ramos
- Ramos-Zellen, die mit A2.1 transfiziert waren
Sämtliche aufgeführten Zellen dienten als Zielzellen im Zytotoxizitätstest.
B". In den Beispielen verwendete Methoden
(1) Transfektion
(1.1) Molekularbiologische Methoden
Um Säugerzellen mit dem CD19-Gen stabil zu transfizieren, wurde das Plasmid p71d gemäß Fig. 15 eingesetzt, in den die humane CD19-cDNA (Tedder et al., 1989) kloniert wurde. Für die Klonierung war ein zweiter Vektor, A#63d, der die Expressionskassette heferte, notwendig. Der Expressionsvektor A71d und der Vektor A#63d wurden freundlicherweise von Dr. Ashok Venkitaraman (LMB; Cambridge, UK) zur Verfügung gestellt. Dabei kontrollierte der vollständige Promoter des humanen Cytomegalievirus die •Expression des nachgeschalteten Gens. A71d enthält zusätzlich eine Sequenz, die für eine Hygromycinresistenz unter Kontrolle des SV40 Promoters kodiert und somit eine Selektion von Transfektanten mit Hygromycin erlaubt. Die Klonierung der CD19-cDNA in den Expressionsvektor A71d umfasste vier Schritte.
1. Die CD19-cDNA wurde aus dem Plasmid pSP65 mit der Restriktionsendonuklease EcoRI (MBI Fermentas) ausgeschnitten. Als Ergebnis wurde ein 2.1 kb großes Fragment erhalten.
2. Das CD19-DNA-Fragment wurde in die EcoRI-Seite des vorbereiteten Vektors A#63d kloniert. Diese Klonierung musste zuerst im Vektor A#63d erfolgen, da der Expressionsvektor A71d zwei EcoRI-Schnittstellen besitzt, wodurch vier Insertionsmöglichkeiten für das CD19-DNA-Fragment entstehen würden.
3. Zur Isolierung der CD19-DNA aus dem Vektor A#63d wurde dieser einer Mu I/Sall-Restriktion (Böhringer, Mannheim) unterworfen. Hierbei wurde ein 4.7 kbp langes Fragment ausgeschnitten, bestehend aus der CD19-DNÄ und
Expressionskassette. Die Expressionskassette enthielt einen CMV-Promoter und eine Polyadenylierungssequenz.
4. Das CMV-CD19-poly A-Fragment wurde in die u/Sal-Schnittstelle des Expressionsvektors A71dΗgiert. Zur Ligation des DNA-Fragmentes und Vektor- DNA wurden 10-100 μg Fragment und Plasmid-Nektor in 2-3 Ansätzen in einem
Molaritätsverhältnis 1:1 bis 9: 1 zusammengegeben. Außerdem enthielt der Ligationsansatz 2 μl Ligase-Puffer (10-fach konzentriert) und 1U T4-Ligase (Gibco, Eggersheim). Die Inkubation erfolgte bei 16°C.
Für die Transformation von Escherichia coli mit Plasmid-DΝA wurden mit dem Fachmann geläufigen Verfahren kompetente Zellen des E. co/z'-Stamms DH5α hergestellt. Zu den kompetenten Bakterienzellen wurde DNA gegeben und nach 15- minütiger Inkubation auf Eis wurden die Zellen einem Hitzeschock für 90 Sekunden bei 42 °C ausgesetzt. Nach Zugabe von SOC-Medium (20 g Trypton, 5 g Hefeextrakt, 0,5 g NaCl, Glucose-Lösung 2M 1 ml, MgCl2 /SO4 -Lösung 1 ml, ad H2O 1000 ml, pH 7,0) wurde der Ansatz für 60 min bei 37 °C inkubiert und schließlich auf LB-Agarplatten (1,5 % w/v Japan- Agar; Merck, Darmstadt) in Gegenwart von 100 μg/ml Ampicillin (Boehringer Mannheim, Mannheim) ausplattiert und für 10-15 Stunden bei 37 °C bebrütet. Einzelkolonien wurden gepickt, in LB-Medium mit Ampicillin ausgesät und bei 37 °C schüttelnd (220 Upm) inkubiert (Vorkultur). Anschließend wurden die Zellen geerntet und einer Plasmid-Präparation unterzogen. Die Präparation erfolgte mit einem "QIAprep Spin Miniprep Kit" nach Angaben des Herstellers (Qiagen, Hilden). Plasmid- tragende Transformanten wurden durch Restriktionsanalyse mit geeigneten Restriktionsendonukleasen und nachfolgende Agarose-Gelelektrophorese identifiziert. Als Gelmaterial wurde 0,6-2 %ige Agarose (w/v) verwendet, die in TAE-Puffer (Tris- Base, 0,5 M Na2-EDTA, Eisessig 96%, H2O) angesetzt wurde. Die positiven Transformanten wurden anschließend in größerem Maßstab (Hauptkultur) in Ampicillin- haltigem LB-Medium über Nacht bei 37 °C kultiviert. Nach der Zellernte wurden die Plasmide mit einem "QIAGEN Plasmid Maxi Kit" nach Herstelleranweisung präpariert (Qiagen). Nach erneuter analytischer Restriktion und Agarose-Gelelektrophorese wurde die Konzentration der DNA und die Reinheit der Präparation durch photometrische Messung der Absorption bei einer Wellenlänge von 260 nm in Quartzküvetten ermittelt. Für die Elektroporation wurde die DNA linearisiert. Das Plasmid pA71d wurde mit EcoRI (MBI Fermentas) geschnitten. Zur Kontrolle der Restriktion wurden die Proben gelelektrophoretisch analysiert. Um die Restriktionsendonukleasen aus den DNA- Lösungen zu eliminieren, wurde eine Extraktion durchgeführt. Dazu wurden die Proben mit einem Volumen Phenol/Chloroform/Isoamylalkohol (24:24:1, v/v/v; Roth, Karlsruhe) versetzt und nach guter Durchmischung zentrifugiert (14000 Upm, 4 min, Raumtemperatur). Die DNA-haltige wäßrige Oberphase wurde isoliert und einer erneuten Extraktion unterzogen. Zur Fällung der DNA wurde die DNA-Lösung mit 1/10 Volumen Na-Acetat (3 M) und nach Durchmischung mit 2 Volumen Ethanol (96 %, v/v, -20 °C) versetzt. Im Anschluß an eine einstündige Inkubation bei -20 °C wurden die Proben für 20 min bei 4 °C abzentrif giert und mit etwa 2 Volumen Ethanol (70 %, v/v, -20 °C) kurz gewaschen. Nach Trocknen des DNA-Pellets an der Luft wurde die DNA in TE-Puffer (10 mM Tris, 1 mM Na2-EDTA, pH 8) gelöst und bei -20 °C gelagert. (1.2) Transfektionsmethoden
Für die stabile Transfektion von Säugerzellen wurde DNA von hoher Reinheit eingesetzt, die einen OD-Quotienten 260/280 nm von mindestens 1,8 aufwies.
Elektroporation: Zur Transfektion der Suspensions-Zellinie EA2 mit dem pA71d- Plasmid wurden 10 Mio EA2-Zellen gewaschen, in 0,5 ml RPMI 1640 (Biowhittaker, Verviers, Belgien) und 1 % FCS (PAA Laboratories, Linz, Österreich) resuspendiert und in 4 mm-Küvetten (BioRad Laboratories, München) pipettiert. 30 μg ünearisierte DNA des pA71d-Plasmids wurde zu den Zellen gegeben. Die Zellen wurden bei 1200 μFarad und 350 Volt für 2 ms in einem "Gene Pulser" (Fischer, Heidelberg) elektroporiert. Anschließend wurden die Zellen in 96-Loch-Platten seriell mit Zellkulturmedium (s. 2.4), verdünnt und für 24 Stunden bei 37 °C und 5 % CO2 unter Wasserdampfsättigung kultiviert. Es folgte die Zugabe von Hygromycin (Gibco BRL, Eggenstein) in einer effektiven finalen Konzentration von 800 μg/ml. WöchenÜich wurde ein Wechsel des Selektionsmediums durchgeführt. Nach etwa 2-3 Wochen wurden die hygromycinresistenten Transfektanten-Klone zunächst in 24-Loch-Platten, später in Zellkulturflaschen überführt, bis sie schließlich auf die Expression von CD 19 überprüft wurden.
(2) Durchflußzytometrie
Die A2.1 -Expression von Zellen, Zellinien und Transfektanten wurde im Fluoreszenzaktivierten Zeil-Sortierer (FACS) (Becton Dickinson, San Jose, CA) gemessen. Jeweils 0,5 Mio Zellen wurden abzentrifügiert und mit dem anti-A2.1 monoklonalen Antikörper BB7.2 (oder RPMI 1640, 10 % FCS, s. 2.4) in einem Volumen von 50 μl markiert (Lustgarten et al., 1997). Nach einstündiger Inkubation auf Eis wurden die Ansätze zweimal mit PBS (Biowhittaker, Walkersville, MA) gewaschen und die Zellen anschließend mit einem FITC-konjugierten Sekundär-Antikörper (Ziege anti-Maus IgG Fab-Fragment; 50 μl einer 1:30- Verdünnung in PBS) gegengefärbt. Nach 25 min Inkubation auf Eis wurden die Proben zweimal mit PBS gewaschen und schließlich in PBS und 1 % Formalin fixiert. Die Fluoreszenz-Aktivität der im Vorwärtsstreulicht selektierten Zellpopulationen wurde im FACS ermittelt.
Zur Untersuchung der CD19-Expression wurden 0,5 Mio. abzentrifugierte ZeUen mit dem FITC-konjugierten anti-CD 19-Antikörper in einem Volumen von 50 μl markiert, eine Stunde lang inkubiert und zweimal mit PBS gewaschen. Anschließend wurde die Fluoreszenz- Aktivität im FACS ermittelt. Ebenso wurde verfahren, wenn der FITC-konjugierten anti-CD8-Antikörper als Isotyp- Kontrolle eingesetzt wurde.
(3) Bestimmung der Peptidbindungs-Affinität für HLA-A2.1
Ein Kompetitionstest wurde angewandt, um die Bindung der CD19-Peptide an A2.1 zu ermitteln. EA2-Zellen wurden mit 0,01 μg des A2.1 -bindenden Peptids p53 264-272 (Theobald et al., 1995) und 3 oder 10 μg CD19-Peρtid beladen. Das Peptid 58-66 des A/PR/8/34 Influenza Virus Matrix-Proteins Ml (Flu Ml 58-66) (Theobald et al., 1995) diente als Positivkontrolle, das H-2Kb-bindende Peptid 52-59 des Vesikulären Stomatitis Virus-Nukleoproteins (VSV-N 52-59) (Theobald et al., 1995) als Negativkontrolle. Die A2.1-restringierten und p53 264-272-spezifischen ZTL (CD8 x) A2 264 wurden bei verschiedenen Effektor- zu Zielzell (E:T)-Verhältnissen auf ihre lyrische Aktivität gegenüber peptidbeladenen und unbeladenen EA2-Zielzellen in einem 4-stündigen Zytotoxizitätstest untersucht (Theobald et al., 1995). Die prozentuale Inhibition der ZTL (CD8 x) A2 264-vermittelten spezifischen Lyse (SL) von p53 264-272-beladenen EA2- Zellen durch die Test-Peptide wurde bei einem E:T- Verhältnis von 3: 1 nach folgender Formel berechnet: % Inhibition = 100 - f (% SL EA2 plus Peptid 264 plus Testpeptid - % SL EA2 x 100
(% SL EA2 plus Peptid 264 - % SL EA2)]
(4) Immunisierung A2.1-transgener Mäuse und Induktion peptidspezifischer sowie alloreaktiver ZTL
Zur Generierung A2.1 -restringierter peptidspezifischer ZTL wurden 8-12 Wochen alten A2.1-transgenen Mäusen 100 μg des jeweiligen Test-Peptids sowie 120 μg HBV core 128-140 (ein I- Anbindendes synthetisches T-Helfer-Peptid) (Theobald et al., 1995), emulgiert in 100 μl inkomplettem Freundschen Adjuvans (IFA; Difco Laboratories, Detroit, USA), subkutan in den Schwanzansatz injiziert (Theobald et al., 1995). Nach etwa 10 Tagen wurde die Milz entnommen, zerrieben und die Milzzellsuspension zweimal gewaschen (1500 Upm, 5 °C, 7 min). Die Milzzellen wurden zu 7 Mio/ml/Loch in eine 24-Lochplatte ausgesät. Als Stimulatorzellen wurden mit 3000 Rad ( Cäsium) bestrahlte LPS-aktivierte B-Zellblasten, beladen mit 5 μg/ml des jeweiligen Test-Peptids und 10 μg/ml humanem ß2-Mikroglobuün, nach zweimaligem Waschen zu 3 Mio/ml/Loch dazugegeben (Theobald et al., 1995). Die LPS-Blasten wurden durch dreitägige Stimulation von Milzzellen (1 Mio/ml) aus A2.1-transgenen Mäusen mit 25 μg/ml LPS (Salmonella typhosa) und 7 μg/ml Dextransulfat (Pharmacia Biotech, Freiburg) gewonnen. Die Ansätze aus Effektor- und Stimulatorzellen wurden für 6 Tage inkubiert (1° Kulturen) und einem Zytotoxizitätstest unterzogen.
Allo-A2.1 -reaktive 1° ZTL wurden generiert, indem Milzzellen aus CD8-transgenen Mäusen zu 7 Mio/ml/Loch (Effektorzellen) zusammen mit bestrahlten Milzzellen aus A2.1-transgenen Mäusen zu 6 Mo/ml/Loch (Stimulatorzellen) für 6 Tage inkubiert wurden. (5) Etablierung von ZTL-Linien
Polyklonale peptidspezifische ZTL-Linien mit Spezifität für CD19.105 und CD19.165 (ZTL A2 19.105 und CD8 x A2Kb 19.165) und für Flu Ml 58-66 (ZTL CD8 x A2Kb Flu Ml, ZTL CD8 x A2 FLU Ml. und A2 FLU Ml) wurden durch wöchentliche Restimulation der Effekt orzeilen mit peptidbeladenen Stimulatorzellen etabliert. Als StimulatorzeUen dienten JA2-Zellen, die mit 20000 Rad bestrahlt, anschließend in RPMI 1640 (Biowhittaker, Verviers, Belgien) mit 5 μg/ml des jeweiligen Peptids und 10 μg/ml humanem ß2-Mikroglobulin für etwa 40 min beladen und schließlich zweimal gewaschen wurden. Die Effektorzellen wurden zusammen mit 0,5 Mio JA2-Zellen und 6 Mio mit 3000 Rad bestrahlten C57BL/6-Milzzellen in einem Gesamtvolumen von 2 ml/Loch in eine 24-Loch-Platte ausgesät. Den Ansätzen wurde 2 % (v/v) Überstand aus dem Kulturmedium Con A-aktivierter Milzzellen (TCGF) von Lewis-Ratten zugegeben (Theobald et al., 1995).
Allo-A2.1 -reaktive ZTL-Linien wurden durch intraperitoneale Immunisierung von CD8- transgenen Mäusen mit 20 Mio JA2-Zellen/Maus induziert. Nach drei Wochen wurden die Milzzellen isoliert und in vitro (7 Mio/ml/Loch) mit bestrahlten JA2-Zellen (0,5 Mio/ml/Loch) oder Milzzellen (6 Mio/ml/Loch) A2.1-transgener Mäuse stimuliert. Durch wiederholte wöchentliche in v/ ro-Restimulation mit JA2-Zellen in Gegenwart von bestrahlten C57BL/6-Milzzellen (6 Mio/ml/Loch) und 2-5 % TCGF wurden schließlich allo-A2.1 -reaktive ZTL-Linien generiert.
(6) Zytotoxizitätstest
Die lytische Reaktivität von Effektorzellen gegenüber verschiedenen Zielzellen wurde in einem 51Cr-Freisetzungstest überprüft (Theobald et al, 1995). Als Zielzellen für Peptidtitrationstests wurden T2-Zellen eingesetzt. 1-5 Mio Zielzellen wurden für 60-90 min mit 150 μCi Na (51Cr) O4 (1 mCi ml) (NEN Life Science, Belgien) markiert. Vor dieser Markierung wurde den Zellen bei Peptidtitrationstests 2 μl Peptidlösung unterschiedlicher Konzentration und 15 μl FCS (PAA Laboratories, Linz, Österreich) oder FCS ohne Peptid zugegeben. Die markierten Zielzellen wurden viermal gewaschen und die Zellzahl auf 0,1 Mio/ml eingestellt. Die Effektorzellen wurden mit Zellkulturmedium seriell 1:3 verdünnt und zu 0,1 ml/Loch in 96-Loch-Platten ausgesät. Insgesamt wurden fünf verschiedene E:T- Verhältnisse getestet. Anschließend wurden 0,1 ml/Loch der Zielzellsuspension zu den Effektorzellen gegeben und die Ansätze für 4-6 Stunden inkubiert. Danach wurden die Zellen abzentrifügiert (1300 Upm, 5 °C, 9 min), der Überstand (0,1 ml Loch) abgenommen und die 51Cr-Freisetzung mit einem Gamma "Counter" (Canberra Packard, Dreieich) gemessen. Die prozentuale spezifische Lyse (SL) wurde nach folgender Formel berechnet:
(experimentelle Cr-Freisetzung - spontane Cr-Freisetzung) x 100 = % SL (maximale Cr-Freisetzung - spontane Cr-Freisetzung)
Die maximale 51Cr-Freisetzung entsprach der gesamten 51Cr-Inkorporation durch die Zielzellen, die spontane 51Cr-Freisetzung entsprach der Zielzell-Lyse in Abwesenheit von Effektorzellen und betrug in der Regel weniger als 10 % der maximalen ^Cr- Freisetzung. Die Werte für spontane und maximale Lysen wurden aus jeweils vier, die für experimentelle Lysen aus zwei Ansätzen gemittelt.
C Beispiele
Beispiel 1: Experimentelle Gewinnung der Oligopeptide CD19.105-113 und CD10.165-174
(1.1) Selektion potentiell A2.1-bindender CD19-Peptide Anhand der bekannten Aminosäuresequenz des CDl9-Proteins wurden 8mere, 9mere, lOmere und llmere bestimmt, die Teilsequenzen dieses CD19-Polypeptids darstellen und die die folgenden Kriterien erfüllen:
1.) Sie weisen als sogenannte primäre Ankeraminosäureπ, das sind Aminosäuren innerhalb des Peptids, die mit Residuen der Bindungstasche des MHC Klasse I- Moleküls interagieren und die sich bei endogen prozessierten und im Kontext von MHC Klasse I-Molekülen präsentierten Peptide an Position 2 und am C-Terminus des Epitops befinden, an Position 2 l assischerweise die Aminosäuren L, M, I, V oder T, und nichtklassischerweise die Aminosäuren A, Q oder K auf und am C- Terminus klassischerweise die Aminosäuren V, L oder I und nichtklassischerweise die Aminosäuren A, M oder T (Theobald et al., 1995). 2.) Die betreffenden CD19-Peptide sollten möglichst nicht homolog zu den korrespondierenden CD19-Peptiden der Maus sein.
Insgesamt wurden 35 CD19-Peptide selektiert (siehe Fig. 1).
(1.2) Bindung selektierter synthetischer CD19-Peptide an A2.1
Die anhand ihrer theoretischen Bindungsstärke selektierten CD19-Peptide wurden auf ihre tatsächliche Bindungsaffinität für A2.1 untersucht. Hierfür wurde in einem kompetitiven Bindungstest, der in der Publikation von Theobald et al. (1995) näher beschrieben ist, fünktionell die Fähigkeit der CD19-Peptide getestet, die. A2.1 -Bindung des konkurrierenden synthetischen Peptids p53 264-272 zu inhibieren. Diese Inhibition wurde anhand der Abnahme der durch eine A2.1 -restringierte p53 264-272-spezifische ZTL-Linie vermittelte Lyse von EA2-Zellen gemessen, die mit p53 264-272-Peptid und dem individuellen CD19-Testpeptid beladen waren. Die Bindungsergebnisse sind in Fig. 1 zusammengefaßt dargestellt. Bindimg an A2.1 zeigte das Influenza Virus Matrix- Peptid Ml (Flu Ml 58-66) (Theobald et al., 1995), während das H-2Kb-bindende Peptid VSV-N 52-59 (Theobald et al., 1995) als Negativkontrolle keinerlei A2.1- Bindungsaktivität aufwies. Die CD19-Peptide wurden nach ihrer Bindungsstärke in 4 Gruppen eingeteilt. Von insgesamt 35 getesteten Peptiden hatten 7 eine hohe Bindungsaktivität (mindestens 80 % Inhibition bei 10 μg Testpeptid), 9 eine mittlere (40- 79 % Inhibition), 12 eine schwache (10-39 %) und 7 keine Bindungsaktivität (< 10 % oder keine Dosisabhängigkeit der Inhibition). Die beobachtete Inhibition war dosisabhängig, da für alle A2.1 -bindenden Peptide die Inhibitionswerte bei 10 μg deutlich über denen bei 3 μg lagen.
Insgesamt zeigten 46 % aller selektierten Peptide eine starke oder intermediäre A2.1- Bindung, nur 20 % konnten nicht an A2.1 binden.
Beispiel 2: Experimenteller Nachweis der Eignung der CD19-Oligopeptide zur Erzeugung einer spezifischen, ZTL vermittelten Immunität
(2.1) Immunogenität A2.1-bindender synthetischer CD19-Peptide in A2.1-transgenen Mäusen
Ein Hindernis bei der Erkennung von humanen MHC Klasse I-Molekülen durch Maus-T- Zellen ist die Unfähigkeit von Maus-CD8, mit HLA-Molekülen wie A2.1 zu inter agieren. Zur Umgehung bzw. Behebung dieses Hindernisses wurden zwei Strategien anagewendet. Die eine Strategie bestand in der Konstruktion des Chimären Moleküls A2.1/Kb (A2Kb), das sich aus den humanen αl- und α2-Domänen von A2.1 und aus der α3 -Domäne von Maus-Kb, die für die Interaktion mit CD8 wesentlich ist, zusammensetzt. In A2Kb-transgenen Mäusen induzierte ZTL mit Restriktion für das A2Kb-Transgen erkennen dieselben Peptidantigene, die auch in A2.1-positiven Menschen immunogen sind.
Die andere Strategie zur Verstärkung der A2.1 -restringierten Antwort bestand in der Erzeugung einer doppelt-transgenen Maus "CD8 x A2.1/Kb" durch Kreuzung einer A2Kb-transgenen mit einer huCD8α/ß-transgenen Maus. Die Expression der α- und ß- Kette des huCD8-Moleküls ermögücht den generierten ZTL, mit der α3 -Domäne des A2.1 -Moleküls humaner Zellen zu interagieren.
Mit den gemäß Beispiel 1 gewonnenen stark oder intermediär bindenden Peptiden
(s. Fig. 1) wurden A2- und CD8 x A2Kb-transgene Mäuse immunisiert, um CD 19- Peptid-reaktive ZTL zu gewinnen. 9 bis 11 Tage nach der Immnunisierung wurden Milzzellen der betreffenden Mäuse in vitro mit Peptid-beladenen syngenen LPS-Blasten stimuliert und 6 Tage danach auf eine A2.1 -restringierte peptidspezifische ZTL- Antwort in einem Zytotoxizitätstest untersucht. Die Ergebnisse sind in Fig. 2 zusammengefaßt dargestellt. Für die Positivkontrolle Flu Ml 58-66 war die Induktion A2.1 -restringierter ZTL bereits bekannt (Theobald et al., 1995). Eine A2.1 -restringierte und peptidspezifische ZTL-Antwort wurde für die stark bindenden Peptide CD19 165-174, 105-113, 10-18, für die intermediär bindenden Peptide CD19 299-308, 150-158 sowie für die schwach bindenden Peptide CD 19 299-307 und 296-304 nachgewiesen. Die Höhe der Lyse war vom E:T- Verhältnis abhängig. Die ZTL waren peptidspezifisch, da sie mit dem entsprechendem Peptid beladene Zellen lysierten, nicht aber Zellen, die mit irrelevanten A2.1 -bindenden Peptiden beladen waren (Fig. 4 und 5).
Durch CD19.105 und CD19.165 induzierte ZTL waren A2.1 -restringiert, da mit den entsprechenden Peptiden beladene A2.1 -negative EL4-Zellen (H-2b) der Maus nicht erkannt wurden (Fig. 3).
(2.2) CD19-spezifische ZTL: Peptidspezifität und Effizienz der Peptiderkennung
A2.1-restringierte und für CD19.105 und CD19.165 spezifische ZTL wurden im folgenden näher untersucht.
Nach Immunisierung von A2.1- und CDS x A2Kb-transgenen Mäusen mit den Peptiden CD19.105 und CD19.165 wurden die MilzzeUen mit Peptid-beladenen LPS-Blasten aus A2.1-transgenen Mäusen stimuliert (1° Kultur) und nach wiederholter Restimulation im Zytotoxizitätstest gegen T2 -Zielzellen, inkubiert bei unterschiedlichen Konzentrationen an synthetischen Peptiden CD19.105 und CD19.165, getestet (Fig. 4 und 5 oben). Die halbmaximale Lyse der Zielzellen durch ZTL A2 und CD8 x A2Kb CD19.105 lag bei einer Peptidkonzentration von 1 nM. Im Vergleich dazu erkannten ZTL A2 und CD8 x A2Kb CD 19.165 ihre mit Peptid beladenen Zielzellen fast um den Faktor 100 schlechter. Aus dem Unterschied in der Effizienz der Peptiderkennung kann abgeleitet werden, daß das Peptid CD 19.105 ZTL mit einer höheren Affinität zu induzieren vermag als das Peptid CD19.165.
Beide ZTL-Linien waren peptidspezifisch, da T2-Zellen beladen mit dem jeweiligen Peptid effizient lysiert wurden, während unbeladene oder mit den irrelevanten Peptiden Flu Ml 58-66 bzw. p53.264-272 des humanen Wildtyps des p53-Proteins beladene T2- Zielzellen nicht erkannt wurden (Fig. 4 un 5, untere Grafiken). Flu Ml 58-66- präsentierende T2-Zellen wurden jedoch von einer CD 8 x A2Kb T-Zell-Population mit Spezifität für Flu Ml 58-66 lysiert.
Im Endergebnis wurden hoch-avide A2.1 -restringierte ZTL-Populationen mit Spezifität für CD19.105 und CD19.165 generiert.
Beispiel 3: Charakterisierung von CD19-transfizierten Zellinien
Um zu bestimmen, ob die Peptide CD19.105 und CD19.165 tatsächlich endogen prozessiert und im Kontext von A2.1 -Molekülen CD19-exprimierender Tumorzellen präsentiert werden, wurden CD19-negative Tumorzelünien (EA2, EA2 b) transfiziert. Die Erkennung der resultierenden CD19-exprimierenden Transfektanten durch CD19.105 und CD19.165 - spezifische ZTL stellt ein Indiz für die endogene Produktion der Peptide CD19.105 und CD19.165 dar.
Für die Transfektion mit dem CD19-Gen wurden die Tumor-Zellinien EA2 und EA2K b ausgewählt, mit den Genen für A2.1 bzw. A2.1K transfizierte EL4-Zellinien. EL4 ist eine Thymom-Linie der Maus mit fehlender CD19-Expression.
Durch Elektroporation der Zelünien EA2 bzw. EA2Kb mit dem Plasmid p71d, welches für das CD19-Protein und die Hygromycin-Resistenz kodiert (Fig. 15), wurden Transfektanten generiert, die CD 19 unter der Kontrolle des CMV-Promoters konstitutiv überexprimierten. Die Expression von CD 19 wurde durchflußzytometrisch analysiert (Fig. 8). Während die parentalen Zelünien keine CD19-Expresssion zeigten, exprimierten die mit dem CD19-Gen transfizierten ZeUen deutüche Mengen an CD 19 (Fig. 8). Für eine effektive Präsentation der CD19-Peptide ist u. a. eine hinreichende Expression von A2 Voraussetzung. Die durchflußzytometrische Analyse der CD19-Transfektanten ergab eine vergleichbare A2-Expression der EA2 cl 24 und EA2Kb cl 74 Zellinien sowie der parentalen Zellen (Daten nicht gezeigt).
Beispiel 4: Erkennung von CD19-Transfektanten durch CD19.105 und CD19.165- spezifische ZTL
Zur Überprüfung der natürlichen Prozessierung und A2.1 -Präsentation der Peptide CD19.105 und CD19.165 wurden die CD19-Transfektaήten auf ihre Erkennung durch A2.1 -restringierte CD19.105 und CD19.165 -spezifische ZTL getestet. Die EA2 und EA2Kb Transfektanten EA2 cl 24 und EA2Kb cl 74 wurden von den CD 19.105 und CD19.165 -reaktiven ZTL A2 und CD8 x A2Kb effizient lysiert, während die parentalen ZeUinien EA2 und EA2Kb sowie die nur mit dem Resistenzgen für Hygromycin transfizierte Zellinie EA2Kb Hygro nicht erkannt und folglich nicht lysiert wurden (Fig. 6 und 7). Als Positivkontrolle diente die ZTL-Linie CD8 allo A2. Sowohl die CD 19- Transfektanten als auch die parentalen und hygromycintransfizierten Zellen wurden durch die aüo-A2.1 -reaktiven Effektorzellen lysiert (Fig. 6 und 7). Da diese alloreaktiven ZTL peptidspezifisch waren, d. h. A2.1 -Moleküle nur im Kontext mit (prozessierten) Selbst-Peptiden (nicht jedoch Signalpeptiden) erkannten (Ergebnisse nicht dargestellt), konnten auf diese Weise mögliche Defizite z. B. im Transportsystem der untersuchten Zellen quasi ausgeschlossen werden. Als Negativkontrolle fungierte die A2.1- restringierte ZTL-Linie CD8 x A2Kb Flu Ml, die keine der getesteten Zelünie lysierte (Fig. 6 und 7).
Alle in diesen Experimenten verwendeten CD19-Transfektanten wurden mit dem p71d-
Expressionsplasmid transfiziert (Fig.15). Dieses kodiert für das CD19-Protein und zusätzlich für die Hygromycin-Resistenz, die als Selektionsmarker fungiert. Die
Vermutung lag nahe, daß die Peptide CD19.105 und CD19.165 endogen prozessiert und im Kontext von A2.1 präsentiert wurden und damit das Epitop für die CD19-reaktiven ZTL repräsentierten. Da es sich bei diesen ZTL um Populationen handelte, war allerdings die Anwesenheit von T-Zell-Subpopulationen mit Spezifität für Peptide, die aus der Hygromycin-Resistenz prozessiert wurden, nicht auszuschließen. Gegen eine Lyse der CD19-Transfektanten durch potentielle Subpopulationen mit Spezifität für die Hygromycin-Resistenz sprach jedoch die fehlende Erkennung der EA2Kb Hygro- Kontrollen durch CD19.165-ρeptidspezifische ZTL, die, wie die CD19-Transfektanten auch, Hygromycin-Resistenz exprimieren (Fig. 6). Ein weiteres deutliches Indiz für CD19.105 und CD19.165 als T-Zellepitope war die Lyse von verschiedenen CD19 exprimierenden Tumorzellen (s. Beispiel 5), während im Gegensatz dazu EA2-Zellen keine detektierbare CD19-Expression zeigten und nicht erkannt wurden. Demnach handelt es sich bei den CD19-Oügopeptiden auch nicht um Epitope aus anderen prozessierten Selbstproteinen.
Die hier gezeigten Ergebnisse weisen darauf hin, daß die Peptide CD 19.105 und CD19.165 tatsächlich endogen prozessiert und im Kontext von A2.1 präsentiert werden.
Beispiel 5: Verwendung von CD19.105 und CDi9.165-spezifischen ZTL zur spezifischen Erkennung und Lyse von humanen Tumorzellen
(5.1) CD19-Protein-Expression von humanen Tumor-Zellinien
Zum Nachweis, daß CD 19.105 und CD19.165-spezifische ZTL nicht nur CD 19- Transfektanten effizient lysieren sondern auch nicht-transfizierte A2-positive maligne transformierte Zellinien, wurden humane Tumor-Zellinien eingesetzt, die CD 19 exprimieren. Hierfür müssen die Tumorzellen in der Lage sein, das Antigen zu prozessieren und dieses über das Molekül A2.1 den ZTL zu präsentieren. Die A2- und CD19-Expression der humanen Tumor-Zellinien wurde durchflußzytometrisch analysiert. Außer der Lymphom-ZeUinie Ramos exprimierten alle im Experiment verwendeten humanen Tumor-Zelünien A2, 1. Die CD19-Expression wurde für sämtüche humanen Zellinien bestätigt (Daten nicht gezeigt).
5 (5.2) Erkennung von CD19-exprimierenden A2-positiven humanen Tumor- Zellinien durch CD19.105 und CD19.165-spezifische ZTL
CD19-Protein exprimierende und A2-positive humane Tumor-ZeUinien wurden im folgenden als Zielzellen für CD19.105- und CD19.165-spezifische ZTL verwendet um 10 nachzuweisen, daß nicht nur CD19-transfizierte, sondern auch nicht-transfizierte Tumorzellen effizient lysiert werden.
Die in CD8 x A2Kb und A2-transgenen Mausstämmen generierten CD 19- peptidspezifischen ZTL mit Spezifität für die Peptide CD19.105 und CD19.165 lysierten
15 die EBN-transformierten B-lymphoiden Zellinien JY, SY und LG-2 (Fig. ?). Die ZTL- Linie A2 CD19.105 zeigte lyrische Aktivität gegenüber den oben genannten transformierten Zelünien, während die CD19-negative Zellinie EA2 nicht erkannt wurde. Die ZTL-Linie CDS x A2K CD19.105 erkannte neben den A2-positiven prä-ALL- Zellinien BN 173 (Fig. 10) und UoCBl l (Fig. 11) das histiozytische Lymphom U937
20 sowie die Burkitt-Lymphom-Zellinien ST486 und Ramos A2 (Fig.11 und 12).
Die lytische Aktivität der ZTL CD8 x A2Kb CD19.105 gegenüber BN 173- ZielzeUen konnte mit dem pA2.1 Antikörper um 10% blockiert werden (Fig. 10). Als Positivkontrolle füngierte die A2.1 -alloreaktive ZTL-Linie CD8 allo A2, die alle A2- positiven Zielzellen erkannte. Auf Seite der ZTL-Linie CD8 x A2Kb Flu Ml 58-66 fand
25. sich keine lytische Aktivität gegenüber den humanen Tumor-Zellinien (Fig. 9-12). (5.3) A2-negative CD19-exprimierende humane Tumor-Zellinien werden nicht von A2-restringierten CD19-reaktiven ZTL lysiert
Zur Kontrolle der Erkennung von A2-positiven Tumor-Zellinien durch ZTL mit Spezifität für CD 19.105 wurde eine Zielzelle verwendet, die in der durchflußzytometrischen Analyse keinen A2-Phänotyp aufwies, jedoch CD 19 exprimierte (Daten nicht gezeigt). Sie wurde sowohl von der CDl9.105-spezifischen ZTL-Linie CD8 x A2Kb CD 19.105 als auch von der A2.1 -alloreaktiven ZTL-Linie CD8 allo A2 nicht lysiert, wohingegen die mit A2.1-transfizierte Zellinie Ramos A2 mit und ohne Peptidbeladung von beiden ZTL-Linien erkannt wurde (Fig. 12).
Diese Befunde zeigen, daß ZTL mit Spezifität für CD19.105 A2-positive Tumorzellen, die endogen CD 19 exprimieren, spezifisch, A2-restringiert und effizient erkannten und lysierten.
Beispiel ö: Verwendung von CD19-spezifischen ZTL zur selektiven Erkennung und Lyse von humanen Normalzellen
(6.1) CD19-Protein-Expression von aktivierten oder ruhenden Zellen lymphohämopoetischen Ursprungs
Für eine potentielle, CD19-spezifische ZTL-vermittelte Immuntherapie ist es wünschenswert, daß Normalzellen nicht lysiert werden. Allerdings wird das CD 19- Protein sowohl von normalen B-Zeüen als auch bei malignen B-Zell-assoziierten hämatologischen Erkrankungen exprimiert.
Durchflußzytometrische Analysen haben gezeigt, dass sowohl ruhende als auch aktivierte B-Zellen eines A2-positiven Spenders CD19 exprimieren, und mit LP S, aktivierte B-ZeU- Blasten aus der A2Kb-Maus murines CD 19 exprimieren. Ruhende und aktivierte T-Zellen weisen keine CD19-Expression auf. Alle verwendeten Normalzellen wurden bezügüch ihrer A2-Expression durchflußzytometrisch analysiert (Daten nicht gezeigt).
(6.2) Zytolytische Reaktivität CD19.105-spezifischer ZTL gegenüber aktivierten oder ruhenden Zellen lymphohämopoetischen Ursprungs
Ruhende und aktivierte lymphohämopoetische Zellen wurden im folgenden als Zielzellen für A2-restringierte ZTL mit Spezifität für CD19.105 eingesetzt. A2-positive PHA- und Con A-transformierte Blasten wurden von ZTL CD8 x A2Kb CD19.105 und ZTL A2
CD 19.105 überraschenderweise nicht lysiert, obwohl sie CD 19 auf ihrer Oberfläche exprimierten. LPS-aktivierte Blasten der A2Kb Maus wurden wie erwartet nicht erkannt, da sie das murine CD 19 auf ihrer Oberfläche tragen (Fig.13).
Normale, ruhende B- und T-Zellen wurden ebenfalls nicht von CD19.105-spezifischen ZTL lysiert, obwohl dies bei den CD1 -positiven B-Zellen zu erwarten wäre (Fig. 14).
Die als Positivkontrolle dienenden allo-A2.1 -reaktiven ZTL erkannten alle ZeUtypen, hingegen war bei den als Negativkontrolle fungierenden Flu Ml -spezifischen ZTL keine
Lyse zu beobachten (Fig. 13 und 14).
Bei allen Zelltypen konnte ZTL-Erkennung durch exogenes Peptid CD 19.105 rekonstituiert werden, was eine hinreichende A2-Expression bestätigte (Fig. 13 und 14).
Beispiel 7: Herstellung von A2.1-restringierten T-Zellrezeptoren, die spezifisch sind für die erfindungsgemäßen Oligopeptide CD19.105 und CD19.165
A2.1-transgene Mäuse werden mit den erfindungsgemäßen Oligopeptiden CD 19.105 und CD19.165 immunisiert. Nach 10 Tagen wird die Milz entnommen. Die Milzzellen werden mit zuvor hergestellten, A2. I -positiven Antigen-präsentierenden ZeUen, die mit dem erfindungsgemäßen Oügopeptid beladen sind, in vitro stimuliert. Die Herstellung dieser 2.1 -positiven Antigen-präsentierenden Zellen erfolgte mit den im Stand der Technik bekannten und dem Fachmann geläufigen Techniken. Nach mehrwöchiger Kultur werden die T-Zellen auf ihre Peptid- und Tumorerkennung, Peptidspezifität und A2.1 -Restriktion überprüft. Nach erfolgreicher Testung wird die T-Zellinie kloniert. Die resultierenden T-Zellklone werden erneut hinsichtlich Peptid- und Tumorerkennung, Peptidspezifität und A2, 1-Restriktion getestet.
Von einem T-Zellklon'mit positivem Testergebnis wird die Gesamt-mRNA präpariert. Mittels RT-PCR werden die T-Zellrezeptor α- und ß-Ketten ampüfiziert. Die jeweiligen Ketten werden zunächst in bakterielle Plasmide kloniert und sequenziert. Die Ketten werden partiell humanisiert, indem die konstanten Maus-Regionen durch die homologen humanen Regionen ersetzt werden. Anschließend erfolgt die Klonierung der resultierenden Konstrukte in geeignete retrovirale Vektoren.
Periphere Blut-Lymphozyten eines A2.1 -positiven Krebspatienten, dessen Tumor- oder Leukämiezellen hdm2-Protein überexprimieren, werden entnommen, mit den Vektoren für α- und ß-Kette des T-Zellrezeptors in vitro transduziert und die Genexpression auf Proteinebene untersucht. T-Zellrezeptor-exprimierende T-Lymphozyten werden auf ihre Fähigkeit zur Lyse von Tumorzellen analysiert. Nach erfolgreicher Testung werden die genmodifizierten Lymphozyten in den Patienten transfündiert und soüen dort die Abtötung der entarteten Zellen und damit die Heilung bewirken.
Alternativ werden CD19-spezifische α/ß-T-Zellrezeptorketten in Vektoren kloniert, die die Fähigkeit besitzen, in vivo Patienten-T-Zellen zu infizieren. Diese infizierten T-Zellen exprimieren CD19-spezifische T-Zellrezeptoren und sind damit in der Lage, CD19-exprimierende Tumorzellen der Patienten zu erkennen und abzutöten.
Literaturverzeichnis
Bradbury, L. G. Kansas, R I. Evans, S. Levy and T. Tedder 1991. CD19 is a component of a signal transducting complex on the surface of B cells that incudes CD21, TAPA-1 and Leu-13. FASEB J. 5: A1335
Irwin M. J., Heath W. R, Sherman L. A. (1989). Species-restricted interactions between CD8 and the α3 domain of class I infiuence the magnitude of the xenogeneic response. J. Exp. Med. 179, 1091-1101.
Lustgarten J., Theobald M., Labadie C, LaFace D., Peterson P., Disis M. L., Cheever M. A., Sherman L. A. (1997). Identification of Her-2/neu CTL epitopes using double transgenic mice expressing HLA-A2.1 and human C . Human Immunol. 52, 109-118.
Parker K. C, Bednarek M. A., Coligan J. E. (1994). Scheme for ranking potential HLA- A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 152, 163-175.
Salter R. D,5 CressweU P. (1986). Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J. 5, 943-949.
Sato, S., D. A. Steeber and T. Tedder 1995. The CD 19 signal transduction molecule is a response regulator of B-lymphocyte differentiation. Proc. Natl. Acad. Sei. 92: 11558- 11562
Stamenkovic I, Seed B. 1988. CD 19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. L Exp. Med. 1988 Sep. l; 168(3): 1205-1210 Tedder, T., et al. 1989. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. The Journal ofimmunology. 143: 712-717. Theobald M., Biggs J., Dittmer D., Levine A. J., Sherman L. A. (1995). Targeting ρ53 as a general tumor antigen. Proc. Natl. Acad. Sei. USA 92, 11993-11997.
Theobald M., Ruppert T., Kuckelkorn U., Hernandez J., Häußler A., Antunes Ferreira E., Liewer U., Biggs J., Levine A J., Huber C, Koszinowski U. H., Kloetzel P.-M., Sherman L. A. (1998). The sequence alteration associated with a mutational hotspot in p53 protects ceüs from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J. Exp. Med. 188, 1017-1028.
Wölfel T., Nan Pel A., Brichard N., Schneider J., Seliger B., Meyer zum Büschenfelde K. H, Boon T. (1994). Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Enr. J. Immunol. 24, 759-764.

Claims

A n s p r ü c h e
1. B-Zell-Tumor-assoziiertes Oligopeptid, das von CD8-positiven zytotoxischen T-Lymphozyten (ZTL) als Peptidantigen erkannt wird und eine ZTL-induzierte Lyse und/oder Apoptose von Tumor- oder Leukämiezellen herbeiführt, dadurch gekennzeichnet, daß das Oligopeptid (al) die Aminosäuresequenz KAWQPGWTV gemäß Sequenzprotokoll Nr.l aufweist, die den Aminosäurepositionen 105 bis 113 des humanen CD19-Proteins entspricht, oder das eine durch Aminosäure-Substitution, - Deletion, -Insertion, -Addition, -Inversion und/oder durch chemische oder physikalische Modifikation einer oder mehrerer Aminosäuren davon ableitbare Aminosäuresequenz aufweist, die ein funktionelles Äquivalent zu der A-mino säuresequenz KAWQPGWTV darstellt, oder das es (a2) die Aminosäuresequenz EIWEGEPPCV gemäß Sequenzprotokoll Nr.2 aufweist, die den Aminosäurepositionen 165 bis 174 des humanen CD19-Proteins entspricht, oder das eine durch Aminosäure-Substitution, -Deletion, -Insertion, -Addition, -Inversion und/oder durch chemische oder physikalische Modifikation einer oder mehrerer Aminosäuren davon ableitbare Aminosäuresequenz aufweist, die ein funktionelles Äquivalent zu der Aminosäuresequenz KAWQPGWTV darstellt, und das es (b) ein Epitop für CD8-positive ZTL darstellt und (c) dazu geeignet ist, eine auf humanes Leukozyten-Antigen der Molekülgruppe "MHC Klasse I", Allelvariante A2 (kurz: A2) eingeschränkte (restringierte) Immunantwort von CD8-positiven ZTL gegen Tumor- und Leukämiezellen zu induzieren.
2. Retro-inverses Peptid oder Pseudopeptid, dadurch gekennzeichnet, daß es einem Oligopeptid gemäß Anspruch 1 entspricht, bei dem anstelle der -CO-NH-Peptidbindungen -NH-CO-Bindungen oder andere Nichtpeptidbindungen ausgebildet sind.
3. Fusionsprotein welches aus einem Oligopeptid nach Anspruch 1 oder 2, einer schweren Kette des HLA-Moleküls und einem flexiblem Linker besteht und derart konstruiert ist, daß das Oügopeptid geeignet und befähigt ist, die Peptid- Bindungsfürche des HLA-Moleküls zu besetzen.
4. Polynukleotid mit einer Nukleotidsequenz, die mindestens für ein Oligopeptid gemäß einem der Ansprüche 1 bis 3 kodiert.
5. Verwendung eines Oligopeptids nach Anspruch 1 und/oder eines retro-inversen Peptids oder Pseudopeptids gemäß Anspruch 2 und/oder eines Fusionsproteins nach Anspruch 3 und/oder eines Polynukleotids nach Anspruch 4 zur Herstellung von Diagnostika und/oder Therapeutika und/oder Prophylaktika für den Nachweis und/oder die Beeinflussung und/oder Generierung und/oder Expandierung und/oder Steuerung des Aktivierungs- und Funktionszustands von T-Zellen, insbesondere
CD8-positiven zytotoxischen T-Lymphozyten . i
6. Reagenz zur in-vivo- oder in- vitro- Aktivierung von T-Zellen, insbesondere CD 8- positiven zytotoxischen T-Lymphozyten, dadurch gekennzeichnet, daß das Reagenz unter Verwendung wenigstens eines Oligopeptids nach Anspruch 1 und/oder eines retro-inversen Peptids oder Pseudopeptids gemäß Anspruch 2 und/oder eines Fusionsproteins nach Anspruch 3 und/oder eines Polynukleotids nach Anspruch 4 hergesteüt ist.
7. Rekombinantes DNS- oder RNS- Vektormolekül, das mindestens ein oder mehrere Polynukleotid(e) nach Anspruch 4 enthält und das in Zellen autologen, allogenen, xenogenen oder mikrobiologischen Ursprungs exprimierbar ist.
8. Wirtszelle, die ein Polynukleotid gemäß Anspruch 4 oder ein Vektormolekül gemäß Anspruch 7 enthält.
9. Verwendung wenigstens eines Oügopeptids nach Anspruch 1 und/oder eines retro- inversen Peptids oder Pseudopeptids gemäß Anspruch 2 und/oder eines Fusionsproteins nach Anspruch 3 für die Herstellung polyklonaler, monoklonaler oder rekombinanter Antikörper gegen das/die betreffende^) Oligopeptide(e) oder gegen einen Komplex aus dem/den betreffenden Oligopeptid(en) und HLA-A2.
10. Antikörper, der spezifisch mit wenigstens einem Oligopeptid nach Anspruch 1 und/oder einem retro-inversen Peptid oder Pseudopeptid gemäß Anspruch 2 und/oder einem Fusionsprotein nach Anspruch 3 oder mit einem Komplex aus dem/den betreffenden Oligopeptid(en) und HLA-A2 reagiert.
11. Oligopeptid nach Anspruch 1 oder 2 und/oder Fusionsprotein nach Anspruch 3, dadurch gekennzeichnet, daß es kovalent oder nicht kovalent an MHC Klasse I-Tetramere oder MHC Klasse I-Dimere oder an pharmazeutisch geeignete Träger oder sonstige Strukturen gebunden vorliegt.
12. Retro-inverses Peptid oder Pseudopeptid gemäß Anspruch 2, dadurch gekennzeichnet, daß es kovalent oder nicht kovalent an MHC Klasse I-Tetramere oder MHC Klasse I-Dimere oder an pharmazeutisch geeignete Träger oder sonstige Strukturen gebunden vorliegt.
13. Verwendung wenigstens eines Oligopeptids gemäß Anspruch 1 und/oder eines retro- inversen Peptids oder Pseudopeptids gemäß Anspruch 2 und/oder eines Fusionsproteins nach Anspruch 3 oder eines Polynukleotids gemäß Anspruch 4 zur Herstellung polyklonaler oder monoklonaler oder rekombinanter A2-restringierter T- Zellrezeptoren oder dazu fünktionell äquivalenter Moleküle gegen das /die betreffenden(n) Oügopeptid(e).
14. T-Zellrezeptor oder dazu fünktionell äquivalentes Molekül, der/das spezifisch mit wenigstens einem Oügopeptid gemäß Anspruch 1 und/oder einem retro-inversen Peptid oder Pseudopeptid gemäß Anspruch 2 und/oder einem Fusionsprotein nach Anspruch 3 reagiert.
15. Polynukleotid, das für einen T-Zeürezeptor gemäß Anspruch 14 kodiert.
16. Expressionsvektor, der die Fähigkeit besitzt, einen T-Zellrezeptor gemäß Anspruch 14 zu exprimieren. '
17. Wirtszelle, die ein Polynukleotid gemäß Anspruch 15 oder einen Expressionsvektor gemäß Anspruch 16 enthält.
18. Verfahren zur Herstellung eines Arzneimittels zur Behandlung von CD19-Protein-assoziierten Erkrankungen, dadurch gekennzeichnet, daß mindestens ein Oügopeptid und oder mindestens ein retro-inverses Peptid oder Pseudopeptid und/oder mindestens ein Fusionsprotein und/oder mindestens ein Polynukleotid und/oder mindestens ein T-Zeürezeptor und/oder mindestens ein Vektormolekül und/oder mindestens eine Wirtszelle und/oder mindestens ein Antikörper nach einem der vorgenannten Ansprüche zusammen mit geeigneten Zusatz- und Hilfsstoffen kombiniert wird.
19. Arzneimittel zur Behandlung von CD19-Protein-assoziierten Erkrankungen, dadurch gekennzeichnet, daß es mindestens ein Oligopeptid und/oder mindestens ein retro- inverses Peptid oder Pseudopeptid und/oder mindestens ein Fusionsprotein und/oder mindestens ein Polynukleotid und/oder mindestens ein T-Zellrezeptor und/oder mindestens ein Vektormolekül und/oder mindestens eine Wirtszelle und/oder mindestens ein Antikörper nach einem der vorgenannten Ansprüche, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen, enthält.
20. Verwendung eines Arzneimittels nach Anspruch 19 zur Behandlung von CD 19-Protein-assoziierten Erkrankungen.
PCT/EP2002/014598 2001-12-27 2002-12-19 Tumor-peptidantigene aus humanem cd19-protein WO2003055907A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002360062A AU2002360062A1 (en) 2001-12-27 2002-12-19 Tumour peptide antigen derived from the human cd19 protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001163755 DE10163755A1 (de) 2001-12-27 2001-12-27 Tumor-Peptidantigene aus humanem CD19-Protein
DE10163755.1 2001-12-27

Publications (1)

Publication Number Publication Date
WO2003055907A1 true WO2003055907A1 (de) 2003-07-10

Family

ID=7710719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014598 WO2003055907A1 (de) 2001-12-27 2002-12-19 Tumor-peptidantigene aus humanem cd19-protein

Country Status (3)

Country Link
AU (1) AU2002360062A1 (de)
DE (1) DE10163755A1 (de)
WO (1) WO2003055907A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747472A1 (de) 2015-09-15 2020-12-09 Acerta Pharma B.V. Therapeutische kombinationen aus einem cd19-inhibitor und einem btk-inhibitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820866A (en) * 1994-03-04 1998-10-13 National Jewish Center For Immunology And Respiratory Medicine Product and process for T cell regulation
EP0910409A4 (de) * 1996-03-05 2003-03-19 Scripps Research Inst Rekombinante genkonstrukte, die für t-zellrezeptoren, die für menschliche hla-beschränkte tumorantigene spezifische sind, kodieren

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HOOIJBERG E ET AL: "LYSIS OF SYNGENEIC TUMOR B CELLS BY AUTOREACTIVE CYTOTOXIC T LYMPHOCYTES SPECIFIC FOR A CD19 ANTIGEN-DERIVED SYNTHETIC PEPTIDE", JOURNAL OF IMMUNOTHERAPY, RAVEN PRESS, NEW YORK, US, vol. 19, no. 5, September 1996 (1996-09-01), pages 346 - 356, XP000996793, ISSN: 1053-8550 *
KOZMIK Z ET AL: "THE PROMOTER OF THE CD19 GENE IS A TARGET FOR THE B-CELL-SPECIFIC TRANSCRIPTION FACTOR BSAP", MOLECULAR AND CELLULAR BIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, US, vol. 12, no. 6, June 1992 (1992-06-01), pages 2662 - 2672, XP001117417, ISSN: 0270-7306 *
MAIKOVSKA F ET AL: "Synthetic peptides derived from the CD19 protein bind to the class I HLA-A2.1.", BLOOD, vol. 86, no. 10 SUPPL. 1, 1995, 37th Annual Meeting of the American Society of Hematology;Seattle, Washington, USA; December 1-5, 1995, pages 157A, XP009009521, ISSN: 0006-4971 *
STAMENKOVIC I ET AL: "CD19, THE EARLIEST DIFFERENTIATION ANTIGEN OF THE B CELL LINEAGE, BEARS THREE EXTRACELLULAR IMMUNOGLOBULIN-LIKE DOMAINS AND AN EPSTEIN-BARR VIRUS-RELATED CYTOPLASMIC TAIL", JOURNAL OF EXPERIMENTAL MEDICINE, TOKYO, JP, vol. 168, no. 3, 1 September 1988 (1988-09-01), pages 1205 - 1210, XP000608196, ISSN: 0022-1007 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747472A1 (de) 2015-09-15 2020-12-09 Acerta Pharma B.V. Therapeutische kombinationen aus einem cd19-inhibitor und einem btk-inhibitor

Also Published As

Publication number Publication date
AU2002360062A1 (en) 2003-07-15
DE10163755A1 (de) 2004-01-08

Similar Documents

Publication Publication Date Title
KR100376544B1 (ko) 티(t)세포조절물질및방법
EP0726952B1 (de) Rezeptor an der oberfläche von aktivierten t-zellen:act4
JP3703834B2 (ja) 活性化cd4▲上+▼t細胞の表層上のレセプターに対するリガンド(act−4−l)
JPH09508023A (ja) Lag−3タンパク質の可溶性ポリペプチドフラクション;製造方法、治療用製剤、抗イディオタイプ抗体
EP0665289B1 (de) Autoimmunreaktion hervorrufende GAD65 Peptide
CA2392477A1 (en) B7-h1, a novel immunoregulatory molecule
EP1507795A1 (de) An mhc-moleküle bindende tumor-assoziierte peptide
US11185577B2 (en) H3.3 CTL peptides and uses thereof
JP2002543787A (ja) 白血球免疫グロブリン様受容体(lir)と命名された免疫調節因子のファミリー
US20220118069A1 (en) H3.3 ctl peptides and uses thereof
WO2002070553A1 (de) Tumor-peptidantigen aus humanem mdm2 proto-onkogen
JP2002505673A (ja) Cd28/ctla−4阻害性ペプチド模倣物、それらの医薬組成物、およびそれらを使用する方法
AU2019459479A1 (en) T cell receptor for recognizing SSX2 antigen short peptide
Boog et al. Role of dendritic cells in the regulation of class I restricted cytotoxic T lymphocyte responses.
DE69828791T2 (de) Das antigen ha-1
CN110115758B (zh) Pik3ip1蛋白在调节t细胞反应和制备抗肿瘤药物中的应用
DE10313819A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
EP1363942A2 (de) Polypeptide eines hdm2-protein spezifischen murinen alpha/beta t-zell rezeptors, diese kodierende nukleinsüren und deren verwendung
WO2003055907A1 (de) Tumor-peptidantigene aus humanem cd19-protein
WO2003029282A2 (de) Tumor-peptidantigene aus humanem prdi-bf1-protein
US5646251A (en) Alloreaction-associated antigen (ARAG): a novel member of the immunoglobulin gene superfamily
WO2000077046A1 (en) A male-specific protein homologue involved in histocompatability
AU1843699A (en) Ligand (ACT-4-L) to a receptor on the surface of activated CD4+T-cells
AU2006203123A1 (en) Ligand (ACT-4-L) to a receptor on the surface of activated CD4+ T-cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 22-09-2004).

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP