WO2003046959A1 - Systeme de traitement de plasma - Google Patents

Systeme de traitement de plasma Download PDF

Info

Publication number
WO2003046959A1
WO2003046959A1 PCT/JP2002/012303 JP0212303W WO03046959A1 WO 2003046959 A1 WO2003046959 A1 WO 2003046959A1 JP 0212303 W JP0212303 W JP 0212303W WO 03046959 A1 WO03046959 A1 WO 03046959A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
frequency
plasma
plasma processing
power supply
Prior art date
Application number
PCT/JP2002/012303
Other languages
English (en)
French (fr)
Inventor
Toshihiro Hayami
Etsuji Ito
Itsuko Sakai
Original Assignee
Tokyo Electron Limited
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Kabushiki Kaisha Toshiba filed Critical Tokyo Electron Limited
Priority to JP2003548286A priority Critical patent/JP4177259B2/ja
Priority to AU2002355030A priority patent/AU2002355030A1/en
Publication of WO2003046959A1 publication Critical patent/WO2003046959A1/ja
Priority to US10/854,142 priority patent/US7368876B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge

Definitions

  • the present invention relates to a plasma processing apparatus for performing a predetermined plasma processing on an object to be processed such as a semiconductor wafer or a glass substrate.
  • a conventional plasma processing apparatus for example, a plasma processing apparatus 1 shown in FIG. 3 has an apparatus main body 2 and ancillary equipment 3.
  • the apparatus main body 2 includes a process chamber 4 for performing a series of processes such as an oxide film forming process for forming an oxide film on an object to be processed such as a semiconductor wafer or a glass substrate, an etching process, and an ashing process.
  • Ancillary equipment 3 includes a VHF device (hereinafter referred to as “power supply device”) 5 that supplies power to a process chamber 4 that performs a series of processing of semiconductor wafers, and a plurality of dry pumps connected to the device body 2. 6, 7 and.
  • the power supply device 5 includes a matching box 9 connected to the process chamber 4 via a feeding rod-shaped cable 8 and a circuit 11 connected to the matching box 9 via a coaxial cable 10. , And a power control unit 12.
  • the power control unit 12 has a high-frequency amplifier 13 and a DC amplifier 14 integrated therein, and a commercial power supply 16 is connected to the DC amplifier 14 via a cable 5.
  • the high frequency amplifier 13 is connected to the circulator 11 via a coaxial cable 17.
  • the coaxial cable 17 has high bending stiffness, high price per unit length, and large power loss, especially when transmitting power at high frequencies. Shorten the length It is hoped to do so.
  • the apparatus main body 2, matching box 9, and circulator 11 of the plasma processing apparatus 1 as described above are placed in the clean room A on the floor, so that the space is clean.
  • a high degree of cleanliness is required by arranging the dry pumps 6, 7 and the like and the power control unit 12 of the power supply device 5 in the utility room B downstairs. This reduces the footprint of the clean room.
  • An object of the present invention is to provide a plasma processing apparatus capable of reducing cost and reducing loss of transmitted power. Disclosure of the invention
  • a processing channel for processing an object to be processed
  • Power supply means for supplying high-frequency power to the processing chamber
  • the power supply means includes
  • the processing channel is transmitted via a transmission path for transmitting high-frequency power to the processing chamber.
  • a matcher connected to a jumper for matching the impedance of the transmission path with the impedance of the processing gas to be plasmatized;
  • a high-frequency amplifier connected to the matching device
  • a plasma processing apparatus in which the high-frequency amplifier is separate from the DC amplifier and is located at a position distant from the DC amplifier and near the matching device.
  • the high-frequency amplifier is connected to the matching device via a coaxial cable.
  • the DC amplifier is connected to the high-frequency amplifier via a normal cable.
  • a clean room for accommodating the processing chamber and the matching box; and a utility room adjacent to the clean room; the high-frequency amplifier is installed in the clean room; and the DC amplifier is It is preferable to be installed in the utility room.
  • the utility room is arranged below the clean room.
  • FIG. 1 is a diagram showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2A is an explanatory diagram of a wiring procedure of the power supply device 5 in FIG.
  • FIG. 2B is an explanatory diagram of the wiring procedure of the conventional power supply device 5.
  • FIG. 3 is a diagram showing a schematic configuration of a conventional plasma processing apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • a plasma processing apparatus 1 according to an embodiment of the present invention has an apparatus main body 2 and ancillary equipment 3.
  • the apparatus main body 2 includes a process chamber 4 for performing a predetermined plasma process on an object to be processed such as a semiconductor wafer or a glass substrate, for example, a series of processes such as an oxide film forming process, an etching process, and an assembling process.
  • a process chamber 4 for performing a predetermined plasma process on an object to be processed such as a semiconductor wafer or a glass substrate, for example, a series of processes such as an oxide film forming process, an etching process, and an assembling process.
  • an exhaust device 37 connected to the bottom of the process chamber 4 is provided.
  • a cassette chamber 19 connected to the process chamber 4 via the champ 18 and accommodating the object processed in the process chamber 4.
  • the semiconductor wafer set in the cassette chamber 19 is transferred to the process chamber 4 by a transfer robot (not shown) arranged in the transfer chamber 18.
  • the auxiliary equipment 3 is equipment that supplies the equipment main body 2 with power for operating the equipment main body 2, for example, a power supply device 5 that supplies electric power to the process chamber 4 and a transfer chamber 18.
  • a first dry pump 6 connected to the transfer chamber 18 via a pipe 21 and connected to a first exhaust pump 6 for evacuating the transfer chamber 18 via a pipe 22 and cooperating with the exhaust apparatus 37.
  • a second dry pump 7 that evacuates the process chamber 4 and a second dry pump 7 that is connected to the process chamber 4 through a pipe 23 to cool the inside of the process chamber 4
  • a chill unit 20 for supplying a refrigerant into the process chamber.
  • the power supply device 5 includes, for example, a matching box 9 connected to the process chamber 4 via a power rod-shaped cable 8 (transmission path) and a high-frequency amplifier connected to the matching box 9 via a coaxial cable 24. 13 and a power control unit 12.
  • the power control unit 12 has a DC amplifier 14 therein, and a commercial power supply 16 is connected to the DC amplifier 14 via a cable 15, and the DC amplifier 14 is Connected to high frequency amplifier 13 via cable 25.
  • a cable 25 for example, an ordinary inexpensive cable such as a parallel core cable can be used.
  • the AC power from the commercial power supply 16 is converted to DC power by the DC amplifier 14 and then supplied to the high-frequency amplifier 13.
  • the high-frequency amplifier 13 supplies a predetermined high-frequency power to the matching box 9, and the supplied high-frequency power converts the impedance of the cable 8 by the matching box 9 into plasma generated in the process channel 4. After being matched to the impedance, it is supplied to the process chamber 4. ''
  • the apparatus main body 2 of the plasma processing apparatus 1, the matching unit 9 of the power supply unit 5, and the high-frequency amplifier 13 of the power supply unit 5 are arranged in the clean room A on the floor, and the dry pumps 6, 7,
  • the unit 20 and the power control unit 12 of the power supply device 5 are located in the utility room B downstairs.
  • the clean room A on the upper floor is the first clean room where 0.1 m or less of garbage on the order of 0.0283 m 3 (1 cubic foot) is managed to 10 or less.
  • the arm a 1, 0 1 / m trash orders 0 0 2 8 3 m 3 (1 cubic off I - G).
  • Transport chamber 18, matching box 9 and high frequency pump 13 are installed.
  • the indoor pressure is set higher than the outdoor pressure so that air flows from the utility chamber B to the outside.
  • the high-frequency amplifier 13 is provided separately from the DC amplifier 14 and at a position away from the DC amplifier 14 and in the vicinity of the matching unit 9, and is connected to the high-frequency amplifier 13.
  • the coaxial cable 24 connecting the matching device 9 and is as short as possible.
  • the inside of the process chamber 4 is depressurized to a predetermined internal pressure, for example, about 0.013 to 0.13 Pa using the exhaust device 37 and the second dry pump 7,
  • the cassette channel 19 and the transfer chamber 18 are depressurized using the dry pump 6 of FIG.
  • the semiconductor wafer set is transported by a cassette robot (not shown) to the cassette channel.
  • the wafer is taken out of the process chamber 19, transferred to the process chamber 4 via the transfer chamber 18, and placed on a susceptor (not shown) in the process chamber 4.
  • a processing gas such as CF 4 is uniformly discharged toward the susceptor by a processing gas introducing means (not shown). Further, the power supply device 5 applies a high-frequency power between electrodes of a parallel plate (not shown) to form a high-frequency electric field in the process chamber 4 and turn the processing gas into a plasma, thereby forming a plasma. Is generated in process chamber 4. After the plasma is generated, it is placed on the susceptor The processed wafer is subjected to a series of processes such as a plasma etching process, and then is unloaded by the transfer robot, and the series of operations of the plasma processing apparatus 1 is completed.
  • a series of processes such as a plasma etching process
  • FIG. 2A is an explanatory diagram of a wiring procedure of the power supply device 5 in FIG. 1
  • FIG. 2B is an explanatory diagram of a wiring procedure of the conventional power supply device 5.
  • the high-frequency amplifier 13 is arranged integrally with the DC amplifier 14, and the commercial power supply 16 and the DC amplifier 1
  • the length of the cable 15 connecting 4 and 2 is 2 m
  • the total length of the coaxial cables 10 and 17 connecting the high frequency amplifier 13 and the matching box 9 via the circulator 11 is 20 m It is.
  • the coaxial cable 17 is connected to a high-frequency amplifier 13 and a circuit collector 11 via high-frequency connectors 32 and 31, respectively
  • the coaxial cable 10 is connected to a circulator.
  • 11 and the matching unit 9 are connected via high-frequency connectors 30 and 29, respectively.
  • the high-frequency amplifier 13 is provided separately from the DC amplifier 14 so as to be a DC amplifier. It is located at a position away from 14 and near the matching box 9.
  • the cable 15 connecting the commercial power supply 16 to the DC amplifier 14 is 2 m long
  • the cable 25 connecting the DC amplifier 14 to the high-frequency amplifier 13 is 20 m.
  • the coaxial cable 24 connecting the high-frequency amplifier 13 and the matching box 9 is 2 m.
  • the cable 25 is connected to a DC amplifier 14 and a high-frequency amplifier 13 via high-frequency connectors 27 and 26, respectively.
  • the length 2 m of the coaxial cable 24 is smaller than the total length 20 m of the coaxial cables 10 and 17 in the conventional VHS device 5. And the number of high-frequency connectors 26 and 27 Less than the ones.
  • the power transmission loss between the commercial power supply 16 and the DC amplifier 14, that is, the AC transmission loss is a cable 15 with a sectional area of 8 mm 2 (diameter 3 mm j5) and a resistance of 2.43
  • the power was 3.9 W as in the case of the conventional power supply device 5.
  • the power transmission loss between the DC amplifier 14 and the high-frequency amplifier 13, that is, the DC transmission loss, is a normal cable such as a cable with a resistance of 0.093 ⁇ / Km as a cable 25.
  • the DC amplifier 14 outputs a voltage of 40 VX and a current of 170 A (power 6.8 KW) using the lead wire, the conventional power supply 5 In the case of 0 W, it was 1 15 W.
  • the power transmission loss between the high-frequency pump 13 and the matching box 9, that is, the high-frequency transmission loss, is expressed as a coaxial cable 10, 17, 24 with a cable with an amplitude attenuation of 0.35 d20 m ( L MR-900), when a high-frequency amplifier 13 outputs 3 kW of power using a circuit with an amplitude attenuation rate of 0.3 dB as the circuit circulator 11 Power supply 5 case 4 8 4 W was 24 W, whereas W was 24 W.
  • the total power loss of the conventional power supply device 5 is (488 + 4a) W
  • the total power loss of the power supply device 5 of the present invention is (143 + 2) W.
  • high-frequency amplifier 13 is provided separately from DC amplifier 14 and at a position distant from DC amplifier 14 and in the vicinity of matching unit 9.
  • the power transmission distance can be shortened and the DC power transmission distance can be lengthened, thereby reducing the cost of the power supply device 5 as a whole and reducing the power loss of the power supply device 5 as a whole. Can be done.
  • the DC pump 14 and the high-frequency pump 13 are connected via the normal cable 25 having lower bending rigidity than the coaxial cable 24.
  • the degree of freedom of the installation position of the high frequency amplifier 13 can be increased.
  • the low frequency amplifier 13 incorporates the circulator 11
  • the reproducibility and stability in power supply can be improved, and the high frequency connector can be improved.
  • the number of connectors can be reduced from four to two, thereby reducing the risk of connection work mistakes.
  • the lengths of the coaxial cable 24, the normal cable 25, the cable 15 and the like are not limited to the lengths in the present embodiment.
  • the clean room on the floor is composed of the first and second clean rooms, but the present invention is not limited to this.
  • the clean room is located on the upper floor, and the utility room is located on the lower floor.
  • the present invention is not limited to this.
  • the clean room and the utility room may be on the same floor.
  • the amplifier Since the amplifier is located separately from the DC amplifier and separate from the DC amplifier and near the matching box, the transmission distance of high-frequency power can be shortened and the transmission distance of DC power can be increased. Accordingly, it is possible to reduce the cost of the entire power supply device and the power loss of the entire power supply device.
  • this high-frequency amplifier has a built-in circulator, in addition to improving the reproducibility and stability in power supply, the number of high-frequency connectors is reduced from four to two. This can reduce the risk of connection work mistakes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

明 細 書 プラズマ処理装置 技術分野
本発明は、 半導体ウ ェハ、 ガラス基板等の被処理体に所定のプラズマ 処理を施す、 プラズマ処理装置に関する。 背景技術
従来のプラズマ処理装置、 例えば図 3 に示すプラズマ処理装置 1 は、 装置本体 2 と、 付帯設備 3 と を有する。 装置本体 2 は、 半導体ゥュハ、 ガラス基板等の被処理体へ酸化膜を形成する酸化膜形成処理、 エツチン グ処理、 アツ シング処理等の一連の処理を行う プロセスチャ ンバ 4等を 備える。 付帯設備 3 は、 半導体ウ ェハの一連の処理を行う プロセスチヤ ンバ 4 に電力を供給する V H F装置 (以下 「電力供給装置」 とする) 5 と、 装置本体 2 に接続された複数の ドライポンプ 6 , 7 と を有する。 上記電力供給装置 5 は、 給電棒状のケ一ブル 8 を介してプロセスチヤ ンバ 4 に接続された整合器 9 と、 同軸ケーブル 1 0 を介して整合器 9 に 接続されたサーキユレ一夕 1 1 と、 電力制御部 1 2 とから構成されてい る。
電力制御部 1 2 は、 その内部に高周波ア ンプ 1 3 と直流アンプ 1 4 と を一体的に有し、 直流アンプ 1 4 にはケーブル 5 を介して商用電源 1 6 が接続されている と共に、 高周波アンプ 1 3 は、 同軸ケーブル 1 7 を 介してサーキユ レータ 1 1 に接続されている。この同軸ケーブル 1 7 は、 曲げ剛性が高い上に単位長さ当た り の価格が高く 、 さ らには、 特に高周 波での電力伝送時の電力の損失が大きいので、 でき るだけ配線長を短く する こ とが望まれている。
' 通常、 上記のよ う なプラズマ処理装置 1 の装置本体 2 、 整合器 9 、 及 ぴサ一キュ レータ 1 1 が階上のク リ ーンルーム Aに配置され、 ク リ ーン 度が低いスペースへの配置が許容される ドラ イポンプ 6 , 7等、 及び電 力供給装置 5の電力制御部 1 2が階下の用力室 B に配置される こ と によ り、 高いク リ ーン度が必要と されるク リ ーンルームのフ ッ ト プリ ン ト を 低減している。
しかしながら、 上記のよ う にサーキユ レ一タ 1 1 を階上に、 高周波ァ ンプ 1 3 を階下に配置する と、 これら を接続する同軸ケーブル 1 7 の配 線長が長 く な り 、 電力供給装置 5 のコス ト高や、 高周波での電力伝送時 の電力損失の増大を招 く と共に伝送される電力の再現性や安定性が牴下 する等の問題がある。
本発明の目的は、 コス ト を低減する と共に伝送される電力の損失を低 減する こ とができ る プラズマ処理装置を提供する こ と にある。 発明の開示
上記目的を達成するために、 本発明によれば、 被処理体を処理する処 理チャ ンノ と、
前記処理チヤ ンパに高周波電力を供給する電力供給手段と、
前記処理チヤ ンパ内を所定の減圧状態に真空排気する排気手段と、 前記処理チャ ンパ内に処理ガスを導入する処理ガス導入手段と を備え、 前記供給された高周波電力によ り前記処理チャ ンバ内に高周波電界を 形成して前記導入された処理ガスをプラズマ化してプラズマ処理を行う プラズマ処理装置であって、
前記電力供給手段は、
前記処理チャ ンバに高周波電力を伝送する伝送路を介して前記処理チ ヤ ンパに接続され、 前記伝送路のイ ン ピーダンス を前記プラズマ化され る処理ガスのィ ン ピ一ダンスに整合させる整合器と、
前記整合器に接続された高周波アンプと、
前記高周波アンプに接続された直流アンプと を備え、
前記高周波アンプは、 前記直流ア ンプと別体と して、 前記直流ア ンプ から離れた位置であつて前記整合器の近傍に配置されている プラズマ処 理装置が提供される。
前記高周波ァンプは同軸ケーブルを介して前記整合器に接続されるこ とが好ま しい。
前記直流ア ンプは通常のケーブルを介して前記高周波アンプと接続さ れる こ とが好ま しい。
前記処理チヤ ンバ及び前記整合器を収容するク リ 一 ンルーム と、 前記 ク リ一ンル一ム に隣接した用力室と を備え、 前記高周波アンプは前記ク リ ーンルームに設置され、 前記直流アンプは前記用力室に設置されてい る こ とが好ま しい。
前記前記用力室は、 前記ク リ一ンルームの階下に配置されている こ と が好ま しい。
前記高周波ア ンプに内蔵されたサーキユ レータ を備えるこ とが好ま し い o 図面の簡単な説明
図 1 は、 本発明の実施の形態に係るプラズマ処理装置の概略構成を示 す図である。
図 2 Aは、 図 1 における電力供給装置 5 の配線要領の説明図である。 図 2 Bは、 従来の電力供給装置 5 の配線要領の説明図である。
図 3 は、 従来のプラズマ処理装置の概略構成を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態に係るプラズマ処理装置を図面を参照して 詳述する。
図 1 は、 本発明の実施の形態に係るプラズマ処理装置の概略構成を示 す図である。
図 1 において、 本発明の実施の形態に係る プラズマ処理装置 1 は、 装 置本体 2 と、 付帯設備 3 と を有する。
装置本体 2 は、 半導体ウェハ、 ガラス基板等の被処理体への所定のプ ラズマ処理、 例えば、 酸化膜形成処理、 エッチング処理、 ア ツ シング処 理等の一連の処理を行う プロセスチャ ンバ 4 と、プロセスチャ ンバ 4 (処 理チャンバ) を載置する よ う に、 プロセスチャ ンバ 4 内を真空排気すベ く プロセスチャ ンパ 4 の底部に接続された排気装置 3 7 と、 半導体ゥヱ ハ搬送チャンパ 1 8 を介してプロセスチャ ンバ 4 に接続され、 プロセス チヤ ンバ 4 において処理された被処理体を収容するカセ ッ トチャ ンバ 1 9 とから成る。
カセッ トチャ ンノ 1 9 にセ ッ ト された半導体ウェハは、 搬送チャ ンバ 1 8 に配置された図示しない搬送ロボッ ト によ り プロセスチャ ンバ 4 に 搬送される。
一方、 付帯設備 3 は、 装置本体 2 を動作させるための用力を装置本体 2 に供給する設備であって、 例えば、 プロセスチャ ンバ 4 に電力を供給 する電力供給装置 5 と、搬送チャ ンバ 1 8 に配管 2 1 を介して接続され、 搬送チヤ ンバ 1 8 を真空排気する第 1 の ドラ イポンプ 6 と、 排気装置 3 7 に配管 2 2 を介して接続され、 排気装置 3 7 と協働してプロセスチヤ ンバ 4 を真空排気する第 2 の ドライポンプ 7 と、 プロセスチャ ンバ 4 に 配管 2 3 を介して接続され、 プロセスチャ ンバ 4 内を冷却するためにプ ロセスチャンバ内に冷媒を供給するチラ一ュニ ッ ト 2 0 とから成る。 電力供給装置 5 は、 例えば、 給電棒状のケーブル 8 (伝送路) を介し てプロセスチヤ ンバ 4 に接続された整合器 9 と、 同軸ケーブル 2 4 を介 して整合器 9 に接続された高周波アンプ 1 3 と、 電力制御部 1 2 とから 構成されている。
電力制御部 1 2 は、 その内部に直流アンプ 1 4 を有し、 直流ア ンプ 1 4 にはケーブル 1 5 を介して商用電源 1 6が接続されている と共に、 直 流ア ンプ 1 4 は、 ケーブル 2 5 を介して高周波アンプ 1 3 に接続されて いる。 このケーブル 2 5 と して、 例えば、 平行芯ケーブルのよ う な通常 の安価なケーブルを用いる こ とができる。
商用電源 1 6 からの交流電力は、 直流ァンプ 1 4 によ り直流電力に変 換された後、 高周波アンプ 1 3 に供給される。 高周波アンプ 1 3 は、 所 定の高周波電力を整合器 9 に供給し、 供給された高周波電力は、 整合器 9 によ り ケーブル 8 のイ ン ピーダンスをプロセスチャ ンノ 4 において生 成される プラズマのィ ンピ一ダンスに整合されてからプロセスチャ ンパ 4 に供給される。 ' 上記プラズマ処理装置 1 の装置本体 2、 電力供給装置 5 の整合器 9 、 及び電力供給装置 5 の高周波アンプ 1 3 は、 階上のク リ ーンルーム Aに 配置され、 ドライポンプ 6 , 7、 チラ一ユニッ ト 2 0、 及び電力供給装 置 5 の電力制御部 1 2 は、 階下の用力室 B に配置されている。
階上のク リーンルーム Aは、 0 . 1 mオーダのゴミ が 0 . 0 2 8 3 m 3 ( 1 立方フ ィ ー ト) 当 り 1 0個以下に管理された第 1 のク リ ーンル ーム A 1 と、 0 . 1 / mオーダのゴミ が 0 . 0 2 8 3 m 3 ( 1 立方フ ィ - ト) 当 り 1 0 0個以下に管理された第 2 のク リ ー ンルーム A 2 とから 成る。 第 1 のク リ ーンルーム A 1 には、 カセッ ト チャ ンノ 1 9 が設置さ れ、 第 2 のク リ ーンルーム A 2 には、 プロセスチャ ンバ 4、 排気装置 3 7、 搬送チヤ ンバ 1 8 、 整合器 9 、 及び高周波ァンプ 1 3 が設置されて いる。
また、 階下の用力室 Bは、 0 . 1 mオーダのゴミが 0 . 0 2 8 3 m 3 ( 1 立方フ ィ ー ト) 当 り 1 0 0 0個以下に管理される と共に、 ドアの 開閉時に用力室 B内から室外に空気が流れる よ う に室内圧が室外圧よ り も高 く 設定してある。 階下の用力室 B には、 ドラ イ ポンプ 6 , 7、 チラ —ユニッ ト 2 0 、 及び電力供給装置 5 の電力制御部 1 2 が配置されてい る 0
上記のよ う に、 高周波アンプ 1 3 は、 直流アンプ 1 4 と別体と して、 直流アンプ 1 4 から離れた位置であって整合器 9 の近傍に配置され、 高 周波ア ンプ 1 3 と整合器 9 と を接続する同軸ケーブル 2 4 はでき る限り 短く している。
以下、 図 1 のプラズマ処理装置 1 の作動を以下に説明する。
まず、 排気装置 3 7及び第 2 の ドライ ポンプ 7 を用いてプロ セスチヤ ンバ 4 内を所定の内圧、 例えば 0 . 0 1 3 3 〜 0 . 1 3 3 P a程度にま で減圧し、 第 1 の ドラ イポンプ 6 を用いて、 カセ ッ トチャ ンノ 1 9 及ぴ 搬送チヤ ンバ 1 8 を減圧状態にする。 その後、 図 1 中の矢印方向から半 導体ウェハをカセ ッ ト チャ ンノ 1 9 にセッ トする と、 セッ ト された半導 体ウ ェハは、 図示しない搬送ロボッ ト によ り カセ ッ トチャ ンノ 1 9 から 取り 出され、搬送チヤ ンバ 1 8 を介してプロセスチャ ンバ 4 に搬送され、 プロセスチャ ンバ 4 内の図示しないサセプタ上に載置される。
' 次いで、 図示しない処理ガス導入手段によ り C F 4等の処理ガス をサ セプタ に向けて均等に吐出する。 さ ら に、 電力供給装置 5 は高周波電力 を図示しない平行平板の電極間に印加し、 プロセスチャ ンバ 4 内に高周 波電界を形成して処理ガス をプラズマ化する こ と によ り、 プラズマをプ ロセスチャ ンバ 4 内に発生させる。 プラズマ発生後、 サセプタ に載置さ れたウェハは、 プラズマエッチング処理等の一連の処理がなされ、 その 後、 搬送ロボッ ト によ り搬出され、 プラズマ処理装置 1 の一連の動作が 終了する。
図 2 Aは、 図 1 における電力供給装置 5 の配線要領の説明図であ り 、 図 2 Bは、 従来の電力供給装置 5 の配線要領の説明図である。
従来の電力供給装置 5 (図 3 ) では、 図 2 Bに示すよ う に、 高周波ァ ンプ 1 3 は、 直流アンプ 1 4 と一体的に配置されてお り 、 商用電源 1 6 と直流アンプ 1 4 と を接続するケーブル 1 5 の長さは 2 m、 高周波アン プ 1 3 と整合器 9 と をサーキユレータ 1 1 を介して接続する同軸ケープ ル 1 0, 1 7の合計長さは 2 0 mである。 また、 上記同軸ケーブル 1 7 は、 高周波アンプ 1 3 及ぴサーキユ レ一タ 1 1 と夫々高周波コネク タ 3 2 , 3 1 を介して接続されている と共に、 上記同軸ケーブル 1 0 は、 サ ーキユ レータ 1 1 及ぴ整合器 9 と夫々高周波コネク タ 3 0 , 2 9 を介し て接続されている。
これに対して、 本発明に係る電力供給装置 5 (図 1 ) では、 図 2 Aに 示すよ う に、 高周波ア ンプ 1 3 は、 直流アンプ 1 4 と は別体と して、 直 流アンプ 1 4から離れた位置であって整合器 9 の近傍に配置されている。 図 2 Aにおいて、 商用電源 1 6 と直流アンプ 1 4 と を接続するケープ ル 1 5 の長さは 2 m、 直流アンプ 1 4 と高周波ア ンプ 1 3 と を接続する ケーブル 2 5 は 2 0 m、 高周波ア ンプ 1 3 と整合器 9 と を接続する同軸 ケーブル 2 4 は 2 mである。 また、 上記ケーブル 2 5 は、 直流アンプ 1 4及び高周波アンプ 1 3 と夫々高周波コネク タ 2 7 , 2 6 を介して接続 されている。
このよ う に、 本発明に係る電力供給装置 5 によれば、 同軸ケーブル 2 4 の長さ 2 mは、 従来の V H S装置 5 における同軸ケーブル 1 0 , 1 7 の合計長さ 2 0 mと比べて短く 、 高周波コネク タ 2 6 , 2 7 の数も従来 のものと比べて少ない。
以下、 本発明に係る電力供給装置 5 と従来の電力供給装置 5の電力伝 送損失の比較結果を示す (表 1参照) 。
表 1
Figure imgf000010_0001
まず、 商用電源 1 6及び直流アンプ 1 4間の電力伝送損失、 即ち交流 伝送損失は、 ケ—ブル 1 5 と して断面積 8 mm2 (径 3 m m j5 ) 、 抵抗 が 2. 4 3 7 5 Ω / k. m , 規格が電圧 2 0 0 V X電流 2 O Aのケーブル を用いたときに、 従来の電力供給装置 5の場合と同じく 、 3. 9 Wであ つた。
直流ァンプ 1 4及び高周波ァンプ 1 3間の電力伝送損失、 即ち直流伝 送損失は、 ケーブル 2 5 と して、 通常のケーブル、 例えば、 抵抗が 0. 0 9 9 3 Ω / K mのナンネ ンフ レン (登録商標) 口出線を用いて、 直流 アンプ 1 4が電圧 4 0 V X電流 1 7 0 A (電力 6. 8 K W) の電力を出 力したと きに、 従来の電力供給装置 5の場合 0 Wであるのに対し、 1 1 5 Wであった。
高周波ァンプ 1 3及び整合器 9間の電力伝送損失、 即ち高周波伝送損 失は、 同軸ケーブル 1 0, 1 7 , 2 4 と して、 振幅減衰率が 0. 3 5 d 2 0 mのケーブル (L MR— 9 0 0 ) 、 サーキユレータ 1 1 と して 振幅減衰率が 0. 3 d Bのサーキユ レ一タを用いて、 高周波ア ンプ 1 3 が 3 KWの電力を出力したと きに、 従来の電力供給装置 5の場合 4 8 4 Wである に対して、 2 4 Wであった。
以上によ り、 R Fコネク タ 2 6 , 2 7 , 2 9 〜 3 2 による電力損失を a とする と、 従来の電力供給装置 5 の合計電力損失が ( 4 8 8 + 4 a ) Wであるのに対し、 本発明の電力供給装置 5 の合計電力損失は ( 1 4 3 + 2 ひ ) Wとなる。
本実施の形態によれば、 高周波アンプ 1 3 は、 直流アンプ 1 4 と別体 と して、 直流ア ンプ 1 4 から離れた位置であって整合器 9 の近傍に配置 されているので、 高周波電力の伝送距離を短く し、 直流電力の伝送距離 を長 く するこ とができ、 も つて電力供給装置 5全体のコス ト の低減並び に電力供給装置 5全体の電力損失の低減を図るこ とができ る。
上記本実施の形態によれば、 直流ァンプ 1 4 と高周波ァンプ 1 3 との 接続を同軸ケーブル 2 4 よ り 曲げ剛性が低い通常ケ一ブル 2 5 を介して 行っているので、 直流ァンプ 1 4及ぴ高周波ァンプ 1 3 の設置位置の自 由度を増加するこ とができ る。
上記本実施の形態によれば、 髙周波ア ンプ 1 3 はサーキユ レータ 1 1 を内蔵しているので、 電力供給における再現性及び安定性を向上させる こ とができ るのに加えて、 高周波コネク タの数を 4箇所から 2 箇所に減 らすこ とができ、 も つて接続作業ミ スによ る危険性を低減する こ とがで き る。
なお、 同軸ケーブル 2 4 、 通常ケーブル 2 5、 ケーブル 1 5等の長さ は本実施の形態における長さに限定される ものでないこ とは云う までも ない。
また、 本実施の形態では、 階上のク リ ーンルームが第 1及び第 2 のク リ ーンルームから成っているが、 本発明はそれに限定される も のではな い o
また、 本実施の形態では、 ク リ ーンルームが階上、 用力室が階下であ るが、 本発明はそれに限定される ものではな く 、 例えば、 ク リ ー ンルー ム と用力室が同じフロアであっても よい。
産業上の利用可能性
以上詳細に説明 したよ う に、 本発明の電力供給装置によれば、 高周波
7 ンプは直流ァンプと別体と して、 直流アンプから離れた位置であつて 整合器の近傍に配置されているので、 高周波電力の伝送距離を短く し、 直流電力の伝送距離を長く する こ とができ、 も って電力供給装置全体の コス トの低減並びに電力供給装置全体の電力損失の低減を図る こ とがで き る。
また、 この高周波アンプはサ一キユレータ を内蔵しているので、 電力 供給における再現性及び安定性を向上させる こ とができ るのに加えて、 高周波コネク タの数を 4箇所から 2箇所に減らすこ とができ、 も って接 続作業ミ スによる危険性を低減する こ とができる。

Claims

請 求 の 範 囲
1. 被処理体を処理する処理チャ ンバと、
前記処理チャ ンバに高周波電力を供給する電力供給手段と、
前記処理チヤ ンバ内を所定の減圧状態に真空排気する排気手段と、 前記処理チヤ ンバ内に処理ガスを導入する処理ガス導入手段と を備え、 前記供給された高周波電力によ り前記処理チャ ンバ内に高周波電界を 形成して前記導入された処理ガス をプラズマ化してプラズマ処理を行う ブラズマ処理装置であつて、
前記電力供給手段は、
前記処理チャンバに高周波電力を伝送する伝送路を介して前記処理チ ヤ ンバに接続され、 前記伝送路のィ ンピーダンスを前記プラズマ化され る処理ガスのィ ンピーダンスに整合させる整合器と、
前記整合器に接続された高周波ァンプと、
前記高周波アンプに接続された直流ァンプとを備え、
前記高周波ア ンプは、 前記直流アンプと別体と して、 前記直流ア ンプ から離れた位置であって前記整合器の近傍に配置されているプラズマ処 理装置。
2 . 前記高周波ア ンプは同軸ケーブルを介して前記整合器に接続され ている請求の範囲第 1項のプラズマ処理装置。
3 . 前記直流ア ンプは通常のケーブルを介して前記高周波ア ンプと接 続されている請求の範囲第 1項のプラズマ処理装置。
4 . 前記処理チヤ ンバ及び前記整合器を収容する ク リ ー ンルーム と、 前記ク リ ー ンルーム に隣接した用力室と を備え、 前記高周波ア ンプは前 記ク リ ー ンルーム に設置され、 前記直流ア ンプは前記用力室に設置され ている請求の範囲第 1 項記載のプラズマ処理装置。
5 . 前記用力室は、 前記ク リ ー ンルームの階下に配置されている請求 の範囲第 4項記載のプラズマ処理装置。
6 . 前記高周波ア ンプに内蔵されたサーキユ レ一 タ を備える る請求の 範囲第 1 項乃至第 5項のいずれか 1 項に記載のプラズマ処理装置。
PCT/JP2002/012303 2001-11-27 2002-11-26 Systeme de traitement de plasma WO2003046959A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003548286A JP4177259B2 (ja) 2001-11-27 2002-11-26 プラズマ処理装置
AU2002355030A AU2002355030A1 (en) 2001-11-27 2002-11-26 Plasma processing system
US10/854,142 US7368876B2 (en) 2001-11-27 2004-05-27 Plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001361297 2001-11-27
JP2001-361297 2001-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/854,142 Continuation US7368876B2 (en) 2001-11-27 2004-05-27 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
WO2003046959A1 true WO2003046959A1 (fr) 2003-06-05

Family

ID=19171986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012303 WO2003046959A1 (fr) 2001-11-27 2002-11-26 Systeme de traitement de plasma

Country Status (6)

Country Link
US (1) US7368876B2 (ja)
JP (1) JP4177259B2 (ja)
CN (1) CN100347817C (ja)
AU (1) AU2002355030A1 (ja)
TW (1) TWI259742B (ja)
WO (1) WO2003046959A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368876B2 (en) 2001-11-27 2008-05-06 Tokyo Electron Limited Plasma processing apparatus
US8628640B2 (en) 2003-02-12 2014-01-14 Tokyo Electron Limited Plasma processing unit and high-frequency electric power supplying unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787712B2 (ja) * 2011-10-20 2015-09-30 株式会社日立製作所 プラズマ処理装置
US8773019B2 (en) * 2012-02-23 2014-07-08 Mks Instruments, Inc. Feedback control and coherency of multiple power supplies in radio frequency power delivery systems for pulsed mode schemes in thin film processing
US20180108519A1 (en) * 2016-10-17 2018-04-19 Applied Materials, Inc. POWER DELIVERY FOR HIGH POWER IMPULSE MAGNETRON SPUTTERING (HiPIMS)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291150A (ja) * 1992-04-14 1993-11-05 Canon Inc プラズマcvd装置
JP2000328248A (ja) * 1999-05-12 2000-11-28 Nissin Electric Co Ltd 薄膜形成装置のクリーニング方法及び薄膜形成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8516537D0 (en) * 1985-06-29 1985-07-31 Standard Telephones Cables Ltd Pulsed plasma apparatus
US5325021A (en) * 1992-04-09 1994-06-28 Clemson University Radio-frequency powered glow discharge device and method with high voltage interface
US5478429A (en) * 1993-01-20 1995-12-26 Tokyo Electron Limited Plasma process apparatus
US5542559A (en) * 1993-02-16 1996-08-06 Tokyo Electron Kabushiki Kaisha Plasma treatment apparatus
US5556549A (en) * 1994-05-02 1996-09-17 Lsi Logic Corporation Power control and delivery in plasma processing equipment
TW312890B (ja) * 1995-10-20 1997-08-11 Eni Inc
JP3812862B2 (ja) * 1998-04-09 2006-08-23 忠弘 大見 プラズマ装置
US6222718B1 (en) * 1998-11-12 2001-04-24 Lam Research Corporation Integrated power modules for plasma processing systems
US6570394B1 (en) * 1999-01-22 2003-05-27 Thomas H. Williams Tests for non-linear distortion using digital signal processing
US6242360B1 (en) * 1999-06-29 2001-06-05 Lam Research Corporation Plasma processing system apparatus, and method for delivering RF power to a plasma processing
US6326584B1 (en) * 1999-12-31 2001-12-04 Litmas, Inc. Methods and apparatus for RF power delivery
US6677711B2 (en) * 2001-06-07 2004-01-13 Lam Research Corporation Plasma processor method and apparatus
US7395548B2 (en) * 2001-07-26 2008-07-01 Comsonics, Inc. System and method for signal validation and leakage detection
JP4177259B2 (ja) 2001-11-27 2008-11-05 東京エレクトロン株式会社 プラズマ処理装置
US6983174B2 (en) * 2002-09-18 2006-01-03 Andrew Corporation Distributed active transmit and/or receive antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291150A (ja) * 1992-04-14 1993-11-05 Canon Inc プラズマcvd装置
JP2000328248A (ja) * 1999-05-12 2000-11-28 Nissin Electric Co Ltd 薄膜形成装置のクリーニング方法及び薄膜形成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368876B2 (en) 2001-11-27 2008-05-06 Tokyo Electron Limited Plasma processing apparatus
US8628640B2 (en) 2003-02-12 2014-01-14 Tokyo Electron Limited Plasma processing unit and high-frequency electric power supplying unit

Also Published As

Publication number Publication date
US20050011452A1 (en) 2005-01-20
CN1596458A (zh) 2005-03-16
TW200301067A (en) 2003-06-16
JP4177259B2 (ja) 2008-11-05
US7368876B2 (en) 2008-05-06
JPWO2003046959A1 (ja) 2005-04-14
AU2002355030A1 (en) 2003-06-10
CN100347817C (zh) 2007-11-07
TWI259742B (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US8628640B2 (en) Plasma processing unit and high-frequency electric power supplying unit
US7367281B2 (en) Plasma antenna
US6703080B2 (en) Method and apparatus for VHF plasma processing with load mismatch reliability and stability
KR100478035B1 (ko) 플라즈마 처리장치
CN109994355A (zh) 一种具有低频射频功率分布调节功能的等离子反应器
JPS63181325A (ja) ブラズマ反応器
US7925370B2 (en) Substrate processing system, substrate processing method, sealed container storing apparatus, program for implementing the substrate processing method, and storage medium storing the program
JP2007018771A (ja) プラズマ処理装置及びプラズマ処理方法
US7883600B2 (en) RF supply system and plasma processing apparatus
US10672591B2 (en) Apparatus for removing particles from a twin chamber processing system
TW201223345A (en) Antenna unit for generating plasma and substrate processing apparatus including the same
JP4137419B2 (ja) プラズマ処理装置
JP4491029B2 (ja) プラズマ処理装置及び高周波電力供給装置
WO2003046959A1 (fr) Systeme de traitement de plasma
US6954033B2 (en) Plasma processing apparatus
US5203945A (en) Plasma processing apparatus having driving control section
EP0149089B1 (en) Single electrode, multiple frequency plasma apparatus
US20050066902A1 (en) Method and apparatus for plasma processing
JP2011146409A (ja) プラズマ処理装置およびプラズマ処理方法
US20040211519A1 (en) Plasma reactor
JP2013062418A (ja) 基板処理装置及び半導体装置の製造方法
KR950005445B1 (ko) 반도체 스퍼터링 장비의 에치테이블 구동용 드라이브 조립체
JP2001237213A (ja) プラズマ洗浄装置
JP2012004108A (ja) プラズマ処理装置
JP2000133496A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CO CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PH PL RO SG SI SK TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003548286

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028235444

Country of ref document: CN

Ref document number: 10854142

Country of ref document: US

122 Ep: pct application non-entry in european phase