WO2003034421A1 - Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium - Google Patents

Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium Download PDF

Info

Publication number
WO2003034421A1
WO2003034421A1 PCT/JP2002/010700 JP0210700W WO03034421A1 WO 2003034421 A1 WO2003034421 A1 WO 2003034421A1 JP 0210700 W JP0210700 W JP 0210700W WO 03034421 A1 WO03034421 A1 WO 03034421A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laser beam
recording medium
recording
optical recording
Prior art date
Application number
PCT/JP2002/010700
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Komaki
Tetsuro Mizushima
Jiro Yoshinari
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2003034421A1 publication Critical patent/WO2003034421A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects

Definitions

  • Method for manufacturing multilayer recording layer type optical recording medium apparatus for manufacturing multilayer recording layer type optical recording medium, and multilayer recording layer type optical recording medium
  • the present invention relates to a multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are laminated on one surface side of a substrate and a spacer layer is formed between each layer.
  • the present invention relates to a manufacturing method, an apparatus for manufacturing a multilayer recording layer type optical recording medium, and a multilayer recording layer type optical recording medium.
  • Optical recording media are noted for their high density and large capacity, and are used for various purposes.
  • rewritable optical recording media that allow erasing and re-recording of recorded information can be used to restore and update data, and can be repeatedly rewritten and used, contributing to expanding the use of optical recording media. It is expected to do.
  • a magneto-optical recording medium (MO) and a phase change optical recording medium have been developed and commercialized.
  • optical recording medium 21 having a layer structure shown in FIG. 5 as a rewritable phase-change optical recording medium utilizing a phase change (hereinafter, also simply referred to as “optical recording medium”). are doing.
  • the optical recording medium 21 is configured such that a reflective layer 3, a recording layer 4, and a cover layer 7 are sequentially laminated on one surface (upper surface in FIG. 1) of the substrate 2.
  • the base material 2 is formed into a flat plate shape (for example, a disk (disc) shape) having a predetermined thickness by injection molding using a resin material such as polycarbonate.
  • the reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed using a metal such as Al, Ag, or Ni.
  • the recording layer 4 has a first protective layer 4a, a phase change material layer 4b, and a second protective layer 4c. Each of these layers 4 c, 4 b, 4 a is laminated on the reflective layer 3 in this order.
  • the first protective layer 4 a Oyopi second protective layer 4 c of this for example, formed by using a dielectric material such as oxide Al Miya Z n S- S i 0 2, phase-change material layer 4 b Is formed using GeTeSb, InSbTe, or AgGeInSbTe.
  • the cover layer 7 is formed on the first protective layer 4a using a light-transmitting resin material.
  • the recording layer 4 is irradiated with a recording laser beam (for example, a laser beam having a wavelength of 405 nm) from the cover layer 7 side, and the recording layer 4 including the phase change material layer 4b
  • a recording laser beam for example, a laser beam having a wavelength of 405 nm
  • the recording mark is formed and erased by reversibly changing the phase between the amorphous state and the crystalline state.
  • the recording power laser beam when the recording power laser beam is irradiated, the irradiated portion is heated to a temperature higher than the melting point and then rapidly cooled (quenched).
  • the recording mark is formed in accordance with the recording signal by being amorphous.
  • the irradiated portion is heated to a temperature higher than the crystallization temperature, and then gradually cooled (gradually cooled) to be crystallized, thereby recording.
  • the mark is deleted.
  • the optical constant between the amorphous state and the crystalline state when irradiated with a laser beam of reproduction power (for example, a laser beam with a wavelength of 405 nm and a lower power than during recording) is irradiated. Data is reproduced by judging the presence or absence of a recording mark using the difference in light reflectivity that changes with the change.
  • the base material 2 is formed into a disk shape having fine irregularities such as groups formed on the surface (one surface) by injection molding.
  • the recording layer 4 is formed on the reflective layer 3.
  • the phase change material layer 4b and the first and second protective layers 4a and 4c are generally formed by a sputtering method.
  • the force-par layer 7 is formed on the recording layer 4 by, for example, spin coating. In this case, the phase change material layer 4b in the recording layer 4 is in an amorphous state immediately after its formation, and Cannot be recorded.
  • the recording layer 4 (particularly, the phase change material layer) is required in the manufacturing process of the optical recording medium 21. 4 b) needs to be initialized. For this reason, after forming the cover layer 7, the recording layer 4 is initialized.
  • a high-power laser beam hereinafter also referred to as “initialization laser beam” is irradiated from the same direction as the irradiation direction of the reproduction or recording laser beam (direction from the cover layer 7 side).
  • a laser beam having a different wavelength from the recording or reproducing laser beam is used as the initialization laser beam so that the initialization can be performed efficiently and in a short time and the production efficiency can be improved.
  • a laser beam having a wavelength of 810 nm is used as one laser beam for initialization.
  • This initialization laser beam has, for example, a numerical aperture NA (Numerical Aperture) of about 0.4 (for example, The optical recording medium 21 is irradiated through an objective lens having a value of 0.34).
  • NA numerical aperture
  • the optical recording medium 31 is a so-called single-sided multilayer (for example, two layers) recording layer type optical recording medium (hereinafter, also referred to as “multilayer recording layer type optical recording medium”), as shown in FIG.
  • an L1 layer including a reflective layer 3 and a recording layer 4, a spacer layer 32 as a light transmitting layer, and a recording layer 6 (hereinafter, referred to as “ L0 layer) and the copper layer 7 are sequentially laminated.
  • the thickness TH of the spacer layer 32 is usually set to about 20 ⁇ , and fine irregularities such as groups are formed on the surface on the L0 layer side.
  • the recording layer 6 has a first protective layer 6a, a phase change material layer 6b, and a second protective layer 6c, and these layers 6c, 6b, 6a are In this order, it is laminated on the surface of the spacer layer 32 on which the fine irregularities are formed.
  • each layer 6a, 6b, 6c is formed of a strictly different material and film thickness from the corresponding layer 4, 4b, 4c, but has the same function.
  • the force-par layer 7 is formed on the L0 layer using a resin material.
  • the objective lens 11 having the same numerical aperture NA as that at the time of initialization for the optical recording medium 21 is used. And initialize. Specifically, the L1 layer including the recording layer 4 is initialized by irradiating the L1 layer from the cover layer 7 side with the initialization laser beam LIN emitted from the objective lens 11, and then As shown in (1), the L0 layer is initialized by irradiating the L0 layer with an initialization laser beam LIN. Thus, the manufacture of the optical recording medium 31 in which the 1 ⁇ 1 layer and the 1 ⁇ 0 layer have been initialized is completed. Disclosure of the invention
  • the inventors have found the following points to be improved. That is, in this manufacturing method, as shown in FIG. 7, when the L 0 layer formed on the spacer layer 32 is initialized, the initialization laser beam L IN applied to the L 0 layer is used. A part of the laser beam LPE passes through the L0 layer and the spacer layer 32 to reach the L1 layer, and a part of the laser beam LRE is reflected by the L1 layer. You. In this case, interference occurs due to unevenness in the thickness of the spacer layer 32 between the reflected laser beam LRE and the laser beam L IN applied to the L 0 layer.
  • the amount of light absorbed by the L0 layer partially differs, and as a result, the amount of heat generated differs for each part of the L0 layer (heat generation unevenness occurs in the L0 layer). Therefore, due to the re-irradiation of the reflected laser beam LRE, the crystal state of the L0 layer, in particular, the phase change material layer 6b in the recording layer 6 may be uneven and the LO layer may not be properly initialized. , It is better to improve this point New
  • the present invention has been made to solve the above-mentioned points to be improved, and a method for manufacturing a multilayer recording layer type optical recording medium capable of uniformly initializing each layer including a recording layer, and a multilayer recording layer type optical recording medium.
  • a main object is to provide a recording medium manufacturing apparatus and a multilayer recording layer type optical recording medium.
  • a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a space is formed between the respective layers.
  • a method for manufacturing a multilayer recording layer type optical recording medium wherein a light transmittance for an initialization laser beam is lower than a light transmittance for a recording laser beam and a reproduction laser beam.
  • a spacer layer is formed, the layer is formed on the formed spacer layer, and the formed layer is initialized by irradiating the laser beam for initialization.
  • the spacer is so adjusted that the light transmittance for the initialization laser beam is 70% or less and the light transmittance for the recording laser beam and the reproduction laser beam is 80% or more.
  • a layer is formed.
  • light having a wavelength of less than 500 nm is used as the recording laser beam and the reproduction laser beam, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam. It is preferably used.
  • the spacer layer is formed of a spacer layer material to which an infrared absorbing material is added.
  • the recording layer is formed of a phase change material.
  • a plurality of layers each including a recording layer to be initialized by light irradiation are formed on one surface side of a base material, and a space is provided between the respective layers.
  • the spacer layer forming apparatus has a light transmittance for the initialization laser beam of 70% or less, and a light for the recording laser beam and the reproducing laser beam.
  • the spacer layer is preferably formed so that the transmittance is 80% or more.
  • light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam
  • the initialization apparatus uses the initialization laser beam as a beam having a wavelength of 500 nm or more.
  • the light transmittance for the laser beam for initialization is lower than the light transmittance for the laser beam for recording and the laser beam for reproduction.
  • the initialization laser beam passing through this layer and further passing through the spacer layer can be sufficiently attenuated during this initialization.
  • the layer including the recording layer can be uniformly initialized. Can be done.
  • a multilayer recording layer type optical recording medium according to the present invention is manufactured by any one of the above-described methods for manufacturing a multilayer recording layer type optical recording medium.
  • the multilayer recording layer type optical recording medium of the present invention a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a spacer is provided between the respective layers.
  • the spacer is so adjusted that the light transmittance for the initialization laser beam is 70% or less and the light transmittance for the recording laser beam and the reproduction laser beam is 80% or more.
  • a layer is formed.
  • light having a wavelength of less than 500 nm is used as the recording laser beam and the reproduction laser beam, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam. It is preferably used.
  • the spacer layer is formed of a spacer layer material to which an infrared absorbing material is added. Further, it is preferable to form the recording layer with a phase change material.
  • the spacer layer was formed so that the light transmittance for the initialization laser beam was lower than the light transmittance for the recording laser beam and the reproduction laser beam.
  • a layer including a recording layer is formed on the spacer layer, and the formed layer is initialized by irradiating a laser beam for initialization.
  • the initialization laser beam that passes through this layer and further passes through the spacer layer can be sufficiently attenuated, it is reflected by the reflective layer of the initialization laser beam that has passed through this layer.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a multilayer (two-layer) recording layer type optical recording medium 1 according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a configuration of the manufacturing apparatus 200 for the optical recording medium 1.
  • Fig. 3 shows the effect on the L0 layer caused by the irradiation of the laser beam LRE reflected by the L1 layer including the reflective layer 3 when initializing the optical recording medium 1 on which the L1 layer and the L0 layer were formed. It is an explanatory view for explaining.
  • FIG. 4 shows an optical recording medium 1 manufactured by variously changing the light transmittance of the spacer layer 5 in the optical recording medium 1, and the quality of initialization of the L0 layer in each optical recording medium 1 was tested.
  • FIG. 9 is an explanatory diagram of experimental results showing experimental results at that time.
  • FIG. 5 is a cross-sectional view showing a schematic structure of a conventional single-layer recording layer type optical recording medium 21.
  • FIG. 6 is a schematic view of a conventional multilayer (two-layer) recording layer type optical recording medium 31.
  • FIG. 5 is a cross-sectional view showing a schematic structure of a conventional single-layer recording layer type optical recording medium 21.
  • FIG. 6 is a schematic view of a conventional multilayer (two-layer) recording layer type optical recording medium 31.
  • FIG. 7 is a graph showing the relationship between the laser beam LRE irradiated by the laser beam LRE reflected by the L1 layer including the reflective layer 3 when the conventional optical recording medium 11 having the L1 layer and the L0 layer formed thereon is initialized. It is explanatory drawing for demonstrating the influence on a layer. BEST MODE FOR CARRYING OUT THE INVENTION
  • optical recording medium 1 a multilayer recording layer type optical recording medium (hereinafter, also referred to as “optical recording medium”) 1 in the present invention will be described with reference to FIG.
  • the optical recording medium 1 has an L1 layer, a spacer layer 5, and an L layer adjacent to the spacer layer 5 on the side of the fine unevenness surface (the upper surface in FIG. 0 layers and a cover layer 7 are sequentially laminated.
  • the substrate 2 is formed into a disk shape having fine irregularities such as groups formed on the surface (one surface) thereof by injection molding using a resin material such as polycarbonate.
  • the track pitch of the group formed on the base material 2 is set to 0.3 ⁇ m, and the depth of the group is set to the recording laser beam (laser beam set to the recording power) and the reproduction laser beam. (The laser beam set to the reproduction power) is set to about 1Z12.
  • the reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed.
  • the recording layer 4 has a first protective layer 4a, a phase change material layer 4b, and a second protective layer 4c, and these layers 4c, 4b, 4a are laminated on the reflective layer 3 in this order.
  • the spacer layer 5 is formed on the first protective layer 4a using a transparent resin material to which an infrared absorbing material is added.
  • the spacer layer 5 has a thickness TH of usually about 20 ⁇ , and has fine irregularities (not shown) such as groups formed on one surface (the upper surface in the figure).
  • the infrared absorbing material for example, anthraquinone-based compounds, aluminum-based compounds, polymethine-based compounds, dimethyl-based compounds, and cyanine-based compounds are used.
  • the spacer layer 5 the light transmittance for light having a wavelength of 500 nm or more and 100 nm or less is 0.1% or more due to the addition of such an infrared absorbing material.
  • the light transmittance for light having a wavelength of less than 500 nm is not less than 80% and not more than 95%. Therefore, the spacer layer 5 is a recording and playback device used by the user.
  • the optical transmittance of the recording laser beam and the reproducing laser beam (wavelength: 405 ⁇ m; hereinafter, also referred to as “recording / reproducing laser beam” when no distinction is made) between the optical recording medium 1 and the optical recording medium 1 It has the characteristic that the light transmittance of the initializing laser beam (a laser beam having a wavelength of 810 nm and set to the initializing power) at the time is low.
  • the manufacturing apparatus 200 includes a reflective layer forming apparatus 101, a recording layer forming apparatus 102, an initializing apparatus 103, a spacer layer forming apparatus 201, and a recording layer forming apparatus (layer forming apparatus). 202, an initializing device 203, and a light transmitting layer forming device 104.
  • the reflecting layer forming apparatus 101 includes a reflecting layer forming chamber 101a and a sputtering apparatus 101b disposed in the reflecting layer forming chamber 101a, and the reflecting layer forming chamber 101 It has a function of forming a reflective layer 3 on the surface of the substrate 2 carried into 1a by a sputtering device 101b.
  • the recording layer forming apparatus 102 includes a recording layer forming chamber 102 a and a sputtering apparatus 102 b disposed in the recording layer forming chamber 102 a, and is provided in the recording layer forming chamber 102 a. It has a function of forming a recording layer 4 on the surface of the loaded base material 2 with a sputtering device 102b.
  • the initialization device 103 includes a rotating mechanism 103 a for rotating the base material 2 and a laser beam for initialization along a group formed on the base material 2 driven by a tracking mechanism (not shown).
  • the spacer layer forming apparatus 201 includes a rotating mechanism 201 a for rotating the base material 2, a dropping mechanism for the coating liquid R 1 (not shown), a transparent stamper 201 b, and an ultraviolet irradiation mechanism (see FIG. (Not shown), and a function of forming a spacer layer 5 as a light transmitting layer on the surface of the substrate 2 by spin coating.
  • the recording layer forming apparatus 202 includes a recording layer forming chamber 202 a and a sputtering apparatus 202 b disposed in the recording layer forming chamber 202 a, and is provided in the recording layer forming chamber 202 a. It has a function of forming the recording layer 6 on the surface of the loaded base material 2 with a sputtering device 202b.
  • the initializing device 203 includes a rotating mechanism 203 for rotating the substrate 2 and a rotating mechanism 203 a.
  • the light transmitting layer forming apparatus 104 includes a rotating mechanism 104 for rotating the substrate 2, a dropping mechanism 104 b for the coating liquid R, and an ultraviolet irradiation mechanism (not shown). In addition, it has a function of forming a power layer 7 as a light transmitting layer by a spin coating method. Next, a method for manufacturing the optical recording medium 1 will be described.
  • the base material 2 is formed into a disk shape having fine irregularities such as groups formed on its surface (one surface) by injection molding.
  • the recording layer 4 is formed on the reflection layer 3 by the recording layer forming device 102.
  • the phase change material layer 4b is generally formed by a sputtering method.
  • the formed L1 layer is irradiated with the initialization laser beam LIN by the initialization device 103 from the same direction as the irradiation direction of the recording / reproducing laser beam, and the L1 layer including the recording layer 4 is irradiated.
  • Initialize the layer specifically, the L1 layer including the phase change material layer 4b.
  • the spacer layer 5 is formed on the L1 layer by performing the 2P method using the transparent stamper 201b with the spacer layer forming apparatus 201.
  • a resin material (coating liquid R 1) to which an infrared absorbing material is added is dropped on the surface of the base material 2 on which the recording layer 4 is formed, and the resin material is thinly coated on the first protective layer 4 a by spin coating.
  • a transparent stamper 201b for forming a fine round protrusion such as a group is placed on the uncured applied resin material.
  • the resin material is cured by irradiating ultraviolet rays, and then the transparent stamper 201b is removed. At this time, fine irregularities are formed on the upper surface of the spacer layer 5 by the fine irregularities formed on the surface of the transparent stamper 201b.
  • the L0 layer is formed on the surface of the spacer layer 5 on which the fine irregularities are formed by the recording layer forming device 202.
  • the phase change material layer 6b is formed by, for example, a sputtering method.
  • the formed LO layer is irradiated with the initialization laser beam LIN by the initialization device 203 from the same direction as the irradiation direction of the recording / reproducing laser beam, thereby initializing the L0 layer including the recording layer 6. I do.
  • the initialization laser beam LIN by the initialization device 203 from the same direction as the irradiation direction of the recording / reproducing laser beam
  • part of the initialization laser beam LIN irradiated from the lens 11 to the L0 layer in the pickup 203b is partially replaced by the L0 layer and the L0 layer. ⁇ Pass the spacer layer 5 to reach the L1 layer. Then, a part of the laser beam LRE of the laser beam LPE that has reached the L1 layer is reflected by the L1 layer (particularly, the reflection layer 3 in the L1 layer) to irradiate the L0 layer.
  • the power-par layer 7 is formed on the initialized L0 layer using the light-transmitting layer forming apparatus 104, for example, by spin coating.
  • a resin material (coating liquid R) of a resin having optical transparency is dropped on the L0 layer of the base material 2 by the dropping mechanism 104b, and then, the rotating mechanism 104a is operated to operate the base material 2.
  • the manufacture of the optical recording medium 1 is completed.
  • the infrared ray absorbing material is added to the optical recording medium 1 to scan light of 500 nm or more and 1000 nm or less (initialization laser single beam L IN).
  • the amount of light from the laser beam LPE that passed through the L0 layer and reached the L1 layer was The light amount can be reduced to 70% or less.
  • the laser beam is reflected by the reflective layer 3 of the LPE and reaches the L0 layer. It is possible to reduce the light quantity of the one-beam-one LRE to 70% or less of the light quantity at the beginning of reflection. As a result, the light amount of the laser beam LRE, which irradiates the L0 layer from the base material 2 side, can be reduced to about half (about 49%) or less of the initial light amount of the laser beam LPE. +
  • the inventor changed the light transmittance of the spacer layer 5 variously by changing the type of the infrared absorbing material added to the spacer layer 5 or adjusting the addition ratio.
  • the recording medium 1 was manufactured, and the quality of the initialization of the L0 layer for each optical recording medium 1 was tested.
  • Figure 4 shows the experimental results at this time. According to the experimental results shown in the figure, when the light transmittance of the spacer layer 5 is set to ⁇ 0% or less, the initialization state is determined to be good, and the light transmittance of the spacer layer 5 is reduced. 7 When it was set to 1% or more, the initialization state was determined to be defective.
  • the laser beam reflected by the L1 layer and the laser beam irradiated to the L0 layer were set. It is possible to reliably avoid the occurrence of unevenness in the initialized state of the already initialized portion of the L0 layer caused by the above-described interference with the beam L IN. As a result, the L0 layer including the recording layer 6 can be initialized uniformly and well.
  • a recording / reproducing device used by the user a recording / reproducing laser beam with a wavelength of 405 nm is emitted from an objective lens with a numerical aperture of approximately 0.85.
  • the light transmittance of the spacer layer 5 with respect to the recording / reproducing laser beam is secured to 80% or more. Therefore, even if the spacer layer 5 is present, it is possible to reliably initialize the L1 layer by irradiating the recording / reproducing laser beam only with an influence that does not hinder the initialization. In this case, since the recording / reproducing laser beam is normally radiated by using an objective lens having a large numerical aperture ⁇ , the recording / reproducing laser beam reflected by the L1 layer and radiated to the L0 layer is irradiated. As a result, the unevenness in the initialization of the L 0 layer due to re-irradiation is reliably avoided.
  • the present invention is not limited to the above-described embodiment of the invention, and can be appropriately modified.
  • the manufacturing method of initializing the L0 layer prior to the formation of the cover layer 7 has been described as an example, but the L0 layer is initialized after the cover layer 7 is formed. You may.
  • this manufacturing method it is preferable to increase the light transmittance of the cover layer 7 with respect to the initialization laser beam LIN, so that the power-par layer 7 is added without adding an infrared absorbing material. Preferably, it is formed.
  • the manufacturing apparatus in this case is configured by increasing the spacer layer forming apparatus 201, the recording layer forming apparatus 202, and the initializing apparatus 203 in the manufacturing apparatus 200 by the number of repetitions. .
  • the light transmittance for the initialization laser beam is lower than the light transmittance for the recording laser beam and the reproduction laser beam.
  • a spacer layer is formed so as to obtain a ratio, and a layer including a recording layer is formed on the formed spacer layer, and the formed layer is initialized by irradiating a laser beam for initialization.
  • the recording layer can be uniformly initialized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

A method for manufacturing a multi-recording-layer optical recording medium (1) having on one side of a substrate (2) a plurality of layers (L1, L0) each having a recording layer initialized by irradiation of an initialization laser beam (LIN) and a spacer layer formed between the layer (L1) and the layer (L0). The spacer layer (5) is formed with light transmittance to the initialization laser beam (LIN) lower than the light transmittance to a recording/reproduction laser beam. On the formed spacer layer (5), the layer (L0) is formed. The initialization laser beam (LIN) is applied to the formed layer (L0) to initialize it. Thus, layers including the recording layer can be uniformly initialized.

Description

f ^糸田 » f ^ Itoda »
多層記録層型光記録媒体の製造方法、 多層記録層型光記録媒体の製造装置 および多層記録層型光記録媒体  Method for manufacturing multilayer recording layer type optical recording medium, apparatus for manufacturing multilayer recording layer type optical recording medium, and multilayer recording layer type optical recording medium
技術分野 Technical field
この発明は、 光照射によって初期化される記録層をそれぞれ含む複数の層が基 材の一面側に積層されると共に各層間にスぺーサ層が形成されている多層記録層 型光記録媒体の製造方法、 多層記録層型光記録媒体の製造装置、 および多層記録 層型光記録媒体に関するものである。 背景技術  The present invention relates to a multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are laminated on one surface side of a substrate and a spacer layer is formed between each layer. The present invention relates to a manufacturing method, an apparatus for manufacturing a multilayer recording layer type optical recording medium, and a multilayer recording layer type optical recording medium. Background art
光記録媒体は、 高密度で大容量である点が注目され、 様々な用途で使用されて いる。 特に、 記録された情報の消去および再記録が可能な書換可能型光記録媒体 は、 データの修復や更新が可能であり、 しかも繰り返して書換えて使用できるた め、 光記録媒体の用途拡大に貢献するものとして期待されている。 この種の光記 録媒体としては、 光磁気記録媒体 (MO) や相変化型光記録媒体が開発され、 か つ商品化されている。  Optical recording media are noted for their high density and large capacity, and are used for various purposes. In particular, rewritable optical recording media that allow erasing and re-recording of recorded information can be used to restore and update data, and can be repeatedly rewritten and used, contributing to expanding the use of optical recording media. It is expected to do. As this type of optical recording medium, a magneto-optical recording medium (MO) and a phase change optical recording medium have been developed and commercialized.
このうち、 相変化を利用した書換え可能な相変化型光記録媒体 (以下、 単に 「 光記録媒体」 ともいう) として、 出願人は、 図 5に示す層構造の光記録媒体 2 1 を既に開発している。 この光記録媒体 2 1は、 基材 2の一面 (同図中の上面) 側 に、 反射層 3、 記録層 4、 およびカバー層 7が順次積層されて構成されている。 この場合、 基材 2は、 ポリカーボネート等の樹脂材を用いて、 射出成形によって 所定の厚みの平板形状 (一例としてディスク (円板) 形状) に成形されている。 また、 基材 2の表面 (同図中の上面) には、 トラッキングサーポ用のグループ等 の微細凹凸 (図示せず) が成形時に形成されている。 反射層 3は、 A l、 A gま たは N i等の金属を用いて基材 2における微細凹凸の形成面上に形成されている 。 記録層 4は、 第 1保護層 4 a、 相変化材料層 4 bおよび第 2保護層 4 cを有し 、 これらの各層 4 c , 4 b , 4 aがこの順序で反射層 3上に積層されて構成され ている。 このうちの第 1保護層 4 aおよぴ第 2保護層 4 cは、 例えば、 酸化アル ミゃ Z n S— S i 0 2等の誘電体を用いて形成され、 相変化材料層 4 bは、 G e T e S b、 I n S b T eまたは A g G e I n S b T e等を用いて形成されている 。 カバー層 7は、 光透過性の樹脂材料を用いて第 1保護層 4 a上に形成されてい る。 Among these, the applicant has already developed an optical recording medium 21 having a layer structure shown in FIG. 5 as a rewritable phase-change optical recording medium utilizing a phase change (hereinafter, also simply referred to as “optical recording medium”). are doing. The optical recording medium 21 is configured such that a reflective layer 3, a recording layer 4, and a cover layer 7 are sequentially laminated on one surface (upper surface in FIG. 1) of the substrate 2. In this case, the base material 2 is formed into a flat plate shape (for example, a disk (disc) shape) having a predetermined thickness by injection molding using a resin material such as polycarbonate. On the surface (upper surface in the figure) of the base material 2, fine irregularities (not shown) such as groups for tracking servo are formed at the time of molding. The reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed using a metal such as Al, Ag, or Ni. The recording layer 4 has a first protective layer 4a, a phase change material layer 4b, and a second protective layer 4c. Each of these layers 4 c, 4 b, 4 a is laminated on the reflective layer 3 in this order. The first protective layer 4 a Oyopi second protective layer 4 c of this, for example, formed by using a dielectric material such as oxide Al Miya Z n S- S i 0 2, phase-change material layer 4 b Is formed using GeTeSb, InSbTe, or AgGeInSbTe. The cover layer 7 is formed on the first protective layer 4a using a light-transmitting resin material.
この光記録媒体 2 1では、 カバー層 7側から記録用のレーザービーム (例えば 波長が 4 0 5 n mのレーザービーム) を記録層 4に照射して、 相変化材料層 4 b を含む記録層 4を非晶質状態と結晶状態との間で可逆的に相変化させることによ り、 記録マークの形成および消去が行われる。 つまり、 記録層 4 (特に相変化材 料層 4 b ) では、 記録パワーのレーザービームが照射された際に、 その照射部分 が融点以上に加熱された後に急速に冷却 (急冷) されることによって非晶質ィ匕さ れ、 記録信号に応じた記録マークが形成される。 また、 記録層 4では、 記録パヮ 一のレーザービームが照射された際に、 その照射部分が結晶化温度以上に加熱さ れた後に徐々に冷却 (徐冷) されることによって結晶化され、 記録マークが消去 される。 一方、 再生時には、 再生パワーのレーザービーム (例えば波長が 4 0 5 n mで、 記録時よりも低パワーのレーザービーム) を照射した際の非晶質状態と 結晶状態との間で光学的定数の変化に伴って変化する光反射率の差を利用して記 録マークの有無を判別することにより、 データの再生が行われる。  In this optical recording medium 21, the recording layer 4 is irradiated with a recording laser beam (for example, a laser beam having a wavelength of 405 nm) from the cover layer 7 side, and the recording layer 4 including the phase change material layer 4b The recording mark is formed and erased by reversibly changing the phase between the amorphous state and the crystalline state. In other words, in the recording layer 4 (particularly, the phase change material layer 4 b), when the recording power laser beam is irradiated, the irradiated portion is heated to a temperature higher than the melting point and then rapidly cooled (quenched). The recording mark is formed in accordance with the recording signal by being amorphous. In addition, when the recording layer 4 is irradiated with the laser beam of the recording layer, the irradiated portion is heated to a temperature higher than the crystallization temperature, and then gradually cooled (gradually cooled) to be crystallized, thereby recording. The mark is deleted. On the other hand, during reproduction, the optical constant between the amorphous state and the crystalline state when irradiated with a laser beam of reproduction power (for example, a laser beam with a wavelength of 405 nm and a lower power than during recording) is irradiated. Data is reproduced by judging the presence or absence of a recording mark using the difference in light reflectivity that changes with the change.
この光記録媒体 2 1を製造する際には、 まず、 射出成形によってその表面 (一 面) にグループ等の微細凹凸が形成されたディスク形状に基材 2を成形する。 次 いで、 基材 2の一面側に反射層 3を形成した後に、 その反射層 3上に記録層 4を 形成する。 この際に、 相変化材料層 4 bおよび第 1, 第 2保護層 4 a , 4 cは、 一般的にスパッタリング法によって形成される。 次いで、 例えばスピンコート法 によって記録層 4上に力パー層 7を形成する。 この場合、 記録層 4における相変 化材料層 4 bは、 その形成直後では、 非晶質状態であり、 そのままではユーザー が記録することができない。 したがって、 ユーザーが光記録媒体 2 1を直ちに使 用開始できる初期化状態で光記録媒体 2 1を出荷するためには、 光記録媒体 2 1 の製造工程において、 記録層 4 (特に相変化材料層 4 b ) を初期化する必要があ る。 このため、 カバー層 7を形成した後に、 記録層 4を初期化する。 この場合、 再生用または記録用のレーザービームの照射方向と同一の方向 (カバー層 7側か らの方向) から高パワーのレーザービーム (以下、 「初期化用レーザービーム」 ともいう) を照射して記録層 4を初期化する。 この際に、 初期化用レーザービー ムとしては、 効率よく短時間で初期化でき、 生産効率を向上させることができる ように、 記録用や再生用のレーザービームとは異なる波長のレーザービームが使 用されている。 一般的には、 波長が 8 1 0 n mのレーザービームが初期化用レー ザ一ビームとして使用され、 この初期化用レーザービームは、 例えば開口数 NA (Numerical Aperture) が値 0 . 4程度 (一例として値 0 . 3 4 ) の対物レンズ を介して光記録媒体 2 1に照射される。 これにより、 記録層 4を初期化した光記 録媒体 2 1の製造が完了する。 When the optical recording medium 21 is manufactured, first, the base material 2 is formed into a disk shape having fine irregularities such as groups formed on the surface (one surface) by injection molding. Next, after forming the reflective layer 3 on one surface side of the base material 2, the recording layer 4 is formed on the reflective layer 3. At this time, the phase change material layer 4b and the first and second protective layers 4a and 4c are generally formed by a sputtering method. Next, the force-par layer 7 is formed on the recording layer 4 by, for example, spin coating. In this case, the phase change material layer 4b in the recording layer 4 is in an amorphous state immediately after its formation, and Cannot be recorded. Therefore, in order to ship the optical recording medium 21 in an initialized state in which the user can immediately start using the optical recording medium 21, the recording layer 4 (particularly, the phase change material layer) is required in the manufacturing process of the optical recording medium 21. 4 b) needs to be initialized. For this reason, after forming the cover layer 7, the recording layer 4 is initialized. In this case, a high-power laser beam (hereinafter also referred to as “initialization laser beam”) is irradiated from the same direction as the irradiation direction of the reproduction or recording laser beam (direction from the cover layer 7 side). To initialize the recording layer 4. At this time, a laser beam having a different wavelength from the recording or reproducing laser beam is used as the initialization laser beam so that the initialization can be performed efficiently and in a short time and the production efficiency can be improved. Have been used. In general, a laser beam having a wavelength of 810 nm is used as one laser beam for initialization. This initialization laser beam has, for example, a numerical aperture NA (Numerical Aperture) of about 0.4 (for example, The optical recording medium 21 is irradiated through an objective lens having a value of 0.34). Thus, the manufacture of the optical recording medium 21 in which the recording layer 4 has been initialized is completed.
ところが、 さらに大容量の光記録媒体の開発商品化が望まれており、 出願人は 、 光記録媒体 2 1をベースにしてさらに大容量化した光記録媒体 3 1を開発して いる。 この光記録媒体 3 1について、 図 6を参照して説明する。 なお、 光記録媒 体 2 1と同一の構成については同じ符号を付して、 重複する説明を省略する。 この光記録媒体 3 1は、 いわゆる片面多層 (一例として 2層) 記録層型光記録 媒体 (以下、 「多層記録層型光記録媒体」 ともいう) であって、 同図に示すよう に、 基材 2の一面 (同図中の上面) 側に、 反射層 3および記録層 4を含んで構成 される L 1層、 光透過層としてのスぺーサ層 3 2、 記録層 6 (以下、 「; L 0層」 ともいう) 、 およぴカパー層 7が順次積層されて構成されている。 この場合、 ス ぺーサ層 3 2は、 その厚み T Hが通常 2 0 μ πι程度に設定され、 L 0層側の表面 にはグループ等の微細凹凸が形成されている。 記録層 6は、 第 1保護層 6 a、 相 変化材料層 6 bおよび第 2保護層 6 cを有し、 これら各層 6 c, 6 b , 6 aがこ の 序でスぺーサ層 3 2の微細凹凸形成面上に積層されて構成されている。 この 場合、 各層 6 a , 6 b , 6 cは、 それぞれ対応する各層 4 , 4 b , 4 cとは厳 密にはそれぞれ異なる材料や膜厚で形成されるが同じ機能を有している。 力パー 層 7は、 樹脂材料を用いて L 0層上に形成されている。 However, it is desired to develop and commercialize an optical recording medium having a larger capacity, and the applicant is developing an optical recording medium 31 having a larger capacity based on the optical recording medium 21. The optical recording medium 31 will be described with reference to FIG. Note that the same components as those of the optical recording medium 21 are denoted by the same reference numerals, and redundant description will be omitted. The optical recording medium 31 is a so-called single-sided multilayer (for example, two layers) recording layer type optical recording medium (hereinafter, also referred to as “multilayer recording layer type optical recording medium”), as shown in FIG. On one side of the material 2 (the upper surface in the figure), an L1 layer including a reflective layer 3 and a recording layer 4, a spacer layer 32 as a light transmitting layer, and a recording layer 6 (hereinafter, referred to as “ L0 layer) and the copper layer 7 are sequentially laminated. In this case, the thickness TH of the spacer layer 32 is usually set to about 20 μπι, and fine irregularities such as groups are formed on the surface on the L0 layer side. The recording layer 6 has a first protective layer 6a, a phase change material layer 6b, and a second protective layer 6c, and these layers 6c, 6b, 6a are In this order, it is laminated on the surface of the spacer layer 32 on which the fine irregularities are formed. In this case, each layer 6a, 6b, 6c is formed of a strictly different material and film thickness from the corresponding layer 4, 4b, 4c, but has the same function. The force-par layer 7 is formed on the L0 layer using a resin material.
この光記録媒体 3 1でも、 その製造工程中において、 記録層 4, 6を初期化す る必要がある。 この場合、 図 7に示すように、 光記録媒体 2 1と同様にして、 力 バー層 7を形成した後に、 光記録媒体 2 1に対する初期化時と同じ開口数 N Aの 対物レンズ 1 1を使用して初期化する。 具体的には、 対物レンズ 1 1から出射さ せた初期化用レーザービーム L INをカバー層 7側から L 1層に照射して記録層 4 を含む L 1層を初期化し、 次いで、 同図に示すように、 初期化用レーザービーム L INを L 0層に照射して L 0層を初期化する。 これにより、 1^ 1層ぉょび1^ 0層 を初期化した光記録媒体 3 1の製造が完了する。 発明の開示  Also in this optical recording medium 31, it is necessary to initialize the recording layers 4 and 6 during the manufacturing process. In this case, as shown in FIG. 7, after forming the power bar layer 7 in the same manner as in the optical recording medium 21, the objective lens 11 having the same numerical aperture NA as that at the time of initialization for the optical recording medium 21 is used. And initialize. Specifically, the L1 layer including the recording layer 4 is initialized by irradiating the L1 layer from the cover layer 7 side with the initialization laser beam LIN emitted from the objective lens 11, and then As shown in (1), the L0 layer is initialized by irradiating the L0 layer with an initialization laser beam LIN. Thus, the manufacture of the optical recording medium 31 in which the 1 ^ 1 layer and the 1 ^ 0 layer have been initialized is completed. Disclosure of the invention
発明者は、 上述の多層記録層型光記録媒体の製造方法を検討した結果、 以下の ような改善すべき点を発見した。 すなわち、 この製造方法では、 図 7に示すよう に、 スぺーサ層 3 2上に形成された L 0層を初期化する際に、 L 0層に照射され た初期化用レーザービーム L INのうちの一部のレーザービーム LPEが、 L 0層お よぴスぺーサ層 3 2を通過して L 1層に達し、 さらにレーザービーム LPEの一部 のレーザービーム LREが L 1層によって反射される。 この場合、 反射されたレー ザ一ビーム LREと L 0層に照射されたレーザービーム L INとの間で、 スぺーサ層 3 2の膜厚ムラに起因する干渉が発生する。 このため、 L 0層で吸収される光量 が部分的に相違し、 この結果、 L 0層の各部分毎に発熱量が相違する (L 0層に 発熱ムラが生ずる) 。 したがって、 この反射したレーザービーム LREの再照射に 起因して、 L 0層、 特に記録層 6における相変化材料層 6 bの結晶状態にムラが 生じて L O層が良好に初期化されないおそれがあり、 この点を改善するのが好ま しい。 As a result of studying the method of manufacturing the above-described multilayer recording layer type optical recording medium, the inventors have found the following points to be improved. That is, in this manufacturing method, as shown in FIG. 7, when the L 0 layer formed on the spacer layer 32 is initialized, the initialization laser beam L IN applied to the L 0 layer is used. A part of the laser beam LPE passes through the L0 layer and the spacer layer 32 to reach the L1 layer, and a part of the laser beam LRE is reflected by the L1 layer. You. In this case, interference occurs due to unevenness in the thickness of the spacer layer 32 between the reflected laser beam LRE and the laser beam L IN applied to the L 0 layer. For this reason, the amount of light absorbed by the L0 layer partially differs, and as a result, the amount of heat generated differs for each part of the L0 layer (heat generation unevenness occurs in the L0 layer). Therefore, due to the re-irradiation of the reflected laser beam LRE, the crystal state of the L0 layer, in particular, the phase change material layer 6b in the recording layer 6 may be uneven and the LO layer may not be properly initialized. , It is better to improve this point New
本発明は、 上述のような改善すべき点を解決すべくなされたものであり、 記録 層を含む各層を均一に初期化し得る多層記録層型光記録媒体の製造方法、 多層記 録層型光記録媒体の製造装置、 およぴ多層記録層型光記録媒体を提供することを 主目的とする。  The present invention has been made to solve the above-mentioned points to be improved, and a method for manufacturing a multilayer recording layer type optical recording medium capable of uniformly initializing each layer including a recording layer, and a multilayer recording layer type optical recording medium. A main object is to provide a recording medium manufacturing apparatus and a multilayer recording layer type optical recording medium.
この発明に係る多層記録層型光記録媒体の製造方法は、 光照射によつて初期化 される記録層をそれぞれ含む複数の層が基材の一面側に形成されると共に当該各 層間にスぺーサ層が形成されている多層記録層型光記録媒体の製造方法であって 、 初期化用レーザービームに対する光透過率が記録用レーザービームおよび再生 用レーザービームに対する光透過率よりも低率に前記スぺーサ層を形成し、 当該 形成したスぺーサ層上に前記層を形成し、 当該形成した層に対して前記初期化用 レーザービームを照射して初期化する。  In the method for manufacturing a multilayer recording layer type optical recording medium according to the present invention, a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a space is formed between the respective layers. A method for manufacturing a multilayer recording layer type optical recording medium, wherein a light transmittance for an initialization laser beam is lower than a light transmittance for a recording laser beam and a reproduction laser beam. A spacer layer is formed, the layer is formed on the formed spacer layer, and the formed layer is initialized by irradiating the laser beam for initialization.
この場合、 前記初期化用レーザービームに対する光透過率が 7 0 %以下であつ て、 前記記録用レーザービームおよび前記再生用レーザービームに対する光透過 率が 8 0 %以上となるように前記スぺーサ層を形成するのが好ましい。 また、 前 記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満 の波長の光を用い、 前記初期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いるのが好ましい。 さらに、 赤外線吸収材料を添加した スぺーサ層用材料によって前記スぺーサ層を形成するのが好ましい。 また、 相変 化材料で前記記録層を形成するのが好ましい。  In this case, the spacer is so adjusted that the light transmittance for the initialization laser beam is 70% or less and the light transmittance for the recording laser beam and the reproduction laser beam is 80% or more. Preferably, a layer is formed. Further, light having a wavelength of less than 500 nm is used as the recording laser beam and the reproduction laser beam, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam. It is preferably used. Further, it is preferable that the spacer layer is formed of a spacer layer material to which an infrared absorbing material is added. Further, it is preferable that the recording layer is formed of a phase change material.
この発明に係る多層記録層型光記録媒体の製造装置は、 光照射によつて初期化 される記録層をそれぞれ含む複数の層が基材の一面側に形成されると共に当該各 層間にスぺーサ層が形成されている多層記録層型光記録媒体を製造する多層記録 層型光記録媒体の製造装置であって、 初期化用レーザービームに対する光透過率 が記録用レーザービームおよび再生用レーザービームに対する光透過率よりも低 率の前記スぺーサ層を形成するスぺーサ層形成装置と、 当該形成したスぺーサ層 上に前記層を形成する層形成装置と、 当該形成した層に対して前記初期化用レー ザ一ビームを照射して初期化する初期化装置とを備えて構成されている。 In the apparatus for manufacturing a multilayer recording layer type optical recording medium according to the present invention, a plurality of layers each including a recording layer to be initialized by light irradiation are formed on one surface side of a base material, and a space is provided between the respective layers. An apparatus for manufacturing a multilayer recording layer type optical recording medium for manufacturing a multilayer recording layer type optical recording medium having a recording layer, wherein a light transmittance with respect to an initialization laser beam is a recording laser beam and a reproduction laser beam. A spacer layer forming apparatus for forming the spacer layer having a lower light transmittance than that of the spacer layer; and the formed spacer layer. A layer forming apparatus for forming the layer thereon; and an initialization apparatus for irradiating the formed layer with the laser beam for initialization to initialize the layer.
この場合、 前記スぺーサ層形成装置は、 前記初期化用レーザービームに対する 光透過率が 7 0 %以下であって、 前記記録用レ一ザ一ビームおよび前記再生用レ —ザ一ビームに対する光透過率が 8 0 %以上となるように前記スぺーサ層を形成 するのが好ましい。 また、 前記記録用レーザービームおよび前記再生用レーザー ビームとして 5 0 0 n m未満の波長の光が用いられ、 前記初期化装置は、 前記初 期化用レーザ^"ビームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用い るのが好ましい。 さらに、 前記スぺーサ層形成装置は、 赤外線吸収材料を添カロし たスぺーサ層用材料によって前記スぺーサ層を形成するのが好ましい。 また、 前 記層形成装置は、 相変化材料で前記記録層を形成するのが好ましい。  In this case, the spacer layer forming apparatus has a light transmittance for the initialization laser beam of 70% or less, and a light for the recording laser beam and the reproducing laser beam. The spacer layer is preferably formed so that the transmittance is 80% or more. In addition, light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and the initialization apparatus uses the initialization laser beam as a beam having a wavelength of 500 nm or more. Further, it is preferable to use light having a wavelength of 100 nm or less, and the spacer layer forming apparatus is configured to form the spacer layer using a spacer layer material to which an infrared absorbing material is added. It is preferable that the layer forming apparatus forms the recording layer using a phase change material.
これらの多層記録層型光記録媒体の製造方法おょぴ製造装置では、 初期化用レ 一ザ一ビームに対する光透過率が記録用レーザービームおよび再生用レーザービ ームに対する光透過率よりも低率となるようにスぺーサ層を形成し、 この形成し たスぺーサ層上に記録層を含む層を形成し、 この形成した層に対して初期化用レ 一ザ一ビームを照射して初期化することにより、 この初期化の際に、 この層を通 過してスぺーサ層をさらに通過する初期化用レーザービームを十分に大きく減衰 させることができるため、 この層を通過した初期化用レーザービームのうちの反 射層によって反射された初期化用レーザービームの照射に起因する初期化ムラを 回避することができ、 この結果、 その記録層を含む層を均一に初期化することが できる。 また、 3層以上の記録層を備えた多層記録層型光記録媒体を製造する場 合、 スぺーサ層の下層 (入射光から遠い層) として形成される記録層を含む層の 初期化に際しては、 このスぺーサ層の形成に先立つて初期化用レーザービームを 直接照射して初期化することにより、 確実かつ均一に初期化することができる。 したがって、 各層に含まれる記録層が均一に初期化された高品質の多層記録層型 光記録媒体を製造することができる。 この発明に係る多層記録層型光記録媒体は、 前述したいずれかの多層記録層型 光記録媒体の製造方法に従って製造されて構成されている。 , この発明に係る多層記録層型光記録媒体は、 光照射によつて初期化される記録 層をそれぞれ含む複数の層が基材の一面側に形成されると共に当該各層間にスぺ ーサ層が形成されている多層記録層型光記録媒体であって、 前記スぺーサ層は、 初期化用レーザービームに対する光透過率が記録用レーザービームおよび再生用 レーザービームに対する光透過率よりも低率に形成されている。 In such a method of manufacturing a multilayer recording layer type optical recording medium, the light transmittance for the laser beam for initialization is lower than the light transmittance for the laser beam for recording and the laser beam for reproduction. Forming a layer including a recording layer on the formed spacer layer, and irradiating the formed layer with a laser beam for initialization. By performing initialization, the initialization laser beam passing through this layer and further passing through the spacer layer can be sufficiently attenuated during this initialization. Of the laser beam for initialization reflected by the reflection layer of the laser beam for initialization can be avoided, and as a result, the layer including the recording layer can be uniformly initialized. Can be done. Also, when manufacturing a multilayer recording layer type optical recording medium having three or more recording layers, it is necessary to initialize a layer including a recording layer formed as a lower layer (a layer far from incident light) of the spacer layer. Initialization can be performed reliably and uniformly by directly irradiating an initialization laser beam prior to the formation of this spacer layer. Therefore, it is possible to manufacture a high-quality multilayer recording layer type optical recording medium in which the recording layers included in each layer are uniformly initialized. A multilayer recording layer type optical recording medium according to the present invention is manufactured by any one of the above-described methods for manufacturing a multilayer recording layer type optical recording medium. According to the multilayer recording layer type optical recording medium of the present invention, a plurality of layers each including a recording layer initialized by light irradiation are formed on one surface side of a base material, and a spacer is provided between the respective layers. A multilayer recording layer type optical recording medium having a layer formed thereon, wherein the spacer layer has a light transmittance for an initialization laser beam lower than a light transmittance for a recording laser beam and a reproduction laser beam. The rate is formed.
この場合、 前記初期化用レーザービームに対する光透過率が 7 0 %以下であつ て、 前記記録用レーザービームおよび前記再生用レーザービームに対する光透過 率が 8 0 %以上となるように前記スぺーサ層を形成するのが好ましい。 また、 前 記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満 の波長の光を用い、 前記初期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いるのが好ましい。 さらに、 赤外線吸収材料を添加した スぺーサ層用材料によって前記スぺーサ層を形成するのが好ましい。 また、 相変 ィ匕材料で前記記録層を形成するのが好ましい。 ' この多層記録層型光記録媒体では、 初期化用レーザービームに対する光透過率 が記録用レーザービームおよび再生用レーザービームに対する光透過率よりも低 率となるようにスぺーサ層を形成したことにより、 多層記録層型光記録媒体の製 造時において、 スぺーサ層上に記録層を含む層を形成し、 この形成した層に対し て初期化用レーザービームを照射して初期化する際に、 この層を通過してスぺー サ層をさらに通過する初期化用レーザービームを十分に大きく減衰させることが できるため、 この層を通過した初期化用レーザービームのうちの反射層によって 反射された初期化用レーザービームの照射に起因する初期化ムラを回避すること ができ、 この結果、 その記録層を含む層を均一に初期化することができる。 した がって、 ユーザーによって使用される記録再生装置による記録 ·再生時における エラーの発生を十分に防止することができる。 なお、 本開示は、 2 0 0 1年 1 0月 1 5日に出願された日本特許出願である特 願 2 0 0 1— 3 1 6 1 2 7に含まれた主題に関連し、 これらの開示の全てはここ に参照事項として明白に組み込まれる。 図面の簡単な説明 In this case, the spacer is so adjusted that the light transmittance for the initialization laser beam is 70% or less and the light transmittance for the recording laser beam and the reproduction laser beam is 80% or more. Preferably, a layer is formed. Further, light having a wavelength of less than 500 nm is used as the recording laser beam and the reproduction laser beam, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam. It is preferably used. Further, it is preferable that the spacer layer is formed of a spacer layer material to which an infrared absorbing material is added. Further, it is preferable to form the recording layer with a phase change material. '' In this multilayer recording layer type optical recording medium, the spacer layer was formed so that the light transmittance for the initialization laser beam was lower than the light transmittance for the recording laser beam and the reproduction laser beam. When a multilayer recording layer type optical recording medium is manufactured, a layer including a recording layer is formed on the spacer layer, and the formed layer is initialized by irradiating a laser beam for initialization. In addition, since the initialization laser beam that passes through this layer and further passes through the spacer layer can be sufficiently attenuated, it is reflected by the reflective layer of the initialization laser beam that has passed through this layer. Thus, it is possible to avoid the initialization unevenness caused by the irradiation of the initialization laser beam, and as a result, it is possible to uniformly initialize the layer including the recording layer. Therefore, it is possible to sufficiently prevent the occurrence of an error during recording / reproducing by the recording / reproducing device used by the user. The present disclosure relates to the subject matter included in Japanese Patent Application No. 2001-1310, filed on October 15, 2000, which was filed on October 15, 2000. All of the disclosures are expressly incorporated herein by reference. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態に係る多層 (2層) 記録層型の光記録媒体 1の概 略構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a schematic configuration of a multilayer (two-layer) recording layer type optical recording medium 1 according to an embodiment of the present invention.
図 2は、 光記録媒体 1の製造装置 2 0 0の構成を示す構成図である。  FIG. 2 is a configuration diagram showing a configuration of the manufacturing apparatus 200 for the optical recording medium 1.
図 3は、 L 1層および L 0層が形成された光記録媒体 1を初期化する際に反射 層 3を含む L 1層によって反射されたレーザービーム LREの照射による L 0層に 対する影響を説明するための説明図である。  Fig. 3 shows the effect on the L0 layer caused by the irradiation of the laser beam LRE reflected by the L1 layer including the reflective layer 3 when initializing the optical recording medium 1 on which the L1 layer and the L0 layer were formed. It is an explanatory view for explaining.
図 4は、 光記録媒体 1におけるスぺーサ層 5の光透過率を種々変更して光記録 媒体 1を製造し、 その各光記録媒体 1における L 0層に対する初期化の良否を実 験した際の実験結果を示す実験結果説明図である。  Fig. 4 shows an optical recording medium 1 manufactured by variously changing the light transmittance of the spacer layer 5 in the optical recording medium 1, and the quality of initialization of the L0 layer in each optical recording medium 1 was tested. FIG. 9 is an explanatory diagram of experimental results showing experimental results at that time.
図 5は、 従来の単層記録層型の光記録媒体 2 1の概略構成を示す断面図である 図 6は、 従来の多層 (2層) 記録層型の光記録媒体 3 1の概略構成を示す断面 図である。  FIG. 5 is a cross-sectional view showing a schematic structure of a conventional single-layer recording layer type optical recording medium 21. FIG. 6 is a schematic view of a conventional multilayer (two-layer) recording layer type optical recording medium 31. FIG.
図 7は、 L 1層および L 0層が形成された従来の光記録媒体 1 1を初期化する 際に反射層 3を含む L 1層によつて反射されたレーザービーム LREの照射による L 0層に対する影響を説明するための説明図である。 発明を実施するための最良の形態  FIG. 7 is a graph showing the relationship between the laser beam LRE irradiated by the laser beam LRE reflected by the L1 layer including the reflective layer 3 when the conventional optical recording medium 11 having the L1 layer and the L0 layer formed thereon is initialized. It is explanatory drawing for demonstrating the influence on a layer. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る多層記録層型光記録媒体の製造方法 、 多層記録層型光記録媒体の製造装置、 およびその製造方法に従って (製造装置 によって) 製造された多層記録層型光記録媒体の好適な実施の形態について説明 する。 なお、 前述した光記録媒体 2 1, 3 1と同一構造の構成要素については、 同一の符号を付して重複した説明を省略する。 Hereinafter, with reference to the accompanying drawings, a method for manufacturing a multilayer recording layer type optical recording medium according to the present invention, a manufacturing apparatus for a multilayer recording layer type optical recording medium, and a multilayer recording manufactured (by a manufacturing apparatus) according to the manufacturing method Description of preferred embodiments of layered optical recording medium I do. Note that components having the same structure as the optical recording media 21 and 31 described above are denoted by the same reference numerals, and redundant description will be omitted.
まず、 本発明における多層記録層型光記録媒体 (以下、 「光記録媒体」 ともい う) 1の構成について、 図 1を参照して説明する。  First, the configuration of a multilayer recording layer type optical recording medium (hereinafter, also referred to as “optical recording medium”) 1 in the present invention will be described with reference to FIG.
光記録媒体 1は、 図 1に示すように、 基材 2の微細凹凸形成面 (同図中の上面 ) 側に、 L 1層、 スぺーサ層 5、 スぺーサ層 5に隣接する L 0層、 およびカバー 層 7が順次積層されて構成されている。  As shown in FIG. 1, the optical recording medium 1 has an L1 layer, a spacer layer 5, and an L layer adjacent to the spacer layer 5 on the side of the fine unevenness surface (the upper surface in FIG. 0 layers and a cover layer 7 are sequentially laminated.
この場合、 基材 2は、 ポリカーボネート等の樹脂材を用レ、、 射出成形によって その表面 (一面) にグループ等の微細凹凸が形成されたディスク形状に成形され ている。 一例として、 基材 2に形成されたグループのトラックピッチは 0 . 3 μ mに設定され、 グループの深さは、 記録用レーザービーム (記録パワーに設定さ れたレーザービーム) および再生用レーザービーム (再生パワーに設定されたレ 一ザ一ビーム) の波長えの 1 Z 1 2程度に設定されている。 反射層 3は、 基材 2 の微細凹凸形成面上に形成されている。 記録層 4は、 第 1保護層 4 a、 相変化材 料層 4 bおよび第 2保護層 4 cを有し、 これら各層 4 c, 4 b , 4 aがこの順番 で反射層 3上に積層されて構成されている。 スぺーサ層 5は、 赤外線吸収材料が 添加された透明な樹脂材料を用いて第 1保護層 4 a上に形成されている。 また、 スぺーサ層 5は、 その厚み T Hが通常 2 0 μ πι程度に設定され、 その一方の面 ( 同図中の上面) にグループ等の微細凹凸 (図示せず) が形成されている。 この場 合、 赤外線吸収材料としては、 例えば、 アントラキノン系化合物、 アルミニウム 系化合物、 ポリメチン系化合物、 ジィモ -ゥム系化合物、 シァニン系化合物等が 使用される。 このため、 スぺーサ層 5では、 このような赤外線吸収材料が添加さ れたことにより、 5 0 0 n m以上 1 0 0 0 n m以下の波長の光に対する光透過率 が 0 . 1 %以上 7 0 %以下であって (以下、 一例として 7 0 %とする) 、 その一 方で 5 0 0 n m未満の波長の光に対する光透過率が 8 0 %以上 9 5 %以下となつ ている。 したがって、 スぺーサ層 5は、 ユーザーによって使用される記録再生装 置における記録用レーザービームおよび再生用レーザービーム (波長が 4 0 5 η m :以下、 区別しないときには 「記録再生用レーザービーム」 ともいう) の光透 過率に対して、 光記録媒体 1の製造時における初期化用レーザービーム (波長が 8 1 0 n mで、 初期化パワーに設定されたレーザービーム) の光透過率が低率と なる特性を有する。 In this case, the substrate 2 is formed into a disk shape having fine irregularities such as groups formed on the surface (one surface) thereof by injection molding using a resin material such as polycarbonate. As an example, the track pitch of the group formed on the base material 2 is set to 0.3 μm, and the depth of the group is set to the recording laser beam (laser beam set to the recording power) and the reproduction laser beam. (The laser beam set to the reproduction power) is set to about 1Z12. The reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed. The recording layer 4 has a first protective layer 4a, a phase change material layer 4b, and a second protective layer 4c, and these layers 4c, 4b, 4a are laminated on the reflective layer 3 in this order. It is configured. The spacer layer 5 is formed on the first protective layer 4a using a transparent resin material to which an infrared absorbing material is added. The spacer layer 5 has a thickness TH of usually about 20 μπι, and has fine irregularities (not shown) such as groups formed on one surface (the upper surface in the figure). . In this case, as the infrared absorbing material, for example, anthraquinone-based compounds, aluminum-based compounds, polymethine-based compounds, dimethyl-based compounds, and cyanine-based compounds are used. For this reason, in the spacer layer 5, the light transmittance for light having a wavelength of 500 nm or more and 100 nm or less is 0.1% or more due to the addition of such an infrared absorbing material. On the other hand, the light transmittance for light having a wavelength of less than 500 nm is not less than 80% and not more than 95%. Therefore, the spacer layer 5 is a recording and playback device used by the user. The optical transmittance of the recording laser beam and the reproducing laser beam (wavelength: 405 ηm; hereinafter, also referred to as “recording / reproducing laser beam” when no distinction is made) between the optical recording medium 1 and the optical recording medium 1 It has the characteristic that the light transmittance of the initializing laser beam (a laser beam having a wavelength of 810 nm and set to the initializing power) at the time is low.
次に、 光記録媒体 1の製造装置 2 0 0について、 図 2を参照して説明する。 この製造装置 2 0 0は、 反射層形成装置 1 0 1、 記録層形成装置 1 0 2、 初期 化装置 1 0 3、 スぺーサ層形成装置 2 0 1、 記録層形成装置 (層形成装置) 2 0 2、 初期化装置 2 0 3、 およぴ光透過層形成装置 1 0 4を備えている。 この場合 、 反射層形成装置 1 0 1は、 反射層形成室 1 0 1 aおよび反射層形成室 1 0 1 a 内に配設されたスパッタ装置 1 0 1 bを備え、 反射層形成室 1 0 1 aに搬入され た基材 2の表面にスパッタ装置 1 0 1 bで反射層 3を形成する機能を有している 。 記録層形成装置 1 0 2は、 記録層形成室 1 0 2 aおよび記録層形成室 1 0 2 a 内に配設されたスパッタ装置 1 0 2 bを備え、 記録層形成室 1 0 2 aに搬入され た基材 2の表面にスパッタ装置 1 0 2 bで記録層 4を形成する機能を有している 。 初期化装置 1 0 3は、 基材 2を回転させる回転機構 1 0 3 aと、 不図示のトラ ッキング機構によつて駆動されて基材 2に形成されたグループに沿って初期化用 レーザービーム L INを基材 2に照射するピックアップ 1 0 3 bとを備え、 基材 2 の表面に形成された記録層 4を初期化する機能を備えている。 スぺーサ層形成装 置 2 0 1は、 基材 2を回転させる回転機構 2 0 1 a、 塗液 R 1の滴下機構 (図示 せず) 、 透明スタンパ 2 0 1 bおよび紫外線照射機構 (図示せず) を備え、 スピ ンコート法により、 基材 2の表面に光透過層としてのスぺーサ層 5を形成する機 能を備えている。 記録層形成装置 2 0 2は、 記録層形成室 2 0 2 aおよび記録層 形成室 2 0 2 a内に配設されたスパッタ装置 2 0 2 bを備え、 記録層形成室 2 0 2 aに搬入された基材 2の表面にスパッタ装置 2 0 2 bで記録層 6を形成する機 能を有している。 初期化装置 2 0 3は、 基材 2を回転させる回転機構 2 0 3 aと 、 不図示のトラッキング機構によって駆動されて基材 2に形成されたグループに 沿って初期化用レーザービーム L INを基材 2に照射するピックアップ 2 0 3 bと を備え、 基材 2の表面に形成された記録層 6を初期化する機能を備えている。 光 透過層形成装置 1 0 4は、 基材 2を回転させる回転機構 1 0 4 a , 塗液 Rの滴下 機構 1 0 4 bおよび紫外線照射機構 (図示せず) を備え、 基材 2の表面に光透過 層としての力パー層 7をスピンコート法によって形成する機能を備えている。 次いで、 光記録媒体 1の製造方法について説明する。 Next, the manufacturing apparatus 200 for the optical recording medium 1 will be described with reference to FIG. The manufacturing apparatus 200 includes a reflective layer forming apparatus 101, a recording layer forming apparatus 102, an initializing apparatus 103, a spacer layer forming apparatus 201, and a recording layer forming apparatus (layer forming apparatus). 202, an initializing device 203, and a light transmitting layer forming device 104. In this case, the reflecting layer forming apparatus 101 includes a reflecting layer forming chamber 101a and a sputtering apparatus 101b disposed in the reflecting layer forming chamber 101a, and the reflecting layer forming chamber 101 It has a function of forming a reflective layer 3 on the surface of the substrate 2 carried into 1a by a sputtering device 101b. The recording layer forming apparatus 102 includes a recording layer forming chamber 102 a and a sputtering apparatus 102 b disposed in the recording layer forming chamber 102 a, and is provided in the recording layer forming chamber 102 a. It has a function of forming a recording layer 4 on the surface of the loaded base material 2 with a sputtering device 102b. The initialization device 103 includes a rotating mechanism 103 a for rotating the base material 2 and a laser beam for initialization along a group formed on the base material 2 driven by a tracking mechanism (not shown). A pickup 103 b for irradiating the substrate 2 with LIN; and a function of initializing the recording layer 4 formed on the surface of the substrate 2. The spacer layer forming apparatus 201 includes a rotating mechanism 201 a for rotating the base material 2, a dropping mechanism for the coating liquid R 1 (not shown), a transparent stamper 201 b, and an ultraviolet irradiation mechanism (see FIG. (Not shown), and a function of forming a spacer layer 5 as a light transmitting layer on the surface of the substrate 2 by spin coating. The recording layer forming apparatus 202 includes a recording layer forming chamber 202 a and a sputtering apparatus 202 b disposed in the recording layer forming chamber 202 a, and is provided in the recording layer forming chamber 202 a. It has a function of forming the recording layer 6 on the surface of the loaded base material 2 with a sputtering device 202b. The initializing device 203 includes a rotating mechanism 203 for rotating the substrate 2 and a rotating mechanism 203 a. A pickup 203 b that irradiates the substrate 2 with the initialization laser beam LIN along the group formed on the substrate 2 by being driven by a tracking mechanism (not shown), It has a function of initializing the formed recording layer 6. The light transmitting layer forming apparatus 104 includes a rotating mechanism 104 for rotating the substrate 2, a dropping mechanism 104 b for the coating liquid R, and an ultraviolet irradiation mechanism (not shown). In addition, it has a function of forming a power layer 7 as a light transmitting layer by a spin coating method. Next, a method for manufacturing the optical recording medium 1 will be described.
まず、 射出成形によってその表面 (一面) にグループ等の微細凹凸が形成され たディスク形状に基材 2を成形する。 次いで、 基材 2の一面側に反射層形成装置 1 0 1によって反射層 3を形成した後に、 その反射層 3上に記録層形成装置 1 0 2によって記録層 4を形成する。 この際に、 相変化材料層 4 bは、 一般的にスパ ッタリング法によって形成される。  First, the base material 2 is formed into a disk shape having fine irregularities such as groups formed on its surface (one surface) by injection molding. Next, after the reflection layer 3 is formed on one surface side of the base material 2 by the reflection layer forming device 101, the recording layer 4 is formed on the reflection layer 3 by the recording layer forming device 102. At this time, the phase change material layer 4b is generally formed by a sputtering method.
次に、 形成した L 1層に対して、 記録再生用レーザービームの照射方向と同一 の方向から初期化装置 1 0 3によって初期化用レーザービーム LINを照射し、 記 録層 4を含む L 1層 (詳細には相変化材料層 4 bを含む L 1層) を初期化する。 次に、 例えば透明スタンパ 2 0 1 bを用いた 2 P法をスぺーサ層形成装置 2 0 1によって実施することにより、 スぺーサ層 5を L 1層上に形成する。 この場合 、 基材 2における記録層 4の形成面上に赤外線吸収材料が添加された樹脂材料 ( 塗液 R 1 ) を滴下し、 スピンコート法によって樹脂材料を第 1保護層 4 a上に薄 膜状に塗布した後、 未硬化状態の塗布した樹脂材料上に、 グループ等の微細回凸 を形成するための透明スタンパ 2 0 1 bを載置する。 この後、 紫外線を照射して 樹脂材料を硬化させた後に、 透明スタンパ 2 0 1 bを取り除く。 この際に、 透明 スタンパ 2 0 1 bの表面に形成されている微細凹凸によってスぺーサ層 5の上面 に微細凹凸が形成される。 次いで、 スぺーサ層 5の微細凹凸形成面上に記録層形 成装置 2 0 2によって L 0層を形成する。 この際に、 例えばスパッタリング法に よって相変化材料層 6 bを形成する。 次に、 形成した LO層に対して、 記録再生用レーザービームの照射方向と同一 の方向から初期化装置 203によって初期化用レーザービーム LINを照射して、 記録層 6を含む L0層を初期化する。 この際に、 図 3に示すように、 ピックアツ プ 203 b内のレンズ 1 1から L 0層に照射された初期化用レーザービーム LIN のうちの一部のレーザービーム LPEは、 L 0層およぴスぺーサ層 5を通過して L 1層に達する。 そして、 さらに L 1層に達したレーザービーム LPEの一部のレー ザ一ビーム LREが、 L 1層 (特に L 1層内の反射層 3) によって反射されて L0 層を照射する。 この場合、 L0層を照射するレーザービーム LREの光量は、 初期 化用レーザービーム L INの波長 (= 810 n m) が 500 n m以上 1000 n m 以下の範囲内であるため、 L 0層を通過したレーザービーム LPEの光量を基準と して半分以下 (0. 7 X 0. 7 X (L 1層の反射率) ≤0. 49) に低減される 。 例えば、 初期化用レーザービーム LINに対する L 1層の反射率が 40%の場合 、 (0. 7X 0. 7 X 0. 4 = 0. 196) となり、 レーザービーム LREの光量 は、 初期化用レーザービーム L INの光量の約 1/5に低減される。 Next, the formed L1 layer is irradiated with the initialization laser beam LIN by the initialization device 103 from the same direction as the irradiation direction of the recording / reproducing laser beam, and the L1 layer including the recording layer 4 is irradiated. Initialize the layer (specifically, the L1 layer including the phase change material layer 4b). Next, for example, the spacer layer 5 is formed on the L1 layer by performing the 2P method using the transparent stamper 201b with the spacer layer forming apparatus 201. In this case, a resin material (coating liquid R 1) to which an infrared absorbing material is added is dropped on the surface of the base material 2 on which the recording layer 4 is formed, and the resin material is thinly coated on the first protective layer 4 a by spin coating. After being applied in the form of a film, a transparent stamper 201b for forming a fine round protrusion such as a group is placed on the uncured applied resin material. After that, the resin material is cured by irradiating ultraviolet rays, and then the transparent stamper 201b is removed. At this time, fine irregularities are formed on the upper surface of the spacer layer 5 by the fine irregularities formed on the surface of the transparent stamper 201b. Next, the L0 layer is formed on the surface of the spacer layer 5 on which the fine irregularities are formed by the recording layer forming device 202. At this time, the phase change material layer 6b is formed by, for example, a sputtering method. Next, the formed LO layer is irradiated with the initialization laser beam LIN by the initialization device 203 from the same direction as the irradiation direction of the recording / reproducing laser beam, thereby initializing the L0 layer including the recording layer 6. I do. At this time, as shown in FIG. 3, part of the initialization laser beam LIN irradiated from the lens 11 to the L0 layer in the pickup 203b is partially replaced by the L0 layer and the L0 layer.通過 Pass the spacer layer 5 to reach the L1 layer. Then, a part of the laser beam LRE of the laser beam LPE that has reached the L1 layer is reflected by the L1 layer (particularly, the reflection layer 3 in the L1 layer) to irradiate the L0 layer. In this case, the light amount of the laser beam LRE that irradiates the L0 layer is the laser beam that has passed through the L0 layer because the wavelength of the initialization laser beam L IN (= 810 nm) is in the range of 500 nm to 1000 nm It is reduced to less than half (0.7 X 0.7 X (reflectance of L1 layer) ≤ 0.49) based on the light intensity of the beam LPE. For example, when the reflectance of the L1 layer with respect to the initialization laser beam LIN is 40%, (0.7X0.7.7X0.4 = 0.196), and the amount of the laser beam LRE is It is reduced to about 1/5 of the light intensity of the beam L IN.
最後に、 初期化された L0層上に光透過層形成装置 104を用いて例えばスピ ンコート法によって力パー層 7を形成する。 具体的には、 基材 2における L0層 上に光透過性を有する樹脂の樹脂材 (塗液 R) を滴下機構 104 bで滴下し、 次 いで、 回転機構 104 aを作動して基材 2を回転させて (スピンコート法によつ て) 樹脂材を L0層上に薄膜状に塗布した後、 紫外線を照射して樹脂材を硬化さ せる。 これにより、 光記録媒体 1の製造が完了する。  Finally, the power-par layer 7 is formed on the initialized L0 layer using the light-transmitting layer forming apparatus 104, for example, by spin coating. Specifically, a resin material (coating liquid R) of a resin having optical transparency is dropped on the L0 layer of the base material 2 by the dropping mechanism 104b, and then, the rotating mechanism 104a is operated to operate the base material 2. Rotate (by spin coating) to apply the resin material in a thin film on the L0 layer, and then irradiate ultraviolet rays to cure the resin material. Thus, the manufacture of the optical recording medium 1 is completed.
このように、 この光記録媒体 1の製造方法およぴ製造装置 200によれば、 赤 外線吸収材料を添加して 500 nm以上 1000 nm以下の光 (初期化用レーザ 一ビーム L IN) に対するスぺーサ層 5の光透過率を 70%以下に設定したことに より、 L0層の初期化に際して、 L 0層を通過して L 1層に達したレーザービー ム LPEの光量を通過当初時の光量に対して 70%以下に低減させることができる 。 同時に、 レーザービーム LPEのうちの反射層 3で反射されて L0層に達したレ 一ザ一ビーム LREの光量を反射当初時の光量に対して 7 0 %以下に低減させるこ とができる。 この結果、 L 0層を基材 2側から照射するレーザービーム LREの光 量をレーザービーム LPEの通過当初の光量の約半分程度 (4 9 %程度) 以下に低 減させることができる。 + As described above, according to the method of manufacturing the optical recording medium 1 and the manufacturing apparatus 200, the infrared ray absorbing material is added to the optical recording medium 1 to scan light of 500 nm or more and 1000 nm or less (initialization laser single beam L IN). By setting the light transmittance of the laser layer 5 to 70% or less, when the L0 layer is initialized, the amount of light from the laser beam LPE that passed through the L0 layer and reached the L1 layer was The light amount can be reduced to 70% or less. At the same time, the laser beam is reflected by the reflective layer 3 of the LPE and reaches the L0 layer. It is possible to reduce the light quantity of the one-beam-one LRE to 70% or less of the light quantity at the beginning of reflection. As a result, the light amount of the laser beam LRE, which irradiates the L0 layer from the base material 2 side, can be reduced to about half (about 49%) or less of the initial light amount of the laser beam LPE. +
この場合、 発明者は、 スぺーサ層 5に添加する赤外線吸収材料の種類を変えた り添加割合を調整したりすることによつてスぺーサ層 5の光透過率を種々変更し て光記録媒体 1を製造し、 その各光記録媒体 1についての L 0層の初期化の良否 を実験した。 この際の実験結果を図 4に示す。 同図の実験結果によれば、 スぺー サ層 5の光透過率を Ί 0 %以下に設定したときに初期化状態が良の判定結果とな り、 スぺーサ層 5の光透過率を 7 1 %以上に設定したときに初期化状態が不良の 判定結果となった。 したがって、 この実験結果から明らかなように、 スぺーサ層 5の光透過率を 7 0 %以下に設定することにより、 L 1層で反射したレーザービ ーム LREと L 0層に照射されたレーザービーム L INとの間での上記した干渉に起 因する L 0層における既に初期化されている部分に対する初期化状態のムラの発 生を確実に回避することができる。 この結果、 記録層 6を含む L 0層を均一かつ 良好に初期化することができる。 一方、 ユーザーによって使用される記録再生装 置 (開口数が約 0 . 8 5の対物レンズから波長が 4 0 5 n mの記録再生用レーザ 一ビームが出射される) を使用して初期化する場合、 記録再生用レーザービーム に対するスぺーサ層 5の光透過率が 8 0 %以上に確保されている。 このため、 ス ぺーサ層 5が存在したとしても、 初期化に支障のない程度の影響を受けるだけで 、 記録再生用レーザービームを照射して L 1層を確実に初期化す δことができる 。 また、 この際には、 通常、 開口数 ΝΑが大きい対物レンズを使用して記録再生 用レーザービームを照射するため、 L 1層で反射されて L 0層を照射する記録再 生用レーザービームの照射範囲が拡がる結果、 再照射に起因する L 0層の初期化 ムラは確実に回避される。  In this case, the inventor changed the light transmittance of the spacer layer 5 variously by changing the type of the infrared absorbing material added to the spacer layer 5 or adjusting the addition ratio. The recording medium 1 was manufactured, and the quality of the initialization of the L0 layer for each optical recording medium 1 was tested. Figure 4 shows the experimental results at this time. According to the experimental results shown in the figure, when the light transmittance of the spacer layer 5 is set to Ί0% or less, the initialization state is determined to be good, and the light transmittance of the spacer layer 5 is reduced. 7 When it was set to 1% or more, the initialization state was determined to be defective. Therefore, as is clear from the experimental results, by setting the light transmittance of the spacer layer 5 to 70% or less, the laser beam reflected by the L1 layer and the laser beam irradiated to the L0 layer were set. It is possible to reliably avoid the occurrence of unevenness in the initialized state of the already initialized portion of the L0 layer caused by the above-described interference with the beam L IN. As a result, the L0 layer including the recording layer 6 can be initialized uniformly and well. On the other hand, when initialization is performed using a recording / reproducing device used by the user (a recording / reproducing laser beam with a wavelength of 405 nm is emitted from an objective lens with a numerical aperture of approximately 0.85). The light transmittance of the spacer layer 5 with respect to the recording / reproducing laser beam is secured to 80% or more. Therefore, even if the spacer layer 5 is present, it is possible to reliably initialize the L1 layer by irradiating the recording / reproducing laser beam only with an influence that does not hinder the initialization. In this case, since the recording / reproducing laser beam is normally radiated by using an objective lens having a large numerical aperture ΝΑ, the recording / reproducing laser beam reflected by the L1 layer and radiated to the L0 layer is irradiated. As a result, the unevenness in the initialization of the L 0 layer due to re-irradiation is reliably avoided.
なお、 本発明は、 上記した発明の実施の形態に限らず、 適宜変更が可能である 。 例えば、 本発明の実施の形態では、 カバー層 7の形成に先立って L 0層を初期 化する製造方法を例に挙げて説明したが、 カバー層 7を形成した後に L 0層を初 期化してもよい。 なお、 この製造方法を採用する場合には、 初期化用レーザービ ーム L INに対するカバー層 7の光透過率を上げておくのが好ましいため、 赤外線 吸収材料を添加することなく力パー層 7を形成するのが好ましい。 The present invention is not limited to the above-described embodiment of the invention, and can be appropriately modified. . For example, in the embodiment of the present invention, the manufacturing method of initializing the L0 layer prior to the formation of the cover layer 7 has been described as an example, but the L0 layer is initialized after the cover layer 7 is formed. You may. When this manufacturing method is adopted, it is preferable to increase the light transmittance of the cover layer 7 with respect to the initialization laser beam LIN, so that the power-par layer 7 is added without adding an infrared absorbing material. Preferably, it is formed.
また、 本発明の実施の形態では、 2つの記録層 4, 6を有する 2層記録層型光 記録媒体の光記録媒体 1を製造する例について説明したが、 スぺーサ層 5の形成 、 記録層 6の形成、 およびこの記録層 6に対する初期化を繰り返すことにより、 3層以上の記録層を備え各記録層が均一に初期化された多層記録層型光記録媒体 を製造することもできる。 この場合の製造装置は、 製造装置 2 0 0におけるスぺ ーサ層形成装置 2 0 1、 記録層形成装置 2 0 2および初期化装置 2 0 3を、 繰り 返す回数分だけ増やして構成される。 産業上の利用可能性  Further, in the embodiment of the present invention, an example in which the optical recording medium 1 of the two-layer recording layer type optical recording medium having the two recording layers 4 and 6 is described, but the formation of the spacer layer 5 and the recording By repeating the formation of the layer 6 and the initialization for the recording layer 6, a multilayer recording layer type optical recording medium having three or more recording layers and in which each recording layer is uniformly initialized can also be manufactured. The manufacturing apparatus in this case is configured by increasing the spacer layer forming apparatus 201, the recording layer forming apparatus 202, and the initializing apparatus 203 in the manufacturing apparatus 200 by the number of repetitions. . Industrial applicability
以上のように、 この多層記録層型光記録媒体の製造方法および製造装置によれ ば、 初期化用レーザービームに対する光透過率が記録用レーザービームおよび再 生用レーザービームに対する光透過率よりも低率となるようにスぺーサ層を形成 し、 この形成したスぺーサ層上に記録層を含む層を形成し、 この形成した層に対 して初期化用レーザービームを照射して初期化することにより、 この初期化の際 に、 この層を通過してスぺーサ層をさらに通過する初期化用レーザービームを十 分に大きく減衰させることができる。 このため、 この層を通過した初期化用レー ザ一ビームのうちの反射層によって反射された初期化用レーザービームの照射に 起因する初期化ムラを回避することができ、 この結果、 その記録層を含む層を均 一に初期化することができる。 また、 3層以上の記録層を備えた多層記録層型光 記録媒体を製造する場合、 スぺーサ層の下層 (入射光から遠い層) として形成さ れる記録層を含む層の初期化に際しては、 このスぺーサ層の形成に先立って初期 化用レーザービームを直接照射して初期化することにより、 確実かつ均一に初期 化することができる。 これにより、 各層に含まれる記録層が均一に初期化された 高品質の多層記録層型光記録媒体を製造することができる多層記録層型光記録媒 体の製造方法および製造装置が実現される。 As described above, according to the method and apparatus for manufacturing the multilayer recording layer type optical recording medium, the light transmittance for the initialization laser beam is lower than the light transmittance for the recording laser beam and the reproduction laser beam. A spacer layer is formed so as to obtain a ratio, and a layer including a recording layer is formed on the formed spacer layer, and the formed layer is initialized by irradiating a laser beam for initialization. Thereby, at the time of this initialization, the initialization laser beam that passes through this layer and further passes through the spacer layer can be sufficiently attenuated. For this reason, it is possible to avoid the initialization unevenness due to the irradiation of the initialization laser beam reflected by the reflective layer in the initialization laser beam that has passed through this layer, and as a result, the recording layer Can be uniformly initialized. In the case of manufacturing a multilayer recording layer type optical recording medium having three or more recording layers, it is necessary to initialize a layer including a recording layer formed as a lower layer (a layer far from incident light) of the spacer layer. Before the formation of this spacer layer, Initialization can be performed reliably and uniformly by directly irradiating the laser beam for initialization. This realizes a method and apparatus for manufacturing a multilayer recording layer type optical recording medium capable of manufacturing a high quality multilayer recording layer type optical recording medium in which the recording layers included in the respective layers are uniformly initialized. .

Claims

請求の範囲 The scope of the claims
1 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材のー 面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層型 光記録媒体の製造方法であって、  1. A multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are formed on a surface side of a substrate and a spacer layer is formed between the respective layers. A manufacturing method,
初期化用レーザービームに対する光透過率が記録用レーザービームおょぴ再生 用レーザービームに対する光透過率よりも低率に前記スぺーサ層を形成し、 当該 形成したスぺーサ層上に前記層を形成し、 当該形成した層に対して前記初期化用 レーザービームを照射して初期化する多層記録層型光記録媒体の製造方法。  The spacer layer is formed so that the light transmittance with respect to the initialization laser beam is lower than the light transmittance with respect to the recording laser beam and the reproduction laser beam, and the layer is formed on the formed spacer layer. Forming a layer, and irradiating the formed laser beam with the laser beam for initialization to initialize the multilayer recording layer type optical recording medium.
2 . 前記初期化用レーザービームに対する光透過率が 7 0 %以下であって、 前記記録用レーザービームおよび前記再生用レーザービームに対する光透過率が 2. The light transmittance with respect to the initialization laser beam is 70% or less, and the light transmittance with respect to the recording laser beam and the reproduction laser beam.
8 0 %以上となるように前記スぺーサ層を形成する請求項 1記載の多層記録層型 光記録媒体の製造方法。 2. The method for manufacturing a multilayer recording layer type optical recording medium according to claim 1, wherein the spacer layer is formed so as to have a concentration of 80% or more.
3 . 前記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記初期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いる請求項 1記載の多層記録層型光記録 媒体の製造方法。  3. Light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam. 2. The method for producing a multilayer recording layer type optical recording medium according to claim 1, wherein the method is used.
4 . 前記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記初期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いる請求項 2記載の多層記録層型光記録 媒体の製造方法。  4. Light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and light having a wavelength of 500 nm or more and 100 nm or less is used as the initialization laser beam. 3. The method for producing a multilayer recording layer type optical recording medium according to claim 2, which is used.
5 . 赤外線吸収材料を添加したスぺーサ層用材料によつて前記スぺーサ層を 形成する請求項 1記載の多層記録層型光記録媒体の製造方法。  5. The method of manufacturing a multilayer recording layer type optical recording medium according to claim 1, wherein the spacer layer is formed of a spacer layer material to which an infrared absorbing material is added.
6 . 赤外線吸収材料を添加したスぺーサ層用材料によって前記スぺーサ層を 形成する請求項 2記載の多層記録層型光記録媒体の製造方法。  6. The method for producing a multilayer recording layer type optical recording medium according to claim 2, wherein the spacer layer is formed of a spacer layer material to which an infrared absorbing material is added.
7 . 相変化材料で前記記録層を形成する請求項 1記載の多層記録層型光記録 媒体の製造方法。 7. The method for manufacturing a multilayer recording layer type optical recording medium according to claim 1, wherein the recording layer is formed of a phase change material.
8 . 相変化材料で前記記録層を形成する請求項 2記載の多層記録層型光記録 媒体の製造方法。 8. The method for producing a multilayer recording layer type optical recording medium according to claim 2, wherein the recording layer is formed of a phase change material.
9 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材のー 面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層型 光記録媒体を製造する製造装置であって、  9. A multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are formed on the surface side of the base material and a spacer layer is formed between the respective layers. A manufacturing apparatus for manufacturing,
初期化用レーザービームに対する光透過率が記録用レーザービームおよび再生 用レーザービームに対する光透過率よりも低率の前記スぺーサ層を形成するスぺ ーサ層形成装置と、 当該形成したスぺーサ層上に前記層を形成する層形成装置と 、 当該形成した層に対して前記初期化用レーザービームを照射して初期化する初 期化装置とを備えている多層記録層型光記録媒体の製造装置。  A spacer layer forming apparatus for forming the spacer layer having a light transmittance for the initialization laser beam lower than the light transmittance for the recording laser beam and the reproduction laser beam; A multi-layer recording layer type optical recording medium, comprising: a layer forming device for forming the layer on a semiconductor layer; and an initialization device for irradiating the formed layer with the initialization laser beam to initialize the layer. Manufacturing equipment.
1 0 . 前記スぺーサ層形成装置は、 前記初期化用レーザービームに対する光 透過率が 7 0 %以下であって、 前記記録用レーザービームおょぴ前記再生用レー ザ一ビームに対する光透過率が 8 0 %以上となるように前記スぺーサ層を形成す る請求項 9記載の多層記録層型光記録媒体の製造装置。  10. The spacer layer forming apparatus, wherein the light transmittance for the initialization laser beam is 70% or less, and the light transmittance for the recording laser beam and the reproducing laser beam. 10. The apparatus for manufacturing a multilayer recording layer type optical recording medium according to claim 9, wherein the spacer layer is formed so as to be 80% or more.
1 1 . 前記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記初期化装置は、 前記初期化用レーザー ビームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光を用いる請求項 9記載  11. The light having a wavelength of less than 500 nm is used as the recording laser beam and the reproduction laser beam, and the initialization device has a wavelength of 500 nm or more as the initialization laser beam. 10. The method according to claim 9, wherein light having a wavelength of 0 nm or less is used.
1 2 . 前記スぺーサ層形成装置は、 赤外線吸収材料を添加したスぺーサ層用 材料によつて前記スぺーサ層を形成する請求項 9記載の多層記録層型光記録媒体 12. The multilayer recording layer type optical recording medium according to claim 9, wherein the spacer layer forming apparatus forms the spacer layer using a spacer layer material to which an infrared absorbing material is added.
1 3 . 前記層形成装置は、 相変化材料で前記記録層を形成する請求項 9記載 13. The layer forming apparatus according to claim 9, wherein the recording layer is formed of a phase change material.
1 4 . 請求項 1力 ^ら 8のいずれかに記載の多層記録層型光記録媒体の製造方 法に従つて製造された多層記録層型光記録媒体。 14. A multilayer recording layer type optical recording medium manufactured according to the method for manufacturing a multilayer recording layer type optical recording medium according to any one of claims 1 to 8.
1 5 . 光照射によって初期化される記録層をそれぞれ含む複数の層が基材の 一面側に形成されると共に当該各層間にスぺーサ層が形成されている多層記録層 型光記録媒体であって、 15 5. Multiple layers including the recording layer initialized by light irradiation A multilayer recording layer type optical recording medium which is formed on one surface side and a spacer layer is formed between the respective layers,
前記スぺーサ層は、 初期化用レーザービームに対する光透過率が記録用レーザ 一ビームおよび再生用レーザービームに対する光透過率よりも低率に形成されて いる多層記録層型光記録媒体。  The multilayer recording layer type optical recording medium, wherein the spacer layer is formed to have a light transmittance for an initialization laser beam lower than a light transmittance for a recording laser beam and a reproduction laser beam.
1 6 . 前記スぺーサ層は、 前記初期化用レーザービームに対する光透過率が 7 0 %以下であって、 前記記録用レーザービームおよぴ前記再生用レーザービー ムに対する光透過率が 8 0 %以上に形成されている請求項 1 5記載の多層記録層 型光記録媒体。  16. The spacer layer has a light transmittance of 70% or less with respect to the initialization laser beam, and has a light transmittance of 80% with respect to the recording laser beam and the reproduction laser beam. 16. The multilayer recording-layer type optical recording medium according to claim 15, wherein the optical recording medium is formed in an amount of at least 30%.
1 7 . 前記記録用レーザービームおょぴ前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記初期化用レーザービームとして波長が 5 0 0 n m以上 1 0 0 0 n m以下の光が用いられる請求項 1 5記載の多層記録層 型光記録媒体。  17. The laser beam for recording and the laser beam for reproduction have a wavelength of less than 500 nm, and the laser beam for initialization has a wavelength of 500 nm or more and 100 nm or less. 16. The multilayer recording layer type optical recording medium according to claim 15, wherein said light is used.
1 8 . 前記記録用レーザービームおよび前記再生用レーザービームとして 5 0 0 n m未満の波長の光が用いられ、 前記初期化用レーザービームとして波長が 18. Light having a wavelength of less than 500 nm is used as the recording laser beam and the reproducing laser beam, and the wavelength is used as the initialization laser beam.
5 0 0 n m以上 1 0 0 0 n m以下の光が用いられる請求項 1 6記載の多層記録層 型光記録媒体。 17. The multilayer recording layer type optical recording medium according to claim 16, wherein light having a wavelength of 500 nm or more and 100 nm or less is used.
1 9 . 前記スぺーサ層は、 赤外線吸収材料を添カ卩したスぺーサ層用材料によ つて形成されている請求項 1 5記載の多層記録層型光記録媒体。  19. The multilayer recording layer type optical recording medium according to claim 15, wherein the spacer layer is formed of a spacer layer material obtained by adding an infrared absorbing material.
2 0 . 前記スぺーサ層は、 赤外線吸収材料を添加したスぺーサ層用材料によ つて形成されている請求項 1 6記載の多層記録層型光記録媒体。  20. The multilayer recording layer type optical recording medium according to claim 16, wherein the spacer layer is formed of a spacer layer material to which an infrared absorbing material is added.
2 1 . 前記記録層は、 相変化材料で形成されている請求項 1 5記載の多層記 録層型光記録媒体。  21. The multilayer recording layer type optical recording medium according to claim 15, wherein the recording layer is formed of a phase change material.
2 2 . 前記記録層は、 相変化材料で形成されている請求項 1 6記載の多層記 録層型光記録媒体。  22. The multilayer recording layer type optical recording medium according to claim 16, wherein the recording layer is formed of a phase change material.
PCT/JP2002/010700 2001-10-15 2002-10-15 Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium WO2003034421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001316127 2001-10-15
JP2001/316127 2001-10-15

Publications (1)

Publication Number Publication Date
WO2003034421A1 true WO2003034421A1 (en) 2003-04-24

Family

ID=19134184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010700 WO2003034421A1 (en) 2001-10-15 2002-10-15 Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium

Country Status (2)

Country Link
TW (1) TW594721B (en)
WO (1) WO2003034421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596070C2 (en) * 2003-08-21 2016-08-27 Конинклейке Филипс Электроникс Н.В. Recording device for recording information onto multilayer recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260060A (en) * 1999-03-09 2000-09-22 Sony Corp Optical information recording medium
JP2001250265A (en) * 2000-03-07 2001-09-14 Sony Corp Multilayer optical disk and its initializing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260060A (en) * 1999-03-09 2000-09-22 Sony Corp Optical information recording medium
JP2001250265A (en) * 2000-03-07 2001-09-14 Sony Corp Multilayer optical disk and its initializing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596070C2 (en) * 2003-08-21 2016-08-27 Конинклейке Филипс Электроникс Н.В. Recording device for recording information onto multilayer recording medium

Also Published As

Publication number Publication date
TW594721B (en) 2004-06-21

Similar Documents

Publication Publication Date Title
JP3250989B2 (en) Optical information recording medium, recording / reproducing method thereof, manufacturing method thereof, and optical information recording / reproducing apparatus
US6456584B1 (en) Optical information recording medium comprising a first layer having a phase that is reversibly changeable and a second information layer having a phase that is reversibly changeable
US7564769B2 (en) Phase-change recording medium having the relation between pulse patterns and reflectivity of un-recorded section
JP2001250265A (en) Multilayer optical disk and its initializing method
JP2001319370A (en) Phase change optical disk
WO2003069608A1 (en) Method for reproducing information from optical recording medium, information reproducer, and optical record medium
US6999396B2 (en) Initialization method of optical recording medium
WO2003034421A1 (en) Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium
JP3990135B2 (en) Manufacturing method of optical recording medium
JP2001273674A (en) Optical information recording medium, method for recording and reproducing the same, method for manufacturing that medium, and optical information recording and reproducing device
JP4116422B2 (en) Optical information recording medium and information recording / reproducing method of optical information recording medium
JP2506771B2 (en) Optical information recording medium
WO2003034420A1 (en) Optical recording medium manufacturing method and optical recording medium manufacturing apparatus
JPH083912B2 (en) Novel optical recording medium and manufacturing method thereof
JP4085300B2 (en) Phase change optical disk medium and method for initializing the medium
WO2003041069A1 (en) Multiple recording layer optical recording medium manufacturing method, multiple recording layer optical recording medium manufacturing apparatus, and multiple recording layer optical recording medium
JPH08287527A (en) Production of optical disk of sticking type
WO2003034411A1 (en) Method and apparatus for initializing multi-layered recording layer type optical recording medium
JPH06274941A (en) Optical recording medium
JPH11259909A (en) Optical record medium substrate and its production method and optical record medium and its production method
JPH05225603A (en) Phase transition optical disk medium for short wavelength
JP3214183B2 (en) Optical information recording medium
JPH07141694A (en) Optical recording medium
JP2002352474A (en) Optical recording medium and its manufacturing method
JP2005203032A (en) Method for manufacturing multilayer structure optical recording medium, and light-transmitting stamper

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP