WO2003041069A1 - Multiple recording layer optical recording medium manufacturing method, multiple recording layer optical recording medium manufacturing apparatus, and multiple recording layer optical recording medium - Google Patents

Multiple recording layer optical recording medium manufacturing method, multiple recording layer optical recording medium manufacturing apparatus, and multiple recording layer optical recording medium Download PDF

Info

Publication number
WO2003041069A1
WO2003041069A1 PCT/JP2002/010701 JP0210701W WO03041069A1 WO 2003041069 A1 WO2003041069 A1 WO 2003041069A1 JP 0210701 W JP0210701 W JP 0210701W WO 03041069 A1 WO03041069 A1 WO 03041069A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laser beam
recording medium
initialization
optical recording
Prior art date
Application number
PCT/JP2002/010701
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Komaki
Tetsuro Mizushima
Jiro Yoshinari
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2003041069A1 publication Critical patent/WO2003041069A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Definitions

  • Method for manufacturing multilayer recording layer type optical recording medium apparatus for manufacturing multilayer recording layer type optical recording medium, and multilayer recording layer type optical recording medium
  • the present invention relates to a multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are laminated on one surface side of a substrate and a spacer layer is formed between each layer.
  • the present invention relates to a manufacturing method, an apparatus for manufacturing a multilayer recording layer type optical recording medium, and a multilayer recording layer type optical recording medium.
  • Optical recording media are noted for their high density and large capacity, and are used for various purposes.
  • rewritable optical recording media that allow erasing and re-recording of recorded information can be used to restore and update data, and can be repeatedly rewritten and used, contributing to expanding the use of optical recording media. It is expected to do.
  • a magneto-optical recording medium (MO) and a phase change optical recording medium have been developed and commercialized.
  • optical recording medium 21 having a layer structure shown in FIG. 8 as a rewritable phase-change optical recording medium utilizing a phase change (hereinafter, also simply referred to as “optical recording medium”). are doing.
  • the optical recording medium 21 has a structure in which a reflective layer 3, a recording layer 4, and a power layer 7 as a light transmitting layer are sequentially laminated on one surface (the upper surface in FIG. 1) of the substrate 2. ing.
  • the base material 2 is formed into a flat plate shape (for example, a disk (disk) shape) having a predetermined thickness by injection molding using a resin material such as polycarbonate.
  • the reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed using a metal such as A1, Ag, or Ni.
  • the recording layer 4 includes a first protective layer 4a, a phase-change material layer 4b, and a second It has a protective layer 4c, and these layers 4c, 4b, 4a are stacked on the reflective layer 3 in this order.
  • the first protective layer 4 a and the second protective layer 4 c are formed using a dielectric material such as aluminum oxide or ZnS_Si 2 , and the phase change material layer 4 b is formed, for example, , GeTeSb, InSbTe or AgGeInSbTe.
  • the cover layer 7 is formed on the first protective layer 4a using a light-transmitting resin material.
  • a recording laser beam (for example, a laser beam having a wavelength of 405 nm and set to a recording power) is irradiated onto the recording layer 4 from the cover layer 7 side, and the phase change material layer 4 b
  • a recording layer 4 containing a reversible phase change between an amorphous state and a crystalline state recording marks are formed and erased. That is, in the recording layer 4 (particularly, the phase change material layer 4b), when the recording laser beam is irradiated, the irradiated portion is heated to a temperature equal to or higher than the melting point and then rapidly cooled (rapidly cooled). The recording mark is formed according to the recording signal.
  • the irradiated part when the recording laser beam is irradiated, the irradiated part is heated to a temperature higher than the crystallization temperature and then gradually cooled (slowly cooled) to be crystallized, thereby erasing a recording mark. Is done.
  • a laser beam for reproduction for example, a laser beam having a wavelength of 405 nm and a lower power than that at the time of recording
  • the optical constant changes between the amorphous state and the crystalline state.
  • the data is reproduced by determining the presence or absence of a recording mark by using the difference in the light reflectivity that changes.
  • the base material 2 is formed into a disk shape having fine irregularities such as groups formed on its surface (one surface) by injection molding.
  • the recording layer 4 is formed on the reflective layer 3.
  • the phase change material layer 4b and the first and second protective layers 4a and 4c are generally formed by a sputtering method.
  • the cover layer 7 is formed on the recording layer 4 by, for example, a spin coating method. In this case, the phase change material layer 4b in the recording layer 4 is in an amorphous state immediately after its formation, and Cannot be recorded.
  • the recording layer 4 (particularly, the phase change material layer) is required in the manufacturing process of the optical recording medium 21. 4 b) needs to be initialized. For this reason, after forming the cover layer 7, the recording layer 4 is initialized.
  • a high-power laser beam hereinafter also referred to as "initialization laser beam" from the same direction as the irradiation direction of the reproduction laser beam or recording laser beam (direction from the power layer 7 side).
  • a laser beam having a different wavelength from the recording laser beam and the reproduction laser beam is used as the initialization laser beam so that the initialization can be performed efficiently and in a short time and the production efficiency can be improved.
  • a laser beam having a wavelength of 810 nm is used as a laser beam for initialization.
  • the laser beam for initialization has, for example, a numerical aperture NA (Numerical Aperture) of about 0.4 ( As an example, the light is irradiated onto the optical recording medium 21 through an objective lens having a value of 0.34).
  • NA numerical aperture
  • the optical recording medium 31 is a so-called single-sided multilayer (for example, two layers) recording layer type optical recording medium (hereinafter, also referred to as “multilayer recording layer type optical recording medium”), as shown in FIG.
  • an L1 layer including a reflective layer 3 and a recording layer 4, a spacer layer 5 as a light transmitting layer, and a recording layer 6 (hereinafter, “: L 0 layer) and a cover layer 7 as a light transmitting layer are sequentially laminated.
  • the thickness TH of the spacer layer 5 is usually set to about 20 ⁇ , and fine irregularities such as groups are formed on the surface on the L0 layer side.
  • the recording layer 6 has a first protective layer 6a, a phase change material layer 6b, and a second protective layer 6c. b and 6a are laminated in this order on the surface of the spacer layer 5 on which fine irregularities are formed.
  • each layer 6 a, 6 b, 6 c is formed of a strictly different material or B from each corresponding layer 4 a, 4 b, 4 c, but has the same function.
  • the force-par layer 7 is formed on the L0 layer using a resin material.
  • the objective lens 11 is used in the same manner as in the initialization for the optical recording medium 21. And initialize. Specifically, the L1 layer including the recording layer 4 is initialized by irradiating the L1 layer from the cover layer 7 side with the initialization laser beam LIN emitted from the objective lens 11, and then, as shown in FIG. As shown, the L 0 layer is initialized by irradiating the L 0 layer with the initialization laser beam L IN. Thus, the manufacture of the optical recording medium 31 in which the first layer and the zero layer are initialized is completed. Disclosure of the invention
  • the inventors have found the following points to be improved. That is, in this manufacturing method, as shown in FIG. 10, when the L 0 layer formed on the spacer layer 5 is initialized, the initialization laser beam L IN applied to the L 0 layer is used. A part of the laser beam LPE passes through the L0 layer and the spacer layer 5 to reach the L1 layer, and a part of the laser beam LRE of the laser beam LPE is reflected by the L1 layer. In this case, interference occurs due to unevenness in the thickness of the spacer layer 5 between the reflected laser beam LRE and the initialization laser beam L IN applied to the L 0 layer.
  • the amount of light absorbed by the L0 layer is partially different, and as a result, the amount of heat generated differs for each portion of the L0 layer (heat generation unevenness occurs in the L0 layer). Therefore, due to the re-irradiation of the reflected laser beam LRE, the crystal state of the L0 layer, particularly the phase change material layer 6b in the recording layer 6, becomes uneven, and the L0 layer is not initialized properly. There is a possibility that this point will be improved preferable.
  • the laser beam applied to the L1 layer in a state where the initialization laser beam LIN is focused on the L0 layer by forming the spacer layer 5 to be thicker By increasing the beam diameter of the beam, the beam diameter of the laser beam LRE reflected by the L1 layer and irradiated onto the L0 layer is specified to be larger.
  • the amount of light per unit area of the laser beam LRE applied to the L0 layer due to reflection is reduced, heat generated in the L0 layer due to the irradiation of the laser beam LRE is suppressed.
  • the occurrence of unevenness in the crystal state of the L 0 layer (particularly, the phase change material layer 6 b in the recording layer 6) due to the LRE irradiation can be avoided.
  • the thickness of the spacer layer 5 as the light transmitting layer depends on the standard of the optical recording medium 31 and the specification of the drive device, it cannot be designed freely. It is difficult to adopt.
  • the present invention has been made in order to solve such points to be improved, and a multilayer recording layer type optical recording medium capable of satisfactorily initializing each layer including the recording layer without increasing the thickness of the spacer layer.
  • a main object is to provide a manufacturing method and a manufacturing apparatus.
  • Another object is to provide a multilayer recording layer type optical recording medium in which each layer is well initialized.
  • a plurality of layers each including a recording layer initially formed by light irradiation are formed on one surface side of a base material, and a gap is formed between the respective layers.
  • Manufacturing method for manufacturing a multilayer recording layer type optical recording medium having a base layer formed thereon And forming, as an intermediate step, one layer in which the light reflectance with respect to an initialization laser beam incident through the spacer layer as an upper layer is 30% or less in an initialized state. Irradiating the formed one layer with the laser beam for initialization to initialize the laser beam, forming the spacer layer on the initialized layer, and forming the spacer layer on the formed layer.
  • a first layer forming apparatus for forming one layer that is 30% or less in an initialized state, and a first initializing step of irradiating the formed one layer with the initialization laser beam to initialize the layer.
  • Device a spacer layer forming device for forming the spacer layer on the initialized layer, and a second layer forming for forming another layer on the formed spacer layer Initialization of the device and other layers formed
  • a second initialization device for irradiating a laser beam for initialization.
  • the method and apparatus for manufacturing a multilayer optical recording medium when manufacturing a multilayer recording layer type optical recording medium, as an intermediate step, light reflection with respect to an initialization laser beam incident through a spacer layer is performed.
  • One layer having a ratio of 30% or less in the initialized state is formed, and the formed one layer is initialized by irradiating a laser beam for initialization, and a spacer is formed on the initialized layer.
  • One layer is formed by forming a layer, forming another layer on the formed spacer layer, and irradiating the formed other layer with a laser beam for initialization.
  • a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a spacer layer is interposed between the respective layers.
  • a method for manufacturing a multilayer recording layer type optical recording medium, wherein a light reflectance for an initialization laser beam incident through the spacer layer as an upper layer is determined as an intermediate step.
  • a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of the base material, and a space is formed between the respective layers.
  • the method and apparatus for manufacturing a multilayer optical recording medium when manufacturing a multilayer recording layer type optical recording medium, as an intermediate step, light reflection with respect to an initialization laser beam incident through a spacer layer is performed.
  • One layer whose ratio is less than 30% A spacer layer is formed on one of the formed layers, and the formed one layer is initialized by irradiating an initialization laser beam through the spacer layer to initialize the layer.
  • Another layer is formed on the formed spacer layer, and the formed other layer is irradiated with a laser beam for initialization to initialize the laser beam. It is possible to reliably avoid the occurrence of unevenness in the initialization state in the other layer due to the above-described interference between the laser beam for initialization and the laser beam for initialization passed through the other layer. As a result, it is possible to manufacture a high-quality multilayer recording layer type optical recording medium in which each layer including the recording layer is uniformly and satisfactorily initialized without increasing the thickness of the spacer layer.
  • the light reflectance of the one layer with respect to one recording laser beam and one reproduction laser beam is set to 20% or more.
  • the first layer forming device forms the light reflectance of the one layer with respect to the recording laser beam and the reproducing laser beam to be 20% or more. It is preferable that it is comprised so that it may perform. With this configuration, it is possible to effectively prevent an error from occurring when recording and reproducing data by the recording and reproducing apparatus owned by the user.
  • the wavelength is 500 nm as the initialization laser beam. It is preferable to use light having a wavelength of 1000 nm or less. Further, it is preferable that the recording layer is formed of a phase change material. Further, in the apparatus for manufacturing a multilayer optical recording medium, light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and the first and second initialization devices include: It is preferable that the laser beam for initialization is configured to use light having a wavelength of 500 nm or more and 100 nm or less.
  • the first and second layer forming apparatuses are configured to form the recording layer using a phase change material.
  • a multilayer recording layer type optical recording medium a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a spacer layer is provided between the respective layers.
  • a multi-layer recording layer type optical recording medium in which a layer other than an uppermost layer of the plurality of layers is initialized through the spacer layer as an upper layer.
  • the light reflectance for the laser beam for use is less than 30% in the initialized state.
  • this multilayer recording layer type optical recording medium a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of the base material, and a spacer layer is formed between each layer.
  • the light reflectance for the initialization laser beam incident through the spacer layers of the other layers except the uppermost layer among the plurality of layers is 30% in the initialized state.
  • the amount of irradiation by the initialization laser beam reflected by a layer that is one layer farther than the initialization target layer can be sufficiently reduced, so that regardless of the thickness of the spacer layer,
  • the plurality of layers are so adjusted that the light reflectance with respect to the recording laser beam and the reproduction laser beam incident through the spacer layer as the upper layer is 20% or more in the initialized state. It is preferable that other layers except the uppermost layer are formed.
  • the recording laser beam and the reproducing laser beam are used as the recording laser beam and the reproducing laser beam, and the other layers except the top layer among the plurality of layers have wavelengths of 500 nm or more.
  • the laser beam has been initialized with the above-mentioned laser beam for initialization of 100 nm or less.
  • the recording layer is formed of a phase change material.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a multilayer (two-layer) recording layer type optical recording medium 1 according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a configuration of the manufacturing apparatus 200 for the optical recording medium 1.
  • FIG. 3 is an explanatory diagram for explaining the effect on the L0 layer due to the irradiation of the laser beam LRE reflected by the L1 layer when initializing the optical recording medium 1 on which the L1 layer and the L0 layer are formed. It is.
  • Fig. 4 shows the simulation results when the light reflectivity of the L1 layer in the optical recording medium 1 was variously changed and the quality of initialization of the L0 layer in each optical recording medium 1 was simulated. It is a simulation result explanatory view.
  • FIG. 5 is an explanatory diagram showing conditions for a simulation corresponding to the simulation results shown in FIG.
  • FIG. 9 is an explanatory diagram of simulation results showing simulation results when simulating the characteristics of the light reflectance of FIG.
  • FIG. 7 shows various changes in the thickness of the L 1 layer in the optical recording medium 1 for both the L 1 layer in the initialized state (crystalline state) and the uninitialized state (amorphous state).
  • FIG. 9 is an explanatory diagram of simulation results showing simulation results when simulating the characteristics of the light reflectance of the L1 layer with respect to a recording / reproducing laser beam (wavelength: 405 nm).
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a conventional single-layer recording layer type optical recording medium 21.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of a multilayer (two-layer) recording layer type optical recording medium 31 that has been already developed by the applicant.
  • FIG. 10 is a view for explaining the influence on the L0 layer due to the irradiation of the laser beam LRE reflected by the L1 layer when the optical recording medium 31 on which the L1 layer and the L0 layer are formed is initialized.
  • optical recording medium 1 a multilayer recording layer type optical recording medium (hereinafter, also referred to as “optical recording medium”) 1 in the present invention will be described with reference to FIG.
  • the optical recording medium 1 has a surface on which fine irregularities are formed on the substrate 2 (the ⁇ surface in FIG. 1).
  • the L1 layer is composed of the reflective layer 3 and the recording layer 4, and has a laser beam for initialization (wavelength within the range of 500 nm to 100 nm, hereinafter 810 nm as an example). ) Is formed to have a light reflectance of 3% or more and 30% or less, more preferably 5% or more and 25% or less.
  • the light reflectance in the present invention refers to a state in which the spacer layer 5 is formed as an upper layer on a layer (for example, the L1 layer) and the layer (the L1 layer in this example) is initialized. Means the reflectance when the laser beam for initialization is irradiated from the spacer layer 5 side.
  • the reflectivity of this layer changes depending on what layer is present on the layer closest to the incident light (specifically, the first protective layer 4a).
  • the difference in the refractive index difference is due to the difference in the refractive index difference.
  • the refractive index of the recording layer (first protective layer 4a) is 2.25
  • the refractive index of the spacer layer 5 is about 1.6
  • the refractive index of air is 1.
  • the refractive index difference between the recording layer (first protective layer 4a) and the spacer layer 5 is about 0.65
  • the refractive index difference between the recording layer (first protective layer 4a) and air is It is about 1.25.
  • the influence of the surface reflection of the spacer layer 5 is included, so that even when the reflectivity of the layer (L1 layer) itself is, for example, 30%, the actual reflectivity is measured. Measurements can exceed 30%. For example, in the above example, since the refractive index of the spacer layer 5 is 1.6, the surface reflection is about 5%, and the actual measured value is about 35%. Therefore, in the measurement method including the surface reflection, when the refractive index of the spacer layer 5 is known, it is necessary to subtract the surface reflection from the measured value. On the other hand, it is also possible to measure by focusing on the L1 layer without being affected by surface reflection. For this measurement, a photometer with an optical system capable of focusing on that layer (L1 layer) or It can be measured by an evaluation device.
  • the manufacturing apparatus 200 includes a reflective layer forming apparatus 101, a recording layer forming apparatus (first layer forming apparatus) 102, an initializing apparatus (first initializing apparatus) 103, a spacer layer forming apparatus 201, and a recording layer.
  • the apparatus includes a forming apparatus (second layer forming apparatus) 202, an initializing apparatus (second initializing apparatus) 203, and a light transmitting layer forming apparatus 104.
  • the reflective layer forming apparatus 101 includes a reflective layer forming chamber 101a and a sputtering apparatus 101b disposed in the reflective layer forming chamber 101a.
  • the recording layer forming apparatus 102 includes a recording layer forming chamber 102a and a sputtering apparatus 102b disposed in the recording layer forming chamber 102a, and is provided on the surface of the base material 2 carried into the recording layer forming chamber 102a. It has a function of forming the recording layer 4 by the sputtering device 102b.
  • the initialization device 103 includes a rotation mechanism 103a for rotating the base material 2 and an initialization laser driven by a tracking mechanism (not shown) along a group formed on the base material 2.
  • the spacer layer forming apparatus 201 includes a rotating mechanism 2 O la for rotating the substrate 2, a dropping mechanism for the coating liquid R 1 (not shown), a transparent stamper 201 b and an ultraviolet irradiation mechanism (not shown). ), And has a function of forming a spacer layer 5 as a light transmitting layer on the surface of the substrate 2 by a spin coating method.
  • the recording layer forming apparatus 202 includes a recording layer forming chamber 202a and a sputtering apparatus 202b disposed in the recording layer forming chamber 202a.
  • the initialization device 203 includes a rotation mechanism 203 for rotating the substrate 2 and an initialization laser beam L IN along a group formed on the substrate 2 by being driven by a tracking mechanism (not shown). And a function of initializing the recording layer 6 formed on the surface of the substrate 2.
  • the light-transmitting layer forming device 104 includes a rotation mechanism 104 for rotating the base material 2, a dropping mechanism 104 b for the coating liquid R, and an ultraviolet irradiation mechanism (not shown). In addition, it has a function of forming a power par layer 7 as a light transmitting layer by a spin coating method.
  • the base material 2 is formed into a disk shape having fine irregularities such as groups formed on its surface (one surface) by injection molding.
  • the recording layer 4 is formed on the reflective layer 3 by the recording layer forming device 102.
  • the phase change material layer 4b is formed by, for example, a sputtering method.
  • the L1 layer is formed such that the light reflectance with respect to the initialization laser beam LIN incident via the spacer layer 5 is 30% or less in the initialized state.
  • the film thickness thereof formed to a thickness which is described below with reference to the dielectric of the first protective layer 4 a of L 1 layer e.g. Sani ⁇ aluminum or Z n S- S I_ ⁇ 2, etc. .
  • the initializing device 103 irradiates the laser beam LIN for initialization from the same direction as the irradiation direction of the laser beam (hereinafter, both laser beams are also collectively referred to as “recording / reproducing laser beam”).
  • the L1 layer containing the layer specifically, the L1 layer containing the phase change material layer 4b.
  • the L1 layer is formed as described later. The initialization can be performed by the initialization device 103.
  • a 2P method using a transparent stamper 201b is performed by a spacer layer forming apparatus 201 to form a spacer layer 5 having a thickness TH of, for example, 20 on the L1 layer.
  • a resin material having a light transmitting property (coating solution R 1) is dropped on the surface of the base material 2 on which the recording layer 4 is formed, and the resin material is applied onto the first protective layer 4 a by spin coating.
  • a transparent stamper 201b for forming fine unevenness such as a group is placed on the applied resin material in an uncured state.
  • the resin material is cured by irradiating ultraviolet rays, and then the transparent stamper 201b is removed.
  • fine irregularities are formed on the upper surface of the spacer layer 5 by the fine irregularities formed on the surface of the transparent stamper 201b.
  • the L1 layer can be initialized as described above.
  • the L0 layer is formed on the surface of the spacer layer 5 on which the fine unevenness is formed by the recording layer forming apparatus 202.
  • the L0 layer is formed by, for example, a sputtering method.
  • the formed L0 layer is irradiated with the initialization laser beam LIN by the initialization device 203 from the same direction as the irradiation direction of the recording / reproducing laser beam, and the L0 layer including the recording layer 6 is irradiated.
  • a part of the initialization laser beam L IN irradiating the L 0 layer from the lens 11 in the pickup 203 b to the L 0 layer is L 0 Layer and spacer layer 5 to reach layer L1.
  • a part of the laser beam LRE of the laser beam LPE that has reached the L1 layer is reflected by the L1 layer (in particular, the reflection layer 3 in the L1 layer) to irradiate the L0 layer.
  • the initialized L1 layer laser beam Since the reflectance is 30% or less, the light amount of the laser beam LRE irradiating the L0 layer is reduced to at least 30% or less based on the light amount of the laser beam LPE passing through the L0 layer.
  • the formation of the L1 layer, the initialization of the L1 layer, the formation of the spacer layer 5, the formation of the L0 layer, and the initialization of the L0 layer correspond to intermediate steps in the present invention.
  • the cover layer 7 is formed on the initialized L 0 layer using, for example, a spin coat method using the light transmitting layer forming apparatus 104.
  • a resin material (coating liquid R) of a light-transmitting resin is dropped on the L0 layer of the base material 2 by a dropping mechanism 104b, and then the rotating mechanism 104a is operated.
  • the resin material is applied in a thin film on the L0 layer by rotating the base material 2 (by spin coating), and then the resin material is cured by irradiating ultraviolet rays.
  • the manufacture of the optical recording medium 1 is completed.
  • a manufacturing method in which the force-par layer 7 is formed after the formation of the L0 layer and the L0 layer is initialized thereafter may be employed.
  • the inventor changed the film thickness of the first protective layer 4a constituting the L1 layer to change the optical recording medium when the light reflectance of the L1 layer with respect to the initialization laser beam LIN was changed.
  • the quality of the initialization of the L 0 layer for the body 1 was simulated.
  • Figure 4 shows the results of this simulation.
  • an example in which the first protective layer 4a in the spacer layer 5 and the L1 layer at the time of performing this simulation was manufactured to a predetermined thickness, the phase change material layer 4b in the L1 layer, and the first protective layer 4a in the L1 layer.
  • FIG. 5 shows each refractive index, each optical extinction coefficient, and each film thickness of the 2 protective layer 4c, the reflective layer 3, and the substrate 2.
  • the initialization state is determined to be good.
  • the rate is set to 31% or more, the initialization state becomes a result of the failure judgment. Therefore, as is clear from the simulation results, by setting the light reflectance of the L1 layer to the initialization laser beam IN to 30% or less, the portion of the recording layer 6 that is initialized and its surroundings is set. The result of the above interference based on the re-irradiation of the laser beam L RE to the already initialized part The occurrence of unevenness in the crystal state can be reliably avoided, and as a result, the L0 layer including the recording layer 6 can be uniformly and satisfactorily initialized.
  • the inventor has also simulated the relationship between the film thickness of the first protective layer 4a constituting the L1 layer and the light reflectance of the L1 layer with respect to the initialization laser beam LIN. Is shown in FIG. According to this simulation result, when using the dielectrics, such as, for example, Z n S- S i 0 2 as a main material of the first protective layer 4 a constituting the L 1 layer, the first protective layer in the L 1 layer By setting the thickness of 4a within the range of about 96 nm to about 159 nm (the range indicated by A in the figure), the L1 layer is initialized in the initialized state (crystalline state). The light reflectance of the L1 layer with respect to the laser beam LIN can be set to 30% or less.
  • a recording / reproducing device (a laser beam for recording / reproducing is emitted from an objective lens having an aperture of about 0.85) used by a user is used to form the L1 layer. It is necessary to be able to record and play back recorded data well.
  • the recording / reproducing apparatus has a small variation depending on the characteristics of the recording / reproducing device, but the wavelength is not less than 395 nm and not more than 415 nm (for example, 405 m). By ensuring that the light reflectance of the L1 layer is at least 20% (preferably 30%), good focus characteristics can be obtained, and the data recorded on the L1 layer can be recorded and reproduced well. Verify that they can do it.
  • the “light reflectance of the L1 layer” is, as described above, a layer on the incident side of the recording / reproducing laser beam with respect to the spacer layer 5 (for example, the L0 layer or the cover layer 7). Is the light reflectance measured when the force is adjusted to the L1 layer via the spacer layer 5 in a state where the influence of Means light reflectance without considering the effects of decay.
  • the inventor of the present invention has sought to find out the film thickness condition of the first protective layer 4a in the L1 layer in order to secure the light reflectance of the L1 layer with respect to the recording / reproducing laser beam of 20% or more. The relationship between the film thickness and the light reflectance of the L1 layer with respect to the recording / reproducing laser beam was simulated.
  • the simulation Figure 7 shows the results.
  • the thickness of the first protective layer 4a in the L1 layer is in the range of about 0 nm to about 12 nm (within the range indicated by B1 in the figure) and about 36 nm to about 36 nm. Either within the range of 102 nm (within the range indicated by B2 in the figure) or within the range of about 1261111 to about 192nm (within the range indicated by B3 in the figure). It is understood that, by setting the L 1 layer, in the initialized state (crystal state) of the L 1 layer, the light reflectance of the L 1 layer with respect to one recording / reproducing laser beam can be secured to 20% or more.
  • the thickness of the first protective layer 4a constituting the L1 layer is set to any one of the overlapping ranges of the range A in FIG. 6 and the range B1, the range B2 or the range B3 in FIG. Good. That is, since there is no overlap between the range A and the range B1, any film thickness in the range C1 of about 96 nm to about 102 nm, which is the overlap of the range A and the range B2, or the range A Approximately 1 26 which is the overlap of ! ! ! ! !
  • the film thickness may be set to an arbitrary value within the range C2 of about 59 nm. Furthermore, according to FIGS. 6 and 7, even within these ranges C l and C 2, the light reflectance of the L1 layer with respect to the initialization laser beam L IN is lower, and the recording / reproducing laser From the viewpoint that it is preferable that the light reflectance of the L1 layer for one beam is higher, the thickness of the first protective layer 4a constituting the L1 layer should be in the range of 137 nm to 145 nm, preferably 140 nm. It can be said that setting to about nm is most preferable.
  • the light reflectance of the L1 layer with respect to the initialization laser beam L IN is lower, and the recording / reproducing laser beam has a lower reflectance. It is also possible to set an arbitrary film thickness with a higher light reflectance of the L1 layer.
  • the light reflectance of the L1 layer with respect to the initialization laser beam LIN is set to 30% or less.
  • the laser beam that has passed through the L0 layer The light amount of the laser beam LRE reflected by the L1 layer can be reduced to 30% or less of the light amount of the laser beam LPE when passing through the L0 layer. Therefore, without increasing the thickness of the spacer layer 5, it is possible to reliably avoid the occurrence of the crystal state unevenness due to the re-irradiation of the laser beam LRE in the LO layer. It can be initialized well. Also, by ensuring that the light reflectance of the L1 layer with respect to the recording / reproducing laser beam is 20% or more, data recorded on the L1 layer can be recorded and reproduced satisfactorily.
  • the present invention is not limited to the above-described embodiment of the invention, and can be appropriately modified.
  • the thickness of the first protective layer 4a in the L1 layer is changed to change the light reflectance of the L1 layer
  • the present invention is not limited to this.
  • the light reflectance of the L1 layer can be set to the above-mentioned specified value.
  • the light reflectivity of the L1 layer depends on the interference condition of light between the layers constituting the L1 layer, and the interference condition of the light depends on the optical path length of each layer.
  • the relationship is equal to the value obtained by multiplying the refractive index of the layer by the film thickness. For this reason, while the film thickness of the first protective layer 4a is kept constant, for example, when the refractive index is changed by changing the material, the light reflectance also varies with the refractive index of the first protective layer 4a described above. It is almost the same as when the film thickness is changed while maintaining the constant. Therefore, the optimum refractive index can be obtained in the same manner as in the simulation described above. By forming the first protective layer 4a to have this refractive index, the laser beam LRE on the recording layer 6 is re-irradiated.
  • the light reflectance of the L1 layer is also affected by the material (refractive index) of the spacer layer 5. Therefore, the light reflectance of the L1 layer may be changed by changing the material of the spacer layer 5.
  • the manufacturing apparatus in this case is configured by increasing the spacer layer forming apparatus 201, the recording layer forming apparatus 202, and the initializing apparatus 203 in the manufacturing apparatus 200 by the number of times of repetition.
  • the method includes forming the L2 layer on the substrate 2, initializing the L2 layer, forming the spacer layer 5, forming the L1 layer, initializing the L1 layer, forming the spacer layer 5, Each step of forming the L0 layer, initializing the L0 layer, forming the force-par layer 7, or forming the L2 layer on the base material 2, forming the spacer layer 5, initializing the L2 layer, The steps of forming the L1 layer, forming the spacer layer 5, initializing the L1 layer, forming the L0 layer, forming the cover layer 7, and initializing the L0 layer are sequentially performed.
  • the L1 layer should be initialized uniformly and well by setting the light reflectance of the L2 layer to the initialization laser beam LIN to 30% or less. Can be. Further, with regard to the initialization of the L0 layer, the L0 layer can be uniformly and satisfactorily initialized by setting the light reflectance of the L1 layer with respect to the initialization laser beam LIN to 30% or less.
  • the first protective layer (4a or 6a) and the second protective layer other than the layer farthest from the incident light (L0 layer for two layers, L0 layer and L1 layer for three layers)
  • a metal layer can be used as a part of the protective layer (4c or 6a), and the present invention can be applied to this configuration.
  • a ROM layer can be included in a plurality of layers in the multilayer recording layer type optical recording medium according to the present invention, and it is not necessary to initialize all of the plurality of layers, and any one of the layers can be initialized. You may.
  • the L0 layer is irradiated not only with the L1 layer but also with the initialization laser beam LIN reflected by the L2 layer.
  • the amount of light reflected by the L2 layer is To 1Z4.
  • the light reflected by the L2 layer passes through the L1 layer twice after passing through the L0 layer and before being reflected by the L2 layer and reaching the L0 layer. Therefore, the amount of light reflected by the L2 layer is a value obtained by further multiplying the value reduced to 1/4 by the square coefficient of the transmittance of the L1 layer.
  • the amount of light reflected by the L2 layer is negligible compared to the light reflected by the L1 layer, and only the light reflected by the L1 layer needs to be considered when initializing the LO layer. That is, when a single layer is initialized in a multilayer recording layer type optical recording medium, only the influence of reflected light by a layer farther from the incident light than the one to be initialized needs to be considered.
  • the light reflectance for the initialization laser beam LIN in the layer far from the incident light may be set to 30% or less.
  • the light reflectance of the L1 layer with respect to the initialization laser beam LIN is specified to a specific predetermined value, but the L1 layer with respect to the initialization laser beam LIN is specified. From the viewpoint that the light reflectivity is preferably lower and the light reflectivity of the L1 layer with respect to the recording / reproducing laser beam is preferably higher, the L1 layer with respect to the initialization laser beam LIN is preferred. It is also possible to adopt a configuration in which the light reflectance of the layer 1 is formed to be lower than the light reflectance of the L1 layer with respect to the recording / reproduction laser beam. Industrial applicability
  • the light is incident via the spacer layer as an intermediate step.
  • a single layer having a light reflectance of 30% or less in the initialized state with respect to the initializing laser beam is formed, and the formed one layer is irradiated with the initializing laser beam to be initialized.
  • a spacer layer is formed on the formed layer, another layer is formed on the formed spacer layer, and an initialization is performed on the formed other layer.
  • a multilayer recording layer type optical recording medium capable of producing a high quality multilayer recording layer type optical recording medium in which each layer including the recording layer is uniformly and satisfactorily initialized without increasing the thickness of the spacer layer. A manufacturing method is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

A multiple recording layer optical recording medium manufacturing method of manufacturing an optical recording medium (1) in which a plurality of layers (L1 and L0) each including a phase changing material layer (4b) to be initialized by light irradiation are formed on one side of a base (2), and a spacer layer (5) is formed between the layers (L1 and L0) includes, as an intermediate step, a step of forming the L1 layer which has a reflectance to the initializing laser beam impinging through a spacer layer (5) to be formed as an upper layer is 30% or under in the initialized state, initializing the L1 layer by irradiating the LT layer with the initializing laser beam, forming the spacer layer (5) on the initialized L1 layer, forming the L0 layer on the spacer layer (5), and initializing the L0 layer by irradiating the initializing laser beam thereon. The layers (L1 and L0) including recording layers (4 and 6) can be excellently initialized without increasing the thickness of the spacer layer (5).

Description

糸田  Itoda
多層記録層型光記録媒体の製造方法、 多層記録層型光記録媒体の製造装置 および多層記録層型光記録媒体  Method for manufacturing multilayer recording layer type optical recording medium, apparatus for manufacturing multilayer recording layer type optical recording medium, and multilayer recording layer type optical recording medium
技術分野 Technical field
この発明は、 光照射によって初期化される記録層をそれぞれ含む複数の層が基 材の一面側に積層されると共に各層間にスぺーサ層が形成されている多層記録層 型光記録媒体の製造方法、 その多層記録層型光記録媒体の製造装置、 およびその 多層記録層型光記録媒体に関するものである。 背景技術  The present invention relates to a multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are laminated on one surface side of a substrate and a spacer layer is formed between each layer. The present invention relates to a manufacturing method, an apparatus for manufacturing a multilayer recording layer type optical recording medium, and a multilayer recording layer type optical recording medium. Background art
光記録媒体は、 高密度で大容量である点が注目され、 様々な用途で使用されて いる。 特に、 記録された情報の消去および再記録が可能な書換可能型光記録媒体 は、 データの修復や更新が可能であり、 しかも繰り返して書換えて使用できるた め、 光記録媒体の用途拡大に貢献するものとして期待されている。 この種の光記 録媒体としては、 光磁気記録媒体 (MO) や相変化型光記録媒体が開発され、 か つ商品化されている。  Optical recording media are noted for their high density and large capacity, and are used for various purposes. In particular, rewritable optical recording media that allow erasing and re-recording of recorded information can be used to restore and update data, and can be repeatedly rewritten and used, contributing to expanding the use of optical recording media. It is expected to do. As this type of optical recording medium, a magneto-optical recording medium (MO) and a phase change optical recording medium have been developed and commercialized.
このうち、 相変化を利用した書換え可能な相変化型光記録媒体 (以下、 単に 「 光記録媒体」 ともいう) として、 出願人は、 図 8に示す層構造の光記録媒体 2 1 を既に開発している。 この光記録媒体 2 1は、 基材 2の一面 (同図中の上面) 側 に、 反射層 3、 記録層 4、 およぴ光透過層としての力パー層 7が順次積層されて 構成されている。 この場合、 基材 2は、 ポリカーボネート等の樹脂材を用いて、 射出成形によって所定の厚みの平板形状 (一例としてディスク (円板) 形状) に 成形されている。 また、 基材 2の表面 (同図中の上面) には、 トラッキングサー ボ用のグループ等の微細凹凸 (図示せず) が成形時に形成されている。 反射層 3 は、 A 1、 A gまたは N i等の金属を用いて基材 2における微細凹凸の形成面上 に形成されている。 記録層 4は、 第 1保護層 4 a、 相変化材料層 4 bおよび第 2 保護層 4 cを有し、 これらの各層 4 c, 4 b, 4 aがこの順序で反射層 3上に積 層されて構成されている。 このうちの第 1保護層 4 aおよぴ第 2保護層 4 cは、 例えば、 酸化アルミや Z n S_S i〇2 等の誘電体を用いて形成され、 相変化 材料層 4 bは、 例えば、 GeTe S b、 I n S bTeまたは A g G e I n S b T e等を用いて形成されている。 カバー層 7は、 光透過性の樹脂材料を用いて第 1 保護層 4 a上に形成されている。 Among these, the applicant has already developed an optical recording medium 21 having a layer structure shown in FIG. 8 as a rewritable phase-change optical recording medium utilizing a phase change (hereinafter, also simply referred to as “optical recording medium”). are doing. The optical recording medium 21 has a structure in which a reflective layer 3, a recording layer 4, and a power layer 7 as a light transmitting layer are sequentially laminated on one surface (the upper surface in FIG. 1) of the substrate 2. ing. In this case, the base material 2 is formed into a flat plate shape (for example, a disk (disk) shape) having a predetermined thickness by injection molding using a resin material such as polycarbonate. On the surface of the substrate 2 (the upper surface in the figure), fine irregularities (not shown) such as a tracking servo group are formed at the time of molding. The reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed using a metal such as A1, Ag, or Ni. The recording layer 4 includes a first protective layer 4a, a phase-change material layer 4b, and a second It has a protective layer 4c, and these layers 4c, 4b, 4a are stacked on the reflective layer 3 in this order. The first protective layer 4 a and the second protective layer 4 c are formed using a dielectric material such as aluminum oxide or ZnS_Si 2 , and the phase change material layer 4 b is formed, for example, , GeTeSb, InSbTe or AgGeInSbTe. The cover layer 7 is formed on the first protective layer 4a using a light-transmitting resin material.
この光記録媒体 21では、 カバー層 7側から記録用レーザービーム (例えば、 波長が 405 nmで、 記録パワーに設定されたレーザービーム) を記録層 4に照 射して、 相変化材料層 4 bを含む記録層 4を非晶質状態と結晶状態との間で可逆 的に相変化させることにより、 記録マークの形成および消去が行われる。 つまり 、 記録層 4 (特に相変化材料層 4 b) では、 記録用レーザービームが照射された 際に、 その照射部分が融点以上に加熱された後に急速に冷却 (急冷) されること によって非晶質ィヒされ、 記録信号に応じた記録マークが形成される。 また、 記録 層 4では、 記録用レーザービームが照射された際に、 その照射部分が結晶化温度 以上に加熱された後に徐々に冷却 (徐冷) されることによって結晶化され、 記録 マークが消去される。 一方、 再生時には、 再生用レーザービーム (例えば波長が 405 nmで、 記録時よりも低パワーのレーザービーム) を照射した際の非晶質 状態と結晶状態との間で光学的定数の変化に伴って変化する光反射率の差を利用 して記録マークの有無を判別することにより、 データの再生が行われる。  In this optical recording medium 21, a recording laser beam (for example, a laser beam having a wavelength of 405 nm and set to a recording power) is irradiated onto the recording layer 4 from the cover layer 7 side, and the phase change material layer 4 b By forming a recording layer 4 containing a reversible phase change between an amorphous state and a crystalline state, recording marks are formed and erased. That is, in the recording layer 4 (particularly, the phase change material layer 4b), when the recording laser beam is irradiated, the irradiated portion is heated to a temperature equal to or higher than the melting point and then rapidly cooled (rapidly cooled). The recording mark is formed according to the recording signal. In the recording layer 4, when the recording laser beam is irradiated, the irradiated part is heated to a temperature higher than the crystallization temperature and then gradually cooled (slowly cooled) to be crystallized, thereby erasing a recording mark. Is done. On the other hand, at the time of reproduction, a laser beam for reproduction (for example, a laser beam having a wavelength of 405 nm and a lower power than that at the time of recording) is irradiated and the optical constant changes between the amorphous state and the crystalline state. The data is reproduced by determining the presence or absence of a recording mark by using the difference in the light reflectivity that changes.
この光記録媒体 21を製造する際には、 まず、 射出成形によってその表面 (一 面) にグループ等の微細凹凸が形成されたディスク形状に基材 2を成形する。 次 いで、 基材 2の一面側に反射層 3を形成した後に、 その反射層 3上に記録層 4を 形成する。 この際に、 相変化材料層 4 bおよぴ第 1, 第 2保護層 4 a, 4 cは、 一般的にスパッタリング法によって形成される。 次いで、 例えばスピンコート法 によって記録層 4上にカバー層 7を形成する。 この場合、 記録層 4における相変 化材料層 4 bは、 その形成直後では、 非晶質状態であり、 そのままではユーザー が記録することができない。 したがって、 ユーザーが光記録媒体 2 1を直ちに使 用開始できる初期化状態で光記録媒体 2 1を出荷するためには、 光記録媒体 2 1 の製造工程において、 記録層 4 (特に相変化材料層 4 b ) を初期化する必要があ る。 このため、 カバー層 7を形成した後に、 記録層 4を初期化する。 この場合、 再生用レーザービームまたは記録用レーザービームの照射方向と同一の方向 (力 パー層 7側からの方向) から高パワーのレーザービーム (以下、 「初期化用レー ザ一ビーム」 ともいう) を照射して記録層 4を初期化する。 この際に、 初期化用 レーザービームとしては、 効率よく短時間で初期化でき、 生産効率を向上させる ことができるように、 記録用レーザービームや再生用レーザービームとは異なる 波長のレーザービームが使用されている。 一般的には、 波長が 8 1 0 n mのレー ザ一ビームが初期化用レーザービームとして使用され、 この初期化用レーザービ ームは、 例えば開口数 N A (Numerical Aperture) が値 0 . 4程度 (一例として 値 0 . 3 4 ) の対物レンズを介して光記録媒体 2 1に照射される。 これにより、 記録層 4を初期化した光記録媒体 2 1の製造が完了する。 When the optical recording medium 21 is manufactured, first, the base material 2 is formed into a disk shape having fine irregularities such as groups formed on its surface (one surface) by injection molding. Next, after forming the reflective layer 3 on one surface side of the base material 2, the recording layer 4 is formed on the reflective layer 3. At this time, the phase change material layer 4b and the first and second protective layers 4a and 4c are generally formed by a sputtering method. Next, the cover layer 7 is formed on the recording layer 4 by, for example, a spin coating method. In this case, the phase change material layer 4b in the recording layer 4 is in an amorphous state immediately after its formation, and Cannot be recorded. Therefore, in order to ship the optical recording medium 21 in an initialized state in which the user can immediately start using the optical recording medium 21, the recording layer 4 (particularly, the phase change material layer) is required in the manufacturing process of the optical recording medium 21. 4 b) needs to be initialized. For this reason, after forming the cover layer 7, the recording layer 4 is initialized. In this case, a high-power laser beam (hereinafter also referred to as "initialization laser beam") from the same direction as the irradiation direction of the reproduction laser beam or recording laser beam (direction from the power layer 7 side). To initialize the recording layer 4. At this time, a laser beam having a different wavelength from the recording laser beam and the reproduction laser beam is used as the initialization laser beam so that the initialization can be performed efficiently and in a short time and the production efficiency can be improved. Have been. In general, a laser beam having a wavelength of 810 nm is used as a laser beam for initialization. The laser beam for initialization has, for example, a numerical aperture NA (Numerical Aperture) of about 0.4 ( As an example, the light is irradiated onto the optical recording medium 21 through an objective lens having a value of 0.34). Thus, the manufacture of the optical recording medium 21 in which the recording layer 4 has been initialized is completed.
ところが、 さらに大容量の光記録媒体の開発商品化が望まれており、 出願人は 、 光記録媒体 2 1をベースにしてさらに大容量ィ匕した光記録媒体 3 1を開発して いる。 この光記録媒体 3 1について、 図 9を参照して説明する。 なお、 光記録媒 体 2 1と同一の構成については同じ符号を付し、 重複する説明は省略する。 この光記録媒体 3 1は、 いわゆる片面多層 (一例として 2層) 記録層型光記録 媒体 (以下、 「多層記録層型光記録媒体」 ともいう) であって、 同図に示すよう に、 基材 2の一面 (同図中の上面) 側に、 反射層 3および記録層 4を含んで構成 される L 1層、 光透過層としてのスぺーサ層 5、 記録層 6 (以下、 「: L 0層」 と もいう) 、 および光透過層としてのカバー層 7が順次積層されて構成されている 。 この場合、 スぺーサ層 5は、 その厚み T Hが通常 2 0 μ ιη程度に設定され、 L 0層側の表面にはグループ等の微細凹凸が形成されている。 記録層 6は、 第 1保 護層 6 a、 相変化材料層 6 bおよび第 2保護層 6 cを有し、 これら各層 6 c , 6 b , 6 aがこの順序でスぺーサ層 5の微細凹凸形成面上に積層されて構成されて いる。 この場合、 各層 6 a , 6 b , 6 cは、 それぞれ対応する各層 4 a , 4 b , 4 cとは厳密にはそれぞれ異なる材料や B莫厚で形成されるが同じ機能を有してい る。 力パー層 7は、 樹脂材料を用いて L 0層上に形成されている。 However, development and commercialization of an optical recording medium having a larger capacity is desired, and the applicant has developed an optical recording medium 31 having a larger capacity based on the optical recording medium 21. The optical recording medium 31 will be described with reference to FIG. Note that the same components as those of the optical recording medium 21 are denoted by the same reference numerals, and redundant description will be omitted. The optical recording medium 31 is a so-called single-sided multilayer (for example, two layers) recording layer type optical recording medium (hereinafter, also referred to as “multilayer recording layer type optical recording medium”), as shown in FIG. On one side (upper surface in the figure) of the material 2, an L1 layer including a reflective layer 3 and a recording layer 4, a spacer layer 5 as a light transmitting layer, and a recording layer 6 (hereinafter, “: L 0 layer) and a cover layer 7 as a light transmitting layer are sequentially laminated. In this case, the thickness TH of the spacer layer 5 is usually set to about 20 μιη, and fine irregularities such as groups are formed on the surface on the L0 layer side. The recording layer 6 has a first protective layer 6a, a phase change material layer 6b, and a second protective layer 6c. b and 6a are laminated in this order on the surface of the spacer layer 5 on which fine irregularities are formed. In this case, each layer 6 a, 6 b, 6 c is formed of a strictly different material or B from each corresponding layer 4 a, 4 b, 4 c, but has the same function. . The force-par layer 7 is formed on the L0 layer using a resin material.
この光記録媒体 3 1でも、 その製造工程中において、 記録層 4 , 6を初期化す る必要がある。 この場合、 図 1 0に示すように、 光記録媒体 2 1と同様にして、 カバー層 7を形成した後に、 光記録媒体 2 1に対する初期化時と同様にして、 対 物レンズ 1 1を使用して初期化する。 具体的には、 対物レンズ 1 1から出射させ た初期化用レーザービーム L INをカバー層 7側から L 1層に照射して記録層 4を 含む L 1層を初期化し、 次いで、 同図に示すように、 初期化用レーザービーム L INを L 0層に照射して L 0層を初期化する。 これにより、 し 1層ぉょび 0層を 初期化した光記録媒体 3 1の製造が完了する。 発明の開示  Also in this optical recording medium 31, it is necessary to initialize the recording layers 4 and 6 during the manufacturing process. In this case, as shown in FIG. 10, after forming the cover layer 7 in the same manner as in the optical recording medium 21, the objective lens 11 is used in the same manner as in the initialization for the optical recording medium 21. And initialize. Specifically, the L1 layer including the recording layer 4 is initialized by irradiating the L1 layer from the cover layer 7 side with the initialization laser beam LIN emitted from the objective lens 11, and then, as shown in FIG. As shown, the L 0 layer is initialized by irradiating the L 0 layer with the initialization laser beam L IN. Thus, the manufacture of the optical recording medium 31 in which the first layer and the zero layer are initialized is completed. Disclosure of the invention
発明者は、 上述の多層記録層型光記録媒体の製造方法を検討した結果、 以下の ような改善すべき点を発見した。 すなわち、 この製造方法では、 図 1 0に示すよ うに、 スぺーサ層 5上に形成された L 0層を初期化する際に、 L 0層に照射され た初期化用レーザービーム L INのうちの一部のレーザービーム LPEが、 L 0層お よびスぺーサ層 5を通過して L 1層に達し、 さらにレーザービーム LPEの一部の レーザービーム LREが L 1層によって反射される。 この場合、 反射されたレーザ 一ビーム LREと L 0層に照射された初期化用レーザービーム L INとの間で、 スぺ ーサ層 5の膜厚ムラに起因する干渉が発生する。 このため、 L 0層で吸収される 光量が部分的に相違し、 この結果、 L 0層の各部分毎に発熱量が相違する (L 0 層に発熱ムラが生ずる) 。 したがって、 この反射したレーザービーム LREの再照 射に起因して、 L 0層、 特に記録層 6における相変化材料層 6 bの結晶状態にム ラが生じて L 0層が良好に初期化されないおそれがあり、 この点を改善するのが 好ましい。 一方、 L 0層を形成した後に L 1層を初期化することも考えられる。 この場合、 初期化用レーザービーム L INとしては、 L 0層を通過する際の吸収量 を考慮して高パワーに規定する必要がある。 し力 し、 現状では、 このような高パ ヮ一の初期化用レーザービーム L INを出力可能なレーザー素子を製造するのは技 術的に困難である。 As a result of studying the method of manufacturing the above-described multilayer recording layer type optical recording medium, the inventors have found the following points to be improved. That is, in this manufacturing method, as shown in FIG. 10, when the L 0 layer formed on the spacer layer 5 is initialized, the initialization laser beam L IN applied to the L 0 layer is used. A part of the laser beam LPE passes through the L0 layer and the spacer layer 5 to reach the L1 layer, and a part of the laser beam LRE of the laser beam LPE is reflected by the L1 layer. In this case, interference occurs due to unevenness in the thickness of the spacer layer 5 between the reflected laser beam LRE and the initialization laser beam L IN applied to the L 0 layer. For this reason, the amount of light absorbed by the L0 layer is partially different, and as a result, the amount of heat generated differs for each portion of the L0 layer (heat generation unevenness occurs in the L0 layer). Therefore, due to the re-irradiation of the reflected laser beam LRE, the crystal state of the L0 layer, particularly the phase change material layer 6b in the recording layer 6, becomes uneven, and the L0 layer is not initialized properly. There is a possibility that this point will be improved preferable. On the other hand, it is also conceivable to initialize the L1 layer after forming the L0 layer. In this case, the initializing laser beam L IN needs to be set to a high power in consideration of the amount of absorption when passing through the L 0 layer. However, at present, it is technically difficult to manufacture a laser element capable of outputting such a high-precision initialization laser beam LIN.
一方、 このレーザービーム LREの上述した影響を小さくするために、 初期化用 レーザービーム L INが対物レンズ 1 1で絞られた非平行光であることを利用する 製造方法が考えられる。 具体的には、 この製造方法では、 スぺーサ層 5の膜厚を より厚く形成することによって L 0層に初期化用レーザービーム L INを合焦した 状態における L 1層に照射されたレーザービームのビーム径を大きくすることに より、 L 1層によって反射されて L 0層に照射されるレーザービーム LREのビー ム径をより大きく規定する。 この製造方法によれば、 反射によって L 0層に照射 されたレーザービーム LREの単位面積当りの光量が低下するため、 レーザービー ム LREの照射による L 0層の発熱が抑制される結果、 レーザービーム LREの照射 に起因する L 0層 (特に記録層 6内の相変化材料層 6 b ) の結晶状態のムラの発 生を回避することができる。 しかしながら、 光透過層としてのスぺーサ層 5の膜 厚は、 光記録媒体 3 1の規格やドライブ装置の仕様などに依存しているため、 自 由に設計することができないため、 この製造方法を採用することは困難である。 本発明は、 かかる改善すべき点を解決すべくなされたものであり、 スぺーサ層 の膜厚を厚くすることなく記録層を含む各層を良好に初期化し得る多層記録層型 光記録媒体の製造方法および製造装置を提供することを主目的とする。 また、 各 層が良好に初期化された多層記録層型光記録媒体を提供することを他の目的とす る。  On the other hand, in order to reduce the above-mentioned influence of the laser beam LRE, a manufacturing method utilizing the fact that the initialization laser beam L IN is non-parallel light focused by the objective lens 11 is considered. Specifically, in this manufacturing method, the laser beam applied to the L1 layer in a state where the initialization laser beam LIN is focused on the L0 layer by forming the spacer layer 5 to be thicker By increasing the beam diameter of the beam, the beam diameter of the laser beam LRE reflected by the L1 layer and irradiated onto the L0 layer is specified to be larger. According to this manufacturing method, since the amount of light per unit area of the laser beam LRE applied to the L0 layer due to reflection is reduced, heat generated in the L0 layer due to the irradiation of the laser beam LRE is suppressed. The occurrence of unevenness in the crystal state of the L 0 layer (particularly, the phase change material layer 6 b in the recording layer 6) due to the LRE irradiation can be avoided. However, since the thickness of the spacer layer 5 as the light transmitting layer depends on the standard of the optical recording medium 31 and the specification of the drive device, it cannot be designed freely. It is difficult to adopt. The present invention has been made in order to solve such points to be improved, and a multilayer recording layer type optical recording medium capable of satisfactorily initializing each layer including the recording layer without increasing the thickness of the spacer layer. A main object is to provide a manufacturing method and a manufacturing apparatus. Another object is to provide a multilayer recording layer type optical recording medium in which each layer is well initialized.
この発明に係る多層記録層型光記録媒体の製造方法は、 光照射によつて初期ィ匕 される記録層をそれぞれ含む複数の層が基材の一面側に形成されると共に当該各 層間にスぺーサ層が形成されている多層記録層型光記録媒体を製造する製造方法 であって、 中間工程として、 その上層としての前記スぺーサ層を介して入射され る初期化用レーザービームに対する光反射率が初期化状態において 3 0 %以下と なる一つの前記層を形成し、 当該形成した一つの層に対して前記初期化用レーザ 一ビームを照射して初期化し、 当該初期化した層の上に前記スぺーサ層を形成し 、 当該形成したスぺーサ層の上に他の前記層を形成し、 当該形成した他の層に対 して前記初期化用レーザービームを照射して初期化する工程を含んでいる。 また、 この発明に係る多層記録層型光記録媒体の製造装置は、 光照射によって 初期化される記録層をそれぞれ含む複数の層が基材の一面側に形成されると共に 当該各層間にスぺーサ層が形成されている多層記録層型光記録媒体を製造する製 造装置であって、 その上層としての前記スぺーサ層を介して入射される初期化用 レーザービームに対する光反射率が初期化状態において 3 0 %以下となる一つの 前記層を形成する第 1の層形成装置と、 当該形成した一つの層に対して前記初期 化用レーザービームを照射して初期化する第 1の初期化装置と、 当該初期化した 層の上に前記スぺーサ層を形成するスぺーサ層形成装置と、 当該形成したスぺー サ層の上に他の前記層を形成する第 2の層形成装置と、 当該形成した他の層に対 して前記初期化用レーザービームを照射して初期化する第 2の初期化装置とを備 えて構成されている。 In the method for manufacturing a multilayer recording layer type optical recording medium according to the present invention, a plurality of layers each including a recording layer initially formed by light irradiation are formed on one surface side of a base material, and a gap is formed between the respective layers. Manufacturing method for manufacturing a multilayer recording layer type optical recording medium having a base layer formed thereon And forming, as an intermediate step, one layer in which the light reflectance with respect to an initialization laser beam incident through the spacer layer as an upper layer is 30% or less in an initialized state. Irradiating the formed one layer with the laser beam for initialization to initialize the laser beam, forming the spacer layer on the initialized layer, and forming the spacer layer on the formed layer. Forming the other layer, and irradiating the formed other layer with the initialization laser beam to initialize the other layer. Further, in the apparatus for manufacturing a multilayer recording layer type optical recording medium according to the present invention, a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of the base material, and a space is formed between the respective layers. 1. A manufacturing apparatus for manufacturing a multilayer recording layer type optical recording medium having a semiconductor layer formed thereon, wherein an optical reflectance with respect to an initializing laser beam incident through the spacer layer as an upper layer is initially set. A first layer forming apparatus for forming one layer that is 30% or less in an initialized state, and a first initializing step of irradiating the formed one layer with the initialization laser beam to initialize the layer. Device, a spacer layer forming device for forming the spacer layer on the initialized layer, and a second layer forming for forming another layer on the formed spacer layer Initialization of the device and other layers formed And a second initialization device for irradiating a laser beam for initialization.
この多層光記録媒体の製造方法および製造装置では、 多層記録層型光記録媒体 を製造する際に、 中間工程として、 スぺーサ層を介して入射される初期化用レー ザ一ビームに対する光反射率が初期化状態において 3 0 %以下となる一つの層を 形成し、 形成した一つの層に対して初期化用レーザービームを照射して初期化し 、 この初期化した層の上にスぺーサ層を形成し、 この形成したスぺーサ層の上に 他の層を形成し、 この形成した他の層に対して初期化用レーザービームを照射し て初期化することにより、 1つの層で反射した初期化用レーザービームと他の層 を通過した初期化用レーザービームとの間での上記した干渉に起因する他の層に おける初期化状態のムラの発生を確実に回避することができる。 この結果、 スぺ ーサ層の膜厚を厚くすることなく、 記録層を含む各層を均一かつ良好に初期化し た高品質の多層記録層型光記録媒体を製造することができる。 In the method and apparatus for manufacturing a multilayer optical recording medium, when manufacturing a multilayer recording layer type optical recording medium, as an intermediate step, light reflection with respect to an initialization laser beam incident through a spacer layer is performed. One layer having a ratio of 30% or less in the initialized state is formed, and the formed one layer is initialized by irradiating a laser beam for initialization, and a spacer is formed on the initialized layer. One layer is formed by forming a layer, forming another layer on the formed spacer layer, and irradiating the formed other layer with a laser beam for initialization. It is possible to reliably avoid the occurrence of unevenness in the initialization state in another layer due to the above-described interference between the reflected initialization laser beam and the initialization laser beam passed through another layer. . As a result, It is possible to manufacture a high-quality multilayer recording layer type optical recording medium in which each layer including the recording layer is uniformly and satisfactorily initialized without increasing the thickness of the laser layer.
この発明に係る多層記録層型光記録媒体の製造方法は、 光照射によって初期化 される記録層をそれぞれ含む複数の層が基材の一面側に形成されると共に当該各 層間にスぺーサ層が形成されている多層記録層型光記録媒体を製造する製造方法 であって、 中間工程として、 その上層としての前記スぺーサ層を介して入射され る初期化用レーザービームに対する光反射率が初期化状態において 3 0 %以下と なる一つの前記層を形成し、 当該形成した一つの層の上に前記スぺーサ層を形成 し、 前記形成した一^ 3の層に対して前記形成したスぺーサ層を介して前記初期化 用レーザービームを照射して初期化し、 前記形成したスぺーサ層の上に他の前記 層を形成し、 当該形成した他の層に対して前記初期化用レーザービームを照射し て初期化する工程を含んでいる。  In the method for manufacturing a multilayer recording layer type optical recording medium according to the present invention, a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a spacer layer is interposed between the respective layers. A method for manufacturing a multilayer recording layer type optical recording medium, wherein a light reflectance for an initialization laser beam incident through the spacer layer as an upper layer is determined as an intermediate step. Forming one of the layers having an initial state of 30% or less, forming the spacer layer on the formed one layer, and forming the spacer layer on the formed layer; Initializing by irradiating the laser beam for initialization through a spacer layer, forming another layer on the formed spacer layer, and performing initialization on the formed other layer Initialize by irradiating laser beam for Process.
また、 この発明に係る多層記録層型光記録媒体の製造装置は、 光照射によって 初期化される記録層をそれぞれ含む複数の層が基材の一面側に形成されると共に 当該各層間にスぺーサ層が形成されている多層記録層型光記録媒体を製造する製 造装置であって、 その上層としての前記スぺーサ層を介して入射される初期化用 レーザービームに対する光反射率が初期化状態において 3 0 %以下となる一^つの 前記層を形成する第 1の層形成装置と、 当該形成した一つの層の上に前記スぺー サ層を形成するスぺーサ層形成装置と、 前記形成した一つの層に対して前記形成 したスぺーサ層を介して前記初期化用レーザービームを照射して初期化する第 1 の初期化装置と、 前記形成したスぺーサ層の上に他の前記層を形成する第 2の層 形成装置と、 当該形成した他の層に対して前記初期化用レーザービームを照射し て初期化する第 2の初期化装置とを備えて構成されている。  Further, in the apparatus for manufacturing a multilayer recording layer type optical recording medium according to the present invention, a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of the base material, and a space is formed between the respective layers. 1. A manufacturing apparatus for manufacturing a multilayer recording layer type optical recording medium having a semiconductor layer formed thereon, wherein an optical reflectance with respect to an initializing laser beam incident through the spacer layer as an upper layer is initially set. A first layer forming apparatus for forming one layer that is 30% or less in an activated state; a spacer layer forming apparatus for forming the spacer layer on the formed one layer; A first initialization device that initializes the formed one layer by irradiating the initialization laser beam through the formed spacer layer, and on the formed spacer layer; A second layer forming apparatus for forming the other layer, It is constituted by a second initialization device for initializing by irradiating a laser beam for the initialization to the other layers and the formation.
この多層光記録媒体の製造方法および製造装置では、 多層記録層型光記録媒体 を製造する際に、 中間工程として、 スぺーサ層を介して入射される初期化用レー ザ一ビームに対する光反射率が初期化状態にぉレ、て 3 0 %以下となる一つの層を 形成し、 形成した一つの層の上にスぺーサ層を形成し、 この形成した一つの層に 対してスぺーサ層を介して初期化用レーザービームを照射して初期化し、 この形 成したスぺーサ層の上に他の層を形成し、 この形成した他の層に対して初期化用 レーザービームを照射して初期化することにより、 1つの層で反射した初期化用 レーザービームと他の層を通過した初期化用レーザービームとの間での上記した 干渉に起因する他の層における初期化状態のムラの発生を確実に回避することが できる。 この結果、 スぺーサ層の膜厚を厚くすることなく、 記録層を含む各層を 均一かつ良好に初期化した高品質の多層記録層型光記録媒体を製造することがで さる。 In the method and apparatus for manufacturing a multilayer optical recording medium, when manufacturing a multilayer recording layer type optical recording medium, as an intermediate step, light reflection with respect to an initialization laser beam incident through a spacer layer is performed. One layer whose ratio is less than 30% A spacer layer is formed on one of the formed layers, and the formed one layer is initialized by irradiating an initialization laser beam through the spacer layer to initialize the layer. Another layer is formed on the formed spacer layer, and the formed other layer is irradiated with a laser beam for initialization to initialize the laser beam. It is possible to reliably avoid the occurrence of unevenness in the initialization state in the other layer due to the above-described interference between the laser beam for initialization and the laser beam for initialization passed through the other layer. As a result, it is possible to manufacture a high-quality multilayer recording layer type optical recording medium in which each layer including the recording layer is uniformly and satisfactorily initialized without increasing the thickness of the spacer layer.
この場合、 多層光記録媒体の製造方法において、 前記一つの層の記録用レーザ 一ビームおょぴ再生用レーザービームに対する光反射率を 2 0 %以上に形成する のが好ましい。 また、 多層光記録媒体の製造装置において、 前記第 1の層形成装 置は、 前記一つの層の記録用レーザービームおょぴ再生用レーザービームに対す る光反射率を 2 0 %以上に形成するように構成されているのが好ましい。 このよ うに構成することで、 ユーザー所有の記録再生装置によるデータの記録時および 再生時のエラー発生を有効に防止することができる。  In this case, in the method for manufacturing a multilayer optical recording medium, it is preferable that the light reflectance of the one layer with respect to one recording laser beam and one reproduction laser beam is set to 20% or more. Further, in the apparatus for manufacturing a multilayer optical recording medium, the first layer forming device forms the light reflectance of the one layer with respect to the recording laser beam and the reproducing laser beam to be 20% or more. It is preferable that it is comprised so that it may perform. With this configuration, it is possible to effectively prevent an error from occurring when recording and reproducing data by the recording and reproducing apparatus owned by the user.
また、 多層光記録媒体の製造方法において、 前記記録用レーザービームおよび 前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記初 期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用い るのが好ましい。 さらに、 相変化材料で前記記録層を形成するのが好ましい。 ま た、 多層光記録媒体の製造装置において、 前記記録用レーザービームおよび前記 再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記第 1お よび第 2の初期化装置は、 前記初期化用レーザービームとして波長が 5 0 0 n m 以上 1 0 0 0 n m以下の光を用いるように構成されているのが好ましい。 さらに 、 前記第 1およぴ第 2の層形成装置は、 相変化材料で前記記録層を形成するよう に構成されているのが好ましい。 この発明に係る多層記録層型光記録媒体は、 光照射によつて初期化される記録 層をそれぞれ含む複数の層が基材の一面側に形成されると共に当該各層間にスぺ ーサ層が形成されている多層記録層型光記録媒体であって、 前記複数の層の内の 最上層を除く他の層は、 その上層としての前記スぺーサ層を介して入射される初 期化用レーザービームに対する光反射率が初期化状態において 3 0 %以下に形成 されている。 Further, in the method for producing a multilayer optical recording medium, light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and the wavelength is 500 nm as the initialization laser beam. It is preferable to use light having a wavelength of 1000 nm or less. Further, it is preferable that the recording layer is formed of a phase change material. Further, in the apparatus for manufacturing a multilayer optical recording medium, light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and the first and second initialization devices include: It is preferable that the laser beam for initialization is configured to use light having a wavelength of 500 nm or more and 100 nm or less. Further, it is preferable that the first and second layer forming apparatuses are configured to form the recording layer using a phase change material. In a multilayer recording layer type optical recording medium according to the present invention, a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a spacer layer is provided between the respective layers. Is a multi-layer recording layer type optical recording medium in which a layer other than an uppermost layer of the plurality of layers is initialized through the spacer layer as an upper layer. The light reflectance for the laser beam for use is less than 30% in the initialized state.
この多層記録層型光記録媒体では、 光照射によって初期化される記録層をそれ ぞれ含む複数の層が基材の一面側に形成されると共に各層間にスぺーサ層が形成 されている多層記録層型光記録媒体における複数の層の内の最上層を除く他の層 のスぺーサ層を介して入射される初期化用レーザービームに対する光反射率が初 期化状態において 3 0 %以下に形成されたことにより、 初期化対象層よりも 1つ 遠い層によって反射された初期化用レーザービームによる照射光量を十分に低減 することができるため、 スぺーサ層の膜厚如何に拘わらず記録層を含む各層を均 一かつ良好に初期化した高品質の多層記録層型光記録媒体を提供することができ る。  In this multilayer recording layer type optical recording medium, a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of the base material, and a spacer layer is formed between each layer. In a multilayer recording layer type optical recording medium, the light reflectance for the initialization laser beam incident through the spacer layers of the other layers except the uppermost layer among the plurality of layers is 30% in the initialized state. With the following formation, the amount of irradiation by the initialization laser beam reflected by a layer that is one layer farther than the initialization target layer can be sufficiently reduced, so that regardless of the thickness of the spacer layer, Thus, it is possible to provide a high-quality multilayer recording layer type optical recording medium in which each layer including the recording layer is uniformly and satisfactorily initialized.
この場合、 その上層としての前記スぺーサ層を介して入射される記録用レーザ 一ビームおよび再生用レーザービームに対する光反射率が初期化状態において 2 0 %以上となるように前記複数の層の内の最上層を除く他の層が形成されている のが好ましい。 このように構成することにより、 ユーザー所有の記録再生装置に よつてデータを良好に記録することができると共に記録されたデータを良好に再 生することができる。  In this case, the plurality of layers are so adjusted that the light reflectance with respect to the recording laser beam and the reproduction laser beam incident through the spacer layer as the upper layer is 20% or more in the initialized state. It is preferable that other layers except the uppermost layer are formed. With such a configuration, data can be satisfactorily recorded by the recording / reproducing apparatus owned by the user, and the recorded data can be satisfactorily reproduced.
また、 前記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記複数の層の内の最上層を除く他の層は、 波長が 5 0 0 n m以上 1 0 0 0 n m以下の前記初期化用レーザービームで初期化 されているのが好ましい。 また、 前記記録層が相変化材料で形成されているのが 好ましい。 なお、 本開示は、 2001年 11月 9日に出願された日本特許出願である特願 2001— 344179に含まれた主題に関連し、 これらの開示の全てはここに 参照事項として明白に組み込まれる。 図面の簡単な説明 Further, light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and the other layers except the top layer among the plurality of layers have wavelengths of 500 nm or more. It is preferable that the laser beam has been initialized with the above-mentioned laser beam for initialization of 100 nm or less. Further, it is preferable that the recording layer is formed of a phase change material. This disclosure relates to the subject matter included in Japanese Patent Application No. 2001-344179 filed on November 9, 2001, and all of these disclosures are expressly incorporated herein by reference. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態に係る多層 (2層) 記録層型の光記録媒体 1の概 略構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a schematic configuration of a multilayer (two-layer) recording layer type optical recording medium 1 according to an embodiment of the present invention.
図 2は、 光記録媒体 1の製造装置 200の構成を示す構成図である。  FIG. 2 is a configuration diagram showing a configuration of the manufacturing apparatus 200 for the optical recording medium 1.
図 3は、 L 1層および L0層が形成された光記録媒体 1を初期化する際に L 1 層によって反射されたレーザービーム LREの照射による L 0層に対する影響を説 明するための説明図である。  FIG. 3 is an explanatory diagram for explaining the effect on the L0 layer due to the irradiation of the laser beam LRE reflected by the L1 layer when initializing the optical recording medium 1 on which the L1 layer and the L0 layer are formed. It is.
図 4は、 光記録媒体 1における L 1層の光反射率を種々変更して、 その各光記 録媒体 1における L 0層に対する初期化の良否をシミユレーションした際のシミ ユレーシヨン結果を示すシミュレーション結果説明図である。  Fig. 4 shows the simulation results when the light reflectivity of the L1 layer in the optical recording medium 1 was variously changed and the quality of initialization of the L0 layer in each optical recording medium 1 was simulated. It is a simulation result explanatory view.
図 5は、 図 4に示すシミュレーション結果に対応するシミュレーションの際の 条件を示す説明図である。  FIG. 5 is an explanatory diagram showing conditions for a simulation corresponding to the simulation results shown in FIG.
図 6は、 光記録媒体 1における L 1層の膜厚を種々変更して、 L1層が初期化 状態 (結晶状態) のときの初期化用レーザービーム LIN (波長: 810nm) に 対する L 1層の光反射率の特性をシミュレーションした際のシミュレーション結 果を示すシミュレーション結果説明図である。  Figure 6 shows various changes in the thickness of the L1 layer in the optical recording medium 1, and the L1 layer with respect to the initialization laser beam LIN (wavelength: 810 nm) when the L1 layer is in the initialized state (crystalline state). FIG. 9 is an explanatory diagram of simulation results showing simulation results when simulating the characteristics of the light reflectance of FIG.
図 7は、 光記録媒体 1における L 1層の膜厚を種々変更して、 L 1層が初期化 状態 (結晶状態) のときと未初期化状態 (非晶質状態) のときの双方について記 録再生用レーザービーム (波長: 405 nm) に対する L 1層の光反射率の特性 をシミュレーションした際のシミュレーション結果を示すシミュレーション結果 説明図である。  FIG. 7 shows various changes in the thickness of the L 1 layer in the optical recording medium 1 for both the L 1 layer in the initialized state (crystalline state) and the uninitialized state (amorphous state). FIG. 9 is an explanatory diagram of simulation results showing simulation results when simulating the characteristics of the light reflectance of the L1 layer with respect to a recording / reproducing laser beam (wavelength: 405 nm).
図 8は、 従来の単層記録層型の光記録媒体 21の概略構成を示す断面図である 図 9は、 出願人が既に開発している多層 (2層) 記録層型の光記録媒体 3 1の 概略構成を示す断面図である。 FIG. 8 is a cross-sectional view showing a schematic configuration of a conventional single-layer recording layer type optical recording medium 21. FIG. 9 is a cross-sectional view showing a schematic configuration of a multilayer (two-layer) recording layer type optical recording medium 31 that has been already developed by the applicant.
図 1 0は、 L 1層および L 0層が形成された光記録媒体 3 1を初期化する際に L 1層によって反射されたレーザービーム LREの照射による L 0層に対する影響 を説明するための説明図である。 発明を実施するための最良の形態  FIG. 10 is a view for explaining the influence on the L0 layer due to the irradiation of the laser beam LRE reflected by the L1 layer when the optical recording medium 31 on which the L1 layer and the L0 layer are formed is initialized. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る多層記録層型光記録媒体とその製造 方法および製造装置の好適な実施の形態について説明する。 なお、 前述した光記 録媒体 2 1, 3 1と同一構造の構成要素については、 同一の符号を付して重複し た説明を省略する。  Hereinafter, preferred embodiments of a multilayer recording layer type optical recording medium, a method of manufacturing the same, and a manufacturing apparatus according to the present invention will be described with reference to the accompanying drawings. Note that components having the same structures as those of the optical recording media 21 and 31 described above are denoted by the same reference numerals and redundant description is omitted.
まず、 本発明における多層記録層型光記録媒体 (以下、 「光記録媒体」 ともい う) 1の構成について、 図 1を参照して説明する。  First, the configuration of a multilayer recording layer type optical recording medium (hereinafter, also referred to as “optical recording medium”) 1 in the present invention will be described with reference to FIG.
光記録媒体 1は、 図 1に示すように、 基材 2の微細凹凸形成面 (同図中の ±面 As shown in FIG. 1, the optical recording medium 1 has a surface on which fine irregularities are formed on the substrate 2 (the ± surface in FIG. 1).
) 側に、 L 1層、 スぺーサ層 5、 L 0層、 およびカバー層 7が順次積層されて構 成されている。 ) Side, an L1 layer, a spacer layer 5, an L0 layer, and a cover layer 7 are sequentially laminated.
この場合、 L 1層は、 反射層 3および記録層 4で構成され、 初期化用レーザー ビーム (5 0 0 n m〜l 0 0 0 n mの範囲内の波長で、 以下、 一例として 8 1 0 n mとする) に対する光反射率が 3 %以上 3 0 %以下、 より好ましくは、 5 %以 上 2 5 %以下となるように形成されている。 なお、 本発明における光反射率とは 、 層 (一例として L 1層) の上にスぺーサ層 5が上層として形成され、 かつその 層 (この例では L 1層) が初期化された状態において、 スぺーサ層 5側から初期 化用レーザービームを照射した際の反射率を意味する。 つまり、 この層 (この例 では L 1層) の反射率は、 最も入射光側の層 (具体的には第 1保護層 4 a ) の上 にどのような層が存在するかで変化する。 これは、 最も入射光側の層に接する層 によって屈折率差が異なることに起因する。 具体的に数値を挙げて説明すれば、 記録層 (第 1保護層 4 a) の屈折率が 2. 25、 スぺーサ層 5の屈折率が約 1. 6、 空気の屈折率が 1. 0のため、 記録層 (第 1保護層 4 a) とスぺーサ層 5と の屈折率差が約 0. 65で、 記録層 (第 1保護層 4 a) と空気との屈折率差が約 1. 25となる。 したがって、 反射率の測定方法によっては、 スぺーサ層 5の表 面反射の影響を含むため、 層 (L 1層) 自体の反射率が例えば 30%のときであ つても、 反射率の実際の測定値が 30%を超えてしまうこともある。 例えば、 上 記した例では、 スぺーサ層 5の屈折率が 1. 6のため、 表面反射が 5%程度とな り、 実際の測定値が 35%程度となる。 このため、 表面反射を含む測定方法では 、 スぺーサ層 5の屈折率が既知のときには、 測定値から表面反射分を差し引く必 要がある。 一方、 表面反射の影響を受けないようにして L 1層にフォーカスして 測定することもでき、 この測定に関しては、 その層 (L 1層) にフォーカスが可 能な光学系を持つ光度計や評価装置によって測定することができる。 In this case, the L1 layer is composed of the reflective layer 3 and the recording layer 4, and has a laser beam for initialization (wavelength within the range of 500 nm to 100 nm, hereinafter 810 nm as an example). ) Is formed to have a light reflectance of 3% or more and 30% or less, more preferably 5% or more and 25% or less. The light reflectance in the present invention refers to a state in which the spacer layer 5 is formed as an upper layer on a layer (for example, the L1 layer) and the layer (the L1 layer in this example) is initialized. Means the reflectance when the laser beam for initialization is irradiated from the spacer layer 5 side. That is, the reflectivity of this layer (the L1 layer in this example) changes depending on what layer is present on the layer closest to the incident light (specifically, the first protective layer 4a). This is the layer that is in contact with the layer closest to the incident light. This is due to the difference in the refractive index difference. Specifically, the refractive index of the recording layer (first protective layer 4a) is 2.25, the refractive index of the spacer layer 5 is about 1.6, and the refractive index of air is 1. 0, the refractive index difference between the recording layer (first protective layer 4a) and the spacer layer 5 is about 0.65, and the refractive index difference between the recording layer (first protective layer 4a) and air is It is about 1.25. Therefore, depending on the method of measuring the reflectivity, the influence of the surface reflection of the spacer layer 5 is included, so that even when the reflectivity of the layer (L1 layer) itself is, for example, 30%, the actual reflectivity is measured. Measurements can exceed 30%. For example, in the above example, since the refractive index of the spacer layer 5 is 1.6, the surface reflection is about 5%, and the actual measured value is about 35%. Therefore, in the measurement method including the surface reflection, when the refractive index of the spacer layer 5 is known, it is necessary to subtract the surface reflection from the measured value. On the other hand, it is also possible to measure by focusing on the L1 layer without being affected by surface reflection. For this measurement, a photometer with an optical system capable of focusing on that layer (L1 layer) or It can be measured by an evaluation device.
次に、 光記録媒体 1の製造装置 200について図 2を参照して説明する。 この製造装置 200は、 反射層形成装置 101、 記録層形成装置 (第 1の層形 成装置) 102、 初期化装置 (第 1の初期化装置) 103、 スぺーサ層形成装置 201、 記録層形成装置 (第 2の層形成装置) 202、 初期化装置 (第 2の初期 化装置) 203、 および光透過層形成装置 104を備えている。 この場合、 反射 層形成装置 101は、 反射層形成室 101 aおよび反射層形成室 101 a内に配 設されたスパッタ装置 101 bを備え、 反射層形成室 101 aに搬入された基材 2の表面にスパッタ装置 101 bで反射層 3を形成する機能を有している。 記録 層形成装置 1 02は、 記録層形成室 102 aおよび記録層形成室 102 a内に配 設されたスパッタ装置 102 bを備え、 記録層形成室 102 aに搬入された基材 2の表面にスパッタ装置 102 bで記録層 4を形成する機能を有している。 初期 化装置 103は、 基材 2を回転させる回転機構 103 aと、 不図示のトラツキン グ機構によつて駆動されて基材 2に形成されたグループに沿つて初期化用レーザ 一ビーム L INを基材 2に照射するピックアップ 1 0 3 bとを備え、 基材 2の表面 に形成された記録層 4を初期化する機能を備えている。 スぺーサ層形成装置 2 0 1は、 基材 2を回転させる回転機構 2 O l a , 塗液 R 1の滴下機構 (図示せず) 、 透明スタンパ 2 0 1 bおよび紫外線照射機構 (図示せず) を備え、 スピンコー ト法により、 基材 2の表面に光透過層としてのスぺーサ層 5を形成する機能を備 えている。 記録層形成装置 2 0 2は、 記録層形成室 2 0 2 aおよび記録層形成室 2 0 2 a内に配設されたスパッタ装置 2 0 2 bを備え、 記録層形成室 2 0 2 aに 搬入された基材 2の表面にスパッタ装置 2 0 2 bで記録層 6を形成する機能を有 している。 初期化装置 2 0 3は、 基材 2を回転させる回転機構 2 0 3 aと、 不図 示のトラッキング機構によって駆動されて基材 2に形成されたグループに沿って 初期化用レーザービーム L INを基材 2に照射するピックアップ 2 0 3 bとを備え 、 基材 2の表面に形成された記録層 6を初期化する機能を備えている。 光透過層 形成装置 1 0 4は、 基材 2を回転させる回転機構 1 0 4 a , 塗液 Rの滴下機構 1 0 4 bおよび紫外線照射機構 (図示せず) を備え、 基材 2の表面に光透過層とし ての力パー層 7をスビンコ一ト法によって形成する機能を備えている。 Next, the manufacturing apparatus 200 for the optical recording medium 1 will be described with reference to FIG. The manufacturing apparatus 200 includes a reflective layer forming apparatus 101, a recording layer forming apparatus (first layer forming apparatus) 102, an initializing apparatus (first initializing apparatus) 103, a spacer layer forming apparatus 201, and a recording layer. The apparatus includes a forming apparatus (second layer forming apparatus) 202, an initializing apparatus (second initializing apparatus) 203, and a light transmitting layer forming apparatus 104. In this case, the reflective layer forming apparatus 101 includes a reflective layer forming chamber 101a and a sputtering apparatus 101b disposed in the reflective layer forming chamber 101a. It has a function of forming the reflective layer 3 on the surface by the sputtering device 101b. The recording layer forming apparatus 102 includes a recording layer forming chamber 102a and a sputtering apparatus 102b disposed in the recording layer forming chamber 102a, and is provided on the surface of the base material 2 carried into the recording layer forming chamber 102a. It has a function of forming the recording layer 4 by the sputtering device 102b. The initialization device 103 includes a rotation mechanism 103a for rotating the base material 2 and an initialization laser driven by a tracking mechanism (not shown) along a group formed on the base material 2. A pickup 103 b for irradiating the substrate 2 with one beam LIN, and a function of initializing the recording layer 4 formed on the surface of the substrate 2. The spacer layer forming apparatus 201 includes a rotating mechanism 2 O la for rotating the substrate 2, a dropping mechanism for the coating liquid R 1 (not shown), a transparent stamper 201 b and an ultraviolet irradiation mechanism (not shown). ), And has a function of forming a spacer layer 5 as a light transmitting layer on the surface of the substrate 2 by a spin coating method. The recording layer forming apparatus 202 includes a recording layer forming chamber 202a and a sputtering apparatus 202b disposed in the recording layer forming chamber 202a. It has a function of forming the recording layer 6 on the surface of the loaded base material 2 with a sputtering device 202b. The initialization device 203 includes a rotation mechanism 203 for rotating the substrate 2 and an initialization laser beam L IN along a group formed on the substrate 2 by being driven by a tracking mechanism (not shown). And a function of initializing the recording layer 6 formed on the surface of the substrate 2. The light-transmitting layer forming device 104 includes a rotation mechanism 104 for rotating the base material 2, a dropping mechanism 104 b for the coating liquid R, and an ultraviolet irradiation mechanism (not shown). In addition, it has a function of forming a power par layer 7 as a light transmitting layer by a spin coating method.
次に、 光記録媒体 1の製造方法について説明する。  Next, a method for manufacturing the optical recording medium 1 will be described.
まず、 射出成形によってその表面 (一面) にグループ等の微細凹凸が形成され たディスク形状に基材 2を成形する。 次いで、 基材 2の一面側に反射層 3を反射 層形成装置 1 0 1によって形成した後に、 その反射層 3上に記録層 4を記録層形 成装置 1 0 2によって形成する。 この際に、 相変化材料層 4 bを例えばスパッタ リング法によって形成する。 また、 スぺーサ層 5を介して入射される初期化用レ 一ザ一ビーム L INに対する光反射率が初期化状態において 3 0 %以下となるよう に L 1層を形成する。 具体的には、 L 1層の第 1保護層 4 aを例えば酸ィ匕アルミ や Z n S— S i〇2 等の誘電体を用いてその膜厚が後述する厚みとなるように 形成する。 First, the base material 2 is formed into a disk shape having fine irregularities such as groups formed on its surface (one surface) by injection molding. Next, after the reflective layer 3 is formed on one surface side of the base material 2 by the reflective layer forming device 101, the recording layer 4 is formed on the reflective layer 3 by the recording layer forming device 102. At this time, the phase change material layer 4b is formed by, for example, a sputtering method. Further, the L1 layer is formed such that the light reflectance with respect to the initialization laser beam LIN incident via the spacer layer 5 is 30% or less in the initialized state. Specifically, the film thickness thereof formed to a thickness which is described below with reference to the dielectric of the first protective layer 4 a of L 1 layer e.g. Sani匕aluminum or Z n S- S I_〇 2, etc. .
次に、 形成した L 1層に対して、 記録用レーザービームおよび再生用レーザー ビーム (以下、 両レーザービームをまとめて 「記録再生用レーザービーム」 とも いう) の照射方向と同一の方向から初期化装置 1 0 3によって初期化用レーザー ビーム L INを照射して、 記録層 4を含む L 1層 (詳細には相変化材料層 4 bを含 む L 1層) を初期化する。 なお、 この時点で L 1層を初期化せずに、 L 1層の上 にスぺーサ層 5をスぺーサ層形成装置 2 0 1によって形成した後に、 後述するよ うに、 L 1層を初期化装置 1 0 3によって初期化することもできる。 Next, a laser beam for recording and a laser for reproduction were applied to the formed L1 layer. The initializing device 103 irradiates the laser beam LIN for initialization from the same direction as the irradiation direction of the laser beam (hereinafter, both laser beams are also collectively referred to as “recording / reproducing laser beam”). Initialize the L1 layer containing the layer (specifically, the L1 layer containing the phase change material layer 4b). At this point, without initializing the L1 layer, after forming the spacer layer 5 on the L1 layer by the spacer layer forming apparatus 201, the L1 layer is formed as described later. The initialization can be performed by the initialization device 103.
次に、 例えば透明スタンパ 2 0 1 bを用いた 2 P法をスぺーサ層形成装置 2 0 1によって実施して、 厚み T Hが例えば 2 0 のスぺーサ層 5を L 1層上に形 成する。 この場合、 基材 2における記録層 4の形成面上に光透過性を有する樹脂 の榭脂材 (塗液 R 1 ) を滴下し、 スピンコート法によって樹脂材を第 1保護層 4 a上に薄膜状に塗布した後、 未硬化状態の塗布した樹脂材上に、 グループ等の微 細凹凸を形成するための透明スタンパ 2 0 1 bを载置する。 この後、 紫外線を照 射して樹脂材を硬化させた後に、 透明スタンパ 2 0 1 bを取り除く。 この際に、 透明スタンパ 2 0 1 bの表面に形成されている微細凹凸によってスぺーサ層 5の 上面に微細凹凸が形成される。 なお、 この時点で、 上記したように、 L 1層を初 期化することもできる。 次いで、 スぺーサ層 5の微細凹凸形成面上に L 0層を記 録層形成装置 2 0 2によって形成する。 この際に、 例えばスパッタリング法によ つて L 0層を形成する。  Next, for example, a 2P method using a transparent stamper 201b is performed by a spacer layer forming apparatus 201 to form a spacer layer 5 having a thickness TH of, for example, 20 on the L1 layer. To achieve. In this case, a resin material having a light transmitting property (coating solution R 1) is dropped on the surface of the base material 2 on which the recording layer 4 is formed, and the resin material is applied onto the first protective layer 4 a by spin coating. After being applied in the form of a thin film, a transparent stamper 201b for forming fine unevenness such as a group is placed on the applied resin material in an uncured state. Thereafter, the resin material is cured by irradiating ultraviolet rays, and then the transparent stamper 201b is removed. At this time, fine irregularities are formed on the upper surface of the spacer layer 5 by the fine irregularities formed on the surface of the transparent stamper 201b. At this point, the L1 layer can be initialized as described above. Next, the L0 layer is formed on the surface of the spacer layer 5 on which the fine unevenness is formed by the recording layer forming apparatus 202. At this time, the L0 layer is formed by, for example, a sputtering method.
次に、 形成した L 0層に対して、 記録再生用レーザービームの照射方向と同一 の方向から初期化装置 2 0 3によって初期化用レーザービーム L INを照射して、 記録層 6を含む L 0層を初期化する。 この際に、 図 3に示すように、 ピックアツ プ 2 0 3 b内のレンズ 1 1から L 0層に照射された初期化用レーザービーム L IN のうちの一部のレーザービーム LPEは、 L 0層およぴスぺーサ層 5を通過して L 1層に達する。 そして、 さらに L 1層に達したレーザービーム LPEの一部のレー ザ一ビーム LREが、 L 1層 (特に L 1層内の反射層 3 ) によって反射されて L 0 層を照射する。 この場合、 初期化された L 1層のレーザービーム LPEに対する光 反射率が 3 0 %以下のため、 L 0層を照射するレーザービーム LREの光量は、 L 0層を通過したレーザービーム LPEの光量を基準として少なくとも 3 0 %以下に 低減される。 ここで、 L 1層の形成、 L 1層の初期化、 スぺーサ層 5の形成、 L 0層の形成、 および L 0層の初期化が、 本発明における中間工程に相当する。 最後に、 光透過層形成装置 1 0 4を用いて、 初期化された L 0層上に例えばス ピンコート法によってカバー層 7を形成する。 具体的には、 基材 2における L 0 層上に光透過性を有する樹脂の樹脂材 (塗液 R) を滴下機構 1 0 4 bで滴下し、 次いで、 回転機構 1 0 4 aを作動して基材 2を回転させて (スピンコート法によ つて) 樹脂材を L 0層上に薄膜状に塗布した後、 紫外線を照射して樹脂材を硬化 させる。 これにより、 光記録媒体 1の製造が完了する。 なお、 L 0層の形成後に 力パー層 7を形成し、 その後に L 0層の初期化を行う製造方法を採用することも できる。 Next, the formed L0 layer is irradiated with the initialization laser beam LIN by the initialization device 203 from the same direction as the irradiation direction of the recording / reproducing laser beam, and the L0 layer including the recording layer 6 is irradiated. Initialize layer 0. At this time, as shown in FIG. 3, a part of the initialization laser beam L IN irradiating the L 0 layer from the lens 11 in the pickup 203 b to the L 0 layer is L 0 Layer and spacer layer 5 to reach layer L1. Further, a part of the laser beam LRE of the laser beam LPE that has reached the L1 layer is reflected by the L1 layer (in particular, the reflection layer 3 in the L1 layer) to irradiate the L0 layer. In this case, the initialized L1 layer laser beam Since the reflectance is 30% or less, the light amount of the laser beam LRE irradiating the L0 layer is reduced to at least 30% or less based on the light amount of the laser beam LPE passing through the L0 layer. Here, the formation of the L1 layer, the initialization of the L1 layer, the formation of the spacer layer 5, the formation of the L0 layer, and the initialization of the L0 layer correspond to intermediate steps in the present invention. Finally, the cover layer 7 is formed on the initialized L 0 layer using, for example, a spin coat method using the light transmitting layer forming apparatus 104. Specifically, a resin material (coating liquid R) of a light-transmitting resin is dropped on the L0 layer of the base material 2 by a dropping mechanism 104b, and then the rotating mechanism 104a is operated. The resin material is applied in a thin film on the L0 layer by rotating the base material 2 (by spin coating), and then the resin material is cured by irradiating ultraviolet rays. Thus, the manufacture of the optical recording medium 1 is completed. Note that a manufacturing method in which the force-par layer 7 is formed after the formation of the L0 layer and the L0 layer is initialized thereafter may be employed.
この場合、 発明者は、 L 1層を構成する第 1保護層 4 aの膜厚を変更して初期 化用レーザービーム L INに対する L 1層の光反射率を変化させたときの光記録媒 体 1についての L 0層の初期化の良否をシミュレーションした。 このシミュレ一 シヨン結果を図 4に示す。 また、 このシミュレーションを行った際のスぺーサ層 5、 L 1層における第 1保護層 4 aを所定膜厚で製造した一例、 L 1層における 相変化材料層 4 b、 L 1層における第 2保護層 4 c、 反射層 3、 およぴ基材 2に ついての各屈折率、 各光学的消衰係数および各膜厚を図 5に示す。  In this case, the inventor changed the film thickness of the first protective layer 4a constituting the L1 layer to change the optical recording medium when the light reflectance of the L1 layer with respect to the initialization laser beam LIN was changed. The quality of the initialization of the L 0 layer for the body 1 was simulated. Figure 4 shows the results of this simulation. Further, an example in which the first protective layer 4a in the spacer layer 5 and the L1 layer at the time of performing this simulation was manufactured to a predetermined thickness, the phase change material layer 4b in the L1 layer, and the first protective layer 4a in the L1 layer. FIG. 5 shows each refractive index, each optical extinction coefficient, and each film thickness of the 2 protective layer 4c, the reflective layer 3, and the substrate 2.
図 4に示すシミュレーション結果によれば、 初期化用レーザービーム L INに対 する L 1層の光反射率を 3 0 %以下に設定したときに初期化状態が良の判定結果 となり、 この光透過率を 3 1 %以上に設定したときに初期化状態が不良の判定結 果となる。 したがって、 このシミュレーション結果から明らかなように、 初期化 用レーザービーム INに対する L 1層の光反射率を 3 0 %以下に設定することに より、 記録層 6における初期化している部分およびその周辺の既に初期化されて いる部分に対するレーザービーム L REの再照射に基づく上記の干渉に起因する結 晶状態のムラの発生を確実に回避することができ、 この結果、 記録層 6を含む L 0層を均一かつ良好に初期化することができる。 According to the simulation results shown in FIG. 4, when the light reflectance of the L1 layer with respect to the initialization laser beam L IN is set to 30% or less, the initialization state is determined to be good. When the rate is set to 31% or more, the initialization state becomes a result of the failure judgment. Therefore, as is clear from the simulation results, by setting the light reflectance of the L1 layer to the initialization laser beam IN to 30% or less, the portion of the recording layer 6 that is initialized and its surroundings is set. The result of the above interference based on the re-irradiation of the laser beam L RE to the already initialized part The occurrence of unevenness in the crystal state can be reliably avoided, and as a result, the L0 layer including the recording layer 6 can be uniformly and satisfactorily initialized.
また、 発明者は、 L 1層を構成する第 1保護層 4 aの膜厚と初期化用レーザー ビーム L INに対する L 1層の光反射率との関係もシミュレーションしており、 そ のシミュレーション結果を図 6に示す。 このシミュレーション結果によれば、 L 1層を構成する第 1保護層 4 aの主材料として例えば Z n S— S i 0 2 等の誘 電体を用いた場合、 L 1層における第 1保護層 4 aの膜厚を約 9 6 n m〜約 1 5 9 n mの範囲 (同図中の Aで示す範囲) 内に設定することにより、 L 1層の初期 化状態 (結晶状態) において、 初期化用レーザービーム L INに対する L 1層の光 反射率を 3 0 %以下に設定することができる。 The inventor has also simulated the relationship between the film thickness of the first protective layer 4a constituting the L1 layer and the light reflectance of the L1 layer with respect to the initialization laser beam LIN. Is shown in FIG. According to this simulation result, when using the dielectrics, such as, for example, Z n S- S i 0 2 as a main material of the first protective layer 4 a constituting the L 1 layer, the first protective layer in the L 1 layer By setting the thickness of 4a within the range of about 96 nm to about 159 nm (the range indicated by A in the figure), the L1 layer is initialized in the initialized state (crystalline state). The light reflectance of the L1 layer with respect to the laser beam LIN can be set to 30% or less.
また、 光記録媒体 1としては、 ユーザーによって使用される記録再生装置 (開 口数 NAが約 0 . 8 5の対物レンズから記録再生用レーザービームが出射される ) を使用して、 L 1層に記録されたデータを良好に記録おょぴ再生できる必要が ある。 この場合、 発明者は、 記録再生装置側の特性によって多少のばらつきがあ るものの、 その波長が 3 9 5 n m以上 4 1 5 n m以下 (例えば 4 0 5 m) の記 録再生用レーザービームに対する L 1層の光反射率を 2 0 % (好ましくは 3 0 % ) 以上確保することによって良好なフォーカス特性を得ることができ、 かつ L 1 層に記録されたデータを良好に記録おょぴ再生することができることを検証して いる。 なお、 この場合の 「L 1層の光反射率」 とは、 上記したように、 スぺーサ 層 5よりも記録再生用レーザービームの入射側の層 (例えば、 L 0層やカバー層 7 ) の影響を排除可能な状態において、 スぺーサ層 5を介して L 1層にフォー力 スを合わせたときに測定される光反射率であって、 L 0層を透過する際の光の減 衰の影響を考慮しない光反射率を意味する。 そこで、 発明者は、 記録再生用レー ザ一ビームに対する L 1層の光反射率を 2 0 %以上確保するための L 1層内の第 1保護層 4 aの膜厚条件を見出すべく、 その膜厚と記録再生用レーザービームに 対する L 1層の光反射率との関係をシミュレーションした。 そのシミュレーショ ン結果を図 7に示す。 このシミュレーション結果によれば、 L 1層内の第 1保護 層 4 aの膜厚を約 0 nm〜約 12 nmの範囲内 (同図中の B 1で示す範囲内) 、 約 36 nm〜約 102 nmの範囲内 (同図中の B 2で示す範囲内) 、 およぴ約 1 261 111〜約1 92 nmの範囲内 (同図中の B 3で示す範囲内) のいずれかに設 定することにより、 L 1層の初期化状態 (結晶状態) において、 記録再生用レー ザ一ビームに対する L 1層の光反射率を 20%以上確保できるのが理解される。 したがって、 光記録媒体 1の製造時における初期化用レーザービーム LINを使 用して良好に初期化でき、 かつ、 ユーザーが使用する記録再生装置によってデー タを良好に記録および再生できるためには、 L 1層を構成する第 1保護層 4 aの 膜厚を、 図 6における範囲 Aと、 図 7における範囲 B l、 範囲 B 2または範囲 B 3との重複範囲内のいずれかに設定すればよい。 すなわち、 範囲 Aと範囲 B 1と の重複部分が存在しないため、 範囲 Aと範囲 B 2との重複部分である約 96 nm 〜約 102 nmの範囲 C 1内の任意の膜厚、 または範囲 Aと範囲 B 3との重複部 分である約 1 26!!!!!〜約 59 nmの範囲 C 2内の任意の膜厚に設定すればよ い。 さらに、 図 6, 7によれば、 この範囲 C l, C 2内であっても、 初期化用レ 一ザ一ビーム L INに対する L 1層の光反射率がより低く、 かつ記録再生用レーザ 一ビームに対する L 1層の光反射率がより高いことが好ましいという観点からは 、 L 1層を構成する第 1保護層 4 aの膜厚を 137 nm以上 145 nm以下の範 囲内、 好ましくは 140 nm前後に設定するのが最も好適であるといえる。 なお 、 このような重複する範囲が他に存在するときには、 他の範囲の内で、 初期化用 レーザービーム L INに対する L 1層の光反射率がより低く、 かつ記録再生用レー ザ一ビームに対する L 1層の光反射率がより高い任意の膜厚に設定することもで さる。 Also, as the optical recording medium 1, a recording / reproducing device (a laser beam for recording / reproducing is emitted from an objective lens having an aperture of about 0.85) used by a user is used to form the L1 layer. It is necessary to be able to record and play back recorded data well. In this case, the inventor has determined that the recording / reproducing apparatus has a small variation depending on the characteristics of the recording / reproducing device, but the wavelength is not less than 395 nm and not more than 415 nm (for example, 405 m). By ensuring that the light reflectance of the L1 layer is at least 20% (preferably 30%), good focus characteristics can be obtained, and the data recorded on the L1 layer can be recorded and reproduced well. Verify that they can do it. In this case, the “light reflectance of the L1 layer” is, as described above, a layer on the incident side of the recording / reproducing laser beam with respect to the spacer layer 5 (for example, the L0 layer or the cover layer 7). Is the light reflectance measured when the force is adjusted to the L1 layer via the spacer layer 5 in a state where the influence of Means light reflectance without considering the effects of decay. The inventor of the present invention has sought to find out the film thickness condition of the first protective layer 4a in the L1 layer in order to secure the light reflectance of the L1 layer with respect to the recording / reproducing laser beam of 20% or more. The relationship between the film thickness and the light reflectance of the L1 layer with respect to the recording / reproducing laser beam was simulated. The simulation Figure 7 shows the results. According to this simulation result, the thickness of the first protective layer 4a in the L1 layer is in the range of about 0 nm to about 12 nm (within the range indicated by B1 in the figure) and about 36 nm to about 36 nm. Either within the range of 102 nm (within the range indicated by B2 in the figure) or within the range of about 1261111 to about 192nm (within the range indicated by B3 in the figure). It is understood that, by setting the L 1 layer, in the initialized state (crystal state) of the L 1 layer, the light reflectance of the L 1 layer with respect to one recording / reproducing laser beam can be secured to 20% or more. Therefore, in order to be able to perform good initialization using the laser beam LIN for initialization at the time of manufacturing the optical recording medium 1 and to be able to record and reproduce data satisfactorily by the recording / reproducing device used by the user, If the thickness of the first protective layer 4a constituting the L1 layer is set to any one of the overlapping ranges of the range A in FIG. 6 and the range B1, the range B2 or the range B3 in FIG. Good. That is, since there is no overlap between the range A and the range B1, any film thickness in the range C1 of about 96 nm to about 102 nm, which is the overlap of the range A and the range B2, or the range A Approximately 1 26 which is the overlap of ! ! ! ! The film thickness may be set to an arbitrary value within the range C2 of about 59 nm. Furthermore, according to FIGS. 6 and 7, even within these ranges C l and C 2, the light reflectance of the L1 layer with respect to the initialization laser beam L IN is lower, and the recording / reproducing laser From the viewpoint that it is preferable that the light reflectance of the L1 layer for one beam is higher, the thickness of the first protective layer 4a constituting the L1 layer should be in the range of 137 nm to 145 nm, preferably 140 nm. It can be said that setting to about nm is most preferable. When there is another such overlapping range, within the other range, the light reflectance of the L1 layer with respect to the initialization laser beam L IN is lower, and the recording / reproducing laser beam has a lower reflectance. It is also possible to set an arbitrary film thickness with a higher light reflectance of the L1 layer.
このように、 この光記録媒体 1の製造方法および製造装置 200によれば、 初 期化用レーザービーム LINに対する L 1層の光反射率を 30%以下に設定したこ とにより、 L 0層の初期化に際して、 L 0層を通過したレーザービーム LPEの内 の L 1層によって反射されるレーザービーム LREの光量を、 L 0層を通過した際 のレーザービーム LPEの光量に対して 3 0 %以下に低減させることができる。 し たがって、 スぺーサ層 5の膜厚を厚くすることなく、 L O層におけるレーザービ ーム LREの再照射に起因する結晶状態のムラの発生を確実に回避できる結果、 L 0層を均一かつ良好に初期化することができる。 また、 記録再生用レーザービー ムに対する L 1層の光反射率を 2 0 %以上確保することにより、 L 1層に記録さ れたデ一タを良好に記録およぴ再生することができる。 As described above, according to the manufacturing method and the manufacturing apparatus 200 of the optical recording medium 1, the light reflectance of the L1 layer with respect to the initialization laser beam LIN is set to 30% or less. During initialization, the laser beam that has passed through the L0 layer The light amount of the laser beam LRE reflected by the L1 layer can be reduced to 30% or less of the light amount of the laser beam LPE when passing through the L0 layer. Therefore, without increasing the thickness of the spacer layer 5, it is possible to reliably avoid the occurrence of the crystal state unevenness due to the re-irradiation of the laser beam LRE in the LO layer. It can be initialized well. Also, by ensuring that the light reflectance of the L1 layer with respect to the recording / reproducing laser beam is 20% or more, data recorded on the L1 layer can be recorded and reproduced satisfactorily.
な ¾、 本発明は、 上記した発明の実施の形態に限らず、 適宜変更が可能である 。 例えば、 本発明の実施の形態では、 L 1層における第 1保護層 4 aの膜厚を変 えて L 1層の光反射率を変更する例を挙げて説明したが、 これに限られない。 例 えば、 第 1保護層 4 aの材質を適宜選定してその屈折率を所定値に設定すること により、 L 1層の光反射率を上述した規定値に設定することもできる。 この場合 、 L 1層の光反射率は L 1層を構成する各層間の光の干渉条件に左右され、 また 、 この光の干渉条件は各層の光路長に左右され、 さらに、 この光路長は層の屈折 率と膜厚とを乗算した値と等しくなる関係にある。 このため、 第 1保護層 4 aの 膜厚を一定に維持して、 例えば材質を変えてその屈折率を変化させたときの光反 射率も、 上述した第 1保護層 4 aの屈折率を一定に維持してその膜厚を変化させ たときとほぼ同じように変化する。 したがって、 上記したシミュレーションと同 様にして、 最適な屈折率を求めることができ、 この屈折率となるように第 1保護 層 4 aを形成することにより、 記録層 6におけるレーザービーム LREの再照射に 起因する結晶状態のムラの発生を確実に回避できるため、 記録層 6を含む L 0層 を均一かつ良好に初期化することができる。 また、 第 2保護層 4 cの膜厚や材質 を適宜変更して、 つまり屈折率を適宜変更しても、 第 1保護層 4 aの屈折率を変 更した場合と同様の作用効果を得ることができる。 さらに、 L 1層の光反射率は 、 スぺーサ層 5の材質 (屈折率) にも影響される。 したがって、 スぺーサ層 5の 材質を変えることによって L 1層の光反射率を変更してもよい。 また、 本発明の実施の形態では、 2層の記録層 4, 6を有する 2層記録層型光 記録媒体の光記録媒体 1を製造する例について説明したが、 スぺーサ層 5の形成 、 記録層 6の形成、 およびこの記録層 6に対する初期化を繰り返すことにより、 3層以上の記録層を備えて各記録層が均一に初期化された多層記録層型光記録媒 体を製造することもできる。 この場合の製造装置は、 製造装置 200におけるス ぺーサ層形成装置 201、 記録層形成装置 202および初期化装置 203を、 繰 り返す回数分だけ増やして構成される。 例えば、 光記録媒体 1の L1層とほぼ同 一構造の L 2層、 L 1層および L 0層を基材 2上に順次積層した 3層記録層型光 記録媒体を製造する場合、 その製造方法では、 基材 2上への L 2層の形成、 L2 層の初期化、 スぺーサ層 5の形成、 L 1層の形成、 L 1層の初期化、 スぺーサ層 5の形成、 L0層の形成、 L0層の初期化、 力パー層 7の形成の各工程、 または 、 基材 2上への L 2層の形成、 スぺーサ層 5の形成、 L 2層の初期化、 L 1層の 形成、 スぺーサ層 5の形成、 L 1層の初期化、 L0層の形成、 カバー層 7の形成 、 L0層の初期化の各工程が順次実施される。 この場合、 L 1層の初期化につい ては、 初期化用レーザービーム LINに対する L 2層の光反射率を 30%以下に設 定することで、 L 1層を均一かつ良好に初期化することができる。 また、 L0層 の初期化については、 初期化用レーザービーム L INに対する L 1層の光反射率を 30%以下に設定することで、 L0層を均一かつ良好に初期化することができる 。 この場合、 入射光から最も遠い層を除く他の層 (2層の場合の L0層、 3層の 場合の L0層および L 1層) の第 1保護層 (4 aまたは 6 a) および第 2保護層 (4 cまたは 6 a) の一部に金属層を用いることが可能であり、 この構成にも本 発明を適用するのが可能である。 さらに、 本発明に係る多層記録層型光記録媒体 における複数の層に ROM層を含ませることができるし、 複数の層のすべてを初 期化する必要はなく、 いずれか任意の層を初期化してもよい。 It should be noted that the present invention is not limited to the above-described embodiment of the invention, and can be appropriately modified. For example, in the embodiment of the present invention, an example has been described in which the thickness of the first protective layer 4a in the L1 layer is changed to change the light reflectance of the L1 layer, but the present invention is not limited to this. For example, by appropriately selecting the material of the first protective layer 4a and setting its refractive index to a predetermined value, the light reflectance of the L1 layer can be set to the above-mentioned specified value. In this case, the light reflectivity of the L1 layer depends on the interference condition of light between the layers constituting the L1 layer, and the interference condition of the light depends on the optical path length of each layer. The relationship is equal to the value obtained by multiplying the refractive index of the layer by the film thickness. For this reason, while the film thickness of the first protective layer 4a is kept constant, for example, when the refractive index is changed by changing the material, the light reflectance also varies with the refractive index of the first protective layer 4a described above. It is almost the same as when the film thickness is changed while maintaining the constant. Therefore, the optimum refractive index can be obtained in the same manner as in the simulation described above. By forming the first protective layer 4a to have this refractive index, the laser beam LRE on the recording layer 6 is re-irradiated. Therefore, it is possible to reliably and uniformly initialize the L 0 layer including the recording layer 6 because the occurrence of the unevenness in the crystal state caused by the above can be avoided. Further, even if the film thickness and material of the second protective layer 4c are appropriately changed, that is, the refractive index is appropriately changed, the same operation and effect as when the refractive index of the first protective layer 4a is changed can be obtained. be able to. Further, the light reflectance of the L1 layer is also affected by the material (refractive index) of the spacer layer 5. Therefore, the light reflectance of the L1 layer may be changed by changing the material of the spacer layer 5. Further, in the embodiment of the present invention, the example in which the optical recording medium 1 of the two-layer recording layer type optical recording medium having the two recording layers 4 and 6 is described, but the formation of the spacer layer 5 By repeating the formation of the recording layer 6 and the initialization for the recording layer 6, a multilayer recording layer type optical recording medium having three or more recording layers and each recording layer uniformly initialized is manufactured. Can also. The manufacturing apparatus in this case is configured by increasing the spacer layer forming apparatus 201, the recording layer forming apparatus 202, and the initializing apparatus 203 in the manufacturing apparatus 200 by the number of times of repetition. For example, when manufacturing a three-layer recording layer type optical recording medium in which an L2 layer, an L1 layer, and an L0 layer having substantially the same structure as the L1 layer of the optical recording medium 1 are sequentially laminated on the substrate 2, The method includes forming the L2 layer on the substrate 2, initializing the L2 layer, forming the spacer layer 5, forming the L1 layer, initializing the L1 layer, forming the spacer layer 5, Each step of forming the L0 layer, initializing the L0 layer, forming the force-par layer 7, or forming the L2 layer on the base material 2, forming the spacer layer 5, initializing the L2 layer, The steps of forming the L1 layer, forming the spacer layer 5, initializing the L1 layer, forming the L0 layer, forming the cover layer 7, and initializing the L0 layer are sequentially performed. In this case, the L1 layer should be initialized uniformly and well by setting the light reflectance of the L2 layer to the initialization laser beam LIN to 30% or less. Can be. Further, with regard to the initialization of the L0 layer, the L0 layer can be uniformly and satisfactorily initialized by setting the light reflectance of the L1 layer with respect to the initialization laser beam LIN to 30% or less. In this case, the first protective layer (4a or 6a) and the second protective layer other than the layer farthest from the incident light (L0 layer for two layers, L0 layer and L1 layer for three layers) A metal layer can be used as a part of the protective layer (4c or 6a), and the present invention can be applied to this configuration. Further, a ROM layer can be included in a plurality of layers in the multilayer recording layer type optical recording medium according to the present invention, and it is not necessary to initialize all of the plurality of layers, and any one of the layers can be initialized. You may.
一方、 L 0層の初期化については、 L0層に対して、 L1層のみならず、 L2 層によって反射される初期化用レーザービーム L INも照射される。 しかしながら 、 L 2層による反射光の光量は、 L 0層と L 2層との間の離間距離が L 0層と L 1層との離間距離のほぼ 2倍になるため、 L 1層による反射光に対して 1 Z 4に 低減される。 加えて、 L 2層による反射光は、 L 0層を通過してから L 2層で反 射されて L 0層に到達するまでに L 1層を 2回通過する。 このため、 L 2層によ る反射光の光量は、 1 / 4に低減された値に対して L 1層の透過率の 2乗の係数 がさらに乗算された値となる。 したがって、 L 2層による反射光の光量は、 L 1 層による反射光に対して無視できる程度に僅かとなり、 L O層の初期化に際して は、 L 1層による反射光のみを考慮すればよい。 すなわち、 多層記録層型光記録 媒体において 1つの層を初期化する場合、 この初期化対象層よりも 1つ入射光か ら遠い層による反射光の影響のみを考慮すればよく、 したがって、 この 1つ入射 光から遠レ、層における初期化用レーザービーム L INに対する光反射率を 3 0 %以 下に設定すればよい。 On the other hand, for initialization of the L0 layer, the L0 layer is irradiated not only with the L1 layer but also with the initialization laser beam LIN reflected by the L2 layer. However Since the distance between the L0 layer and the L2 layer is almost twice as large as the distance between the L0 and L1 layers, the amount of light reflected by the L2 layer is To 1Z4. In addition, the light reflected by the L2 layer passes through the L1 layer twice after passing through the L0 layer and before being reflected by the L2 layer and reaching the L0 layer. Therefore, the amount of light reflected by the L2 layer is a value obtained by further multiplying the value reduced to 1/4 by the square coefficient of the transmittance of the L1 layer. Therefore, the amount of light reflected by the L2 layer is negligible compared to the light reflected by the L1 layer, and only the light reflected by the L1 layer needs to be considered when initializing the LO layer. That is, when a single layer is initialized in a multilayer recording layer type optical recording medium, only the influence of reflected light by a layer farther from the incident light than the one to be initialized needs to be considered. The light reflectance for the initialization laser beam LIN in the layer far from the incident light may be set to 30% or less.
また、 本発明の実施の形態では、 初期化用レーザービーム L INに対する L 1層 の光反射率を具体的な所定値に規定したが、 初期化用レーザービーム L INに対す る L 1層の光反射率はより低いのが好ましく、 かつ記録再生用レーザービームに 対する L 1層の光反射率はより高いのが好ましいという観点からは、 初期化用レ 一ザ一ビーム L INに対する L 1層の光反射率を記録再生用レーザービームに対す る L 1層の光反射率よりも低率に形成する構成を採用することもできる。 産業上の利用可能性  Further, in the embodiment of the present invention, the light reflectance of the L1 layer with respect to the initialization laser beam LIN is specified to a specific predetermined value, but the L1 layer with respect to the initialization laser beam LIN is specified. From the viewpoint that the light reflectivity is preferably lower and the light reflectivity of the L1 layer with respect to the recording / reproducing laser beam is preferably higher, the L1 layer with respect to the initialization laser beam LIN is preferred. It is also possible to adopt a configuration in which the light reflectance of the layer 1 is formed to be lower than the light reflectance of the L1 layer with respect to the recording / reproduction laser beam. Industrial applicability
以上のように、 この発明に係る多層記録層型光記録媒体の製造方法によれば、 多層記録層型光記録媒体を製造する際に、 中間工程として、 スぺーサ層を介して 入射される初期化用レーザービームに対する光反射率が初期化状態において 3 0 %以下となる一つの層を形成し、 形成した一つの層に対して初期化用レーザービ ームを照射して初期化し、 この初期化した層の上にスぺーサ層を形成し、 この形 成したスぺーサ層の上に他の層を形成し、 この形成した他の層に対して初期化用 レーザービームを照射して初期化することにより、 1つの層で反射した初期化用 レーザービームと他の層を通過した初期化用レーザービームとの間での上記した 干渉に起因する他の層における初期化状態のムラの発生を確実に回避することが できる。 したがって、 スぺーサ層の膜厚を厚くすることなく、 記録層を含む各層 を均一かつ良好に初期化した高品質の多層記録層型光記録媒体を製造可能な多層 記録層型光記録媒体の製造方法が実現される。 As described above, according to the method for manufacturing a multilayer recording layer type optical recording medium according to the present invention, when manufacturing the multilayer recording layer type optical recording medium, the light is incident via the spacer layer as an intermediate step. A single layer having a light reflectance of 30% or less in the initialized state with respect to the initializing laser beam is formed, and the formed one layer is irradiated with the initializing laser beam to be initialized. A spacer layer is formed on the formed layer, another layer is formed on the formed spacer layer, and an initialization is performed on the formed other layer. By irradiating with a laser beam and initializing, in the other layer caused by the above-described interference between the initializing laser beam reflected by one layer and the initializing laser beam passing through another layer, The occurrence of unevenness in the initialized state can be reliably avoided. Therefore, a multilayer recording layer type optical recording medium capable of producing a high quality multilayer recording layer type optical recording medium in which each layer including the recording layer is uniformly and satisfactorily initialized without increasing the thickness of the spacer layer. A manufacturing method is realized.

Claims

請求の範囲 The scope of the claims
1 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材のー 面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層型 光記録媒体を製造する製造方法であって、  1. A multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation is formed on the surface side of a base material and a spacer layer is formed between the respective layers. A manufacturing method for manufacturing,
中間工程として、 その上層としての前記スぺーサ層を介して入射される初期化 用レーザービームに対する光反射率が初期化状態において 3 0 %以下となる一つ の前記層を形成し、  Forming, as an intermediate step, one layer having a light reflectance of 30% or less in an initialized state with respect to an initializing laser beam incident through the spacer layer as an upper layer,
当該形成した一つの層に対して前記初期化用レーザービームを照射して初期化 し、  Irradiating the laser beam for initialization to the formed one layer to initialize,
当該初期化した層の上に前記スぺーサ層を形成し、  Forming the spacer layer on the initialized layer;
当該形成したスぺーサ層の上に他の前記層を形成し、  Forming another layer on the formed spacer layer,
当該形成した他の層に対して前記初期化用レーザービームを照射して初期化す る工程を含む多層記録層型光記録媒体の製造方法。  A method for manufacturing a multilayer recording layer type optical recording medium, comprising a step of irradiating the formed other layer with the laser beam for initialization to initialize the layer.
2 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材のー 面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層型 光記録媒体を製造する製造方法であって、  2. A multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation is formed on the surface side of the base material and a spacer layer is formed between the respective layers. A manufacturing method for manufacturing,
中間工程として、 その上層としての前記スぺーサ層を介して入射される初期化 用レーザービームに対する光反射率が初期化状態において 3 0 %以下となる一つ の前記層を形成し、  Forming, as an intermediate step, one layer having a light reflectance of 30% or less in an initialized state with respect to an initializing laser beam incident through the spacer layer as an upper layer,
当該形成した一つの層の上に前記スぺーサ層を形成し、  Forming the spacer layer on the formed one layer,
前記形成した一つの層に対して前記形成したスぺーサ層を介して前記初期化用 レーザービームを照射して初期化し、  Initializing the formed one layer by irradiating the laser beam for initialization through the formed spacer layer,
前記形成したスぺーサ層の上に他の前記層を形成し、  Forming another layer on the formed spacer layer,
当該形成した他の層に対して前記初期化用レーザービームを照射して初期化す る工程を含む多層記録層型光記録媒体の製造方法。  A method for manufacturing a multilayer recording layer type optical recording medium, comprising a step of irradiating the formed other layer with the laser beam for initialization to initialize the layer.
3 . 前記一つの層の記録用レーザービームおょぴ再生用レーザービームに対 する光反射率を 2 0 %以上に形成する請求項 1記載の多層記録層型光記録媒体の 製造方法。 3. The recording laser beam and the reproduction laser beam of the one layer 2. The method for producing a multilayer recording layer type optical recording medium according to claim 1, wherein the optical reflectance is set to 20% or more.
4 . 前記一つの層の記録用レーザービームおょぴ再生用レーザービームに対 する光反射率を 2 0 %以上に形成する請求項 2記載の多層記録層型光記録媒体の 製造方法。  3. The method of manufacturing a multilayer recording layer type optical recording medium according to claim 2, wherein a light reflectance of the one layer with respect to a recording laser beam and a reproducing laser beam is set to 20% or more.
5 . 前記記録用レーザービームおょぴ再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記初期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いる請求項 3記載の多層記録層型光記録媒体 の製造方法。  5. Light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam. 4. The method for producing a multilayer recording layer type optical recording medium according to claim 3, wherein:
6 . 前記記録用レーザービームおょぴ再生用レーザービームとして 5 0 0 n 6. 500 n as the recording laser beam and the reproduction laser beam
Hi未満の波長の光が用いられ、 前記初期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いる請求項 4記載の多層記録層型光記録媒体 の製造方法。 The method according to claim 4, wherein light having a wavelength less than Hi is used, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam.
7 . 相変化材料で前記記録層を形成する請求項 1記載の多層記録層型光記録 媒体の製造方法。  7. The method for manufacturing a multilayer recording layer type optical recording medium according to claim 1, wherein the recording layer is formed of a phase change material.
8 . 相変化材料で前記記録層を形成する請求項 2記載の多層記録層型光記録 媒体の製造方法。  8. The method for producing a multilayer recording layer type optical recording medium according to claim 2, wherein the recording layer is formed of a phase change material.
9 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材のー 面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層型 光記録媒体を製造する製造装置であって、  9. A multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are formed on the surface side of the base material and a spacer layer is formed between the respective layers. A manufacturing apparatus for manufacturing,
その上層としての前記スぺーサ層を介して入射される初期化用レーザービーム に対する光反射率が初期化状態において 3 0 %以下となる一つの前記層を形成す る第 1の層形成装置と、  A first layer forming apparatus for forming one layer in which the light reflectance with respect to an initialization laser beam incident through the spacer layer as an upper layer is 30% or less in an initialized state; ,
当該形成した一つの層に対して前記初期化用レーザービームを照射して初期化 する第 1の初期化装置と、 '  A first initialization device that initializes the formed one layer by irradiating the initialization laser beam with the laser beam;
当該初期化した層の上に前記スぺーサ層を形成するスぺーサ層形成装置と、 当該形成したスぺーサ層の上に他の前記層を形成する第 2の層形成装置と、 当該形成した他の層に対して前記初期化用レーザービームを照射して初期化す る第 2の初期化装置とを備えている多層記録層型光記録媒体の製造装置。 A spacer layer forming apparatus for forming the spacer layer on the initialized layer, A second layer forming apparatus for forming another layer on the formed spacer layer, and a second layer for irradiating the formed other layer with the initialization laser beam for initialization. An apparatus for manufacturing a multilayer recording layer type optical recording medium, comprising: an initialization apparatus.
1 0 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材の 一面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層 型光記録媒体を製造する製造装置であって、  10. A multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation is formed on one surface side of a base material and a spacer layer is formed between the respective layers. A manufacturing apparatus for manufacturing,
その上層としての前記スぺーサ層を介して入射される初期化用レーザービーム に対する光反射率が初期化状態において 3 0 %以下となる一つの前記層を形成す る第 1の層形成装置と、  A first layer forming apparatus for forming one layer in which the light reflectance with respect to an initialization laser beam incident through the spacer layer as an upper layer is 30% or less in an initialized state; ,
当該形成した一つの層の上に前記スぺーサ層を形成するスぺーサ層形成装置と 前記形成した一つの層に対して前記形成したスぺーサ層を介して前記初期化用 レーザービームを照射して初期化する第 iの初期化装置と、  A spacer layer forming apparatus for forming the spacer layer on the formed one layer; and the initialization laser beam to the formed one layer via the formed spacer layer. An i-th initialization device for irradiating and initializing;
前記形成したスぺーサ層の上に他の前記層を形成する第 2の層形成装置と、 当該形成した他の層に対して前記初期化用レーザービームを照射して初期化す る第 2の初期化装置とを備えている多層記録層型光記録媒体の製造装置。  A second layer forming apparatus for forming another layer on the formed spacer layer, and a second layer for irradiating the formed other layer with the initialization laser beam to initialize the other layer An apparatus for manufacturing a multilayer recording layer type optical recording medium, comprising: an initialization apparatus.
1 1 . 前記第 1の層形成装置は、 前記一つの層の記録用レーザービームおよ ぴ再生用レーザービームに対する光反射率を 2 0 %以上に形成する請求項 9記載  11. The first layer forming apparatus forms the one layer with a light reflectance of 20% or more with respect to a recording laser beam and a reproducing laser beam.
1 2 . 前記第 1の層形成装置は、 前記一つの層の記録用レーザービームおよ ぴ再生用レーザービームに対する光反射率を 2 0 %以上に形成する請求項 1 0記 12. The first layer forming apparatus according to claim 10, wherein the first layer forms a light reflectance of at least 20% with respect to a recording laser beam and a reproducing laser beam.
1 3 . 前記記録用レーザービームおよび再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記第 1および第 2の初期化装置は、 前記初期 化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いる 請求項 1 1記載の多層記録層型光記録媒体の製造装置。 13. Light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and the first and second initialization devices have a wavelength of 500 as the initialization laser beam. The apparatus for manufacturing a multilayer recording layer type optical recording medium according to claim 11, wherein light having a wavelength of 0 nm or more and 100 nm or less is used.
1 4 . 前記記録用レーザービームおよぴ再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記第 1および第 2の初期化装置は、 前記初期 化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いる 請求項 1 2記載の多層記録層型光記録媒体の製造装置。 14. Light having a wavelength of less than 500 nm is used as the recording laser beam and the reproduction laser beam, and the first and second initialization devices have wavelengths as the initialization laser beam. 13. The apparatus for manufacturing a multilayer recording layer type optical recording medium according to claim 12, wherein light having a wavelength of 500 nm or more and 100 nm or less is used.
1 5 . 前記第 1および第 2の層形成装置は、 相変化材料で前記記録層を形成 する請求項 9記載の多層記録層型光記録媒体の製造装置。  15. The apparatus for manufacturing a multilayer recording layer type optical recording medium according to claim 9, wherein the first and second layer forming apparatuses form the recording layer using a phase change material.
1 6 . 前記第 1および第 2の層形成装置は、 相変化材料で前記記録層を形成 する請求項 1 0記載の多層記録層型光記録媒体の製造装置。  16. The apparatus for manufacturing a multilayer recording layer type optical recording medium according to claim 10, wherein the first and second layer forming apparatuses form the recording layer using a phase change material.
1 7 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材の 一面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層 型光記録媒体であって、  17. Multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material and a spacer layer is formed between the respective layers. So,
前記複数の層の内の最上層を除く他の層は、 その上層としての前記スぺーサ層 を介して入射される初期化用レーザービームに対する光反射率が初期化状態にお いて 3 0 %以下に形成されている多層記録層型光記録媒体。  Of the plurality of layers, the layers other than the uppermost layer have a light reflectance of 30% in the initialized state with respect to the initialization laser beam incident through the spacer layer as an upper layer. A multilayer recording layer type optical recording medium formed below.
1 8 . 前記複数の層の内の最上層を除く他の層は、 その上層としての前記ス ぺーサ層を介して入射される記録用レーザービームおょぴ再生用レーザービーム に対する光反射率が初期化状態において 2 0 %以上に形成されている請求項 1 7 記載の多層記録層型光記録媒体。  18. The other layers of the plurality of layers except the uppermost layer have a light reflectance with respect to a recording laser beam and a reproducing laser beam incident through the spacer layer as an upper layer. 18. The multilayer recording layer type optical recording medium according to claim 17, wherein the optical recording medium is formed at 20% or more in an initialized state.
1 9 . 前記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記複数の層の内の最上層を除く他の層は 、 波長が 5 0 0 n m以上 1 0 0 0 n m以下の前記初期化用レーザービームで初期 化されている請求項 1 8記載の多層記録層型光記録媒体。  19. Light having a wavelength of less than 500 nm is used as the recording laser beam and the reproduction laser beam, and the wavelength of the other layers except the top layer of the plurality of layers is 500 nm. 19. The multilayer recording layer type optical recording medium according to claim 18, wherein the optical recording medium is initialized with the initialization laser beam having a wavelength of 100 nm or less.
2 0 . 前記記録層は、 相変化材料で形成されている請求項 1 7から 1 9のい ずれかに記載の多層記録層型光記録媒体。  20. The multilayer recording layer type optical recording medium according to any one of claims 17 to 19, wherein the recording layer is formed of a phase change material.
PCT/JP2002/010701 2001-11-09 2002-10-15 Multiple recording layer optical recording medium manufacturing method, multiple recording layer optical recording medium manufacturing apparatus, and multiple recording layer optical recording medium WO2003041069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-344179 2001-11-09
JP2001344179A JP2005141785A (en) 2001-11-09 2001-11-09 Multilayer recording layer type optical recording medium and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2003041069A1 true WO2003041069A1 (en) 2003-05-15

Family

ID=19157745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010701 WO2003041069A1 (en) 2001-11-09 2002-10-15 Multiple recording layer optical recording medium manufacturing method, multiple recording layer optical recording medium manufacturing apparatus, and multiple recording layer optical recording medium

Country Status (2)

Country Link
JP (1) JP2005141785A (en)
WO (1) WO2003041069A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260060A (en) * 1999-03-09 2000-09-22 Sony Corp Optical information recording medium
JP2001250265A (en) * 2000-03-07 2001-09-14 Sony Corp Multilayer optical disk and its initializing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260060A (en) * 1999-03-09 2000-09-22 Sony Corp Optical information recording medium
JP2001250265A (en) * 2000-03-07 2001-09-14 Sony Corp Multilayer optical disk and its initializing method

Also Published As

Publication number Publication date
JP2005141785A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3250989B2 (en) Optical information recording medium, recording / reproducing method thereof, manufacturing method thereof, and optical information recording / reproducing apparatus
US6456584B1 (en) Optical information recording medium comprising a first layer having a phase that is reversibly changeable and a second information layer having a phase that is reversibly changeable
JP4686672B2 (en) Hologram recording medium and manufacturing method thereof
JP2005301202A (en) Holographic recording medium and holographic recording method using the same
JP5519504B2 (en) Read / write holographic recording medium recording / reproducing method and read only holographic recording medium
JP4349248B2 (en) Optical information recording medium, reproducing method thereof and manufacturing method thereof
US20080205236A1 (en) Optical information recording medium and optical information reproducing method
US6999396B2 (en) Initialization method of optical recording medium
JP4271116B2 (en) Optical recording / reproducing device
TWI287220B (en) Method for initializing optical recording medium
WO2003041069A1 (en) Multiple recording layer optical recording medium manufacturing method, multiple recording layer optical recording medium manufacturing apparatus, and multiple recording layer optical recording medium
JP2001273674A (en) Optical information recording medium, method for recording and reproducing the same, method for manufacturing that medium, and optical information recording and reproducing device
WO2003034421A1 (en) Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium
TWI233601B (en) Optical recording medium manufacturing method, optical recording medium manufacturing apparatus and optical recording medium
TW200412425A (en) Method for inspecting optical recording medium
JP4116422B2 (en) Optical information recording medium and information recording / reproducing method of optical information recording medium
JPH08287527A (en) Production of optical disk of sticking type
JPH05225603A (en) Phase transition optical disk medium for short wavelength
JPH09288846A (en) Information recording medium and its reproducing method
JP4081981B2 (en) Manufacturing method of optical disk medium
JPH07311984A (en) Manufacture of phase-change optical disk recording medium
JP4161537B2 (en) Manufacturing method of optical recording medium
JPH07141694A (en) Optical recording medium
JPH06274941A (en) Optical recording medium
WO2003034411A1 (en) Method and apparatus for initializing multi-layered recording layer type optical recording medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP