JP3886634B2 - Method and apparatus for initializing information recording medium - Google Patents

Method and apparatus for initializing information recording medium Download PDF

Info

Publication number
JP3886634B2
JP3886634B2 JP07695598A JP7695598A JP3886634B2 JP 3886634 B2 JP3886634 B2 JP 3886634B2 JP 07695598 A JP07695598 A JP 07695598A JP 7695598 A JP7695598 A JP 7695598A JP 3886634 B2 JP3886634 B2 JP 3886634B2
Authority
JP
Japan
Prior art keywords
recording medium
beam spot
initialization
optical recording
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07695598A
Other languages
Japanese (ja)
Other versions
JPH11273071A (en
Inventor
靖 宮内
英司 佐保田
伸 松本
和弘 曽我
元康 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP07695598A priority Critical patent/JP3886634B2/en
Priority to TW88104634A priority patent/TW429369B/en
Publication of JPH11273071A publication Critical patent/JPH11273071A/en
Application granted granted Critical
Publication of JP3886634B2 publication Critical patent/JP3886634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はレーザ光等の記録用ビームによって情報を記録することが可能な情報の記録媒体の初期化方法及び装置に関するものである。
【0002】
【従来の技術】
結晶−非晶質間の相変化を利用して情報の記録を行う相変化型光ディスクにおいて,記録するレ−ザ照射時間とほぼ同じ程度の時間で結晶化が行える高速消去が可能な記録膜を用いた場合には,1つのエネルギ−ビ−ムのパワ−を,いずも読み出しパワ−レベルより高い2つのレベル,すなわち高いパワ−レベルと中間のパワ−レベルとの間で変化させることにより,既存の情報を消去しながら新しい情報を記録する,いわゆるオ−バ−ライト(重ね書きによる書き換え)が可能である。このような記録膜を真空蒸着法およびスパッタリング法などで形成した直後(as depo.状態)は少なくとも一部分が非晶質状態となっているか,または準安定な結晶状態となっている。このようなas depo.状態は通常,反射率が低く,オートフォーカスやトラッキングが不安定になりやすい。そこで,記録膜を予め初期化(初期結晶化)している。従来は,この初期化の手段の一つとして,特開平4−186530のように,例えば,出力1〜2Wの高出力レーザのビームを長円形の光スポットとして,その長手方向が記録媒体の半径方向にほぼ一致
するようにして照射し,記録膜を結晶化温度以上融点以下の温度範囲になるようして結晶化させていた。
【0003】
【発明が解決しようとする課題】
従来技術を用いて情報の記録媒体の初期化を行なった場合には,確実に初期結晶化させるために、初期化ビームの送り速度を遅くして記録媒体上の同一場所に多数回照射を行なう必要があった。その為にディスク全体の初期化に1分以上を要し、それでもビームスポットの重ねムラによる記録トラック上の反射率ムラが生じ結晶粒径のバラツキによると考えられる再生信号波形のジッター(ゆらぎ)が大きくなるという問題があった。
【0004】
本発明の目的は,上記従来技術における問題点を解決し,確実な初期結晶化を行うための情報の記録媒体の初期化装置を提供することにある。
【0005】
【課題を解決するための手段】
上述した従来技術における問題点を解決するために,本発明の初期化方法においては,所定の波長の高出力半導体レーザを用い、ビームスポットの長手方向が記録トラック方向に対して平行以外の角度をなすように配置し、その状態のままビームスポットを記録トラック方向に対してほぼ垂直方向に移動させながら初期化を行なう。たとえば、初期化しようとする領域の移動速度(ディスクの場合は線速度)が場所によらず一定の場合、ビームスポットの長手方向と記録トラック方向とが交わる角度を、ほぼ90度に配置して初期化を行なうことにより、最も短時間で行なえる。更に、本発明ではビームスポットの重なりによる反射率ムラを小さくするために、従来よりもビームの進行方向の幅を広くしている。このビームスポットの幅を広くする1つの方法として、幅方向に強度ピークが2つあるビームスポットを用いた。この場合、ビームスポットのパワーを記録媒体に時間的に前に照射されるピークのパワーの方を高くする方が、緩やかに熱が下がるため効果が大きい。この時、2つの強度ピークは、2つの別々のレーザからでたビームを用いても、1つのビームを2つのビームに分割してそれぞれを重ねあわせても、あるいは1つのビームの強度分布を変えることにより形成してもよい。
【0006】
ピーク間の距離は初期化しようとする材料で異なるが、あまり離しすぎるとパワー不足となり確実に初期化が行なえなくなる。通常は、ピーク間距離を3μm以下にする場合が多い。
【0007】
また、ディスク状の記録媒体において、回転数が一定の場合は、初期化しようとする半径が大きいほど、レーザのビームパワーを大きくしたり、ビームスポットの長手方向と記録トラック方向とが交わる角度を小さくしたり、あるいはパワーと角度の両方を変化させれば半径によらず良好な初期化が行える。また、場合によっては送りピッチを小さくすることも有効である。
【0008】
本発明に用いる初期化装置は,高出力の半導体レーザを搭載し,レーザから出射されたビームを記録膜付近に集光してビームスポットとする手段、 記録媒体を回転させる手段,初期化ビームを記録媒体に対して相対的に移動させる手段を少なくとも有し、前記手段に加えて、ビームスポットの幅方向に2つの光強度のピークを持たせる手段を有している。更に、ビームスポットの幅方向に2つの光強度のピークを持たせた時、記録媒体に時間的に前に照射されるピークのパワーを高くする手段を有していてもよいし、2つの光強度のピークの強度の比を可変できるようにしたり、2つの光強度のピーク間の距離を可変できるようにしてもよい。また、3つ以上の光強度のピークを持たせてもよい。
【0009】
本発明に用いる記録膜としては,高速結晶化が可能な結晶−非晶質相変化光記録膜や,非晶質−非晶質間変化を利用する記録膜,結晶系や結晶粒径の変化などの結晶−結晶間相変化記録膜が好ましいが,他の記録膜を用いてもよい。特に,Ge-Sb-Te系記録膜やAg-In-Sb-Te系記録膜などの相変化を利用した記録膜などを用いれば良い。また,記録膜中に主成分材料よりも高融点であるCr2Te3などの高融点材料を添加した記録膜,反射層を2層にした記録媒体などを用いれば,記録膜の流動による記録膜膜厚変化を抑制することができ好ましい。
【0010】
記録膜を初期結晶化させる際,基板上に記録膜等の各層を形成し,少なくとも例えば紫外線硬化樹脂の保護コートをした後で行う方が記録膜へのダメージが少なくて好ましい。特に,紫外線硬化樹脂の保護層を塗布した構造の光記録媒体と保護板とを紫外線硬化樹脂等の接着剤あるいはホットメルト法などにより密着貼りあわせを行なった後に行なうのが好ましい。また,前記光記録媒体同志の密着貼りあわせを行なって両面記録媒体とした後で両面に照射を行ってもよい。
【0011】
また記録膜を初期化する動作は,記録媒体のサーティファイ(読み出しによる欠陥検査)と同時,あるいはその前後に行えば良い。そして,記録膜を初期化する、あるいは融点の少し下まで昇温する上記の動作は,メーカーが記録媒体を製造した段階(製造方法に関する)で行えばよい。また,本発明は,ディスク状のみならず,カード状などの他の形態の記録媒体にも適用可能である。
【0012】
【発明の実施の形態】
以下、本発明の詳細を実施例を用いて説明する。
【0013】
図1は,本実施例に用いる案内溝を有する書き換え型光ディスクの構造断面図を示したものである。まず直径120mm,厚さ0.6mmの案内溝(トラックピッチ1.48μm,U字型溝)を有するポリカーボネート基板1上に,マグネトロンスパッタリング法によって厚さ約100nmのZnS−SiO 保護層2を形成した。次に、Ge2Sb2Te5の組成の記録膜3を約20nmの膜厚に形成した。次にZnS−SiO 中間層4を約20nmの膜厚に形成した。そして,更にSi層(第1反射層)5を80nm,Al−Ti層(第2反射層)6を約100nm形成した。これらの膜形成は同一スパッタリング装置内で順次行った。その後,この上に紫外線硬化樹脂層7を塗布した後,2液混合室温硬化型接着剤8で,同じ構造のもう一枚のディスクとの密着貼りあわせを行った。
【0014】
このようにして作製したディスクの初期化方法について図2を用いて説明する。本実施例では波長810nmの高出力半導体レーザ(最大出力1W)10から出たビームをコリメートレンズ11によりコリメート光とし、プリズム13で2つのビームに分割し、対物レンズ12により2つのビームスポット9を得る。まずディスクを10m/s一定(線速度一定)で回転させて記録膜に焦点が合うように制御してビームスポット9を照射した(照射パワー:850mW)。この時、ビームスポット9の長さ(ピークパワーの半値幅)は約50[μm]である。更に図3に示すようにビームスポット9の長径方向が記録トラック14方向に対してほぼ直交(90度)するようになっている。これにより、ディスク1回転で最も多くの領域の初期化が行なえるため、短時間でディスク全面を初期化することができる。ここでは、2つのピーク間距離を2μmとした。また、本実施例では、図4に示すように時間的に前に照射されるピークのパワー強度を高くした。これにより記録膜の温度がすばやく上昇しかつ最適温度で保てるため好ましい。次に、このビームスポット9を記録トラック14の方向に対して垂直方向(半径方向)へ移動させ、ディスク1回転でビームスポット9が移動する距離(送りピッチ)と初期化状態との関係を調べた。
【0015】

Figure 0003886634
これらの結果から、ビームスポット9の送りピッチを24μmに設定して初期化を行なったところ、ディスク全面にわたって均一な初期化ができた。
【0016】
ここで、全面初期化に要する時間を短縮するための一つの方法として、線速度を更に大きくすることが考えられる。すなわち、線速度が大きくすることによりビームスポット9の1回転あたりの半径方向への送り速度も早くなり、ディスク全面の初期化時間が短縮できる。今回の結果からは、記録媒体の線速度V[m/s]が、5≦V≦15の場合に、反射率の一周むらも少なく確実な初期化が行えた。
【0017】
ここでビームスポット9を長径方向が記録トラック14方向に対してほぼ直交(90度)するように配置したが、必ずしも90度である必要はない。
【0018】
本実施例では、ピーク強度が2つあるビームスポットを形成したが、ピーク強度が3つ以上あるビームスポットを形成しても良い。この場合も、ビームスポットの記録媒体に時間的に前に照射されるピークのパワーを高くした方が、早く最適温度に上がって保てるため効果が大きい。
【0019】
また、ディスク状の記録媒体において、回転数が一定の場合は、初期化しようとする半径が大きいほど、レーザのビームパワーを大きくしたり、ビームスポットの長手方向と記録トラック方向とが交わる角度を小さくしたり、あるいはパワーと角度の両方を変化させれば半径によらず良好な初期化が行える。また、場合によっては送りピッチを小さくすることも有効である。
【0020】
本実施例に用いる初期化装置は,高出力の半導体レーザを搭載し,レーザから出射されたビームを記録膜付近に集光してビームスポットとする手段、 記録媒体を回転させる手段,初期化ビームを記録媒体に対して相対的に移動させる手段を少なくとも有し、前記手段に加えて、ビームスポットの幅方向に2つの光強度のピークを持たせる手段を有している。更に、ビームスポットの幅方向に2つの光強度のピークを持たせた時、記録媒体に時間的に前に照射されるピークのパワーを高くする手段を有してもよいし、2つの光強度のピークの強度の比を可変できるようにしたり、2つの光強度のピーク間の距離を可変できるようにしてもよい。また、3つ以上の光強度のピークを持たせてもよい。
【0021】
【発明の効果】
本発明によれば,高出力半導体レーザを用い、複数のピークを重ねあわせることによってビームスポットの進行方向の幅を広くしたため、ビームスポットの重なりムラによる反射率ムラを防止することができた。
【図面の簡単な説明】
【図1】ディスク構造の断面図。
【図2】初期化装置の実施例。
【図3】初期化ビームの配置例。
【図4】初期化装置の実施例によるスポット強度分布。
【符号の説明】
1,1’ ポリカーボネート基板
2,2’ ZnS−SiO 誘電体層
3,3’ 記録膜(Ge2Sb2Te5)
4,4’ ZnS−SiO 誘電体層
5,5’ Si反射層
6,6’ Al−Ti合金反射層
7,7’ 紫外線硬化樹脂保護層
8 ホットメルト接着層
9 ビームスポット
10 半導体レーザ
11 コリメートレンズ
12 対物レンズ
13 プリズム
14 記録トラック[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for initializing an information recording medium capable of recording information by a recording beam such as a laser beam.
[0002]
[Prior art]
In a phase-change optical disk that records information using a phase change between crystal and amorphous, a recording film capable of high-speed erasing that can be crystallized in approximately the same time as the laser irradiation time to be recorded. When used, by changing the power of one energy beam between two levels that are both higher than the read power level, ie, between a high power level and an intermediate power level. So-called overwriting (rewriting by overwriting) is possible, in which new information is recorded while erasing existing information. Immediately after such a recording film is formed by a vacuum deposition method or a sputtering method (as depo. State), at least a part is in an amorphous state or a metastable crystalline state. In such an as depo. State, the reflectance is usually low, and autofocus and tracking tend to be unstable. Therefore, the recording film is initialized (initial crystallization) in advance. Conventionally, as one of means for this initialization, for example, as disclosed in Japanese Patent Laid-Open No. 4-186530, a high-power laser beam with an output of 1 to 2 W is used as an elliptical light spot whose longitudinal direction is the radius of the recording medium. Irradiation was performed so as to substantially coincide with the direction, and the recording film was crystallized so as to be in a temperature range between the crystallization temperature and the melting point.
[0003]
[Problems to be solved by the invention]
When the information recording medium is initialized by using the conventional technique, the initialization beam is slowed down and the same place on the recording medium is irradiated many times in order to ensure the initial crystallization. There was a need. Therefore, it takes more than 1 minute to initialize the entire disk. Even so, the unevenness of the reflectance on the recording track due to the non-uniformity of the beam spot is generated, and the jitter (fluctuation) of the reproduced signal waveform, which is considered to be caused by the variation of the crystal grain size. There was a problem of getting bigger.
[0004]
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide an information recording medium initialization apparatus for performing reliable initial crystallization.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems in the prior art, in the initialization method of the present invention, a high-power semiconductor laser having a predetermined wavelength is used, and the longitudinal direction of the beam spot is set to an angle other than parallel to the recording track direction. In this state, initialization is performed while moving the beam spot in a direction substantially perpendicular to the recording track direction. For example, if the moving speed of the area to be initialized (linear speed in the case of a disc) is constant regardless of location, the angle at which the longitudinal direction of the beam spot and the recording track direction intersect is arranged at approximately 90 degrees. By performing initialization, it can be performed in the shortest time. Furthermore, in the present invention, in order to reduce the reflectance unevenness due to the overlapping of the beam spots, the width in the traveling direction of the beam is made wider than before. As one method for increasing the width of the beam spot, a beam spot having two intensity peaks in the width direction was used. In this case, it is more effective to increase the power of the beam spot with the peak power irradiated to the recording medium in time, because the heat gradually decreases. At this time, the two intensity peaks can be obtained by using beams from two separate lasers, dividing one beam into two beams and overlapping each other, or changing the intensity distribution of one beam. May be formed.
[0006]
The distance between the peaks differs depending on the material to be initialized, but if it is too far away, the power becomes insufficient and the initialization cannot be surely performed. Usually, the distance between peaks is often 3 μm or less.
[0007]
In a disk-shaped recording medium, when the rotation speed is constant, the larger the radius to be initialized, the larger the beam power of the laser, or the angle at which the longitudinal direction of the beam spot intersects the recording track direction. If it is made smaller or both the power and the angle are changed, a good initialization can be performed regardless of the radius. In some cases, it is also effective to reduce the feed pitch.
[0008]
The initialization apparatus used in the present invention is equipped with a high-power semiconductor laser, means for converging the beam emitted from the laser near the recording film to form a beam spot, means for rotating the recording medium, and initialization beam. It has at least means for moving relative to the recording medium. In addition to the means, it has means for giving two light intensity peaks in the width direction of the beam spot. Further, when two light intensity peaks are provided in the width direction of the beam spot, the recording medium may have means for increasing the power of the peak irradiated in time before the recording medium. The ratio of the intensity peaks may be variable, or the distance between the two light intensity peaks may be variable. Moreover, you may give the peak of three or more light intensity.
[0009]
The recording film used in the present invention includes a crystal-amorphous phase change optical recording film capable of high-speed crystallization, a recording film utilizing the amorphous-amorphous change, a change in crystal system and crystal grain size. A crystal-to-crystal phase change recording film such as is preferred, but other recording films may be used. In particular, a recording film using phase change such as a Ge—Sb—Te based recording film or an Ag—In—Sb—Te based recording film may be used. If a recording film in which a high melting point material such as Cr2Te3 having a higher melting point than the main component material is added to the recording film or a recording medium having two reflective layers is used, the recording film thickness due to the flow of the recording film is used. The change can be suppressed, which is preferable.
[0010]
When the recording film is initially crystallized, it is preferable that each layer such as a recording film is formed on a substrate and at least, for example, a protective coating of an ultraviolet curable resin is applied, since the damage to the recording film is small. In particular, it is preferable that the optical recording medium having a structure coated with a protective layer of an ultraviolet curable resin and the protective plate are adhered and adhered by an adhesive such as an ultraviolet curable resin or a hot melt method. Alternatively, both surfaces of the optical recording medium may be irradiated and then irradiated onto both sides.
[0011]
The operation of initializing the recording film may be performed simultaneously with or before or after the certification (defect inspection by reading) of the recording medium. Then, the above-described operation of initializing the recording film or raising the temperature slightly below the melting point may be performed at the stage where the manufacturer manufactured the recording medium (related to the manufacturing method). Further, the present invention is applicable not only to a disk shape but also to other forms of recording media such as a card shape.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described using examples.
[0013]
FIG. 1 is a sectional view showing the structure of a rewritable optical disc having guide grooves used in this embodiment. First, a ZnS-SiO 2 protective layer 2 having a thickness of about 100 nm was formed by a magnetron sputtering method on a polycarbonate substrate 1 having a guide groove (track pitch: 1.48 μm, U-shaped groove) having a diameter of 120 mm and a thickness of 0.6 mm. . Next, a recording film 3 having a composition of Ge2Sb2Te5 was formed to a thickness of about 20 nm. Next, a ZnS—SiO 2 intermediate layer 4 was formed to a thickness of about 20 nm. Further, an Si layer (first reflective layer) 5 was formed to 80 nm, and an Al—Ti layer (second reflective layer) 6 was formed to about 100 nm. These films were formed sequentially in the same sputtering apparatus. Thereafter, an ultraviolet curable resin layer 7 was applied thereon, and then a two-component mixed room temperature curable adhesive 8 was adhered and adhered to another disk having the same structure.
[0014]
A method for initializing the disk thus manufactured will be described with reference to FIG. In this embodiment, a beam emitted from a high-power semiconductor laser (wavelength: 1 W) 10 having a wavelength of 810 nm is converted into two beams by a collimator lens 11 and divided into two beams by a prism 13, and two beam spots 9 are formed by an objective lens 12. obtain. First, the disk was rotated at a constant 10 m / s (constant linear velocity) and controlled so that the recording film was focused, and the beam spot 9 was irradiated (irradiation power: 850 mW). At this time, the length of the beam spot 9 (half-value width of peak power) is about 50 [μm]. Further, as shown in FIG. 3, the major axis direction of the beam spot 9 is substantially orthogonal (90 degrees) to the recording track 14 direction. As a result, the most area can be initialized by one rotation of the disk, so that the entire disk surface can be initialized in a short time. Here, the distance between the two peaks was 2 μm. In this example, as shown in FIG. 4, the power intensity of the peak irradiated before in time was increased. This is preferable because the temperature of the recording film rises quickly and can be maintained at the optimum temperature. Next, the beam spot 9 is moved in the direction perpendicular to the direction of the recording track 14 (radial direction), and the relationship between the distance (feed pitch) that the beam spot 9 moves by one rotation of the disk and the initialization state is examined. It was.
[0015]
Figure 0003886634
From these results, when initialization was performed with the feed pitch of the beam spots 9 set to 24 μm, uniform initialization could be achieved over the entire disk surface.
[0016]
Here, as one method for shortening the time required for the entire surface initialization, it is conceivable to further increase the linear velocity. That is, by increasing the linear velocity, the feed speed of the beam spot 9 in the radial direction per rotation is increased, and the initialization time of the entire disk surface can be shortened. From the result of this time, when the linear velocity V [m / s] of the recording medium is 5 ≦ V ≦ 15, there is little unevenness in the circumference of the reflectance, and the initialization can be performed reliably.
[0017]
Here, the beam spot 9 is arranged so that the major axis direction is substantially orthogonal (90 degrees) to the recording track 14 direction, but it is not necessarily 90 degrees.
[0018]
In this embodiment, a beam spot having two peak intensities is formed, but a beam spot having three or more peak intensities may be formed. Also in this case, it is more effective to increase the peak power that is irradiated to the recording medium of the beam spot earlier in time because the temperature can be quickly raised to the optimum temperature.
[0019]
In a disk-shaped recording medium, when the rotation speed is constant, the larger the radius to be initialized, the larger the beam power of the laser, or the angle at which the longitudinal direction of the beam spot intersects the recording track direction. If it is made smaller or both the power and the angle are changed, a good initialization can be performed regardless of the radius. In some cases, it is also effective to reduce the feed pitch.
[0020]
The initialization apparatus used in this embodiment is equipped with a high-power semiconductor laser, means for converging the beam emitted from the laser near the recording film to form a beam spot, means for rotating the recording medium, initialization beam And at least means for moving the recording medium relative to the recording medium, and in addition to the means, means for giving two light intensity peaks in the width direction of the beam spot. Further, when two light intensity peaks are provided in the width direction of the beam spot, there may be provided means for increasing the power of the peak irradiated on the recording medium in time, or the two light intensities. The ratio of the peak intensities may be variable, or the distance between the two light intensity peaks may be variable. Moreover, you may give the peak of three or more light intensity.
[0021]
【The invention's effect】
According to the present invention, since the width in the traveling direction of the beam spot is widened by using a high-power semiconductor laser and overlapping a plurality of peaks, it is possible to prevent uneven reflectance due to uneven overlapping of the beam spots.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a disk structure.
FIG. 2 shows an embodiment of an initialization apparatus.
FIG. 3 shows an arrangement example of initialization beams.
FIG. 4 is a spot intensity distribution according to an embodiment of the initialization apparatus.
[Explanation of symbols]
1, 1 'polycarbonate substrate 2, 2' ZnS-SiO dielectric layer 3, 3 'recording film (Ge2Sb2Te5)
4, 4 'ZnS-SiO Dielectric layer 5, 5' Si reflective layer 6, 6 'Al-Ti alloy reflective layer 7, 7' UV curable resin protective layer 8 Hot melt adhesive layer 9 Beam spot 10 Semiconductor laser 11 Collimating lens 12 Objective lens 13 Prism 14 Recording track

Claims (2)

高出力のビームを出射する半導体レーザと、該半導体レーザから出射したビームを記録膜に集光してビームスポットを形成するビームスポット形成手段と、前記光記録媒体を回転させる回転手段とを備える初期化装置を用い、前記ビーム照射によって情報の記録が可能な光記録媒体を記録可能な状態に初期化する初期化方法であって、
前記ビームスポット形成手段に、光記録媒体のトラック方向に隔離した2つの光強度ピークをもち、該光記録媒体のトラック方向と垂直な方向に延びる長径のビームスポットを形成させる機能と、前記隔離した長径のビームスポット間の距離を可変とする機能とを設け、
前記2つの光強度ピークをもつ長径のビームスポットを用いて初期化を行うことを特徴とする初期化方法。
An initial stage comprising: a semiconductor laser that emits a high-power beam; a beam spot forming unit that focuses the beam emitted from the semiconductor laser on a recording film to form a beam spot; and a rotating unit that rotates the optical recording medium An initialization method for initializing an optical recording medium capable of recording information by beam irradiation into a recordable state using a digitizing device,
The beam spot forming means has two light intensity peaks separated in the track direction of the optical recording medium and has a function of forming a long-diameter beam spot extending in a direction perpendicular to the track direction of the optical recording medium; With a function to change the distance between the beam spots of long diameter,
An initialization method comprising performing initialization using a beam spot having a long diameter having the two light intensity peaks.
高出力のビームを出射する半導体レーザと、該半導体レーザから出射したビームを記録膜に集光してビームスポットを形成するビームスポット形成手段と、前記光記録媒体を回転させる回転手段とを備え、前記ビーム照射によって情報の記録が可能な光記録媒体を記録可能な状態に初期化する初期化装置であって、
前記ビームスポット形成手段が、光記録媒体のトラック方向に隔離した2つの光強度ピークをもち、該光記録媒体のトラック方向と垂直な方向に延びる長径のビームスポットを形成させる機能と、前記隔離した長径のビームスポット間の距離を可変とする機能とを備えることを特徴とする初期化装置。
A semiconductor laser that emits a high-power beam, a beam spot forming unit that focuses the beam emitted from the semiconductor laser on a recording film to form a beam spot, and a rotating unit that rotates the optical recording medium, An initialization device for initializing an optical recording medium capable of recording information by beam irradiation into a recordable state,
The beam spot forming means has two light intensity peaks separated in the track direction of the optical recording medium, and has a function of forming a long-diameter beam spot extending in a direction perpendicular to the track direction of the optical recording medium; An initialization apparatus comprising a function of varying a distance between long-diameter beam spots.
JP07695598A 1998-03-25 1998-03-25 Method and apparatus for initializing information recording medium Expired - Fee Related JP3886634B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07695598A JP3886634B2 (en) 1998-03-25 1998-03-25 Method and apparatus for initializing information recording medium
TW88104634A TW429369B (en) 1998-03-25 1999-03-24 Device and method to initialize information record medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07695598A JP3886634B2 (en) 1998-03-25 1998-03-25 Method and apparatus for initializing information recording medium

Publications (2)

Publication Number Publication Date
JPH11273071A JPH11273071A (en) 1999-10-08
JP3886634B2 true JP3886634B2 (en) 2007-02-28

Family

ID=13620214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07695598A Expired - Fee Related JP3886634B2 (en) 1998-03-25 1998-03-25 Method and apparatus for initializing information recording medium

Country Status (2)

Country Link
JP (1) JP3886634B2 (en)
TW (1) TW429369B (en)

Also Published As

Publication number Publication date
JPH11273071A (en) 1999-10-08
TW429369B (en) 2001-04-11

Similar Documents

Publication Publication Date Title
US6278680B1 (en) Initial crystallization method of recording media and device thereof
EP1484751B1 (en) Method of recording information in optical recording medium, information recording apparatus, and optical recording medium
JP3886634B2 (en) Method and apparatus for initializing information recording medium
JP3625541B2 (en) Optical recording medium and recording / reproducing method
JP3277733B2 (en) Method and apparatus for recording optical information on optical disc
JP3575183B2 (en) Optical information recording medium, initialization method and initialization apparatus
US7203150B2 (en) Optical recording medium and its recording system
JPH07334845A (en) Method for initializing phase change optical disk
JP4014942B2 (en) Optical information recording medium, method for manufacturing the same, and initialization apparatus
US6692809B2 (en) Optical recording medium
JP2003272172A (en) Method and device for initializing optical disk
JP2001043577A (en) Initializing method and initializinig device for information recoding medium
JP4244090B2 (en) Optical information recording medium
JPH11161957A (en) Initializing method for information record medium and device therefor
JPH10289447A (en) Information recording medium, and initializing method and device for initializing the medium
JPH11134723A (en) Method and device for initializing information recording medium
JP3214183B2 (en) Optical information recording medium
JP4111164B2 (en) Optical recording medium and recording / reproducing method
JPH11219536A (en) Information recording medium initializing device
JPH09212918A (en) Information-recording medium and method and apparatus for initializing the medium
JP2006031844A (en) Method and apparatus for initializing multi-layered recording medium
JP2000090502A (en) Initialization device for phase transition optical recording medium and phase transition optical recording medium
JP2002092887A (en) Initializing method for optical recording medium, optical recording medium and initializing device
JP2000215531A (en) Method for initializing optical recording medium
JPH0729175A (en) Recording method of information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees