WO2003034411A1 - Method and apparatus for initializing multi-layered recording layer type optical recording medium - Google Patents

Method and apparatus for initializing multi-layered recording layer type optical recording medium Download PDF

Info

Publication number
WO2003034411A1
WO2003034411A1 PCT/JP2002/010497 JP0210497W WO03034411A1 WO 2003034411 A1 WO2003034411 A1 WO 2003034411A1 JP 0210497 W JP0210497 W JP 0210497W WO 03034411 A1 WO03034411 A1 WO 03034411A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
recording medium
optical recording
layers
initialized
Prior art date
Application number
PCT/JP2002/010497
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Komaki
Tetsuro Mizushima
Jiro Yoshinari
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2003034411A1 publication Critical patent/WO2003034411A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to a multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are laminated on one surface side of a substrate and a spacer layer is formed between each layer.
  • the present invention relates to an initialization method and an initialization device. Background art
  • Optical recording media are noted for their high density and large capacity, and are used for various purposes.
  • rewritable optical recording media that allow erasing and re-recording of recorded information can be used to restore and update data, and can be repeatedly rewritten and used, contributing to expanding the use of optical recording media. It is expected to do.
  • a magneto-optical recording medium (MO) and a phase change optical recording medium have been developed and commercialized.
  • optical recording medium 1 having a layer structure shown in FIG. 5 as a rewritable phase-change optical recording medium utilizing a phase change (hereinafter, also simply referred to as an optical recording medium).
  • the optical recording medium 1 is configured such that a reflective layer 3, a recording layer 4, and a cover layer 5 as a light transmitting layer are sequentially laminated on one surface (upper surface in FIG. 1) of a substrate 2.
  • the base material 2 is formed into a flat plate shape (for example, a disk (disc) shape) having a predetermined thickness by injection molding using a resin material such as polycarbonate.
  • the reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed using a metal such as A1, Ag, or Ni.
  • the recording layer 4 has a first protective layer 4a, a phase change material layer 4b, and a second protective layer 4c, and these layers 4c, 4b, and 4a are laminated on the reflective layer 3 in this order. Sa It is composed.
  • the first protective layer 4 a and the second protective layer 4 c of this For example, formed by using a dielectric material such as aluminum oxide or Z n S- S i O 2, the phase change material layer 4 b is For example, it is formed using GeTeSb, InSbTe, or AgGeInSbTe.
  • the cover layer 7 is formed on the first protective layer 4a using a light-transmitting resin material.
  • the recording layer 4 is irradiated with a laser beam set on the recording layer from the force bar layer 5 side, and the recording layer 4 including the phase change material layer 4b is formed into an amorphous state.
  • the recording mark is formed and erased by reversibly changing the phase with the crystalline state.
  • the recording layer 4 particularly the phase change material layer 4b
  • the irradiated part is rapidly cooled (rapidly cooled) after being heated to a temperature higher than its melting point.
  • the recording mark becomes amorphous according to the recording signal.
  • the irradiated portion is heated to a temperature higher than a crystallization temperature and then gradually cooled (gradually cooled) to be crystallized, thereby forming a recording mark. Will be erased.
  • the light reflectance that changes with the change in the optical constant between the amorphous state and the crystalline state when a laser beam of reproduction power (a laser beam of lower power than during recording) is irradiated.
  • the data is reproduced by determining the presence or absence of a recording mark using the difference between the data.
  • the base material 2 is formed into a disk shape having fine irregularities such as a groove formed on the surface thereof by injection molding.
  • the recording layer 4 is formed on the reflective layer 3.
  • the phase change material layer 4b and the first and second protective layers 4a and 4c are generally formed by a sputtering method.
  • the cover layer 5 is formed on the recording layer 4 by, for example, spin coating.
  • the phase change material layer 4b in the recording layer 4 is in an amorphous state immediately after its formation, and cannot be recorded by the user as it is. Therefore, the user can immediately start using the optical recording medium 1.
  • the recording layer 4 In order to ship the optical recording medium 1 in the initialized state, it is necessary to initialize the recording layer 4 (particularly, the phase change material layer 4 b) in the manufacturing process of the optical recording medium 1. For this reason, after forming the force bar layer 5, the recording layer 4 is initialized.
  • the optical recording medium 1 is normally irradiated with an initialization laser beam through an objective lens having a numerical aperture NA of about 0.4 (for example, a value of 0.34).
  • optical recording medium 11 having a larger capacity based on the optical recording medium 1.
  • the optical recording medium 11 will be described with reference to FIG. Note that the same components as those of the optical recording medium 1 are denoted by the same reference numerals, and redundant description will be omitted.
  • This optical recording medium 11 is a so-called single-sided multilayer (for example, two layers) recording layer type optical recording medium (hereinafter, also referred to as “multilayer recording layer type optical recording medium”), as shown in FIG.
  • an L1 layer including a reflective layer 3 and a recording layer 4 On one side of the material 2 (the upper surface in the figure), an L1 layer including a reflective layer 3 and a recording layer 4, a spacer layer 12 as a light transmitting layer, and a recording layer 14 (hereinafter, referred to as "L 0 layer J") and a cover layer 5 as a light transmitting layer are sequentially laminated.
  • the spacer layer 12 has a thickness TH of usually 20 ⁇ .
  • the surface of the L0 layer side has fine irregularities such as groups, etc.
  • the recording layer 14 has a first protective layer 14a, a phase change material layer 14b, and a second protective layer. It has a layer 14c, and these layers 14c, 14b, 14a are laminated on the fine uneven surface of the spacer layer 12 in this order.
  • each layer 14a, 14b, 14c is formed of a strictly different material or film thickness from the corresponding layer 4a, 4b, 4c, but has the same function.
  • the cover layer 5 is formed on the L0 layer using a resin material. Even in this optical recording medium 11, the recording layers 4 and 14 need to be initialized during the manufacturing process. In this case, as shown in FIG.
  • the objective lens 21 having the same numerical aperture NA as that used when the optical recording medium 1 is initialized is used.
  • the L1 layer including the recording layer 4 is initialized by irradiating the L1 layer from the side of the cover layer 5 with the initialization laser beam LIN, and then, as shown in FIG.
  • the L0 layer is initialized by irradiating the L0 layer with the beam LIN.
  • the inventors have found the following points to be improved. That is, in this initialization method, as shown in FIG. 7, when the L 0 layer formed on the spacer layer 12 is initialized, the initialization laser beam L IN applied to the LO layer is used. A part of the laser beam LPE passes through the L 0 layer and the spacer layer 12 to reach the L 1 layer, and a part of the laser beam LRE of the laser beam LPE is reflected by the L 1 layer. In this case, interference occurs due to unevenness in the thickness of the spacer layer 12 between the reflected laser beam LRE and the laser beam LIN applied to the L0 layer.
  • the amount of light absorbed by the L O layer is partially different, and as a result, the calorific value differs for each part of the L 0 layer (heat generation unevenness occurs in the L 0 layer). Therefore, due to the re-irradiation of the reflected laser beam LRE, the crystal state of the L0 layer, particularly the phase change material layer 14b in the recording layer 14, becomes uneven, and the L0 layer is initialized well. This may not be done, and it is preferable to improve this point.
  • the present invention has been made in view of the above points to be improved, and has as its main object to provide a method of initializing a multilayer recording layer type optical recording medium capable of uniformly initializing each layer including a recording layer. And also, a multilayer recording layer capable of uniformly initializing each layer including the recording layer. It is another main object to provide an apparatus for initializing a type optical recording medium.
  • the method for initializing a multilayer recording layer type optical recording medium comprises a plurality of layers LN, L (N-1),..., L2 each including a recording layer which is initialized by light irradiation. , L
  • 1, LO N is an integer of 1 or more
  • TH
  • the apparatus for initializing a multilayer recording layer type optical recording medium includes a plurality of layers LN, L (N-1),..., Each including a recording layer initialized by light irradiation.
  • L2, L1, L0 (N is an integer of 1 or more) are laminated in this order on one surface side of a substrate, and a spacer layer is formed between the respective layers.
  • the multilayer recording layer type optical recording medium including an objective lens for irradiating one of the plurality of layers LM (N ⁇ M ⁇ 1) with light from the layer L0 side and initializing the same.
  • the objective lens has a numerical aperture NA that satisfies the following equation when the thickness of the spacer layer adjacent to the surface of the layer LM on the substrate side is TH ( ⁇ ). It is stipulated and configured.
  • the thickness of the spacer layer adjacent to the substrate side surface of the layer LM is set to TH ( ⁇ )
  • the layer L 0 is irradiated with light to initialize the layer, and the layer adjacent to the spacer layer is sandwiched. Since the influence of the reflected light from L (M + 1) can be reduced, the inside of the layer LM can be initialized uniformly. Therefore, a reliable initialized A layer recording layer type optical recording medium can be manufactured.
  • the method for initializing a multilayer recording layer type optical recording medium according to the present invention includes a plurality of layers LN, L (N-1),..., L2, L2 each including a recording layer initialized by light irradiation.
  • LO (N is an integer of 1 or more) is laminated on one surface side of the base material in this order, and a spacer layer is formed between the layers.
  • One of the layers LM (N ⁇ M ⁇ 1) is initialized by irradiating light from the layer L0 side with an objective lens having a numerical aperture NA of 0.55 or more.
  • the apparatus for initializing a multilayer recording layer type optical recording medium includes a plurality of layers LN, L (N-1),..., Each including a recording layer initialized by light irradiation.
  • L2, L1, L0 (N is an integer of 1 or more) are laminated in this order on one surface side of a base material, and a spacer layer is formed between the respective layers.
  • Initialization of a multilayer recording layer type optical recording medium including an objective lens for irradiating one layer LM (N ⁇ M ⁇ 1) of the plurality of layers from the layer L0 side and initializing the same.
  • the objective lens has a numerical aperture NA defined to have a value of 0.55 or more.
  • the layer LM when the layer LM is initialized, light is irradiated from the layer L0 side using an objective lens having a numerical aperture NA of 0.55 or more.
  • NA numerical aperture
  • FIG. 1 is an explanatory diagram for explaining an initialization method for initializing the optical recording medium 11 on which the L1 layer and the L0 layer are formed.
  • FIG. 2 is a configuration diagram showing a configuration of an initialization apparatus M for initializing the optical recording medium 11 on which the L1 layer and the L0 layer are formed.
  • FIG. 3 is a diagram showing experimental results when the initialization of the L0 layer was confirmed using various objective lenses having different numerical apertures NA.
  • FIG. 4 is an explanatory diagram for explaining an initialization method for initializing the optical recording medium 41 on which the L2 layer, the L1 layer, and the L0 layer are formed.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the optical recording medium 1 on which one recording layer 4 is formed.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the optical recording medium 11 on which the L1 layer and the L0 layer are formed.
  • FIG. 7 is an explanatory diagram for explaining an initialization method that is already performed by the inventor when initializing the optical recording medium 11 on which the L1 layer and the L0 layer are formed.
  • the optical recording medium 11 in which the recording layer is initialized by the method for initializing a multilayer recording layer type optical recording medium according to the present invention has a fine uneven surface on the base material 2 (see FIG. On the (upper surface in the figure) side, an L 1 layer, a spacer layer 12, an L 0 layer adjacent to the spacer layer 12, and a cover layer 5 are sequentially laminated.
  • Initializer M is a spindle motor MT, pickup PU, spindle server It has SPS, feed servo TR S, focus tracking servo FTS, and control unit CNT.
  • the spindle motor MT is driven and controlled by a spindle servo SPS as described later, and rotates the optical recording medium 11 at a constant linear velocity.
  • the pickup PU has a laser emitting section and a laser receiving section integrated with each other, and a laser (not shown) is driven by a laser driver under the control of the control section CNT, and the optical recording medium 11
  • the laser beam LIN set to the initialization power is emitted to the optical recording medium 11.
  • the pickup PU includes an objective lens 31 and a half mirror (not shown), and focuses the initialization laser beam L IN on the L 1 layer and the L 0 layer of the optical recording medium 11.
  • the objective lens 31 is subjected to focus tracking control by the focus tracking servo FTS, whereby the initialization laser beam LIN is focused on the L1 and L0 layers of the optical recording medium 11.
  • the objective lens 31 is configured to have a numerical aperture ⁇ ⁇ ⁇ that satisfies the following equation (1). ing.
  • the thickness ⁇ of the spacer layer 12 is set to about 20 ⁇ , as described above, and at least 16.5 ⁇ or more. Therefore, even when the spacer layer 12 is formed as the objective lens 31 with a thickness of, for example, 16.5 ⁇ , the numerical aperture ⁇ has a value of 0.5 so as to satisfy the above equation (1). Use 5 types. When the spacer layer 12 is formed with a small thickness of 13 ⁇ , a type having a numerical aperture ⁇ of 0.7 to satisfy the above equation (1) is used.
  • the pickup U is reciprocated by a feed servo TRS between the inner peripheral side and the outer peripheral side thereof along the diameter direction of the optical recording medium 11.
  • the spindle servo SPS controls the rotation of the spindle motor ⁇ ⁇ such that the linear velocity of the optical recording medium 11 becomes constant under the control of the control unit C ⁇ ⁇ .
  • Control unit C NT Controls the drive of the pickup PU, the spindle servo SPS, the feed servo TRS, and the focus tracking servo FTS.
  • the control unit CNT controls the spindle servo SPS to drive the spindle motor MT, and rotates the optical recording medium 11 so that the linear velocity becomes constant.
  • the control unit CNT moves the pickup PU to the initialization start position by controlling the feed servo TRS, and controls the focus tracking servo FTS to control the optical recording medium 11. Position the objective lens 31 so that the focal position matches the L1 layer.
  • the control unit CNT controls the feed servo TRS and the focus tracking servo FTS, thereby moving the pickup PU from, for example, the inner circumference to the outer circumference, and performing an initializing laser beam to perform IN.
  • the L1 layer including the recording layer 4 is first initialized by irradiating the L1 layer from the cover layer 5 side.
  • the control unit CNT positions the objective lens 31 so that its focal position coincides with the L0 layer, and then irradiates the initialization laser beam LIN to the LO layer, as in the case of the L1 layer.
  • the L0 layer including the recording layer 14 is initialized.
  • an objective lens 21 with a numerical aperture NA of 0.34 was used for a part of the initialization laser beam L IN irradiated to the L0 layer, as shown in Fig. 1. As before, it passes through the L0 layer and the spacer layer 12 to reach the L1 layer.
  • the spot diameter DI of the laser beam LRE irradiating the L0 layer is the spot diameter DI when the objective lens 21 is used because the numerical aperture NA of the objective lens 31 is larger than the numerical aperture NA of the objective lens 21. (See Figures 1 and 7). I mean The laser beam LRE reflected by the L1 layer when the objective lens 31 is used is sufficiently diffused.
  • the laser beam of the initialization laser beam L IN is specified to be a constant value
  • the L 0 layer is initialized, it is reflected by the L 1 layer and irradiates the L 0 layer per unit area.
  • the irradiation amount of the laser beam LRE is sufficiently lower than the irradiation amount of the laser beam LRE per unit area when the objective lens 21 is used.
  • the interference caused by the unevenness of the thickness of the spacer layer 12 occurs, but the irradiation energy of the laser beam L RE is diffused and sufficiently reduced, so that the amount of light absorbed by the L 0 layer is partially different. Phenomenon does not occur. As a result, it is possible to avoid the occurrence of unevenness in the crystallization state due to the re-irradiation of the laser beam LRE to the already initialized portion of the L 0 layer. There is a monkey.
  • the inventor has specified the thickness TH of the spacer layer 12 to be a constant value (20 ⁇ ) and used various objective lenses having different numerical apertures ⁇ to initialize the L 0 layer. Pass / fail was confirmed.
  • Figure 3 shows the results of this experiment. According to the results of this experiment, it was confirmed that when the numerical aperture ⁇ ⁇ was initialized using an objective lens having a value of 0.45 or less, all of the initialized states were defective. On the other hand, it was confirmed that when the objective lens was initialized using an objective lens having a numerical aperture NA of 0.55 or more, all the initialized states were good.
  • the L0 layer including the recording layer 14 and the L1 layer including the recording layer 4 can always be properly initialized. Also, considering that the thickness TH of the spacer layer 12 is specified to be at least 16.5 inches or more, as long as the numerical aperture NA of the objective lens is set to a value of 0.55 or more, the above value is always set. Equation (1) holds. Therefore, when the optical recording medium 11 is initialized, as long as an objective lens with a numerical aperture NA of 0.55 or more is used, L 1 The layer and the L0 layer can be satisfactorily initialized, and as a result, a highly-reliable initialized multilayer recording layer type optical recording medium can be manufactured.
  • the spacer layer 12 is formed with a small thickness of 13 / ⁇ , the above equation (1) is satisfied as long as the type having a numerical aperture NA of 0.7 is used. As long as an objective lens having a numerical aperture NA of 0.7 or more is used, the L1 layer and the L0 layer can always be properly initialized.
  • the L0 layer is initialized using the objective lens 31 having a numerical aperture NA of 0.55, so that the lower layer than the L0 layer is formed. It is possible to avoid the occurrence of the initialization unevenness due to the reflection of the initialization laser beam L IN by the L 1 layer located in the (layer far from the incident light). Therefore, the light having the reflective layer 3 formed on one surface side of the base material 2 and the one layer and the L 0 layer formed as the upper layer of the reflective layer 3 with respect to the irradiation direction of the initialization laser beam L IN.
  • the crystallization state of the L 0 layer (particularly, the phase change material layer 4 b) can be made uniform, so that the L 0 layer as the upper layer of the L 1 layer can be reliably and reliably formed. It can be initialized well.
  • the present invention is not limited to the above-described embodiment of the invention, but can be appropriately modified.
  • three or more layers having a recording layer were formed (for example, L0 and L1 layers each having a recording layer 14 and L2 layer having a recording layer 4).
  • the present invention can also be applied to the initialization of the L0 layer and the L1 layer in the optical recording medium 41.
  • the optical recording medium 41 is provided on one surface side of the base material 2 with an L2 layer having the same structure as the L1 layer in the optical recording medium 11 and a spacer layer 12 having a thickness of TH (hereinafter, referred to as “lower layer”).
  • Layer 1 2 of the optical recording medium 11 adjacent to the spacer layer 12 and having substantially the same structure as the L 0 layer of the optical recording medium 11, and substantially the same as the lower spacer layer 12.
  • a spacer layer 12 having the same structure, an L 0 layer adjacent to the spacer layer 12 and having substantially the same structure as the L 1 layer, and a cover layer 5 are stacked in this order.
  • the thickness TH of the lower spacer layer 12 must be on the other hand, an objective lens 51 with a numerical aperture NA satisfying the above equation (1) is used.
  • the laser beam LIN for initialization is irradiated in order of the L2 layer, the L1 layer, and the L0 layer, and the L2 layer including the recording layer 4, the L1 layer including the recording layer 14, and the recording layer 14 are irradiated.
  • each spacer layer 12 is formed with a thickness 16. of at least 16.5 ⁇
  • an objective lens having a numerical aperture ⁇ ⁇ that satisfies the above equation (1) and a value of 0.55 or more is always used. Used for lens 51.
  • the spot diameter DI of the laser beam LRE that is reflected by the L2 layer and irradiates the L1 layer can be increased.
  • the irradiation amount per unit area of the laser beam LRE to the L1 layer can be sufficiently reduced. Therefore, the crystallization state of the L 1 layer (particularly, the phase change material layer 14 b in the L 1 layer) can be made uniform, so that the L 1 layer as the upper layer of the L 2 layer can be reliably and well initialized. be able to.
  • the spot diameter DI of the laser beam LRE which irradiates the L0 layer by being reflected by the L2 layer is set to be the initial value for the L1 layer. It will be even more widespread than in the case of a period. Therefore, the influence of the laser beam LRE irradiation on the already initialized portion in the L0 layer is further reduced than when the L1 layer is initialized. Therefore, the L0 layer can be more properly initialized. Furthermore, when the L0 layer is initialized, the thickness TH of each spacer layer 12, 12 is the same even if some of the laser beam LPE passing through the L0 layer is reflected by the L1 layer. Then, the above expression (1) is satisfied.
  • the L0 layer can be satisfactorily initialized without being affected by the laser beam LRE reflected by the L1 layer.
  • a highly-reliable initialized multilayer recording layer type optical recording medium is obtained. Can be manufactured. Industrial applicability
  • the method for initializing the multilayer recording layer type optical recording medium according to the present invention and the method for According to the apparatus for initializing a layer recording layer type optical recording medium, when the thickness of the spacer layer adjacent to the substrate-side surface of this layer LM is set to TH ( ⁇ ) when the layer LM is initialized,
  • TH ( ⁇ ) when the layer LM is initialized
  • the layer L ( ⁇ + 1) adjacent to the spacer layer Since the influence of the reflected light from the LM can be reduced, the inside of the layer LM can be initialized uniformly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

A method for initializing a multi-layered recording layer type optical recording medium including a plurality of layers (L1, L0) each containing a recording layer to be initialized by irradiation of light, which layers are stacked in this order on one side of a substrate via a spacer layer (12) formed between the layers (L1, L0). Initialization of one layer (L0) among the plurality of layers (L0, L1) is performed by applying light from the layer (L0) side by using an object lens (31) having numerical aperture NA which satisfies an equation [TH x NA ≥ 9] wherein TH (µm) is thickness of a spacer layer (12) adjacent to the surface of the substrate (2) side in the layer (L0). Thus, it is possible to uniformly initialize the layers (L1, L0) containing the recording layers.

Description

糸田 »  Itoda »
多層記録層型光記録媒体の初期化方法  Initialization method of multilayer recording layer type optical recording medium
およぴ多層記録層型光記録媒体の初期化装置 技術分野  Device for initializing multi-layer recording optical media
この発明は、 光照射によって初期化される記録層をそれぞれ含む複数の層が基 材の一面側に積層されると共に各層間にスぺーサ層が形成されている多層記録層 型光記録媒体の初期化方法および初期化装置に関するものである。 背景技術  The present invention relates to a multilayer recording layer type optical recording medium in which a plurality of layers each including a recording layer initialized by light irradiation are laminated on one surface side of a substrate and a spacer layer is formed between each layer. The present invention relates to an initialization method and an initialization device. Background art
光記録媒体は、 高密度で大容量である点が注目され、 様々な用途で使用されて いる。 特に、 記録された情報の消去および再記録が可能な書換可能型光記録媒体 は、 データの修復や更新が可能であり、 しかも繰り返して書換えて使用できるた め、 光記録媒体の用途拡大に貢献するものとして期待されている。 この種の光記 録媒体としては、 光磁気記録媒体 (MO) や相変化型光記録媒体が開発され、 か つ商品化されている。  Optical recording media are noted for their high density and large capacity, and are used for various purposes. In particular, rewritable optical recording media that allow erasing and re-recording of recorded information can be used to restore and update data, and can be repeatedly rewritten and used, contributing to expanding the use of optical recording media. It is expected to do. As this type of optical recording medium, a magneto-optical recording medium (MO) and a phase change optical recording medium have been developed and commercialized.
このうち、 相変化を利用した書換え可能な相変化型光記録媒体 (以下、 単に Γ 光記録媒体」 ともいう) として、 発明者は、 図 5に示す層構造の光記録媒体 1を 既に開発している。 この光記録媒体 1は、 基材 2の一面 (同図中の上面) 側に、 反射層 3、 記録層 4、 および光透過層としてのカバー層 5が順次積層されて構成 されている。 この場合、 基材 2は、 ポリカーボネート等の樹脂材を用いて、 射出 成形によって所定の厚みの平板形状 (一例としてディスク (円板) 形状) に成形 されている。 また、 基材 2の表面 (同図中の上面) には、 トラッキングサーボ用 のグループ等の微細凹凸 (図示せず) が成形時に形成されている。 反射層 3は、 A 1、 A gまたは N i等の金属を用いて基材 2における微細凹凸の形成面上に形 成されている。 記録層 4は、 第 1保護層 4 a、 相変化材料層 4 bおよび第 2保護 層 4 cを有し、 これらの各層 4 c , 4 b , 4 aがこの順序で反射層 3上に積層さ れて構成されている。 このうちの第 1保護層 4 aおよび第 2保護層 4 cは、 例え ば、 酸化アルミや Z n S— S i O 2等の誘電体を用いて形成され、 相変化材料層 4 bは、 例えば、 G e T e S b、 I n S b T eまたは A g G e I n S b T e等を 用いて形成されている。 カバー層 7は、 光透過性の榭脂材料を用いて第 1保護層 4 a上に形成されている。 Among them, the inventors have already developed an optical recording medium 1 having a layer structure shown in FIG. 5 as a rewritable phase-change optical recording medium utilizing a phase change (hereinafter, also simply referred to as an optical recording medium). ing. The optical recording medium 1 is configured such that a reflective layer 3, a recording layer 4, and a cover layer 5 as a light transmitting layer are sequentially laminated on one surface (upper surface in FIG. 1) of a substrate 2. In this case, the base material 2 is formed into a flat plate shape (for example, a disk (disc) shape) having a predetermined thickness by injection molding using a resin material such as polycarbonate. On the surface of the substrate 2 (the upper surface in the figure), fine irregularities (not shown) such as groups for tracking servo are formed at the time of molding. The reflective layer 3 is formed on the surface of the base material 2 on which fine irregularities are formed using a metal such as A1, Ag, or Ni. The recording layer 4 has a first protective layer 4a, a phase change material layer 4b, and a second protective layer 4c, and these layers 4c, 4b, and 4a are laminated on the reflective layer 3 in this order. Sa It is composed. The first protective layer 4 a and the second protective layer 4 c of this, For example, formed by using a dielectric material such as aluminum oxide or Z n S- S i O 2, the phase change material layer 4 b is For example, it is formed using GeTeSb, InSbTe, or AgGeInSbTe. The cover layer 7 is formed on the first protective layer 4a using a light-transmitting resin material.
この光記録媒体 1では、 力バー層 5側から記録パヮ一に設定されたレーザービ ームを記録層 4に照射して、 相変化材料層 4 bを含む記録層 4を非晶質状態と結 晶状態との間で可逆的に相変化させることにより、 記録マークの形成および消去 が行われる。 つまり、 記録層 4 (特に相変化材料層 4 b ) では、 記録パワーのレ 一ザ一ビームが照射された際に、 その照射部分が融点以上に加熱された後に急速 に冷却 (急冷) されることによって非晶質化され、 記録信号に応じた記録マーク が形成される。 また、 記録層 4では、 記録パワーのレーザービームが照射された 際に、 その照射部分が結晶化温度以上に加熱された後に徐々に冷却 (徐冷) され ることによって結晶化され、 記録マークが消去される。 一方、 再生時には、 再生 パワーのレーザービーム (記録時よりも低パワーのレーザービーム) を照射した 際の非晶質状態と結晶状態との間で光学的定数の変化に伴って変化する光反射率 の差を利用して記録マークの有無を判別することにより、 データの再生が行われ る。  In this optical recording medium 1, the recording layer 4 is irradiated with a laser beam set on the recording layer from the force bar layer 5 side, and the recording layer 4 including the phase change material layer 4b is formed into an amorphous state. The recording mark is formed and erased by reversibly changing the phase with the crystalline state. In other words, when the recording layer 4 (particularly the phase change material layer 4b) is irradiated with a laser beam of recording power, the irradiated part is rapidly cooled (rapidly cooled) after being heated to a temperature higher than its melting point. As a result, the recording mark becomes amorphous according to the recording signal. In addition, when the recording layer 4 is irradiated with a laser beam having a recording power, the irradiated portion is heated to a temperature higher than a crystallization temperature and then gradually cooled (gradually cooled) to be crystallized, thereby forming a recording mark. Will be erased. On the other hand, at the time of reproduction, the light reflectance that changes with the change in the optical constant between the amorphous state and the crystalline state when a laser beam of reproduction power (a laser beam of lower power than during recording) is irradiated. The data is reproduced by determining the presence or absence of a recording mark using the difference between the data.
この光記録媒体 1を製造する際には、 まず、 射出成形によってその表面にダル ーブ等の微細凹凸が形成されたディスク形状に基材 2を成形する。 次いで、 基材 2の一面側に反射層 3を形成した後に、 その反射層 3上に記録層 4を形成する。 この際に、 相変化材料層 4 bおよび第 1 , 第 2保護層 4 a , 4 cは、 一般的にス パッタリング法によって形成される。 次いで、 例えばスピンコート法によって記 録層 4上にカバー層 5を形成する。 この場合、 記録層 4における相変化材料層 4 bは、 その形成直後では、 非晶質状態であり、 そのままではユーザーが記録する ことができない。 したがって、 ユーザーが光記録媒体 1を直ちに使用開始できる 初期化状態で光記録媒体 1を出荷するためには、 光記録媒体 1の製造工程におい て、 記録層 4 (特に相変化材料層 4 b ) を初期化する必要がある。 このため、 力 バー層 5を形成した後に、 記録層 4を初期化する。 この場合、 再生時または記録 時に照射されるレーザービームの照射方向と同一の方向 (カバー層 5側からの方 向) から高パワー (初期化パワー) に設定されたレーザービーム (以下、 「初期 化用レーザービーム」 ともいう) を照射して記録層 4を初期化する。 この際に、 通常、 開口数 N Aが値 0 . 4程度 (一例として値 0 . 3 4 ) の対物レンズを介し て初期化用レーザービームを光記録媒体 1に照射する。 これにより、 記録層 4を 初期化した光記録媒体 1の製造が完了する。 When manufacturing the optical recording medium 1, first, the base material 2 is formed into a disk shape having fine irregularities such as a groove formed on the surface thereof by injection molding. Next, after forming the reflective layer 3 on one surface side of the substrate 2, the recording layer 4 is formed on the reflective layer 3. At this time, the phase change material layer 4b and the first and second protective layers 4a and 4c are generally formed by a sputtering method. Next, the cover layer 5 is formed on the recording layer 4 by, for example, spin coating. In this case, the phase change material layer 4b in the recording layer 4 is in an amorphous state immediately after its formation, and cannot be recorded by the user as it is. Therefore, the user can immediately start using the optical recording medium 1. In order to ship the optical recording medium 1 in the initialized state, it is necessary to initialize the recording layer 4 (particularly, the phase change material layer 4 b) in the manufacturing process of the optical recording medium 1. For this reason, after forming the force bar layer 5, the recording layer 4 is initialized. In this case, a laser beam set to a high power (initialization power) from the same direction (the direction from the cover layer 5 side) as the irradiation direction of the laser beam irradiated at the time of reproduction or recording (hereinafter, “initialization power”) Of the recording layer 4). At this time, the optical recording medium 1 is normally irradiated with an initialization laser beam through an objective lens having a numerical aperture NA of about 0.4 (for example, a value of 0.34). Thus, the manufacture of the optical recording medium 1 in which the recording layer 4 has been initialized is completed.
ところが、 さらに大容量の光記録媒体の開発商品化が望まれており、 発明者は 、 光記録媒体 1をベースにしてさらに大容量化した光記録媒体 1 1を開発してい る。 この光記録媒体 1 1について、 図 6を参照して説明する。 なお、 光記録媒体 1と同一の構成については同じ符号を付して、 重複する説明を省略する。  However, it is desired to develop and commercialize an optical recording medium having a larger capacity, and the inventor has developed an optical recording medium 11 having a larger capacity based on the optical recording medium 1. The optical recording medium 11 will be described with reference to FIG. Note that the same components as those of the optical recording medium 1 are denoted by the same reference numerals, and redundant description will be omitted.
この光記録媒体 1 1は、 いわゆる片面多層 (一例として 2層) 記録層型光記録 媒体 (以下、 「多層記録層型光記録媒体」 ともいう) であって、 同図に示すよう に、 基材 2の一面 (同図中の上面) 側に、 反射層 3および記録層 4を含んで構成 される L 1層、 光透過層としてのスぺーサ層 1 2、 記録層 1 4 (以下、 「L 0層 J ともいう) 、 およぴ光透過層としてのカバー層 5が順次積層されて構成されて いる。 この場合、 スぺーサ層 1 2は、 その厚み T Hが通常 2 0 μ ηι程度に設定さ れ、 L 0層側の表面にはグループ等の微細凹凸が形成されている。 記録層 1 4は 、 第 1保護層 1 4 a、 相変化材料層 1 4 bおよび第 2保護層 1 4 cを有し、 これ ら各層 1 4 c , 1 4 b , 1 4 aがこの順序でスぺーサ層 1 2の微細凹凸形成面上 に積層されて構成されている。 この場合、 各層 1 4 a , 1 4 b , 1 4 cは、 それ ぞれ対応する各層 4 a, 4 b , 4 cとは厳密にはそれぞれ異なる材料や膜厚で形 成されるが同じ機能を有している。 カバー層 5は、 樹脂材料を用いて L 0層上に 形成されている。 この光記録媒体 1 1でも、 その製造工程中において、 記録層 4 , 1 4を初期ィ匕 する必要がある。 この場合、 図 7に示すように、 光記録媒体 1と同様にして、 力 バー層 5を形成した後に、 光記録媒体 1に対する初期化時と同じ開口数 N Aの対 物レンズ 2 1を使用して初期化する。 具体的には、 初期化用レーザービーム L IN をカバー層 5側から L 1層に照射して記録層 4を含む L 1層を初期化し、 次いで 、 同図に示すように、 初期化用レーザービーム L INを L 0層に照射して L 0層を 初期化する。 これにより、 L 1層および L O層を初期化した光記録媒体 1 1の製 造が完了する。 発明の開示 This optical recording medium 11 is a so-called single-sided multilayer (for example, two layers) recording layer type optical recording medium (hereinafter, also referred to as “multilayer recording layer type optical recording medium”), as shown in FIG. On one side of the material 2 (the upper surface in the figure), an L1 layer including a reflective layer 3 and a recording layer 4, a spacer layer 12 as a light transmitting layer, and a recording layer 14 (hereinafter, referred to as "L 0 layer J") and a cover layer 5 as a light transmitting layer are sequentially laminated. In this case, the spacer layer 12 has a thickness TH of usually 20 μηι. The surface of the L0 layer side has fine irregularities such as groups, etc. The recording layer 14 has a first protective layer 14a, a phase change material layer 14b, and a second protective layer. It has a layer 14c, and these layers 14c, 14b, 14a are laminated on the fine uneven surface of the spacer layer 12 in this order. In this case, each layer 14a, 14b, 14c is formed of a strictly different material or film thickness from the corresponding layer 4a, 4b, 4c, but has the same function. The cover layer 5 is formed on the L0 layer using a resin material. Even in this optical recording medium 11, the recording layers 4 and 14 need to be initialized during the manufacturing process. In this case, as shown in FIG. 7, after forming the power bar layer 5 in the same manner as in the optical recording medium 1, the objective lens 21 having the same numerical aperture NA as that used when the optical recording medium 1 is initialized is used. To initialize. Specifically, the L1 layer including the recording layer 4 is initialized by irradiating the L1 layer from the side of the cover layer 5 with the initialization laser beam LIN, and then, as shown in FIG. The L0 layer is initialized by irradiating the L0 layer with the beam LIN. Thus, the manufacture of the optical recording medium 11 in which the L1 layer and the LO layer have been initialized is completed. Disclosure of the invention
発明者は、 上述の多層記録層型光記録媒体の初期化方法を検討した結果、 以下 のような改善すべき点を発見した。 すなわち、 この初期化方法では、 図 7に示す ように、 スぺーサ層 1 2上に形成された L 0層を初期化する際に、 L O層に照射 された初期化用レーザービーム L INのうちの一部のレーザービーム LPEが、 L 0 層およびスぺーサ層 1 2を通過して L 1層に達し、 さらにレーザービーム LPEの 一部のレーザービーム LREが L 1層によって反射される。 この場合、 反射された レーザービーム L REと L 0層に照射されたレーザービーム L INとの間で、 スぺー サ層 1 2の膜厚ムラに起因する干渉が発生する。 このため、 L O層で吸収される 光量が部分的に相違し、 この結果、 L 0層の各部分毎に発熱量が相違する (L 0 層に発熱ムラが生ずる) 。 したがって、 この反射したレーザービーム LREの再照 射に起因して、 L 0層、 特に記録層 1 4における相変化材料層 1 4 bの結晶状態 にムラが生じて L 0層が良好に初期化されないおそれがあり、 この点を改善する のが好ましい。  As a result of studying the method of initializing the above-described multilayer recording layer type optical recording medium, the inventors have found the following points to be improved. That is, in this initialization method, as shown in FIG. 7, when the L 0 layer formed on the spacer layer 12 is initialized, the initialization laser beam L IN applied to the LO layer is used. A part of the laser beam LPE passes through the L 0 layer and the spacer layer 12 to reach the L 1 layer, and a part of the laser beam LRE of the laser beam LPE is reflected by the L 1 layer. In this case, interference occurs due to unevenness in the thickness of the spacer layer 12 between the reflected laser beam LRE and the laser beam LIN applied to the L0 layer. For this reason, the amount of light absorbed by the L O layer is partially different, and as a result, the calorific value differs for each part of the L 0 layer (heat generation unevenness occurs in the L 0 layer). Therefore, due to the re-irradiation of the reflected laser beam LRE, the crystal state of the L0 layer, particularly the phase change material layer 14b in the recording layer 14, becomes uneven, and the L0 layer is initialized well. This may not be done, and it is preferable to improve this point.
本発明は、 上述のような改善すべき点に鑑みてなされたものであり、 記録層を 含む各層を均一に初期化し得る多層記録層型光記録媒体の初期化方法を提供する ことを主目的とする。 また、 記録層を含む各層を均一に初期化し得る多層記録層 型光記録媒体の初期化装置を提供することを他の主目的とする。 The present invention has been made in view of the above points to be improved, and has as its main object to provide a method of initializing a multilayer recording layer type optical recording medium capable of uniformly initializing each layer including a recording layer. And Also, a multilayer recording layer capable of uniformly initializing each layer including the recording layer. It is another main object to provide an apparatus for initializing a type optical recording medium.
この発明に係る多層記録層型光記録媒体の初期化方法は、 光照射によつて初期 ィ匕される記録層をそれぞれ含む複数の層 LN, L (N- 1 ) , · · · , L 2, L The method for initializing a multilayer recording layer type optical recording medium according to the present invention comprises a plurality of layers LN, L (N-1),..., L2 each including a recording layer which is initialized by light irradiation. , L
1, L O (Nは 1以上の整数) が基材の一面側にこの順序で積層されると共に当 該各層間にスぺーサ層が形成される多層記録層型光記録媒体における前記複数の 層の内の 1つの層 LM (N≥M≥ 1 ) に対して、 当該層 LMにおける前記基材側 の面に隣接する前記スぺーサ層の厚みを TH (μ ιη) としたときに下記式を満た す開口数 NA (Numerical Aperture) の対物レンズを用いて前記層 L 0側から光 照射して初期化する。 The plurality of layers in a multilayer recording layer type optical recording medium in which 1, LO (N is an integer of 1 or more) are laminated in this order on one surface side of a base material and a spacer layer is formed between the respective layers. For one of the layers LM (N≥M≥1), when the thickness of the spacer layer adjacent to the surface on the substrate side in the layer LM is defined as TH (μιη), Is initialized by irradiating light from the layer L0 side using an objective lens having a numerical aperture NA (Numerical Aperture) that satisfies the following conditions.
THXNA≥ 9  THXNA≥ 9
また、 この発明に係る多層記録層型光記録媒体の初期化装置は、 光照射によつ て初期化される記録層をそれぞれ含む複数の層 LN, L (N- 1 ) , · · ., L 2, L 1 , L 0 (Nは 1以上の整数) が基材の一面側にこの順序で積層されると 共に当該各層間にスぺーサ層が形成される多層記録層型光記録媒体における前記 複数の層の内の 1つの層 LM (N≥M≥ 1 ) に対して、 前記層 L 0側から光照射 して初期化する対物レンズを備えた多層記録層型光記録媒体の初期化装置であつ て、 前記対物レンズは、 前記層 LMにおける前記基材側の面に隣接する前記スぺ ーサ層の厚みを TH (μ ηι) としたときに下記式を満たす開口数 NAに規定され て構成されている。  The apparatus for initializing a multilayer recording layer type optical recording medium according to the present invention includes a plurality of layers LN, L (N-1),..., Each including a recording layer initialized by light irradiation. L2, L1, L0 (N is an integer of 1 or more) are laminated in this order on one surface side of a substrate, and a spacer layer is formed between the respective layers. Of the multilayer recording layer type optical recording medium including an objective lens for irradiating one of the plurality of layers LM (N≥M≥1) with light from the layer L0 side and initializing the same. Wherein the objective lens has a numerical aperture NA that satisfies the following equation when the thickness of the spacer layer adjacent to the surface of the layer LM on the substrate side is TH (μηι). It is stipulated and configured.
THXNA≥ 9  THXNA≥ 9
この多層記録層型光記録媒体の初期化方法および初期化装置では、 層 LMの初 期化に際して、 この層 LMにおける基材側の面に隣接するスぺーサ層の厚みを T H (μ νη) としたときに、 式 (ΤΗΧΝΑ≥ 9) を満たす開口数 Ν Αの対物レン ズを用いて層 L 0側から光照射して初期化することにより、 このスぺーサ層を挟 んで隣接する層 L (M+ 1) からの反射光による影響を低減できるため、 層 LM 内を均一に初期化することができる。 したがって、 信頼性の高い初期化済みの多 層記録層型光記録媒体を製造することができる。 According to the initialization method and the initialization apparatus for the multilayer recording layer type optical recording medium, when the layer LM is initialized, the thickness of the spacer layer adjacent to the substrate side surface of the layer LM is set to TH (μνη) By using an objective lens with a numerical aperture を 満 た す を 満 た す that satisfies the equation (ΤΗΧΝΑ≥9), the layer L 0 is irradiated with light to initialize the layer, and the layer adjacent to the spacer layer is sandwiched. Since the influence of the reflected light from L (M + 1) can be reduced, the inside of the layer LM can be initialized uniformly. Therefore, a reliable initialized A layer recording layer type optical recording medium can be manufactured.
この発明に係る多層記録層型光記録媒体の初期化方法は、 光照射によって初期 化される記録層をそれぞれ含む複数の層 LN, L (N— 1) , · · · , L 2, L The method for initializing a multilayer recording layer type optical recording medium according to the present invention includes a plurality of layers LN, L (N-1),..., L2, L2 each including a recording layer initialized by light irradiation.
1, L O (Nは 1以上の整数) が基材の一面側にこの順序で積層されると共に当 該各層間にスぺーサ層が形成される多層記録層型光記録媒体における前記複数の 層の内の 1つの層 LM (N≥M≥ 1 ) に対して、 開口数 NAが値 0. 55以上の 対物レンズを用いて前記層 L 0側から光照射して初期化する。 1, LO (N is an integer of 1 or more) is laminated on one surface side of the base material in this order, and a spacer layer is formed between the layers. One of the layers LM (N≥M≥1) is initialized by irradiating light from the layer L0 side with an objective lens having a numerical aperture NA of 0.55 or more.
また、 この発明に係る多層記録層型光記録媒体の初期化装置は、 光照射によつ て初期化される記録層をそれぞれ含む複数の層 LN, L (N- 1) , · · · , L 2, L 1 , L 0 (Nは 1以上の整数) が基材の一面側にこの順序で積層されると 共に当該各層間にスぺーサ層が形成される多層記録層型光記録媒体における前記 複数の層の内の 1つの層 LM (N≥M≥ 1) に対して、 前記層 L0側から光照射 して初期化する対物レンズを備えた多層記録層型光記録媒体の初期化装置であつ て、 前記対物レンズは、 開口数 NAが値 0. 55以上に規定されて構成されてい る。  The apparatus for initializing a multilayer recording layer type optical recording medium according to the present invention includes a plurality of layers LN, L (N-1),..., Each including a recording layer initialized by light irradiation. L2, L1, L0 (N is an integer of 1 or more) are laminated in this order on one surface side of a base material, and a spacer layer is formed between the respective layers. Initialization of a multilayer recording layer type optical recording medium including an objective lens for irradiating one layer LM (N≥M≥1) of the plurality of layers from the layer L0 side and initializing the same. In the apparatus, the objective lens has a numerical aperture NA defined to have a value of 0.55 or more.
この多層記録層型光記録媒体の初期化方法および初期化装置では、 層 LMの初 期化に際して、 開口数 NAが値 0. 55以上の対物レンズを用いて層 L 0側から 光照射することにより、 スぺーサ層を挟んで隣接する層からの反射光による影響 を低減できるため、 記録層を含む層 LMを均一に初期化することができる。 した がって、 信頼性の高い初期化済みの多層記録層型光記録媒体を製造することがで きる。  In the initialization method and the initialization apparatus for the multilayer recording layer type optical recording medium, when the layer LM is initialized, light is irradiated from the layer L0 side using an objective lens having a numerical aperture NA of 0.55 or more. Thus, the influence of the reflected light from the layer adjacent to the spacer layer can be reduced, so that the layer LM including the recording layer can be uniformly initialized. Therefore, a highly reliable initialized multi-layer recording layer type optical recording medium can be manufactured.
なお、 本開示は、 2001年 10月 1 5日に出願された日本特許出願である特 願 2001— 31 6 126に含まれた主題に関連し、 これらの開示の全てはここ に参照事項として明白に組み込まれる。 図面の簡単な説明 図 1は、 L 1層および L 0層が形成された光記録媒体 1 1を初期化する際の初 期化方法を説明するための説明図である。 This disclosure relates to the subject matter included in Japanese Patent Application No. 2001-316126 filed on October 15, 2001, and all of these disclosures are expressly incorporated herein by reference. Incorporated in BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is an explanatory diagram for explaining an initialization method for initializing the optical recording medium 11 on which the L1 layer and the L0 layer are formed.
図 2は、 L 1層および L 0層が形成された光記録媒体 1 1を初期化する初期化 装置 Mの構成を示す構成図である。  FIG. 2 is a configuration diagram showing a configuration of an initialization apparatus M for initializing the optical recording medium 11 on which the L1 layer and the L0 layer are formed.
図 3は、 異なる開口数 NAの各種対物レンズを使用して L 0層に対する初期化 の良否を確認した際の実験結果図である。  FIG. 3 is a diagram showing experimental results when the initialization of the L0 layer was confirmed using various objective lenses having different numerical apertures NA.
図 4は、 L 2層、 L 1層および L 0層が形成された光記録媒体 4 1を初期化す る際の初期化方法を説明するための説明図である。  FIG. 4 is an explanatory diagram for explaining an initialization method for initializing the optical recording medium 41 on which the L2 layer, the L1 layer, and the L0 layer are formed.
図 5は、 1つの記録層 4が形成された光記録媒体 1の概略構成を示す断面図で ある。  FIG. 5 is a cross-sectional view showing a schematic configuration of the optical recording medium 1 on which one recording layer 4 is formed.
図 6は、 L 1層および L 0層が形成された光記録媒体 1 1の概略構成を示す断 面図である。  FIG. 6 is a cross-sectional view showing a schematic configuration of the optical recording medium 11 on which the L1 layer and the L0 layer are formed.
図 7は、 L 1層および L 0層が形成された光記録媒体 1 1を初期化する際の発 明者が既に実施している初期化方法を説明するための説明図である。 発明を実施するための最良の形態  FIG. 7 is an explanatory diagram for explaining an initialization method that is already performed by the inventor when initializing the optical recording medium 11 on which the L1 layer and the L0 layer are formed. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る多層記録層型光記録媒体の初期化方 法の好適な実施の形態について説明する。 なお、 前述した光記録媒体 1 , 1 1と 同一構造の構成要素については、 同一の符号を付して重複した説明を省略する。 図 1 , 6に示すように、 本発明に係る多層記録層型光記録媒体の初期化方法に よって記録層が初期化される光記録媒体 1 1は、 基材 2の微細凹凸形成面 (同図 中の上面) 側に、 L 1層、 スぺーサ層 1 2、 スぺーサ層 1 2に隣接する L 0層、 およびカバー層 5が順次積層されて構成されている。  Hereinafter, preferred embodiments of a method for initializing a multilayer recording layer type optical recording medium according to the present invention will be described with reference to the accompanying drawings. Note that components having the same structure as the above-described optical recording media 1 and 11 are denoted by the same reference numerals, and redundant description will be omitted. As shown in FIGS. 1 and 6, the optical recording medium 11 in which the recording layer is initialized by the method for initializing a multilayer recording layer type optical recording medium according to the present invention has a fine uneven surface on the base material 2 (see FIG. On the (upper surface in the figure) side, an L 1 layer, a spacer layer 12, an L 0 layer adjacent to the spacer layer 12, and a cover layer 5 are sequentially laminated.
次に、 本発明に係る光記録媒体 1 1の初期化装置 Mについて、 図 2を参照して 説明する。  Next, an initialization device M for the optical recording medium 11 according to the present invention will be described with reference to FIG.
初期化装置 Mは、 スピンドルモータ MT、 ピックアップ P U、 スピンドルサー ボ S P S、 送りサーボ TR S、 フォーカストラッキングサーボ FT Sおよび制御 部 CNTを備えている。 この場合、 スピンドルモータ MTは、 後述するようにス ピンドルサーボ S P Sによって駆動制御され、 光記録媒体 1 1を線速度一定の条 件で回転させる。 Initializer M is a spindle motor MT, pickup PU, spindle server It has SPS, feed servo TR S, focus tracking servo FTS, and control unit CNT. In this case, the spindle motor MT is driven and controlled by a spindle servo SPS as described later, and rotates the optical recording medium 11 at a constant linear velocity.
ピックアップ PUは、 レーザー出射部およびレーザー受光部が一体化されて構 成され、 制御部 CNTの制御下でレーザードライバによってレーザー (共に図示 せず) が駆動されて光記録媒体 1 1に対して、 初期化パワーに設定されたレーザ 一ビーム L INを光記録媒体 1 1に出射する。 また、 ピックアップ PUは、 対物レ ンズ 3 1およびハーフミラー (図示せず) を備え、 初期化用レーザービーム L IN を光記録媒体 1 1の L 1層、 L 0層に集光させる。 具体的には、 フォーカストラ ッキングサーボ FT Sによって対物レンズ 3 1がフォーカストラッキング制御さ れ、 これにより、 初期化用レーザービーム L INが光記録媒体 1 1の L 1層、 L 0 層に集光させられる。 この場合、 対物レンズ 3 1は、 光記録媒体 1 1におけるス ぺーサ層 1 2の厚みを TH (μ τη) としたときに、 下記 (1) 式を満たす開口数 ΝΑに規定されて構成されている。  The pickup PU has a laser emitting section and a laser receiving section integrated with each other, and a laser (not shown) is driven by a laser driver under the control of the control section CNT, and the optical recording medium 11 The laser beam LIN set to the initialization power is emitted to the optical recording medium 11. Further, the pickup PU includes an objective lens 31 and a half mirror (not shown), and focuses the initialization laser beam L IN on the L 1 layer and the L 0 layer of the optical recording medium 11. Specifically, the objective lens 31 is subjected to focus tracking control by the focus tracking servo FTS, whereby the initialization laser beam LIN is focused on the L1 and L0 layers of the optical recording medium 11. Can be In this case, when the thickness of the spacer layer 12 in the optical recording medium 11 is defined as TH (μτη), the objective lens 31 is configured to have a numerical aperture を 満 た す that satisfies the following equation (1). ing.
ΤΗΧΝΑ≥ 9 ( 1 )  ΤΗΧΝΑ≥ 9 (1)
一般的には、 スぺーサ層 1 2の厚み ΤΗは、 上述したように 2 0 μ πι程度、 最 低でも 1 6. 5 μ πι以上に設定される。 したがって、 対物レンズ 3 1として、 ス ぺーサ層 1 2を例えば 1 6. 5 μ ηの厚みで形成したときであっても上記 (1 ) 式を満足するように開口数 ΝΑが値 0. 5 5のタイプを使用する。 また、 スぺー サ層 1 2を 1 3 μ ηιという薄い厚みで形成したときには、 上記 (1 ) 式を満足す るように開口数 ΝΑが値 0. 7のタイプを使用する。 また、 このピックアップ Ρ Uは、 光記録媒体 1 1の直径方向に沿ってその内周側と外周側との間を送りサー ボ TR Sによって往復動させられる。  Generally, the thickness ΤΗ of the spacer layer 12 is set to about 20 μπι, as described above, and at least 16.5 μπι or more. Therefore, even when the spacer layer 12 is formed as the objective lens 31 with a thickness of, for example, 16.5 μη, the numerical aperture ΝΑ has a value of 0.5 so as to satisfy the above equation (1). Use 5 types. When the spacer layer 12 is formed with a small thickness of 13 μηι, a type having a numerical aperture ΝΑ of 0.7 to satisfy the above equation (1) is used. The pickup U is reciprocated by a feed servo TRS between the inner peripheral side and the outer peripheral side thereof along the diameter direction of the optical recording medium 11.
スピンドルサーボ S P Sは、 制御部 C Ν Τの制御下で光記録媒体 1 1の線速度 が一定速度となるようにスピンドルモータ ΜΤの回転を制御する。 制御部 C NT は、 ピックアップ PU、 スピンドルサーボ S PS、 送りサーボ TRSおよびフォ 一カストラッキングサーボ FT Sの駆動を制御する。 The spindle servo SPS controls the rotation of the spindle motor よ う such that the linear velocity of the optical recording medium 11 becomes constant under the control of the control unit C Ν Τ. Control unit C NT Controls the drive of the pickup PU, the spindle servo SPS, the feed servo TRS, and the focus tracking servo FTS.
次に、 光記録媒体 1 1の初期化方法について、 図 1を参照して説明する。 なお 、 初期化を除く光記録媒体 1 1の製造方法は、 前述した製造方法に従って製造さ れるため、 その説明を省略する。  Next, a method of initializing the optical recording medium 11 will be described with reference to FIG. Note that the method of manufacturing the optical recording medium 11 except for initialization is manufactured according to the above-described manufacturing method, and a description thereof will be omitted.
まず、 制御部 C NTは、 スピンドルサーボ S PSを制御してスピンドルモータ MTを駆動し、 線速度が一定速度となるように光記録媒体 1 1を回転させる。 次 いで、 制御部 C NTは、 送りサーボ TRSを制御することによってピックアップ PUを初期化開始位置に移動させると共に、 フォーカストラッキングサーボ FT Sを制御することにより、 光記録媒体 1 1に対して、 その焦点位置が L 1層に一 致するように対物レンズ 31を位置決めする。 その後、 制御部 C NTは、 送りサ ーボ T R Sおよびフォーカストラツキンダサーボ F T Sを制御することにより、 ピックアップ P Uを例えば内周側から外周側に向けて移動させながら、 初期化用 レーザービームし INをカバー層 5側から L 1層に照射して最初に記録層 4を含む L 1層を初期化する。  First, the control unit CNT controls the spindle servo SPS to drive the spindle motor MT, and rotates the optical recording medium 11 so that the linear velocity becomes constant. Next, the control unit CNT moves the pickup PU to the initialization start position by controlling the feed servo TRS, and controls the focus tracking servo FTS to control the optical recording medium 11. Position the objective lens 31 so that the focal position matches the L1 layer. After that, the control unit CNT controls the feed servo TRS and the focus tracking servo FTS, thereby moving the pickup PU from, for example, the inner circumference to the outer circumference, and performing an initializing laser beam to perform IN. The L1 layer including the recording layer 4 is first initialized by irradiating the L1 layer from the cover layer 5 side.
次に、 制御部 CNTは、 その焦点位置が L 0層に一致するように対物レンズ 3 1を位置決めした後に、 初期化用レーザービーム L INを LO層に照射し、 L 1層 の場合と同様にして記録層 14を含む L 0層を初期化する。 この際に、 L0層に 照射された初期化用レーザービーム L INのうちの一部のレーザービーム LPEは、 図 1に示すように、 開口数 NAが値 0. 34の対物レンズ 21を使用したときと 同様にして、 L0層およびスぺーサ層 12を通過して L 1層に達する。 そして、 さらに L 1層に達したレーザービーム LPEの一部のレーザービーム LREが、 L 1 層 (特に L 1層内の反射層 3) によって反射されて L0層を照射する。 この場合 、 L 0層を照射したレーザービーム LREのスポッ ト径 D Iは、 対物レンズ 31の 開口数 NAが対物レンズ 21の開口数 NAよりも大きいため、 対物レンズ 21を 使用した際のスポット径 D Iよりも十分に大きくなる (図 1, 7参照) 。 つまり 、 対物レンズ 3 1を使用した際に L 1層によって反射されるレーザービーム LRE は十分に拡散される。 Next, the control unit CNT positions the objective lens 31 so that its focal position coincides with the L0 layer, and then irradiates the initialization laser beam LIN to the LO layer, as in the case of the L1 layer. Then, the L0 layer including the recording layer 14 is initialized. At this time, as shown in Fig. 1, an objective lens 21 with a numerical aperture NA of 0.34 was used for a part of the initialization laser beam L IN irradiated to the L0 layer, as shown in Fig. 1. As before, it passes through the L0 layer and the spacer layer 12 to reach the L1 layer. Then, a part of the laser beam LRE of the laser beam LPE that has reached the L 1 layer is reflected by the L 1 layer (in particular, the reflective layer 3 in the L 1 layer) to irradiate the L 0 layer. In this case, the spot diameter DI of the laser beam LRE irradiating the L0 layer is the spot diameter DI when the objective lens 21 is used because the numerical aperture NA of the objective lens 31 is larger than the numerical aperture NA of the objective lens 21. (See Figures 1 and 7). I mean The laser beam LRE reflected by the L1 layer when the objective lens 31 is used is sufficiently diffused.
したがつて、 初期化用レーザービーム L INのレーザ一パヮ一を一定値に規定し た場合、 L 0層の初期化の際に L 1層によって反射されて L 0層を照射する単位 面積当りのレーザービーム L REの照射量は、 対物レンズ 2 1を使用した際の単位 面積当りのレーザービーム LREの照射量よりも十分に低下する。 この結果、 対物 レンズ 3 1を使用しての初期化時において、 L 1層によって反射されたレーザー ビーム L REと L 0層に照射された初期化用レーザービーム L INとの間において上 記したスぺーサ層 1 2の膜厚ムラに起因する干渉が生じるが、 レーザービーム L REの照射エネルギーが拡散されて十分に小さくなるため、 L 0層で吸収される光 量が部分的に相違するという現象が生じない。 この結果、 L 0層において既に初 期化されている部分に対するレーザービーム LREの再照射に起因する結晶化状態 のムラの発生を回避することができるため、 L 0層を良好に初期化することがで さる。  Therefore, when the laser beam of the initialization laser beam L IN is specified to be a constant value, when the L 0 layer is initialized, it is reflected by the L 1 layer and irradiates the L 0 layer per unit area. The irradiation amount of the laser beam LRE is sufficiently lower than the irradiation amount of the laser beam LRE per unit area when the objective lens 21 is used. As a result, at the time of initialization using the objective lens 31, the above description was made between the laser beam L RE reflected by the L 1 layer and the initialization laser beam L IN irradiated to the L 0 layer. The interference caused by the unevenness of the thickness of the spacer layer 12 occurs, but the irradiation energy of the laser beam L RE is diffused and sufficiently reduced, so that the amount of light absorbed by the L 0 layer is partially different. Phenomenon does not occur. As a result, it is possible to avoid the occurrence of unevenness in the crystallization state due to the re-irradiation of the laser beam LRE to the already initialized portion of the L 0 layer. There is a monkey.
なお、 発明者は、 スぺーサ層 1 2の厚み T Hを一定値 (2 0 μ πι) に規定し、 かつ、 異なる開口数 Ν Αの各種対物レンズを使用して L 0層に対する初期化の良 否を確認した。 図 3は、 この実験結果を示す。 この実験結果によれば、 開口数 Ν Αが値 0 . 4 5以下の対物レンズを使用して初期化した場合には、 その初期化状 態がすべて不良となることを確認した。 一方、 開口数 N Aが値 0 . 5 5以上の対 物レンズを使用して初期化した場合には、 初期化状態がすべて良好となることを 確認した。 したがって、 対物レンズの開口数 N Aを値 0 . 5 5以上に設定する限 り、 記録層 1 4を含む L 0層および記録層 4を含む L 1層を常に良好に初期化す ることができる。 また、 スぺーサ層 1 2の厚み T Hが最低でも 1 6 . 5 in以上 に規定されることを考慮した場合、 対物レンズの開口数 N Aを値 0 . 5 5以上に 設定する限り、 常に上記 (1 ) 式が成立する。 したがって、 光記録媒体 1 1を初 期化する際に、 開口数 N Aが値 0 . 5 5以上の対物レンズを使用する限り、 L 1 層および L 0層の初期化を良好に行うことができ、 この結果、 信頼性の高い初期 化済みの多層記録層型光記録媒体を製造することができる。 また、 1 3 /ζ πιとい う薄い厚みでスぺーサ層 1 2を形成することを考慮した場合、 開口数 N Aが値 0 . 7のタイプを使用する限り上記 (1 ) 式が成立するため、 開口数 N Aが値 0 . 7以上の対物レンズを使用する限り、 L 1層および L 0層の初期化を常に良好に 行うことができる。 The inventor has specified the thickness TH of the spacer layer 12 to be a constant value (20 μπι) and used various objective lenses having different numerical apertures の to initialize the L 0 layer. Pass / fail was confirmed. Figure 3 shows the results of this experiment. According to the results of this experiment, it was confirmed that when the numerical aperture Ν 初期 was initialized using an objective lens having a value of 0.45 or less, all of the initialized states were defective. On the other hand, it was confirmed that when the objective lens was initialized using an objective lens having a numerical aperture NA of 0.55 or more, all the initialized states were good. Therefore, as long as the numerical aperture NA of the objective lens is set to a value of 0.55 or more, the L0 layer including the recording layer 14 and the L1 layer including the recording layer 4 can always be properly initialized. Also, considering that the thickness TH of the spacer layer 12 is specified to be at least 16.5 inches or more, as long as the numerical aperture NA of the objective lens is set to a value of 0.55 or more, the above value is always set. Equation (1) holds. Therefore, when the optical recording medium 11 is initialized, as long as an objective lens with a numerical aperture NA of 0.55 or more is used, L 1 The layer and the L0 layer can be satisfactorily initialized, and as a result, a highly-reliable initialized multilayer recording layer type optical recording medium can be manufactured. Also, considering that the spacer layer 12 is formed with a small thickness of 13 / ζπι, the above equation (1) is satisfied as long as the type having a numerical aperture NA of 0.7 is used. As long as an objective lens having a numerical aperture NA of 0.7 or more is used, the L1 layer and the L0 layer can always be properly initialized.
このように、 この初期化方法および初期化装置によれば、 開口数 N Aが値 0 . 5 5の対物レンズ 3 1を使用して L 0層を初期化することにより、 L 0層よりも 下層 (入射光に対して遠い層) に位置する L 1層による初期化用レーザービーム L INの反射に起因する初期化ムラの発生を回避することができる。 したがって、 基材 2の一面側に反射層 3が形成されると共に初期化用レーザービーム L INの照 射方向に対して反射層 3の上層としてし 1層および L 0層が形成されている光記 録媒体 1 1を初期化する際に、 L 0層 (特に相変化材料層 4 b ) の結晶化状態を 均一化することができる結果、 L 1層の上層としての L 0層を確実かつ良好に初 期化することができる。  As described above, according to the initialization method and the initialization apparatus, the L0 layer is initialized using the objective lens 31 having a numerical aperture NA of 0.55, so that the lower layer than the L0 layer is formed. It is possible to avoid the occurrence of the initialization unevenness due to the reflection of the initialization laser beam L IN by the L 1 layer located in the (layer far from the incident light). Therefore, the light having the reflective layer 3 formed on one surface side of the base material 2 and the one layer and the L 0 layer formed as the upper layer of the reflective layer 3 with respect to the irradiation direction of the initialization laser beam L IN. When the recording medium 11 is initialized, the crystallization state of the L 0 layer (particularly, the phase change material layer 4 b) can be made uniform, so that the L 0 layer as the upper layer of the L 1 layer can be reliably and reliably formed. It can be initialized well.
なお、 本発明は、 上記した発明の実施の形態に限らず、 適宜変更することがで きる。 例えば、 図 4に示すように、 記録層を有する層が 3つ以上 (一例として記 録層 1 4をそれぞれ有する L 0層および L 1層、 並びに記録層 4を有する L 2層 ) 形成された光記録媒体 4 1における L 0層および L 1層の初期化にも適用する ことができる。 この場合、 光記録媒体 4 1は、 基材 2の一面側に、 光記録媒体 1 1における L 1層と同一構造の L 2層、 厚み T Hのスぺーサ層 1 2 (以下、 「下 層のスぺーサ層 1 2」 ともいう) 、 このスぺーサ層 1 2に隣接し光記録媒体 1 1 における L 0層とほぼ同一構造の L 1層、 下層のスぺーサ層 1 2とほぼ同一構造 のスぺーサ層 1 2、 このスぺーサ層 1 2に隣接し L 1層とほぼ同一構造の L 0層 、 およびカバー層 5がその順序で積層されて構成されている。  It should be noted that the present invention is not limited to the above-described embodiment of the invention, but can be appropriately modified. For example, as shown in FIG. 4, three or more layers having a recording layer were formed (for example, L0 and L1 layers each having a recording layer 14 and L2 layer having a recording layer 4). The present invention can also be applied to the initialization of the L0 layer and the L1 layer in the optical recording medium 41. In this case, the optical recording medium 41 is provided on one surface side of the base material 2 with an L2 layer having the same structure as the L1 layer in the optical recording medium 11 and a spacer layer 12 having a thickness of TH (hereinafter, referred to as “lower layer”). Layer 1 2) of the optical recording medium 11 adjacent to the spacer layer 12 and having substantially the same structure as the L 0 layer of the optical recording medium 11, and substantially the same as the lower spacer layer 12. A spacer layer 12 having the same structure, an L 0 layer adjacent to the spacer layer 12 and having substantially the same structure as the L 1 layer, and a cover layer 5 are stacked in this order.
この光記録媒体 4 1を初期化する際には、 下層のスぺーサ層 1 2の厚み T Hに 対して上記 (1) 式を満たす開口数 NAの対物レンズ 51を使用する。 この際に 、 L 2層、 L 1層および L 0層の順に初期化用レーザービーム LINを照射して、 記録層 4を含む L 2層、 記録層 14を含む L 1層、 および記録層 14を含む L 0 層を順次初期化する。 また、 各スぺーサ層 12が最低でも 16. 5 μπι以上の厚 み ΤΗに形成されているときには、 常に上記 (1) 式が成り立つ開口数 Ν Αが値 0. 55以上の対物レンズを対物レンズ 51に使用する。 When the optical recording medium 41 is initialized, the thickness TH of the lower spacer layer 12 must be On the other hand, an objective lens 51 with a numerical aperture NA satisfying the above equation (1) is used. At this time, the laser beam LIN for initialization is irradiated in order of the L2 layer, the L1 layer, and the L0 layer, and the L2 layer including the recording layer 4, the L1 layer including the recording layer 14, and the recording layer 14 are irradiated. Are sequentially initialized. When each spacer layer 12 is formed with a thickness 16. of at least 16.5 μπι, an objective lens having a numerical aperture が が that satisfies the above equation (1) and a value of 0.55 or more is always used. Used for lens 51.
この初期化方法によれば、 図 4に示すように、 L 1層の初期化に際して、 L 2 層によって反射されて L 1層を照射するレーザービーム LREのスポット径 D Iを 拡げることができるため、 L 1層に対するレーザービーム LREの単位面積当たり の照射量を十分に小さくすることができる。 したがって、 L 1層 (特に L 1層内 の相変化材料層 14 b) の結晶化状態を均一化することができる結果、 L 2層の 上層としての L 1層を確実かつ良好に初期化することができる。 また、 L 0層に 対する初期化に際しては、 L 2層 (特に L 2層内の反射層 3) によって反射され て L 0層を照射するレーザービーム LREのスポット径 D Iは、 L 1層に対する初 期化のときよりもさらに拡がることとなる。 このため、 レーザービーム LREの照 射による L0層における既に初期化された部分に対する影響は、 L 1層を初期化 するときよりもさらに低減される。 したがって、 L0層をさらに良好に初期化す ることができる。 さらに、 L 0層を初期化する場合、 L0層を通過した一部のレ 一ザ一ビーム LPEが L 1層によって反射されたとしても、 各スぺーサ層 12, 1 2の厚み THが同じであれば、 上記 (1) 式を満足する。 このため、 L 1層によ つて反射されるレーザービーム LREの影響を受けることなく L 0層を良好に初期 化することができる結果、 信頼性の高い初期化済みの多層記録層型光記録媒体を 製造することができる。 産業上の利用可能性  According to this initialization method, as shown in FIG. 4, when the L1 layer is initialized, the spot diameter DI of the laser beam LRE that is reflected by the L2 layer and irradiates the L1 layer can be increased. The irradiation amount per unit area of the laser beam LRE to the L1 layer can be sufficiently reduced. Therefore, the crystallization state of the L 1 layer (particularly, the phase change material layer 14 b in the L 1 layer) can be made uniform, so that the L 1 layer as the upper layer of the L 2 layer can be reliably and well initialized. be able to. When the L0 layer is initialized, the spot diameter DI of the laser beam LRE which irradiates the L0 layer by being reflected by the L2 layer (in particular, the reflective layer 3 in the L2 layer) is set to be the initial value for the L1 layer. It will be even more widespread than in the case of a period. Therefore, the influence of the laser beam LRE irradiation on the already initialized portion in the L0 layer is further reduced than when the L1 layer is initialized. Therefore, the L0 layer can be more properly initialized. Furthermore, when the L0 layer is initialized, the thickness TH of each spacer layer 12, 12 is the same even if some of the laser beam LPE passing through the L0 layer is reflected by the L1 layer. Then, the above expression (1) is satisfied. As a result, the L0 layer can be satisfactorily initialized without being affected by the laser beam LRE reflected by the L1 layer. As a result, a highly-reliable initialized multilayer recording layer type optical recording medium is obtained. Can be manufactured. Industrial applicability
以上のように、 この発明に係る多層記録層型光記録媒体の初期化方法および多 層記録層型光記録媒体の初期化装置によれば、 層 LMの初期化に際して、 この層 LMにおける基材側の面に隣接するスぺーサ層の厚みを TH (μπι) としたとき に、 式 (ΤΗΧΝΑ≥ 9) を満たす開口数 ΝΑの対物レンズを用いて層 L 0側か ら光照射して初期化することにより、 このスぺーサ層を挟んで隣接する層 L (Μ + 1) からの反射光による影響を低減できるため、 層 LM内を均一に初期化する ことができる。 したがって、 信頼性の高い初期化済みの多層記録層型光記録媒体 を製造することができる。 したがって、 記録層を含む各層を均一に初期化し得る 多層記録層型光記録媒体の初期化方法および多層記録層型光記録媒体の初期化装 置が実現される。 As described above, the method for initializing the multilayer recording layer type optical recording medium according to the present invention and the method for According to the apparatus for initializing a layer recording layer type optical recording medium, when the thickness of the spacer layer adjacent to the substrate-side surface of this layer LM is set to TH (μπι) when the layer LM is initialized, By initializing by irradiating light from the layer L0 side using an objective lens with a numerical aperture を 満 た す that satisfies the formula (ΤΗΧΝΑ≥9), the layer L (Μ + 1) adjacent to the spacer layer Since the influence of the reflected light from the LM can be reduced, the inside of the layer LM can be initialized uniformly. Therefore, it is possible to manufacture a highly-reliable initialized multilayer recording layer type optical recording medium. Therefore, an initialization method of a multilayer recording layer type optical recording medium and an initialization apparatus of a multilayer recording layer type optical recording medium which can uniformly initialize each layer including a recording layer are realized.

Claims

請求の範囲 The scope of the claims
1. 光照射によって初期化される記録層をそれぞれ含む複数の層 LN, L ( N— 1) , - - · , L 2, L I , L O (Nは 1以上の整数) が基材の一面側にこ の順序で積層されると共に当該各層間にスぺーサ層が形成される多層記録層型光 記録媒体における前記複数の層の内の 1つの層 LM (N≥M≥ 1 ) に対して、 当 該層 L Mにおける前記基材側の面に隣接する前記スぺーサ層の厚みを T H (/z m ) としたときに下記式を満たす開口数 N Aの対物レンズを用いて前記層 L 0側か ら光照射して初期化する多層記録層型光記録媒体の初期化方法。  1. Plural layers LN, L (N-1),--, L2, LI, LO (N is an integer of 1 or more) each including a recording layer initialized by light irradiation With respect to one layer LM (N≥M≥1) of the plurality of layers in a multilayer recording layer type optical recording medium in which the layers are stacked in this order and a spacer layer is formed between the respective layers. When the thickness of the spacer layer adjacent to the surface on the base material side of the layer LM is TH (/ zm), the objective lens having a numerical aperture NA that satisfies the following equation is used. Initialization method of a multilayer recording layer type optical recording medium which is initialized by irradiating light.
THXNA≥ 9  THXNA≥ 9
2. 光照射によって初期化される記録層をそれぞれ含む複数の層 LN, L ( 2. Multiple layers LN, L (including the recording layer initialized by light irradiation)
N— 1) , - - · , L 2, L I , L O (Nは 1以上の整数) が基材の一面側にこ の順序で積層されると共に当該各層間にスぺーサ層が形成される多層記録層型光 記録媒体における前記複数の層の内の 1つの層 LM (N≥M≥ 1 ) に対して、 開 口数 NAがィ直 0. 5 5以上の対物レンズを用いて前記層 L 0側から光照射して初 期化する多層記録層型光記録媒体の初期化方法。 N-1),--·, L2, LI, LO (N is an integer of 1 or more) are laminated in this order on one side of the base material, and a spacer layer is formed between the layers. With respect to one layer LM (N≥M≥1) of the plurality of layers in the multilayer recording layer type optical recording medium, the layer L is formed using an objective lens having an aperture NA of 0.55 or more. A method for initializing a multilayer recording layer type optical recording medium which is initialized by irradiating light from the 0 side.
3. 光照射によって初期化される記録層をそれぞれ含む複数の層 LN, L ( N- 1 ) , - - · , L 2, L I , L O (Nは 1以上の整数) が基材の一面側にこ の順序で積層されると共に当該各層間にスぺーサ層が形成される多層記録層型光 記録媒体における前記複数の層の内の 1つの層 LM (N≥M≥ 1 ) に対して、 前 記層 L 0側から光照射して初期化する対物レンズを備えた多層記録層型光記録媒 体の初期化装置であって、  3. Multiple layers LN, L (N-1),--, L2, LI, LO (N is an integer of 1 or more) each including the recording layer initialized by light irradiation With respect to one layer LM (N≥M≥1) of the plurality of layers in a multilayer recording layer type optical recording medium in which the layers are stacked in this order and a spacer layer is formed between the respective layers. An apparatus for initializing a multilayer recording layer type optical recording medium comprising an objective lens for initializing by irradiating light from the layer L0 side,
前記対物レンズは、 前記層 LMにおける前記基材側の面に隣接する前記スぺー サ層の厚みを TH (μ τη) としたときに下記式を満たす開口数 ΝΑに規定されて The objective lens has a numerical aperture を 満 た す that satisfies the following equation when the thickness of the spacer layer adjacent to the surface of the layer LM on the substrate side is TH (μτη).
V、る多層記録層型光記録媒体の初期化装置。 V. Initializer for multilayer recording layer type optical recording medium.
ΤΗΧΝΑ≥ 9  ΤΗΧΝΑ≥ 9
4. 光照射によって初期化される記録層をそれぞれ含む複数の層 LN, L ( N— 1) , · · · , L 2, L I, L 0 (Nは 1以上の整数) が基材の一面側にこ の順序で積層されると共に当該各層間にスぺーサ層が形成される多層記録層型光 記録媒体における前記複数の層の内の 1つの層 LM (N≥M≥ 1) に対して、 前 記層 L 0側から光照射して初期化する対物レンズを備えた多層記録層型光記録媒 体の初期化装置であって、 4. Multiple layers LN, L (including the recording layer initialized by light irradiation) N-1), · · ·, L2, LI, L0 (N is an integer of 1 or more) are stacked in this order on one side of the base material, and a spacer layer is formed between the respective layers. An objective lens for irradiating one of the plurality of layers LM (N≥M≥1) of the plurality of layers in the multi-layered recording medium with light from the layer L0 side to initialize the layer. An apparatus for initializing a multilayer recording optical recording medium, comprising:
前記対物レンズは、 開口数 NAが値 0. 55以上に規定されている多層記録層 型光記録媒体の初期化装置。  An initialization apparatus for a multilayer recording layer type optical recording medium, wherein the objective lens has a numerical aperture NA of not less than 0.55.
PCT/JP2002/010497 2001-10-15 2002-10-09 Method and apparatus for initializing multi-layered recording layer type optical recording medium WO2003034411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-316126 2001-10-15
JP2001316126A JP2005092902A (en) 2001-10-15 2001-10-15 Method for initializing multilayer recording layer type optical recording medium

Publications (1)

Publication Number Publication Date
WO2003034411A1 true WO2003034411A1 (en) 2003-04-24

Family

ID=19134183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010497 WO2003034411A1 (en) 2001-10-15 2002-10-09 Method and apparatus for initializing multi-layered recording layer type optical recording medium

Country Status (3)

Country Link
JP (1) JP2005092902A (en)
TW (1) TWI220986B (en)
WO (1) WO2003034411A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991700A (en) * 1995-09-25 1997-04-04 Sony Corp Method for initializing optical recording medium and initialization device used for the same
JP2001023236A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Optical information recording medium and its initialization method
JP2001250265A (en) * 2000-03-07 2001-09-14 Sony Corp Multilayer optical disk and its initializing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991700A (en) * 1995-09-25 1997-04-04 Sony Corp Method for initializing optical recording medium and initialization device used for the same
JP2001023236A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Optical information recording medium and its initialization method
JP2001250265A (en) * 2000-03-07 2001-09-14 Sony Corp Multilayer optical disk and its initializing method

Also Published As

Publication number Publication date
JP2005092902A (en) 2005-04-07
TWI220986B (en) 2004-09-11

Similar Documents

Publication Publication Date Title
US6456584B1 (en) Optical information recording medium comprising a first layer having a phase that is reversibly changeable and a second information layer having a phase that is reversibly changeable
JPH0991700A (en) Method for initializing optical recording medium and initialization device used for the same
JP2000036130A (en) Optical information recording medium, its recording and reproduction method, its production and optical information recording and reproducing device
US7787334B2 (en) Optical recording method on multilayer optical recording medium, optical recording apparatus, and multilayer optical recording medium
US7929390B2 (en) Optical recording method on multilayer optical recording medium and optical recording apparatus
US6278680B1 (en) Initial crystallization method of recording media and device thereof
TWI228714B (en) Optical information recording medium, method for manufacturing the same, and initialization device
TWI273579B (en) Method for reproducing information from optical recording medium, information reproducer, and optical recording medium
EP1542210B1 (en) Optical information recording medium and method for manufacturing the medium
JPWO2006049301A1 (en) Optical information recording medium, information recording / reproducing method thereof, and information recording / reproducing apparatus
KR101083199B1 (en) Method of recording information, information recording medium and manufacturing method of information recording medium
JP2005196942A (en) Optical information recording medium and its manufacturing method
EP1494219B1 (en) Optical information recording medium
WO2003034411A1 (en) Method and apparatus for initializing multi-layered recording layer type optical recording medium
JP5450423B2 (en) Information recording medium initialization method, information recording medium initialization apparatus, and information recording medium
JP4014942B2 (en) Optical information recording medium, method for manufacturing the same, and initialization apparatus
WO2003067582A1 (en) Method for initializing optical recording medium
WO2003071525A1 (en) Optical recording medium initialization method
JP3950014B2 (en) Initialization device and initialization method for phase change recording medium
JP2001273674A (en) Optical information recording medium, method for recording and reproducing the same, method for manufacturing that medium, and optical information recording and reproducing device
WO2003034421A1 (en) Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium
JP2005332489A (en) Initialization method and initialization device for multilayer record medium
JP3886634B2 (en) Method and apparatus for initializing information recording medium
JP2006031844A (en) Method and apparatus for initializing multi-layered recording medium
JP2006190423A (en) Optical recording and reproducing method, optical pickup apparatus, and optical recording and reproducing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP