WO2003040785A1 - Optical element, method of manufacturing the optical element, optical system, exposure device, and method of manufacturing micro device - Google Patents

Optical element, method of manufacturing the optical element, optical system, exposure device, and method of manufacturing micro device Download PDF

Info

Publication number
WO2003040785A1
WO2003040785A1 PCT/JP2002/011478 JP0211478W WO03040785A1 WO 2003040785 A1 WO2003040785 A1 WO 2003040785A1 JP 0211478 W JP0211478 W JP 0211478W WO 03040785 A1 WO03040785 A1 WO 03040785A1
Authority
WO
WIPO (PCT)
Prior art keywords
light transmitting
transmitting member
optical element
annular member
optical
Prior art date
Application number
PCT/JP2002/011478
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Shibazaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003542368A priority Critical patent/JPWO2003040785A1/en
Publication of WO2003040785A1 publication Critical patent/WO2003040785A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Definitions

  • the present invention relates to an optical element, a method for manufacturing the same, an optical system, an exposure apparatus, and a method for manufacturing a micro device, and particularly to an exposure apparatus used when manufacturing a micro device such as a semiconductor element or a liquid crystal display element in a photolithography process.
  • the present invention relates to a projection optical system suitable for the present invention.
  • the pattern of a reticle as a mask is used as a substrate via a projection optical system in the photolithographic process for manufacturing semiconductor devices, imaging devices (such as CCDs), liquid crystal display devices, or thin-film magnetic heads.
  • a projection exposure apparatus is used to transfer the image onto each exposure area (each shot area) of a wafer (or glass plate, etc.).
  • the resolving power (resolution) required of the projection optical system has been increasing more and more, and the wavelength of the exposure light used has tended to become shorter and shorter. .
  • the present invention has been made in view of the above-described problems, and is an optical element capable of canceling out the influence of rotationally symmetric birefringence remaining in an optical system using a birefringent crystal material such as fluorite. And a method for producing the same.
  • the present invention includes an optical element capable of canceling the influence of rotationally symmetric birefringence, and can maintain good optical performance even when a birefringent crystal material such as fluorite is used, for example. It is an object to provide an optical system.
  • the present invention provides an exposure apparatus which has an optical system having good optical performance even when a birefringent crystal material such as fluorite is used, and is capable of performing high-resolution and high-precision exposure.
  • the purpose is to provide.
  • the present invention provides a microdevice manufacturing method capable of manufacturing a high-performance microdevice according to a high-resolution exposure technique using an exposure apparatus capable of performing high-resolution and high-precision exposure.
  • the purpose is to:
  • a light transmitting member In order to solve the above problems, in a first invention of the present invention, a light transmitting member,
  • An annular member having a coefficient of thermal expansion different from the coefficient of thermal expansion of the light transmitting member, and being disposed on the outer periphery of the light transmitting member;
  • a stress generating member that is disposed between the light transmitting member and the annular member and that generates stress on the light transmitting member due to a difference between a coefficient of thermal expansion of the light transmitting member and a coefficient of thermal expansion of the annular member;
  • the stress generating member fixes the outer periphery of the light transmitting member and the inner periphery of the annular member in an environment at a predetermined temperature different from the actual use temperature of the light transmitting member.
  • the annular member includes an inner ring fixed to the light transmitting member via the stress generating member, and a connecting member having flexibility in a radial direction of the inner ring. It is preferable to have a connected outer ring.
  • the stress generating member is an adhesive for fixing an outer periphery of the light transmitting member and an inner periphery of the annular member
  • the inner ring has an outer periphery of the light transmitting member and an inner periphery of the annular member.
  • Through hole for injecting adhesive between Is preferably formed.
  • a holding portion projecting outward from an outer peripheral surface of the outer ring with respect to a center of the outer ring is formed on an outer periphery of the outer ring.
  • the connecting member has a plurality of flexible members extending so as to circumscribe the inner ring.
  • the inner ring, the outer ring, and the plurality of flexible members are integrally formed.
  • the light transmitting member is a crystal optical member formed of a crystal belonging to a cubic system.
  • a light transmitting member and a positioning step of positioning the annular member having a thermal expansion coefficient different from the coefficient of thermal expansion of the light transmitting member and arranged on the outer periphery of the light transmitting member at predetermined positions,
  • the light transmitting member and the annular member are respectively floated and positioned using an air bearing.
  • the fixing step when the predetermined temperature is higher than the actual use temperature, an internal stress related to tension is generated in the light transmitting member.
  • an internal stress relating to compression is generated in the light transmitting member.
  • an optical system including a crystal optical member formed of a crystal belonging to a cubic system and the optical element of the first aspect.
  • an optical system according to a third aspect of the present invention for forming an image of a pattern formed on the mask on a photosensitive substrate.
  • the optical system according to the third aspect of the present invention for illuminating a mask, and a projection optical system for forming an image of a pattern formed on the mask on a photosensitive substrate.
  • An exposure apparatus is provided.
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus equipped with a projection optical system incorporating an optical element according to an embodiment of the present invention.
  • FIG. 2A is a diagram schematically showing a configuration of the optical element according to the present embodiment, and is a plan view.
  • FIG. 2B is a diagram schematically showing the configuration of the optical element according to the present embodiment, and shows a cross-sectional view along line A_A in FIG. 2A.
  • FIG. 3 is a view showing a state in which the light transmitting member and the inner ring are fixed to each other with an adhesive in the present embodiment.
  • FIG. 4A and FIG. 4B are views for explaining a method of manufacturing the optical element of the present embodiment.
  • FIG. 5 is a perspective view schematically showing an entire configuration of a mounting member for holding the optical element of the present embodiment and mounting the optical element on a lens barrel of a projection optical system.
  • FIG. 6 is a top view of the mounting member of FIG.
  • FIG. 7 is a sectional view taken along line BB of FIG.
  • FIG. 8 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 9 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • Burnett et al. In the above-mentioned publication disclosed a technique for reducing the effects of fluorite birefringence.
  • the optical axis of a pair of fluorite lenses is aligned with the crystal axis [1 1 1], and the pair of fluorite lenses are relatively rotated about the optical axis by about 60 degrees.
  • a birefringent region in which the refractive index for circumferentially polarized light is smaller than that for radially polarized light remains (in other words, rotationally symmetric with respect to the optical axis). Birefringence remains), but the effect of birefringence can be considerably reduced.
  • the present applicant discloses that the optical axis and the crystal axis [100] (or the crystal axis [100]) of a pair of fluorite lenses And a method in which a pair of fluorite lenses are relatively rotated about the optical axis by about 45 degrees.
  • birefringence that is rotationally symmetric with respect to the optical axis will remain to some extent due to the action of the pair lens of the crystal axis [100], but the effect of the birefringence can be considerably reduced. .
  • Japanese Patent Application Laid-Open Publication No. 2000-331927 discloses that a metal belt (a correction member) is provided around a parallel flat plate (correction member) in order to correct the influence of birefringence inherent in a crystal material.
  • a technique is disclosed in which a stress adjusting means is attached and a belt is tightened via screws to generate an internal stress in a parallel plane plate in an inward direction.
  • the friction between the parallel flat plate and the belt, the manufacturing error or processing accuracy of the outer peripheral surface of the parallel flat plate, or the manufacturing error or processing of the inner peripheral surface of the belt Due to accuracy and other factors, it is impossible to generate internal stress in a parallel flat plate that is rotationally symmetric and uniform with respect to the optical axis. Further, in the prior art, internal stress cannot be generated in the outward direction in the plane parallel plate.
  • An optical element includes a light transmitting member and an annular member disposed around the light transmitting member.
  • the coefficient of thermal expansion of the light transmitting member is set to be different from the coefficient of thermal expansion of the annular member.
  • the light transmitting member and the annular member are fixed to each other while being held in an environment at a predetermined temperature different from the actual use temperature.
  • the light transmitting member when the light transmitting member and the annular member fixed to each other return to the actual use temperature, the light transmitting member has an optical axis due to the difference between the thermal expansion coefficient of the light transmitting member and the thermal expansion coefficient of the annular member.
  • a substantially rotationally symmetric internal stress is generated.
  • the direction of the generated rotationally symmetric internal stress depends on the magnitude relationship between the coefficient of thermal expansion of the light transmitting member and the coefficient of thermal expansion of the annular member and the relationship between the predetermined temperature for fixing and the actual use temperature. I do.
  • the magnitude of the rotationally symmetric internal stress depends on the temperature difference between the predetermined fixing temperature and the actual operating temperature. Dependent.
  • the optical element of the present invention by appropriately setting the magnitude relationship of the coefficient of thermal expansion, the magnitude relationship of the temperature, and the temperature difference, the optical element is substantially rotationally symmetric with respect to the optical axis and has a desired direction and a desired size.
  • the internal stress having the light transmission member can be generated.
  • the effect of rotationally symmetric birefringence remaining in an optical system using a birefringent crystal material such as fluorite can be canceled.
  • the optical element of the present invention which can cancel the influence of rotationally symmetric birefringence, into an optical system, good optical performance can be ensured even when a birefringent crystal material such as fluorite is used. can do.
  • a birefringent crystal material such as fluorite
  • high-resolution and high-precision exposure can be performed.
  • a high-performance micro device can be manufactured according to a high-resolution exposure technique by using the exposure apparatus of the present invention capable of performing high-resolution and high-precision exposure.
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus equipped with a projection optical system incorporating an optical element according to an embodiment of the present invention.
  • the Z-axis is parallel to the reference optical axis AX of the projection optical system PL
  • the Y-axis is parallel to the plane of FIG. 1 in the plane perpendicular to the reference optical axis AX
  • the Z-axis is the reference optical axis AX.
  • the X axis is set perpendicular to the plane of Fig. 1 in a vertical plane.
  • the exposure apparatus shown in FIG. 1 as a light source LS for supplying illumination light in the ultraviolet region includes an F 2 laser light source (wavelength 1 5 7 nm).
  • the light emitted from the light source LS illuminates a reticle (mask) R on which a predetermined pattern is formed via an illumination optical system IL.
  • the optical path between the light source LS and the illumination optical system IL is sealed by a casing (not shown), and the space from the light source LS to the optical member closest to the reticle in the illumination optical system IL is exposed. It has been replaced with an inert gas such as helium gas or nitrogen, which is a gas with a low light absorption rate, or is kept almost in a vacuum state.
  • Reticle R is placed on reticle stage RS via reticle holder RH. It is held parallel to the XY plane.
  • the pattern to be transferred is formed on the reticle R. For example, a rectangular pattern having a long side along the X direction and a short side along the Y direction in the entire pattern area by the illumination optical system IL. The area is illuminated.
  • the reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer RIF using a reticle moving mirror RM. It is configured to be measured and position controlled.
  • a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL.
  • the wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer table (wafer holder) WT. Then, on the wafer W, a rectangular exposure area having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R.
  • a pattern image is formed on the substrate.
  • the wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer WIF using a wafer moving mirror WM. It is configured to be measured and position controlled.
  • the inside of the projection optical system PL is interposed between the optical member arranged closest to the reticle and the optical member arranged closest to the wafer among the optical members constituting the projection optical system PL.
  • the gas inside the projection optical system PL is replaced by an inert gas such as helium gas or nitrogen, or is maintained in a substantially vacuum state.
  • a reticle R and a reticle stage RS are disposed in a narrow optical path between the illumination optical system IL and the projection optical system PL, but a casing (not shown) that hermetically surrounds the reticle R and the reticle stage RS. ) Is filled with an inert gas such as nitrogen or helium gas, or is kept almost in a vacuum state. Note that a configuration may be adopted in which an inert gas is locally supplied only to an optical path portion between the illumination optical system IL and the projection optical system PL without providing a casing.
  • the narrow optical path between the projection optical system PL and the wafer W includes the wafer W and the wafer W.
  • a housing WS etc. is placed, but an inert gas such as nitrogen or helium gas is filled in a casing (not shown) that encloses the wafer W and the wafer stage WS etc. It is kept in a vacuum state.
  • an inert gas such as nitrogen or helium gas is filled in a casing (not shown) that encloses the wafer W and the wafer stage WS etc. It is kept in a vacuum state.
  • an inert gas is locally supplied only to the optical path portion between the projection optical system PL and the wafer W without providing casing is also possible.
  • an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source LS to the wafer W.
  • the illumination area on the reticle R and the exposure area on the wafer W (that is, the effective exposure area) defined by the projection optical system PL are rectangular with short sides along the Y direction. Therefore, while controlling the position of reticle R and wafer W using a drive system and an interferometer (RIF, WIF), etc., the reticle stage along the short side direction of the rectangular exposure area and illumination area, that is, along the Y direction.
  • RIF interferometer
  • the wafer W has a width equal to the long side of the exposure area and the wafer W
  • the reticle pan is scanned and exposed to an area having a length corresponding to the scanning amount (moving amount).
  • the projection optical system PL since one F 2 laser beam is used as the exposure light, the projection optical system PL includes a large number of fluorite lenses, but the paired lens with the crystal axis [1 1 1] and the crystal axis [1 [0 0], the effect of the birefringence of fluorite is significantly reduced. However, even if the crystal orientation of each fluorite lens is appropriately controlled, birefringence that is rotationally symmetric with respect to the optical axis will remain.By incorporating the optical element according to the present invention into the projection optical system PL, Excellent imaging performance is achieved by offsetting the effects of the remaining rotationally symmetric birefringence by the effects of rotationally symmetric birefringence generated by the internal stress of the optical element.
  • FIG. 2A is a diagram schematically showing a configuration of the optical element according to the present embodiment, and is a plan view.
  • FIG. 2B shows a cross-sectional view along the line AA in FIG. 2A.
  • the optical element of this embodiment includes a light transmissive member 1 having the property of transmitting F 2 laser light, the light transmitting member 1 And an annular member 2 disposed on the outer periphery of the ring.
  • the shape of the light transmitting member 1 is not limited to a biconcave shape as shown, but may be, for example, a meniscus shape, a biconvex shape, or a parallel plane shape.
  • the optical material forming the light transmitting member 1 is not limited to fluorite, but may be other suitable crystalline materials or quartz glass depending on the wavelength of light.
  • the annular member 2 includes an inner ring 2a fixed to the light transmitting member 1 and an outer ring connected to the inner ring 2a via a radially flexible connecting member of the inner ring 2a.
  • the connecting member has three plate-shaped flexible members 2c extending so as to circumscribe the inner ring 2a.
  • the flexible member 2c has both ends connected to the outer ring 2b, and a central portion connected to the inner ring 2a. Further, on the outer periphery of the outer ring 2b, a holding portion 2d protruding outward from the outer peripheral surface of the outer ring 2b is formed with respect to the center of the outer ring 2b.
  • the inner ring 2a, the outer ring 2b, and the three flexible members 2c are integrally formed of a suitable material such as aluminum or an alloy thereof, stainless steel, titanium, or brass. Is formed.
  • the coefficient of thermal expansion of the light transmitting member 1 and the coefficient of thermal expansion of the inner ring 2a (and the coefficient of thermal expansion of the annular member 2) are set to be different.
  • the light transmitting member 1 and the inner ring 2a (and, consequently, the annular member 2) are held in an environment at a predetermined temperature (for example, a high temperature or a low temperature relative to the normal temperature) different from the actual use temperature (for example, the normal temperature) of the optical element.
  • a predetermined temperature for example, a high temperature or a low temperature relative to the normal temperature
  • the adhesive is made of a material that suppresses the generation of organic substances and moisture that absorb exposure light.
  • FIG. 3 is a view showing a state in which the light transmitting member and the inner ring are fixed to each other with an adhesive in the present embodiment.
  • a through hole 3 for injecting an adhesive is provided between the outer periphery of the light transmitting member 1 and the inner periphery of the annular member 2 (therefore, the inner periphery of the inner ring 2a). 1 are formed at a predetermined pitch (that is, at equal angular intervals) along the circumferential direction of the inner ring 2a. Therefore, By injecting the adhesive through each through hole 31, the light transmitting member 1 and the annular member 2 can be evenly fixed in the circumferential direction.
  • the difference between the thermal expansion coefficient of the light transmitting member 1 and the thermal expansion coefficient of the annular member 2 causes A substantially rotationally symmetric internal stress is generated in the light transmitting member 1 with respect to the optical axis AX.
  • the thermal expansion coefficient of the light transmitting member 1 is higher than that of the annular member 2. The rate increases.
  • the thermal expansion coefficient of the annular member 2 is larger than that of the light transmitting member 1. growing.
  • the adhesive is disposed between the light transmitting member 1 and the annular member 2, and due to the difference between the coefficient of thermal expansion of the light transmitting member 1 and the coefficient of thermal expansion of the annular member 2, the adhesive is applied to the light transmitting member 1.
  • it constitutes a stress generating member that generates internal stress.
  • the fluctuation of the internal stress generated in the light transmitting member 1 does not become too large, and thus the fluctuation of the optical characteristics of the projection optical system PL becomes too large.
  • the circumferential rigidity (the product of the cross-sectional area and the elastic modulus) of the inner ring 2a must be kept small.
  • the inner ring 2a has a very thin annular plate shape, and it is preferable to provide a holding portion (projection) to be gripped when holding the optical element on the outer periphery of the inner ring 2a. Absent.
  • a structure for connecting the inner ring 2a and the outer ring 2b via a connecting member 2c having flexibility in the radial direction of the inner ring 2a Is adopted.
  • the contraction or expansion of the outer ring 2b causes the inner ring 2a (therefore, the light transmitting member). 1) is not substantially affected. Therefore, it is not necessary to keep the cross-sectional area of the outer ring 2b small, and as a result, it is possible to form the holding portion 2d on the outer periphery of the outer ring 2b.
  • FIG. 4A and FIG. 4B are diagrams illustrating the method for manufacturing the optical element of the present embodiment.
  • an air bearing having a support surface 41 a having a complementary surface shape to one optical surface 1 a of the light transmitting member 1 is used.
  • the unit 41 the light transmitting member 1 is floated and positioned.
  • the annular member 2 is lifted using an air bearing unit 42 having a supporting surface 42a having a complementary surface shape with respect to one side surface 2ba of the outer ring 2b constituting the annular member 2.
  • Position
  • the optical axis AX of the light transmitting member 1 and the center axis of the annular member 2 are aligned so that the light transmitting member 1 and the annular member 2 are aligned along the optical axis AX.
  • the light transmitting member 1 and the annular member 2 are positioned at predetermined positions in a non-contact manner.
  • the light transmitting member 1 and the annular member 2 positioned at predetermined positions are held in an environment at a predetermined temperature (for example, higher or lower than normal temperature) different from the actual use temperature.
  • a predetermined temperature for example, higher or lower than normal temperature
  • the outer periphery of the light transmitting member 1 and the inner periphery of the annular member 2 positioned at a predetermined position and held in an environment of a predetermined temperature are bonded through a through hole 31 formed in the inner ring 2a. It is fixed by injecting the agent.
  • FIG. 4B when the light transmitting member 1 and the annular member 2 fixed to each other return to the actual use temperature, the thermal expansion coefficients of the light transmitting member 1 and the annular member 2 are reduced.
  • FIG. 5 is a perspective view schematically showing an entire configuration of a mounting member for holding the optical element of the present embodiment and mounting the optical element on a lens barrel of a projection optical system.
  • FIG. 6 is a top view of the mounting member of FIG.
  • FIG. 7 is a cross-sectional view taken along line BB in FIG. Referring to FIGS. 5 to 7, the optical element of this embodiment (light transmitting member) 1 and the annular member 2) are held by a mounting member 50 and mounted on a lens barrel (not shown) of the projection optical system PL.
  • the attachment member 50 has a generally ring-shaped body 51.
  • the optical element (1, 2) of the present embodiment includes three spring groups arranged at a predetermined pitch (specifically, at equal angular intervals of 120 degrees) along the circumferential direction of the main body 51. It is attached to the attachment member 50 by the action of the solids 52a to 52c. Specifically, small seats (not shown) are provided at the positions of the three spring assemblies 52a to 52c, and formed on the outer ring 2b of the optical element on these three seats. The holder 2d is placed. At this time, the outer ring 2b and thus the optical element are prevented from being excessively restrained by the planar contact between the seat and the holding portion 2d.
  • the seat has a structure that allows the optical element to expand in the radial direction (horizontal direction), but has a predetermined rigidity in both the vertical and tangential directions, and has a high mounting rigidity with respect to the optical element. Have maintained.
  • the spring assemblies 52a to 52c directly and mechanically tighten the holding portion 2d of the optical element onto the seat, and a moment that may be generated due to a difference between the tightening force and the force of the seat. Are all removed.
  • This type of tightening mechanism includes a spring assembly
  • the light transmitting member 1 and the annular member 2 having different coefficients of thermal expansion are held in a high or low temperature environment different from the actual use temperature. They are fixed to each other. Therefore, when the light transmitting member 1 and the annular member 2 fixed to each other return to the actual use temperature, the thermal expansion coefficient of the light transmitting member 1 is reduced. Due to the difference between the thermal expansion coefficient of the annular member 2 and the thermal expansion coefficient, a substantially rotationally symmetric stress is generated in the light transmitting member 1 with respect to the optical axis AX.
  • an internal stress that is substantially rotationally symmetric with respect to the optical axis AX can be generated in the light transmitting member 2, so that the rotationally symmetric birefringence remaining in the projection optical system PL using fluorite is used.
  • a good imaging performance optical performance
  • An exposure apparatus equipped with a projection optical system PL that has good optical performance even when fluorite is used can perform high-resolution and high-precision exposure.
  • a calcium fluoride crystal (fluorite) is used as the birefringent optical material.
  • the present invention is not limited to this, and other uniaxial crystals, for example, a barium fluoride crystal (fluorite) may be used.
  • B aF 2 lithium fluoride crystal (L i F), sodium fluoride crystal (NaF), strontium fluoride crystal (S r F 2 ), beryllium fluoride crystal (B e F 2 ), etc.
  • other transparent crystal materials can be used.
  • barium fluoride crystals have already been developed for large crystal materials with diameters exceeding 20 Omm and are promising as lens materials.
  • the crystal axis orientation of the barium fluoride (BaF 2 ) or the like is also determined according to the present invention.
  • the light transmitting member 1 and the annular member 2 are fixed to each other with an adhesive.
  • the present invention is not limited to this.
  • the annular member 2 can be fixed.
  • the adhesive is injected through the plurality of through holes 31 provided at equal angular intervals in the inner ring 2a, but the number, shape, and arrangement of the through holes 31 Various modifications are possible. Further, an adhesive can be injected between the light transmitting member 1 and the annular member 2 without using the through hole 31.
  • the inner ring 2a, the outer ring 2b, and the three flexible members 2c are integrally formed of a metal material.
  • the inner ring 2a, the outer ring 2b, and the three flexible members 2c can also be formed separately.
  • a flexible member Various modifications are possible for the number and shape of 2 c and the material for forming the annular member 2.
  • the optical surface may be slightly deformed under the influence of the internal stress generated in the light transmitting member 1. Therefore, it is preferable to correct the optical surface by measuring the surface shape of the optical surface if necessary after manufacturing the optical element of the present embodiment, and performing polishing based on the measurement result.
  • the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step).
  • microdevices semiconductor devices, imaging devices, liquid crystal display devices, thin-film magnetic heads, etc.
  • FIG. 8 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. It will be described with reference to FIG.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the one lot of wafers.
  • the pattern image on the mask is sequentially exposed and transferred to each shot area on the one-port wafer via the projection optical system. Is done.
  • step 304 after the photoresist on the one lot of wafers is developed, in step 305, etching is performed on the one lot of wafers using the resist pattern as a mask. As a result, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput.
  • steps 301 to 305 a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed.
  • a resist may be applied on the silicon oxide film of the first step, and each step of exposure, development, etching and the like may be performed.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a photosensitive substrate eg, a glass substrate coated with a resist
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various processes such as a developing process, an etching process, a resist stripping process, etc., whereby a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process 402. I do.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, A color filter in which a set of three stripe filters of G and B are arranged in the horizontal scanning line direction is formed.
  • a cell assembling step 403 is performed.
  • the liquid crystal is formed using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. Assemble the panel (liquid crystal cell).
  • the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter set obtained in the color filter forming step 402 are formed. Liquid crystal is injected between them to manufacture liquid crystal panels (liquid crystal cells).
  • a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
  • the present invention is applied to the projection optical system mounted on the exposure apparatus.
  • the present invention is not limited to this, and the illumination optical system mounted on the exposure apparatus, The present invention can be applied to a general optical system.
  • the F 2 laser and one light source that supplies the light of the wavelength of 157 nm are used.
  • the present invention is not limited to this.
  • the light of the wavelength of 193 nm is supplied.
  • the wavelength of a r F excimer laser primary light source and 1 2 6 nm may be used as a r 2 laser light source for supplying.
  • the light transmitting member and the annular member set so as to have different coefficients of thermal expansion are fixed to each other in a state where they are held in an environment of a predetermined temperature different from the actual use temperature. Therefore, when the light transmitting member and the annular member fixed to each other return to the actual use temperature, the difference between the coefficient of thermal expansion of the light transmitting member and the coefficient of thermal expansion of the annular member causes the light transmitting member to have a different shape. A substantially rotationally symmetric stress is generated with respect to the optical axis. As a result, in the optical element of the present invention, the influence of rotationally symmetric birefringence remaining in an optical system using a birefringent crystal material such as fluorite can be canceled.
  • an optical system incorporating the optical element of the present invention which can cancel the influence of rotationally symmetric birefringence, good optical performance is ensured even when a birefringent crystal material such as fluorite is used. be able to.
  • an exposure apparatus equipped with the optical system of the present invention which has good optical performance even when a birefringent crystal material such as fluorite is used, can perform high-resolution and high-precision exposure.
  • a high-performance microdevice can be manufactured according to a high-resolution exposure technique.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An optical element capable of eliminating the effect of rotationally symmetrical double refraction remaining in an optical system using a double refractive crystal material such as fluorine, comprising a light transmitting member (1) and an annular member (2) having a thermal expansion coefficient different from that of the light transmitting member and disposed on the outer peripheral side of the light transmitting member, the annular member (2) further comprising an inner ring (2a) fixed to the light transmitting member (2) and an outer ring (2b) connected to the inner ring through connection members (2c) having a flexibility in the radial direction thereof, wherein the light transmitting member is fixed to the annular member in the environment of a specified temperature different from the actual use temperature of the light transmitting member.

Description

明 細 書 光学素子、 その製造方法、 光学系、 露光装置およびマイクロデバイスの製造方法  Description Optical element, method for manufacturing the same, optical system, exposure apparatus, and method for manufacturing microdevice
技術分野 Technical field
本発明は、 光学素子、 その製造方法、 光学系、 露光装置およびマイクロデバイ スの製造方法に関し、 特に半導体素子や液晶表示素子などのマイクロデバイスを フォトリソグラフィ工程で製造する際に使用される露光装置に好適な投影光学系 に関するものである。 背景技術  The present invention relates to an optical element, a method for manufacturing the same, an optical system, an exposure apparatus, and a method for manufacturing a micro device, and particularly to an exposure apparatus used when manufacturing a micro device such as a semiconductor element or a liquid crystal display element in a photolithography process. The present invention relates to a projection optical system suitable for the present invention. Background art
従来、 半導体素子、 撮像素子 (C C D等)、 液晶表示素子、 または薄膜磁気へ ッド等を製造するためのフォトリソグラフイエ程で、 マスクとしてのレチクルの パターンを、 投影光学系を介して基板としてのウェハ (またはガラスプレー卜 等) の各露光領域 (各ショット領域) に転写する投影露光装置が使用されている。 近年、 露光装置では、 半導体素子等の集積度の向上に伴って、 投影光学系に要 求される解像力 (解像度) が益々高まっており、 使用される露光光の波長は益々 短くなる傾向がある。 既に A r Fエキシマレーザ一を用いる露光装置が量産体制 に入りつつあり、 次世代露光装置では F 2レーザ一の使用も視野に入つてきてい る。 このような短波長域の光を供給する光源、 とりわけ F 2レーザ一光源を用い る露光装置においては、 透過率確保の観点から、 投影光学系を構成する光透過部 材 (レンズなど) に蛍石を用いることが避けられない。 Conventionally, the pattern of a reticle as a mask is used as a substrate via a projection optical system in the photolithographic process for manufacturing semiconductor devices, imaging devices (such as CCDs), liquid crystal display devices, or thin-film magnetic heads. A projection exposure apparatus is used to transfer the image onto each exposure area (each shot area) of a wafer (or glass plate, etc.). In recent years, with the increase in the degree of integration of semiconductor devices and the like, the resolving power (resolution) required of the projection optical system has been increasing more and more, and the wavelength of the exposure light used has tended to become shorter and shorter. . There is already an exposure apparatus that uses the A r F excimer laser one is entering a mass-production system, use of F 2 laser one also that have been entering a port in the field of view is the next generation exposure apparatus. Such short wavelength region of the light source for supplying light, especially in Ru exposure apparatus using F 2 laser primary light source, from the viewpoint of transmittance secured, firefly light transmitting member constituting the projection optical system (lens or the like) Using stones is inevitable.
ところで、 石英ガラス等とは異なり、 蛍石は立方晶系に属する結晶体であり、 入射光に対して無視できない量の複屈折が発生することがわかっている。 この場 合、 各蛍石レンズの結晶方位を管理することにより、 複屈析の影響を互いに打ち 消し、 ひいては複屈折の影響を抑制することが可能である。 しかしながら、 この ような管理対策を施しても、 光軸に関して回転対称な複屈折が残存することは避 けられない。 発明の開示 By the way, it is known that, unlike quartz glass, etc., fluorite is a crystal belonging to the cubic system and generates a considerable amount of birefringence for incident light. In this case, by controlling the crystal orientation of each fluorite lens, it is possible to negate the effects of birefringence with each other and thus suppress the effect of birefringence. However, even if such management measures are taken, birefringence that is rotationally symmetric with respect to the optical axis remains. Disclosure of the invention
本発明は、 前述の課題に鑑みてなされたものであり、 たとえば蛍石のような複 屈折性の結晶材料を用いた光学系に残存する回転対称な複屈折の影響を打ち消す ことのできる光学素子およびその製造方法を提供することを目的とする。  The present invention has been made in view of the above-described problems, and is an optical element capable of canceling out the influence of rotationally symmetric birefringence remaining in an optical system using a birefringent crystal material such as fluorite. And a method for producing the same.
また、 本発明は、 回転対称な複屈折の影響を打ち消すことのできる光学素子を 備え、 たとえば蛍石のような複屈折性の結晶材料を用いても良好な光学性能を確 保することのできる光学系を提供することを目的とする。  In addition, the present invention includes an optical element capable of canceling the influence of rotationally symmetric birefringence, and can maintain good optical performance even when a birefringent crystal material such as fluorite is used, for example. It is an object to provide an optical system.
さらに、 本発明は、 たとえば蛍石のような複屈折性の結晶材料を用いても良好 な光学性能を有する光学系を備え、 高解像で高精度な露光を行うことのできる露 光装置を提供することを目的とする。  Further, the present invention provides an exposure apparatus which has an optical system having good optical performance even when a birefringent crystal material such as fluorite is used, and is capable of performing high-resolution and high-precision exposure. The purpose is to provide.
また、 本発明は、 高解像で高精度な露光を行うことのできる露光装置を用いて、 高解像度の露光技術にしたがって高性能のマイクロデバイスを製造することので きるマイクロデバイス製造方法を提供することを目的とする。  Further, the present invention provides a microdevice manufacturing method capable of manufacturing a high-performance microdevice according to a high-resolution exposure technique using an exposure apparatus capable of performing high-resolution and high-precision exposure. The purpose is to:
前記課題を解決するために、 本発明の第 1発明では、 光透過部材と、  In order to solve the above problems, in a first invention of the present invention, a light transmitting member,
前記光透過部材の熱膨張率と異なる熱膨張率を有し、 前記光透過部材の外周に 配置された環状部材と、  An annular member having a coefficient of thermal expansion different from the coefficient of thermal expansion of the light transmitting member, and being disposed on the outer periphery of the light transmitting member;
前記光透過部材と前記環状部材との間に配置され、 前記光透過部材の熱膨張率 と前記環状部材の熱膨張率との違いにより、 前記光透過部材に対して応力を発生 させる応力発生部材とを備えていることを特徴とする光学素子を提供する。  A stress generating member that is disposed between the light transmitting member and the annular member and that generates stress on the light transmitting member due to a difference between a coefficient of thermal expansion of the light transmitting member and a coefficient of thermal expansion of the annular member; An optical element characterized by comprising:
第 1発明の好ましい態様によれば、 前記応力発生部材は、 前記光透過部材の実 使用温度と異なる所定温度の環境内で、 前記光透過部材の外周と前記環状部材の 内周とを固着する。 また、 前記環状部材は、 前記光透過部材に前記応力発生部材 を介して固着されたインナーリングと、 該インナーリングの径方向に可撓性を有 する連結部材を介して、 前記インナ一リングに連結されたアウターリングとを有 することが好ましい。 この場合、 前記応力発生部材は、 前記光透過部材の外周と 前記環状部材の内周とを固着する接着剤であり、 前記インナーリングには、 前記 光透過部材の外周と前記環状部材の内周との間に接着剤を注入するための貫通孔 が形成されていることが好ましい。 According to a preferred aspect of the first invention, the stress generating member fixes the outer periphery of the light transmitting member and the inner periphery of the annular member in an environment at a predetermined temperature different from the actual use temperature of the light transmitting member. . In addition, the annular member includes an inner ring fixed to the light transmitting member via the stress generating member, and a connecting member having flexibility in a radial direction of the inner ring. It is preferable to have a connected outer ring. In this case, the stress generating member is an adhesive for fixing an outer periphery of the light transmitting member and an inner periphery of the annular member, and the inner ring has an outer periphery of the light transmitting member and an inner periphery of the annular member. Through hole for injecting adhesive between Is preferably formed.
また、 第 1発明の好ましい態様によれば、 前記アウターリングの外周には、 前 記アウターリングの中心に対し、 該ァウタ一リングの外周面から外側に向かって 突出した保持部が形成されている。 さらに、 前記連結部材は、 前記インナーリン グに外接するように延びた複数の可撓性部材を有することが好ましい。 また、 前 記ィンナーリングと前記アウターリングと前記複数の可撓性部材とは一体的に形 成されていることが好ましい。 さらに、 前記光透過部材は、 立方晶系に属する結 晶で形成された結晶光学部材であることが好ましい。  According to a preferred aspect of the first invention, a holding portion projecting outward from an outer peripheral surface of the outer ring with respect to a center of the outer ring is formed on an outer periphery of the outer ring. . Further, it is preferable that the connecting member has a plurality of flexible members extending so as to circumscribe the inner ring. Further, it is preferable that the inner ring, the outer ring, and the plurality of flexible members are integrally formed. Further, it is preferable that the light transmitting member is a crystal optical member formed of a crystal belonging to a cubic system.
本発明の第 2発明では、 光学素子を製造する製造方法において、  According to a second aspect of the present invention, in the manufacturing method for manufacturing an optical element,
光透過部材と、 該光透過部材の熱膨張率と異なる熱膨張率を有し、 前記光透過 部材の外周に配置される環状部材とをそれぞれ所定位置に位置決めする位置決め 工程と、  A light transmitting member, and a positioning step of positioning the annular member having a thermal expansion coefficient different from the coefficient of thermal expansion of the light transmitting member and arranged on the outer periphery of the light transmitting member at predetermined positions,
前記所定位置に位置決めされた前記光透過部材および前記環状部材を、 前記光 透過部材の実使用温度と異なる所定温度の環境内で保持するための保持工程と、 前記所定位置に位置決めされ且つ前記所定温度の環境内で保持された前記光透 過部材の外周と前記環状部材の内周とを固着する固着工程とを含むことを特徴と する製造方法を提供する。  A holding step for holding the light transmitting member and the annular member positioned at the predetermined position in an environment at a predetermined temperature different from an actual use temperature of the light transmitting member; and And a fixing step of fixing the outer periphery of the light transmitting member and the inner periphery of the annular member held in a temperature environment.
第 2発明の好ましい態様によれば、 前記位置決め工程では、 エアベアリングを 用いて、 前記光透過部材および前記環状部材をそれぞれ浮上させて位置決めする。 また、 前記固着工程は、 前記所定温度が前記実使用温度に対して高い温度の場合、 前記光透過部材に引張に関する内部応力を発生させることが好ましい。 さらに、 前記固着工程は、 前記所定温度が前記実使用温度に対して低い温度の場合、 前記 光透過部材に圧縮に関する内部応力を発生させることが好ましい。  According to a preferred aspect of the second invention, in the positioning step, the light transmitting member and the annular member are respectively floated and positioned using an air bearing. Preferably, in the fixing step, when the predetermined temperature is higher than the actual use temperature, an internal stress related to tension is generated in the light transmitting member. Further, in the fixing step, when the predetermined temperature is lower than the actual use temperature, it is preferable that an internal stress relating to compression is generated in the light transmitting member.
本発明の第 3発明では、 立方晶系に属する結晶で形成された結晶光学部材と、 第 1発明の光学素子とを含むことを特徴とする光学系を提供する。  According to a third aspect of the present invention, there is provided an optical system including a crystal optical member formed of a crystal belonging to a cubic system and the optical element of the first aspect.
本発明の第 4発明では、 マスクを照明するための照明光学系と、  According to a fourth aspect of the present invention, there is provided an illumination optical system for illuminating a mask,
前記マスクに形成されたパターンの像を感光性基板上に形成するための第 3発 明の光学系とを備えていることを特徴とする露光装置を提供する。 本発明の第 5発明では、 マスクを照明するための第 3発明の光学系と、 前記マスクに形成されたパターンの像を感光性基板上に形成するための投影光 学系とを備えていることを特徴とする露光装置を提供する。 And an optical system according to a third aspect of the present invention for forming an image of a pattern formed on the mask on a photosensitive substrate. According to a fifth aspect of the present invention, there is provided the optical system according to the third aspect of the present invention for illuminating a mask, and a projection optical system for forming an image of a pattern formed on the mask on a photosensitive substrate. An exposure apparatus is provided.
本発明の第 6発明では、 第 4発明または第 5発明の露光装置を用いて前記マス クのデバイスパターンを前記感光性基板に露光する露光工程と、  In the sixth invention of the present invention, an exposure step of exposing the photosensitive substrate to a device pattern of the mask using the exposure apparatus of the fourth invention or the fifth invention,
前記露光工程により露光された前記感光性基板を現像する現像工程とを含むこ とを特徴とするデパイスの製造方法を提供する。 図面の簡単な説明  And a developing step of developing the photosensitive substrate exposed in the exposing step. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態にかかる光学素子が組み込まれた投影光学系の搭 載された露光装置の構成を概略的に示す図である。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus equipped with a projection optical system incorporating an optical element according to an embodiment of the present invention.
第 2 A図は、 本実施形態にかかる光学素子の構成を概略的に示す図であって、 平面図を示している。  FIG. 2A is a diagram schematically showing a configuration of the optical element according to the present embodiment, and is a plan view.
第 2 B図は、 本実施形態にかかる光学素子の構成を概略的に示す図であって、 第 2 A図における線 A _ Aに沿った断面図を示している。  FIG. 2B is a diagram schematically showing the configuration of the optical element according to the present embodiment, and shows a cross-sectional view along line A_A in FIG. 2A.
第 3図は、 本実施形態において光透過部材とインナ一リングとを接着剤により 互いに固着する様子を示す図である。  FIG. 3 is a view showing a state in which the light transmitting member and the inner ring are fixed to each other with an adhesive in the present embodiment.
第 4 A図および第 4 B図は、 本実施形態の光学素子の製造方法を説明する図で める。  FIG. 4A and FIG. 4B are views for explaining a method of manufacturing the optical element of the present embodiment.
第 5図は、 本実施形態の光学素子を保持して投影光学系の鏡筒に取り付けるた めの取付け部材の全体構成を概略的に示す斜視図である。  FIG. 5 is a perspective view schematically showing an entire configuration of a mounting member for holding the optical element of the present embodiment and mounting the optical element on a lens barrel of a projection optical system.
第 6図は、 第 5図の取付け部材の上面図である。  FIG. 6 is a top view of the mounting member of FIG.
第 7図は、 第 6図の線 B— Bに沿った断面図である。  FIG. 7 is a sectional view taken along line BB of FIG.
第 8図は、 マイクロデバイスとしての半導体デバイスを得る際の手法のフロ一 チャートである。  FIG. 8 is a flowchart of a method for obtaining a semiconductor device as a micro device.
第 9図は、 マイクロデバイスとしての液晶表示素子を得る際の手法のフローチ ヤー卜である。 発明を実施するための最良の形態 FIG. 9 is a flowchart of a method for obtaining a liquid crystal display element as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
200 1年 5月 1 5日に開かれたリソグラフィに関するシンポジユウム (2nd International Symposium on 157nm Lithography) において、 米国 N I S Tの John H. Burnett らにより、 蛍石には固有複屈折 (intrinsic birefringence) が存在することを実験および理論の両面から確認したことが発表された。 この発 表によれば、 蛍石の複屈折は、 結晶軸 [1 1 1] 方向 (およびこれと等価な結晶 軸)、 並びに結晶軸 [100] 方向 (およびこれと等価な結晶軸) ではほぼ零で あるが、 その他の方向では実質的に零でない値を有する。  200 At the 2nd International Symposium on 157nm Lithography held on May 15, 2001, John H. Burnett, NIST of the United States, found that fluorite has intrinsic birefringence. Was confirmed both experimentally and theoretically. According to this statement, the birefringence of fluorite is approximately the same in the crystal axis [1 1 1] direction (and its equivalent crystal axis) and in the crystal axis [100] direction (and its equivalent crystal axis). It is zero, but has a substantially non-zero value in the other directions.
Burnett らは上述の発表において、 蛍石の複屈折の影響を低減する手法を開示 している。 Burnett らの手法では、 一対の蛍石レンズの光軸と結晶軸 [1 1 1] とを一致させ、 且つ光軸を中心として一対の蛍石レンズを約 60度だけ相対的に 回転させる。 そして、 この結晶軸 [1 1 1] のペアレンズの作用により、 径方向 の偏光に対する屈折率よりも周方向の偏光に対する屈折率が小さい複屈折領域が 残る (換言すれば光軸に関して回転対称な複屈折が残る) ことになるが、 複屈折 の影響をかなり低減することができる。  Burnett et al. In the above-mentioned publication disclosed a technique for reducing the effects of fluorite birefringence. In the method of Burnett et al., The optical axis of a pair of fluorite lenses is aligned with the crystal axis [1 1 1], and the pair of fluorite lenses are relatively rotated about the optical axis by about 60 degrees. Then, due to the action of the pair lens with the crystal axis [1 1 1], a birefringent region in which the refractive index for circumferentially polarized light is smaller than that for radially polarized light remains (in other words, rotationally symmetric with respect to the optical axis). Birefringence remains), but the effect of birefringence can be considerably reduced.
一方、 本出願人は、 たとえば特願 200 1 -206935明細書および図面に おいて、 一対の蛍石レンズの光軸と結晶軸 [ 1 00] (または該結晶軸 [ 1 0 0] と光学的に等価な結晶軸) とを一致させ、 且つ光軸を中心として一対の蛍石 レンズを約 45度だけ相対的に回転させる手法を提案している。 本出願人の手法 においても、 この結晶軸 [100] のペアレンズの作用により、 光軸に関して回 転対称な複屈折はある程度残ることになるが、 複屈折の影響をかなり低減するこ とができる。  On the other hand, for example, in the specification and drawings of Japanese Patent Application No. 2001-206935, the present applicant discloses that the optical axis and the crystal axis [100] (or the crystal axis [100]) of a pair of fluorite lenses And a method in which a pair of fluorite lenses are relatively rotated about the optical axis by about 45 degrees. In the method of the present applicant, birefringence that is rotationally symmetric with respect to the optical axis will remain to some extent due to the action of the pair lens of the crystal axis [100], but the effect of the birefringence can be considerably reduced. .
前述したように、 たとえば露光光として F2レーザー光を用いる露光装置では、 多数の蛍石レンズを用いて投影光学系を構成することになる。 この場合、 Burnett らの手法にしたがう結晶軸 [1 1 1] のペアレンズや、 本出願人の手法 にしたがう結晶軸 [100] のペアレンズを用いることにより、 蛍石の複屈折の 影響をかなり低減することができる。 しかしながら、 各蛍石レンズの結晶方位を 上述のように管理しても、 光軸に関して回転対称な複屈折の影響は残存すること になる。 As described above, for example, in an exposure apparatus using the F 2 laser beam as the exposure light, so that the projection optical system using a number of fluorite lens. In this case, the influence of the birefringence of fluorite is considerably improved by using a paired lens with a crystal axis [1 1 1] according to the method of Burnett et al. And a paired lens with a crystal axis [100] according to the method of the present applicant. Can be reduced. However, even if the crystal orientation of each fluorite lens is managed as described above, the effect of rotationally symmetric birefringence with respect to the optical axis remains. become.
ところで、 光透過部材 (レンズ、 平行平面板など) において、 その光軸に関し て回転対称な内部応力を発生させると、 光透過部材を通過する光に対して、 光軸 に関して回転対称な複屈折が発生する。 したがって、 各蛍石レンズの結晶方位を 管理した後に残存する回転対称な複屈折の影響を、 回転対称な内部応力に起因し て発生する回転対称な複屈折 (残存する複屈折と符号が反対でほぼ同じ大きさを 有する複屈折) の影響で相殺することにより、 良好な光学性能を有する光学系を 実現することができる。  By the way, when an internal stress that is rotationally symmetric with respect to the optical axis is generated in a light transmitting member (a lens, a plane parallel plate, etc.), birefringence that is rotationally symmetric with respect to the optical axis is generated with respect to light passing through the light transmitting member. appear. Therefore, the influence of the rotationally symmetric birefringence remaining after managing the crystal orientation of each fluorite lens is considered to be the rotationally symmetric birefringence generated by the rotationally symmetric internal stress (the sign of the opposite birefringence is opposite to that of the remaining birefringence). By canceling out due to the influence of birefringence having substantially the same size, an optical system having good optical performance can be realized.
特開 2 0 0 0— 3 3 1 9 2 7号公報には、 結晶材料が本来的に有する複屈折の 影響を補正するために、 平行平面板 (補正部材) の周辺に金属製のベルト (応力 調整手段) を取り付け、 ネジを介してベルトを締め付けることにより、 平行平面 板において内側方向に内部応力を発生させる技術が開示されている。 しかしなが ら、 この公報に開示された従来技術では、 平行平面板とベルトとの間の摩擦、 平 行平面板の外周面の製造誤差または加工精度やベルトの内周面の製造誤差または 加工精度などに起因して、 光軸に関して回転対称な均一分布の内部応力を平行平 面板に発生させることはできない。 また、 従来技術では、 平行平面板において外 側方向に内部応力を発生させることはできない。  Japanese Patent Application Laid-Open Publication No. 2000-331927 discloses that a metal belt (a correction member) is provided around a parallel flat plate (correction member) in order to correct the influence of birefringence inherent in a crystal material. A technique is disclosed in which a stress adjusting means is attached and a belt is tightened via screws to generate an internal stress in a parallel plane plate in an inward direction. However, in the prior art disclosed in this publication, the friction between the parallel flat plate and the belt, the manufacturing error or processing accuracy of the outer peripheral surface of the parallel flat plate, or the manufacturing error or processing of the inner peripheral surface of the belt. Due to accuracy and other factors, it is impossible to generate internal stress in a parallel flat plate that is rotationally symmetric and uniform with respect to the optical axis. Further, in the prior art, internal stress cannot be generated in the outward direction in the plane parallel plate.
本発明の典型的な態様にしたがう光学素子は、 光透過部材と、 その外周に配置 された環状部材とを備えている。 ここで、 光透過部材の熱膨張率と環状部材の熱 膨張率とが異なるように設定されている。 そして、 光透過部材と環状部材とは、 実使用温度と異なる所定温度の環境内で保持された状態において互いに固着され ている。  An optical element according to a typical aspect of the present invention includes a light transmitting member and an annular member disposed around the light transmitting member. Here, the coefficient of thermal expansion of the light transmitting member is set to be different from the coefficient of thermal expansion of the annular member. The light transmitting member and the annular member are fixed to each other while being held in an environment at a predetermined temperature different from the actual use temperature.
したがって、 互いに固着された光透過部材と環状部材とが実使用温度に戻った とき、 光透過部材の熱膨張率と環状部材の熱膨張率との違いにより、 光透過部材 にはその光軸に関してほぼ回転対称な内部応力が発生する。 ここで、 発生した回 転対称な内部応力の向きは、 光透過部材の熱膨張率と環状部材の熱膨張率との大 小関係および固着を行う所定温度と実使用温度との大小関係に依存する。 また、 回転対称な内部応力の大きさは、 固着を行う所定温度と実使用温度との温度差に 依存する。 Therefore, when the light transmitting member and the annular member fixed to each other return to the actual use temperature, the light transmitting member has an optical axis due to the difference between the thermal expansion coefficient of the light transmitting member and the thermal expansion coefficient of the annular member. A substantially rotationally symmetric internal stress is generated. Here, the direction of the generated rotationally symmetric internal stress depends on the magnitude relationship between the coefficient of thermal expansion of the light transmitting member and the coefficient of thermal expansion of the annular member and the relationship between the predetermined temperature for fixing and the actual use temperature. I do. The magnitude of the rotationally symmetric internal stress depends on the temperature difference between the predetermined fixing temperature and the actual operating temperature. Dependent.
こうして、 本発明の光学素子では、 熱膨張率の大小関係、 温度の大小関係およ び温度差を適宜設定することにより、 光軸に関してほぼ回転対称で且つ所望の向 きおよび所望の大きさを有する内部応力を光透過部材に発生させることができる。 その結果、 たとえば蛍石のような複屈折性の結晶材料を用いた光学系に残存する 回転対称な複屈折の影響を打ち消すことができる。  Thus, in the optical element of the present invention, by appropriately setting the magnitude relationship of the coefficient of thermal expansion, the magnitude relationship of the temperature, and the temperature difference, the optical element is substantially rotationally symmetric with respect to the optical axis and has a desired direction and a desired size. The internal stress having the light transmission member can be generated. As a result, the effect of rotationally symmetric birefringence remaining in an optical system using a birefringent crystal material such as fluorite can be canceled.
したがって、 回転対称な複屈折の影響を打ち消すことのできる本発明の光学素 子を光学系に組み込むことにより、 たとえば蛍石のような複屈折性の結晶材料を 用いても良好な光学性能を確保することができる。 また、 たとえば蛍石のような 複屈折性の結晶材料を用いても良好な光学性能を有する本発明の光学系を露光装 置に搭載することにより、 高解像で高精度な露光を行うことができる。 さらに、 高解像で高精度な露光を行うことのできる本発明の露光装置を用いて、 高解像度 の露光技術にしたがって高性能のマイクロデバイスを製造することができる。 本発明の実施形態を、 添付図面に基づいて説明する。  Therefore, by incorporating the optical element of the present invention, which can cancel the influence of rotationally symmetric birefringence, into an optical system, good optical performance can be ensured even when a birefringent crystal material such as fluorite is used. can do. In addition, by mounting the optical system of the present invention having good optical performance even when a birefringent crystal material such as fluorite is used in an exposure apparatus, high-resolution and high-precision exposure can be performed. Can be. Furthermore, a high-performance micro device can be manufactured according to a high-resolution exposure technique by using the exposure apparatus of the present invention capable of performing high-resolution and high-precision exposure. An embodiment of the present invention will be described with reference to the accompanying drawings.
第 1図は、 本発明の実施形態にかかる光学素子が組み込まれた投影光学系の搭 載された露光装置の構成を概略的に示す図である。 なお、 第 1図において、 投影 光学系 P Lの基準光軸 AXに平行に Z軸を、 基準光軸 AXに垂直な面内において 第 1図の紙面に平行に Y軸を、 基準光軸 A Xに垂直な面内において第 1図の紙面 に垂直に X軸を設定している。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus equipped with a projection optical system incorporating an optical element according to an embodiment of the present invention. In FIG. 1, the Z-axis is parallel to the reference optical axis AX of the projection optical system PL, the Y-axis is parallel to the plane of FIG. 1 in the plane perpendicular to the reference optical axis AX, and the Z-axis is the reference optical axis AX. The X axis is set perpendicular to the plane of Fig. 1 in a vertical plane.
第 1図に示す露光装置は、 紫外領域の照明光を供給するための光源 L Sとして、 たとえば F 2レーザー光源 (波長 1 5 7 n m) を備えている。 光源 L Sから射出 された光は、 照明光学系 I Lを介して、 所定のパターンが形成されたレチクル (マスク) Rを照明する。 なお、 光源 L Sと照明光学系 I Lとの間の光路はケ一 シング (不図示) で密封されており、 光源 L Sから照明光学系 I L中の最もレチ クル側の光学部材までの空間は、 露光光の吸収率が低い気体であるヘリゥムガス や窒素などの不活性ガスで置換されているか、 あるいはほぼ真空状態に保持され ている。 The exposure apparatus shown in FIG. 1 as a light source LS for supplying illumination light in the ultraviolet region, for example, includes an F 2 laser light source (wavelength 1 5 7 nm). The light emitted from the light source LS illuminates a reticle (mask) R on which a predetermined pattern is formed via an illumination optical system IL. The optical path between the light source LS and the illumination optical system IL is sealed by a casing (not shown), and the space from the light source LS to the optical member closest to the reticle in the illumination optical system IL is exposed. It has been replaced with an inert gas such as helium gas or nitrogen, which is a gas with a low light absorption rate, or is kept almost in a vacuum state.
レチクル Rは、 レチクルホルダ R Hを介して、 レチクルステージ R S上におい て X Y平面に平行に保持されている。 レチクル Rには転写すべきパターンが形成 されており、 照明光学系 I Lにより、 たとえばパターン領域全体のうち X方向に 沿って長辺を有し且つ Y方向に沿って短辺を有する矩形状のパターン領域が照明 される。 レチクルステージ R Sは、 図示を省略した駆動系の作用により、 レチク ル面 (すなわち X Y平面) に沿って二次元的に移動可能であり、 その位置座標は レチクル移動鏡 R Mを用いた干渉計 R I Fによって計測され且つ位置制御される ように構成されている。 Reticle R is placed on reticle stage RS via reticle holder RH. It is held parallel to the XY plane. The pattern to be transferred is formed on the reticle R. For example, a rectangular pattern having a long side along the X direction and a short side along the Y direction in the entire pattern area by the illumination optical system IL. The area is illuminated. The reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer RIF using a reticle moving mirror RM. It is configured to be measured and position controlled.
レチクル Rに形成されたパターンからの光は、 投影光学系 P Lを介して、 感光 性基板であるウェハ W上にレチクルパターン像を形成する。 ウェハ Wは、 ウェハ テ一ブル (ウェハホルダ) WTを介して、 ウェハステージ W S上において X Y平 面に平行に保持されている。 そして、 レチクル R上での矩形状の照明領域に光学 的に対応するように、 ウェハ W上では X方向に沿って長辺を有し且つ Y方向に沿 つて短辺を有する矩形状の露光領域にパターン像が形成される。 ウェハステージ W Sは、 図示を省略した駆動系の作用によりウェハ面 (すなわち X Y平面) に沿 つて二次元的に移動可能であり、 その位置座標はウェハ移動鏡 WMを用いた干渉 計 W I Fによつて計測され且つ位置制御されるように構成されている。  Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL. The wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer table (wafer holder) WT. Then, on the wafer W, a rectangular exposure area having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R. A pattern image is formed on the substrate. The wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer WIF using a wafer moving mirror WM. It is configured to be measured and position controlled.
また、 図示の露光装置では、 投影光学系 P Lを構成する光学部材のうち最もレ チクル側に配置された光学部材と最もウェハ側に配置された光学部材との間で投 影光学系 P Lの内部が気密状態を保つように構成され、 投影光学系 P Lの内部の 気体はヘリウムガスや窒素などの不活性ガスで置換されているか、 あるいはほぼ 真空状態に保持されている。  In the exposure apparatus shown in the figure, the inside of the projection optical system PL is interposed between the optical member arranged closest to the reticle and the optical member arranged closest to the wafer among the optical members constituting the projection optical system PL. The gas inside the projection optical system PL is replaced by an inert gas such as helium gas or nitrogen, or is maintained in a substantially vacuum state.
さらに、 照明光学系 I Lと投影光学系 P Lとの間の狭い光路には、 レチクル R およびレチクルステージ R Sなどが配置されているが、 レチクル Rおよびレチク ルステージ R Sなどを密封包囲するケーシング (不図示) の内部に窒素やへリウ ムガスなどの不活性ガスが充填されているか、 あるいはほぼ真空状態に保持され ている。 なお、 ケーシングを設けずに、 照明光学系 I Lと投影光学系 P Lとの間 の光路部分のみに、 局所的に不活性ガスを供給する構成であってもよい。  Further, a reticle R and a reticle stage RS are disposed in a narrow optical path between the illumination optical system IL and the projection optical system PL, but a casing (not shown) that hermetically surrounds the reticle R and the reticle stage RS. ) Is filled with an inert gas such as nitrogen or helium gas, or is kept almost in a vacuum state. Note that a configuration may be adopted in which an inert gas is locally supplied only to an optical path portion between the illumination optical system IL and the projection optical system PL without providing a casing.
また、 投影光学系 P Lとウェハ Wとの間の狭い光路には、 ウェハ Wおよびゥェ ハステ一ジ W Sなどが配置されているが、 ゥェハ Wおよびウェハステージ W Sな どを密封包囲するケーシング (不図示) の内部に窒素やヘリウムガスなどの不活 性ガスが充填されているか、 あるいはほぼ真空状態に保持されている。 なお、 ケ 一シングを設けずに、 投影光学系 P Lとウェハ Wとの間の光路部分のみに、 局所 的に不活性ガスを供給する構成であってもよい。 このように、 光源 L Sからゥェ ハ Wまでの光路の全体に亘つて、 露光光がほとんど吸収されることのない雰囲気 が形成されている。 The narrow optical path between the projection optical system PL and the wafer W includes the wafer W and the wafer W. A housing WS etc. is placed, but an inert gas such as nitrogen or helium gas is filled in a casing (not shown) that encloses the wafer W and the wafer stage WS etc. It is kept in a vacuum state. Note that a configuration in which an inert gas is locally supplied only to the optical path portion between the projection optical system PL and the wafer W without providing casing is also possible. Thus, an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source LS to the wafer W.
上述したように、 投影光学系 P Lによって規定されるレチクル R上の照明領域 およびウェハ W上の露光領域 (すなわち実効露光領域) は、 Y方向に沿って短辺 を有する矩形状である。 したがって、 駆動系および干渉計 (R I F、 W I F ) な どを用いてレチクル Rおよびウェハ Wの位置制御を行いながら、 矩形状の露光領 域および照明領域の短辺方向すなわち Y方向に沿ってレチクルステージ R Sとゥ ェハステージ W Sとを、 ひいてはレチクル Rとウェハ Wとを同期的に移動 (走 查) させることにより、 ウェハ W上には露光領域の長辺に等しい幅を有し且つゥ ェハ Wの走査量 (移動量) に応じた長さを有する領域に対してレチクルパ夕一ン が走査露光される。  As described above, the illumination area on the reticle R and the exposure area on the wafer W (that is, the effective exposure area) defined by the projection optical system PL are rectangular with short sides along the Y direction. Therefore, while controlling the position of reticle R and wafer W using a drive system and an interferometer (RIF, WIF), etc., the reticle stage along the short side direction of the rectangular exposure area and illumination area, that is, along the Y direction. By moving (running) the RS and the wafer stage WS and, consequently, the reticle R and the wafer W synchronously, the wafer W has a width equal to the long side of the exposure area and the wafer W The reticle pan is scanned and exposed to an area having a length corresponding to the scanning amount (moving amount).
本実施形態では、 露光光として F 2レーザ一光を用いているので、 投影光学系 P Lは多数の蛍石レンズを備えているが、 結晶軸 [ 1 1 1 ] のペアレンズや結晶 軸 [ 1 0 0 ] のペアレンズをそれぞれ複数組用いることにより、 蛍石の複屈折の 影響はかなり低減されている。 しかしながら、 各蛍石レンズの結晶方位を適宜管 理しても光軸に関して回転対称な複屈折は残存することになるので、 本発明にし たがう光学素子を投影光学系 P Lに組み込むことにより、 残存する回転対称な複 屈折の影響を光学素子の内部応力に起因して発生する回転対称な複屈折の影響で 相殺して、 良好な結像性能を実現している。 In this embodiment, since one F 2 laser beam is used as the exposure light, the projection optical system PL includes a large number of fluorite lenses, but the paired lens with the crystal axis [1 1 1] and the crystal axis [1 [0 0], the effect of the birefringence of fluorite is significantly reduced. However, even if the crystal orientation of each fluorite lens is appropriately controlled, birefringence that is rotationally symmetric with respect to the optical axis will remain.By incorporating the optical element according to the present invention into the projection optical system PL, Excellent imaging performance is achieved by offsetting the effects of the remaining rotationally symmetric birefringence by the effects of rotationally symmetric birefringence generated by the internal stress of the optical element.
第 2 A図は、 本実施形態にかかる光学素子の構成を概略的に示す図であって、 平面図を示している。 また、 第 2 B図は、 第 2 A図における線 A— Aに沿った断 面図を示している。 第 2 A図および第 2 B図を参照すると、 本実施形態の光学素 子は、 F 2レーザー光を透過させる特性を有する光透過部材 1と、 光透過部材 1 の外周に配置された環状部材 2とから構成されている。 光透過部材 1の形状は、 図示のような両凹形状に限定されることなく、 たとえばメニスカス形状や両凸形 状や平行平面形状であってもよい。 また、 光透過部材 1を形成する光学材料は、 蛍石に限定されることなく、 他の適当な結晶材料や、 光の波長によっては石英ガ ラスなどを用いることもできる。 FIG. 2A is a diagram schematically showing a configuration of the optical element according to the present embodiment, and is a plan view. FIG. 2B shows a cross-sectional view along the line AA in FIG. 2A. With reference to 2 A view and a 2 B diagram, the optical element of this embodiment includes a light transmissive member 1 having the property of transmitting F 2 laser light, the light transmitting member 1 And an annular member 2 disposed on the outer periphery of the ring. The shape of the light transmitting member 1 is not limited to a biconcave shape as shown, but may be, for example, a meniscus shape, a biconvex shape, or a parallel plane shape. The optical material forming the light transmitting member 1 is not limited to fluorite, but may be other suitable crystalline materials or quartz glass depending on the wavelength of light.
環状部材 2は、 光透過部材 1に固着されたインナ一リング 2 aと、 インナーリ ング 2 aの径方向に可撓性を有する連結部材を介して、 インナーリング 2 aに連 結されたァウタ一リング 2 bとから構成されている。 ここで、 連結部材は、 イン ナーリング 2 aに外接するように延びた 3本のプレート状の可撓性部材 2 cを有 する。 この可撓性部材 2 cは、 その両端部の各々がァウタ一リング 2 bに連結さ れ、 かつその中央部がインナ一リング 2 aに連結される。 また、 アウターリング 2 bの外周には、 アウターリング 2 bの中心に対して、 アウターリング 2 bの外 周面から外側に向かって突出した保持部 2 dが形成されている。 なお、 インナ一 リング 2 aとアウターリング 2 bと 3本の可撓性部材 2 cとは、 たとえばアルミ ニゥムやその合金やステンレス鋼やチタンや真鍮 (しんちゅう) などの適当な材 料により一体的に形成されている。  The annular member 2 includes an inner ring 2a fixed to the light transmitting member 1 and an outer ring connected to the inner ring 2a via a radially flexible connecting member of the inner ring 2a. Ring 2b. Here, the connecting member has three plate-shaped flexible members 2c extending so as to circumscribe the inner ring 2a. The flexible member 2c has both ends connected to the outer ring 2b, and a central portion connected to the inner ring 2a. Further, on the outer periphery of the outer ring 2b, a holding portion 2d protruding outward from the outer peripheral surface of the outer ring 2b is formed with respect to the center of the outer ring 2b. The inner ring 2a, the outer ring 2b, and the three flexible members 2c are integrally formed of a suitable material such as aluminum or an alloy thereof, stainless steel, titanium, or brass. Is formed.
本実施形態では、 光透過部材 1の熱膨張率とインナーリング 2 aの熱膨張率 (ひいては環状部材 2の熱膨張率) とが異なるように設定されている。 そして、 光透過部材 1とインナ一リング 2 a (ひいては環状部材 2 ) とは、 光学素子の実 使用温度 (たとえば常温) と異なる所定温度 (たとえば常温に対して高温または 冷温) の環境内で保持された状態において、 たとえばエポキシ系の接着剤により 互いに固着されている。 なお、 接着剤は、 露光光を吸収する有機物や水分の発生 が抑制された材質のものを使用することが望ましい。  In the present embodiment, the coefficient of thermal expansion of the light transmitting member 1 and the coefficient of thermal expansion of the inner ring 2a (and the coefficient of thermal expansion of the annular member 2) are set to be different. The light transmitting member 1 and the inner ring 2a (and, consequently, the annular member 2) are held in an environment at a predetermined temperature (for example, a high temperature or a low temperature relative to the normal temperature) different from the actual use temperature (for example, the normal temperature) of the optical element. In this state, they are fixed to each other by, for example, an epoxy adhesive. Preferably, the adhesive is made of a material that suppresses the generation of organic substances and moisture that absorb exposure light.
第 3図は、 本実施形態において光透過部材とィンナーリングとを接着剤により 互いに固着する様子を示す図である。 本実施形態では、 第 3図に示すように、 光 透過部材 1の外周と環状部材 2の内周 (ひいてはインナーリング 2 aの内周) と の間に接着剤を注入するための貫通孔 3 1が、 インナーリング 2 aの周方向に沿 つて所定のピッチで (すなわち等角度間隔で) 複数形成されている。 したがって、 各貫通孔 3 1を介して接着剤を注入することにより、 光透過部材 1と環状部材 2 とを周方向に沿って均等に固着することができる。 FIG. 3 is a view showing a state in which the light transmitting member and the inner ring are fixed to each other with an adhesive in the present embodiment. In this embodiment, as shown in FIG. 3, a through hole 3 for injecting an adhesive is provided between the outer periphery of the light transmitting member 1 and the inner periphery of the annular member 2 (therefore, the inner periphery of the inner ring 2a). 1 are formed at a predetermined pitch (that is, at equal angular intervals) along the circumferential direction of the inner ring 2a. Therefore, By injecting the adhesive through each through hole 31, the light transmitting member 1 and the annular member 2 can be evenly fixed in the circumferential direction.
こうして、 本実施形態では、 互いに固着された光透過部材 1と環状部材 2とが 実使用温度に戻ったとき、 光透過部材 1の熱膨張率と環状部材 2の熱膨張率との 違いにより、 光透過部材 1にはその光軸 A Xに関してほぼ回転対称な内部応力が 発生する。 具体的には、 光透過部材 1が蛍石で形成され且つ環状部材 2がチタン やステンレス鋼や真鍮で形成されている場合、 環状部材 2の熱膨張率よりも光透 過部材 1の熱膨張率が大きくなる。 この場合、 実使用温度よりも高い温度で固着 すれば光透過部材 1には外側方向の内部応力 (引張り応力) が発生し、 実使用温 度よりも低い温度で固着すれば光透過部材 1には内側方向の内部応力 (圧縮応 力) が発生する。  Thus, in the present embodiment, when the light transmitting member 1 and the annular member 2 fixed to each other return to the actual use temperature, the difference between the thermal expansion coefficient of the light transmitting member 1 and the thermal expansion coefficient of the annular member 2 causes A substantially rotationally symmetric internal stress is generated in the light transmitting member 1 with respect to the optical axis AX. Specifically, when the light transmitting member 1 is formed of fluorite and the annular member 2 is formed of titanium, stainless steel, or brass, the thermal expansion coefficient of the light transmitting member 1 is higher than that of the annular member 2. The rate increases. In this case, if the light-transmitting member 1 is fixed at a temperature higher than the actual use temperature, an internal stress (tensile stress) in the outward direction occurs in the light-transmitting member 1. Generates internal stress (compression stress) in the inward direction.
逆に、 光透過部材 1が石英ガラスで形成され且つ環状部材 2がチタンゃステン レス鋼や真鍮で形成されている場合、 光透過部材 1の熱膨張率よりも環状部材 2 の熱膨張率が大きくなる。 この場合、 実使用温度よりも高い温度で固着すれば光 透過部材 1には内側方向の内部応力が発生し、 実使用温度よりも低い温度で固着 すれば光透過部材 1には外側方向の内部応力が発生する。 このように、 接着剤は、 光透過部材 1と環状部材 2との間に配置され、 光透過部材 1の熱膨張率と環状部 材 2の熱膨張率との違いにより、 光透過部材 1に対して内部応力を発生させる応 力発生部材を構成している。  Conversely, when the light transmitting member 1 is formed of quartz glass and the annular member 2 is formed of titanium / stainless steel or brass, the thermal expansion coefficient of the annular member 2 is larger than that of the light transmitting member 1. growing. In this case, if it is fixed at a temperature higher than the actual use temperature, an internal stress is generated in the light transmitting member 1 in the inward direction. Stress occurs. As described above, the adhesive is disposed between the light transmitting member 1 and the annular member 2, and due to the difference between the coefficient of thermal expansion of the light transmitting member 1 and the coefficient of thermal expansion of the annular member 2, the adhesive is applied to the light transmitting member 1. On the other hand, it constitutes a stress generating member that generates internal stress.
本実施形態では、 光学素子の実使用温度がある程度変動した場合にも、 光透過 部材 1に発生する内部応力の変動があまり大きくならないように、 ひいては投影 光学系 P Lの光学特性の変動があまり大きくならないように、 インナーリング 2 aの周方向剛性 (断面積と弾性係数との積) を小さく抑える必要がある。 その結 果、 インナーリング 2 aは非常に薄い円環プレート状の形態を有し、 光学素子を 保持する際に把持すべき保持部 (突起部) をインナーリング 2 aの外周に設ける ことは好ましくない。  In the present embodiment, even when the actual use temperature of the optical element fluctuates to some extent, the fluctuation of the internal stress generated in the light transmitting member 1 does not become too large, and thus the fluctuation of the optical characteristics of the projection optical system PL becomes too large. In order to avoid this, the circumferential rigidity (the product of the cross-sectional area and the elastic modulus) of the inner ring 2a must be kept small. As a result, the inner ring 2a has a very thin annular plate shape, and it is preferable to provide a holding portion (projection) to be gripped when holding the optical element on the outer periphery of the inner ring 2a. Absent.
そこで、 本実施形態では、 インナ一リング 2 aの径方向に可撓性を有する連結 部材 2 cを介して、 インナーリング 2 aとァウタ一リング 2 bとを連結する構造 を採用している。 この場合、 径方向に可撓性を有する連結部材 2 cの作用により、 アウターリング 2 bが実使用温度に戻っても、 アウターリング 2 bの収縮または 膨張がインナーリング 2 a (ひいては光透過部材 1 ) に実質的に影響を及ぼすこ とがない。 したがって、 ァウタ一リング 2 bの断面積を小さく抑える必要はなく、 結果としてアウターリング 2 bの外周に保持部 2 dを形成することが可能になつ ている。 Therefore, in the present embodiment, a structure for connecting the inner ring 2a and the outer ring 2b via a connecting member 2c having flexibility in the radial direction of the inner ring 2a. Is adopted. In this case, even if the outer ring 2b returns to the actual use temperature due to the action of the connecting member 2c having flexibility in the radial direction, the contraction or expansion of the outer ring 2b causes the inner ring 2a (therefore, the light transmitting member). 1) is not substantially affected. Therefore, it is not necessary to keep the cross-sectional area of the outer ring 2b small, and as a result, it is possible to form the holding portion 2d on the outer periphery of the outer ring 2b.
第 4 A図および第 4 B図は、 本実施形態の光学素子の製造方法を説明する図で ある。 本実施形態の製造方法 (組立方法) では、 第 4 A図に示すように、 光透過 部材 1の一方の光学面 1 aに対して補完的な面形状の支持面 4 1 aを有するエア ベアリングユニット 4 1を用いて、 光透過部材 1を浮上させて位置決めする。 ま た、 環状部材 2を構成するアウターリング 2 bの一方の側面 2 b aに対して補完 的な面形状の支持面 4 2 aを有するエアべァリングュニット 4 2を用いて、 環状 部材 2を浮上させて位置決めする。 こうして、 エアベアリングの作用により、 光 透過部材 1の光軸 A Xと環状部材 2の中心軸線とがー致するように調芯し、 光透 過部材 1と環状部材 2とを光軸 A Xに沿って位置合わせして、 光透過部材 1およ び環状部材 2をそれぞれ所定位置に非接触方式で位置決めする。  FIG. 4A and FIG. 4B are diagrams illustrating the method for manufacturing the optical element of the present embodiment. In the manufacturing method (assembly method) of the present embodiment, as shown in FIG. 4A, an air bearing having a support surface 41 a having a complementary surface shape to one optical surface 1 a of the light transmitting member 1 is used. Using the unit 41, the light transmitting member 1 is floated and positioned. Further, the annular member 2 is lifted using an air bearing unit 42 having a supporting surface 42a having a complementary surface shape with respect to one side surface 2ba of the outer ring 2b constituting the annular member 2. Position. Thus, by the action of the air bearing, the optical axis AX of the light transmitting member 1 and the center axis of the annular member 2 are aligned so that the light transmitting member 1 and the annular member 2 are aligned along the optical axis AX. The light transmitting member 1 and the annular member 2 are positioned at predetermined positions in a non-contact manner.
次いで、 所定位置にそれぞれ位置決めされた光透過部材 1および環状部材 2を、 実使用温度と異なる所定温度 (たとえば常温に対して高温または低温) の環境内 で保持する。 そして、 所定位置に位置決めされ且つ所定温度の環境内で保持され た光透過部材 1の外周と環状部材 2の内周とを、 インナ一リング 2 aに形成され た貫通孔 3 1を介して接着剤を注入することにより固着する。 こうして、 第 4 B 図に示すように、 互いに固着された光透過部材 1と環状部材 2とが実使用温度に 戻ったとき、 光透過部材 1の熱膨張率と環状部材 2の熱膨張率との違いにより、 光透過部材 1にはその光軸 A Xに関してほぼ回転対称な内部応力が発生する。 第 5図は、 本実施形態の光学素子を保持して投影光学系の鏡筒に取り付けるた めの取付け部材の全体構成を概略的に示す斜視図である。 また、 第 6図は、 第 5 図の取付け部材の上面図である。 また、 第 7図は、 第 6図の線 B— Bに沿った断 面図である。 第 5図〜第 7図を参照すると、 本実施形態の光学素子 (光透過部材 1および環状部材 2 ) は、 取付け部材 5 0によって保持され、 投影光学系 P Lの 鏡筒 (不図示) に取り付けられる。 Next, the light transmitting member 1 and the annular member 2 positioned at predetermined positions are held in an environment at a predetermined temperature (for example, higher or lower than normal temperature) different from the actual use temperature. Then, the outer periphery of the light transmitting member 1 and the inner periphery of the annular member 2 positioned at a predetermined position and held in an environment of a predetermined temperature are bonded through a through hole 31 formed in the inner ring 2a. It is fixed by injecting the agent. Thus, as shown in FIG. 4B, when the light transmitting member 1 and the annular member 2 fixed to each other return to the actual use temperature, the thermal expansion coefficients of the light transmitting member 1 and the annular member 2 are reduced. Due to this difference, an internal stress that is substantially rotationally symmetric about the optical axis AX is generated in the light transmitting member 1. FIG. 5 is a perspective view schematically showing an entire configuration of a mounting member for holding the optical element of the present embodiment and mounting the optical element on a lens barrel of a projection optical system. FIG. 6 is a top view of the mounting member of FIG. FIG. 7 is a cross-sectional view taken along line BB in FIG. Referring to FIGS. 5 to 7, the optical element of this embodiment (light transmitting member) 1 and the annular member 2) are held by a mounting member 50 and mounted on a lens barrel (not shown) of the projection optical system PL.
取付け部材 5 0は、 全体的にリング状の本体 5 1を有する。 そして、 本実施形 態の光学素子 (1, 2 ) は、 本体 5 1の周方向に沿って所定のピッチで (詳細に は 1 2 0度の等角度間隔で) 配置された 3つのばね組立体 5 2 a〜 5 2 cの作用 により、 取付け部材 5 0に取り付けられている。 具体的には、 3つのばね組立体 5 2 a〜5 2 cの位置に小さな受座 (不図示) が設けられ、 この 3つの受座の上 に光学素子のアウターリング 2 bに形成された保持部 2 dが載置される。 このと き、 受座と保持部 2 dとの平面接触により、 アウターリング 2 bが、 ひいては光 学素子が過度に拘束されることが回避される。  The attachment member 50 has a generally ring-shaped body 51. The optical element (1, 2) of the present embodiment includes three spring groups arranged at a predetermined pitch (specifically, at equal angular intervals of 120 degrees) along the circumferential direction of the main body 51. It is attached to the attachment member 50 by the action of the solids 52a to 52c. Specifically, small seats (not shown) are provided at the positions of the three spring assemblies 52a to 52c, and formed on the outer ring 2b of the optical element on these three seats. The holder 2d is placed. At this time, the outer ring 2b and thus the optical element are prevented from being excessively restrained by the planar contact between the seat and the holding portion 2d.
受座は、 光学素子の半径方向 (水平方向) の伸張を可能にする構造を有するが、 鉛直方向および接線方向の両方においては所定の剛性を有し、 光学素子に対して 高度の取付け剛性を維持している。 ばね組立体 5 2 a〜5 2 cは、 光学素子の保 持部 2 dを受座の上に直接的に且つ機械的に締め付けて、 締付け力と受座の力と のずれにより生じ得るモーメントを全て除去する。 接着剤を用いることなく光学 素子 (1, 2 ) を機械的に締め付けることにより、 接着剤の使用に固有な問題、 すなわちガス抜きおよび分解の際の破壊の問題などが回避される。  The seat has a structure that allows the optical element to expand in the radial direction (horizontal direction), but has a predetermined rigidity in both the vertical and tangential directions, and has a high mounting rigidity with respect to the optical element. Have maintained. The spring assemblies 52a to 52c directly and mechanically tighten the holding portion 2d of the optical element onto the seat, and a moment that may be generated due to a difference between the tightening force and the force of the seat. Are all removed. By mechanically tightening the optical element (1, 2) without the use of adhesives, the problems inherent in the use of adhesives, such as degassing and destruction during decomposition, are avoided.
ばね組立体 5 2 a〜5 2 cに可撓性の締付機構を設けることにより、 機械的許 容差の範囲内で起こり得る機械的誤差および寸法的誤差が幾らかあつても、 締付 け力は実質的に均等に且つ一定に加えられる。 この種の締付機構は、 ばね組立体 By providing a flexible tightening mechanism for the spring assemblies 52a to 52c, tightening is possible even if there are some mechanical errors and dimensional errors that can occur within the range of mechanical tolerances. The force is applied substantially evenly and constantly. This type of tightening mechanism includes a spring assembly
5 2 a〜5 2 cの位置に取り付けられて、 光学素子 (1, 2 ) の伸張差による過 度の拘束を防止する。 なお、 取付け部材 5 0のさらに詳細な構成および作用につ いては、 本出願人の出願にかかる特願 2 0 0 0 - 2 1 0 0 2 9号明細書および図 面を参照することができる。 Mounted at the position of 52a to 52c to prevent excessive restraint due to the difference in extension of the optical element (1, 2). For more detailed configuration and operation of the mounting member 50, refer to the specification and drawings of Japanese Patent Application No. 2000-210209 filed by the present applicant. .
以上のように、 本実施形態では、 熱膨張率が互いに異なるように設定された光 透過部材 1と環状部材 2とが、 実使用温度と異なる高温または低温の環境内で保 持された状態において互いに固着されている。 したがって、 互いに固着された光 透過部材 1と環状部材 2とが実使用温度に戻ったとき、 光透過部材 1の熱膨張率 と環状部材 2の熱膨張率との違いにより、 光透過部材 1にはその光軸 AXに関し てほぼ回転対称な応力が発生する。 As described above, in the present embodiment, the light transmitting member 1 and the annular member 2 having different coefficients of thermal expansion are held in a high or low temperature environment different from the actual use temperature. They are fixed to each other. Therefore, when the light transmitting member 1 and the annular member 2 fixed to each other return to the actual use temperature, the thermal expansion coefficient of the light transmitting member 1 is reduced. Due to the difference between the thermal expansion coefficient of the annular member 2 and the thermal expansion coefficient, a substantially rotationally symmetric stress is generated in the light transmitting member 1 with respect to the optical axis AX.
こうして、 本実施形態の光学素子では、 光軸 AXに関してほぼ回転対称な内部 応力を光透過部材 2に発生させることができるので、 蛍石を用いた投影光学系 P Lに残存する回転対称な複屈折の影響を打ち消すことができる。 したがって、 回 転対称な複屈折の影響を打ち消すことのできる本実施形態の光学素子が組み込ま れた投影光学系 PLでは、 蛍石を用いても良好な結像性能 (光学性能) を確保す ることができる。 また、 蛍石を用いても良好な光学性能を有する投影光学系 PL が搭載された露光装置では、 高解像で高精度な露光を行うことができる。  Thus, in the optical element of the present embodiment, an internal stress that is substantially rotationally symmetric with respect to the optical axis AX can be generated in the light transmitting member 2, so that the rotationally symmetric birefringence remaining in the projection optical system PL using fluorite is used. Can negate the effects of Therefore, in the projection optical system PL incorporating the optical element of the present embodiment capable of canceling the influence of the rotationally symmetric birefringence, a good imaging performance (optical performance) is secured even when fluorite is used. be able to. An exposure apparatus equipped with a projection optical system PL that has good optical performance even when fluorite is used can perform high-resolution and high-precision exposure.
なお、 上述の実施形態では、 複屈折性の光学材料としてフッ化カルシウム結晶 (蛍石) を用いているが、 これに限定されることなく、 他の一軸性結晶、 たとえ ばフッ化バリウム結晶 (B aF2)、 フッ化リチウム結晶 (L i F)、 フッ化ナト リウム結晶 (NaF)、 フッ化ストロンチウム結晶 (S r F2)、 フッ化ベリリウ ム結晶 (B e F2) など、 紫外線に対して透明な他の結晶材料を用いることもで きる。 このうち、 フッ化バリウム結晶は、 すでに直径 20 Ommを越す大型の結 晶材料も開発されており、 レンズ材料として有望である。 この場合、 フッ化バリ ゥム (B aF2 ) などの結晶軸方位も本発明に従って決定されることが好ましい。 また、 上述の実施形態では、 光透過部材 1と環状部材 2とを接着剤により固着 しているが、 これに限定されることなく、 例えばろう付けや溶着などの手法を用 いて光透過部材 1と環状部材 2とを固着することもできる。 さらに、 上述の実施 形態では、 インナーリング 2 aに等角度間隔に設けられた複数の貫通孔 3 1を介 して接着剤を注入しているが、 貫通孔 3 1の数、 形状および配置については様々 な変形例が可能である。 また、 貫通孔 3 1を用いることなく、 光透過部材 1と環 状部材 2との間に接着剤を注入することもできる。 In the above-described embodiment, a calcium fluoride crystal (fluorite) is used as the birefringent optical material. However, the present invention is not limited to this, and other uniaxial crystals, for example, a barium fluoride crystal (fluorite) may be used. B aF 2 ), lithium fluoride crystal (L i F), sodium fluoride crystal (NaF), strontium fluoride crystal (S r F 2 ), beryllium fluoride crystal (B e F 2 ), etc. On the other hand, other transparent crystal materials can be used. Of these, barium fluoride crystals have already been developed for large crystal materials with diameters exceeding 20 Omm and are promising as lens materials. In this case, it is preferable that the crystal axis orientation of the barium fluoride (BaF 2 ) or the like is also determined according to the present invention. Further, in the above-described embodiment, the light transmitting member 1 and the annular member 2 are fixed to each other with an adhesive. However, the present invention is not limited to this. And the annular member 2 can be fixed. Further, in the above-described embodiment, the adhesive is injected through the plurality of through holes 31 provided at equal angular intervals in the inner ring 2a, but the number, shape, and arrangement of the through holes 31 Various modifications are possible. Further, an adhesive can be injected between the light transmitting member 1 and the annular member 2 without using the through hole 31.
また、 上述の実施形態では、 インナ一リング 2 aとアウターリング 2 bと 3本 の可撓性部材 2 cとが金属材料により一体的に形成されている。 しかしながら、 これに限定されることなく、 インナーリング 2 aとアウターリング 2 bと 3本の 可撓性部材 2 cとを、 それぞれ別体で形成することもできる。 また、 可撓性部材 2 cの数および形状、 並びに環状部材 2の形成材料については様々な変形例が可 能である。 In the above-described embodiment, the inner ring 2a, the outer ring 2b, and the three flexible members 2c are integrally formed of a metal material. However, without being limited to this, the inner ring 2a, the outer ring 2b, and the three flexible members 2c can also be formed separately. Also, a flexible member Various modifications are possible for the number and shape of 2 c and the material for forming the annular member 2.
ところで、 上述の実施形態では、 光透過部材 1に発生する内部応力の影響を受 けて、 その光学面が微小変形する可能性がある。 そこで、 本実施形態の光学素子 の製造後に、 必要に応じて光学面の面形状を測定し、 その測定結果に基づいて研 磨加工を行うことにより光学面の補正を行うことが好ましい。  By the way, in the above embodiment, the optical surface may be slightly deformed under the influence of the internal stress generated in the light transmitting member 1. Therefore, it is preferable to correct the optical surface by measuring the surface shape of the optical surface if necessary after manufacturing the optical element of the present embodiment, and performing polishing based on the measurement result.
上述の実施形態の露光装置では、 照明装置によってレチクル (マスク) を照明 し (照明工程)、 投影光学系を用いてマスクに形成された転写用のパターンを感 光性基板に露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 撮像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 本実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パター ンを形成することによって、 マイクロデバイスとしての半導体デバイスを得る際 の手法の一例につき第 8図のフローチャートを参照して説明する。  In the exposure apparatus according to the above-described embodiment, the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step). Thus, microdevices (semiconductor devices, imaging devices, liquid crystal display devices, thin-film magnetic heads, etc.) can be manufactured. The flowchart of FIG. 8 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. It will be described with reference to FIG.
先ず、 第 8図のステップ 3 0 1において、 1ロットのウェハ上に金属膜が蒸着 される。 次のステップ 3 0 2において、 その 1ロットのウェハ上の金属膜上にフ オトレジストが塗布される。 その後、 ステップ 3 0 3において、 本実施形態の露 光装置を用いて、 マスク上のパターンの像がその投影光学系を介して、 その 1口 ットのウェハ上の各ショット領域に順次露光転写される。 その後、 ステップ 3 0 4において、 その 1ロットのウェハ上のフォトレジストの現像が行われた後、 ス テツプ 3 0 5において、 その 1ロットのウェハ上でレジス卜パターンをマスクと してエッチングを行うことによって、 マスク上のパターンに対応する回路パター ンが、 各ウェハ上の各ショット領域に形成される。  First, in step 301 of FIG. 8, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the one lot of wafers. Then, in step 303, using the exposure apparatus of the present embodiment, the pattern image on the mask is sequentially exposed and transferred to each shot area on the one-port wafer via the projection optical system. Is done. Then, in step 304, after the photoresist on the one lot of wafers is developed, in step 305, etching is performed on the one lot of wafers using the resist pattern as a mask. As a result, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer.
その後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体 素子等のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極め て微細な回路パターンを有する半導体デバイスをスル一プット良く得ることがで きる。 なお、 ステップ 3 0 1〜ステップ 3 0 5では、 ウェハ上に金属を蒸着し、 その金属膜上にレジストを塗布、 そして露光、 現像、 エッチングの各工程を行つ ているが、 これらの工程に先立って、 ウェハ上にシリコンの酸化膜を形成後、 そ のシリコンの酸化膜上にレジストを塗布、 そして露光、 現像、 エッチング等の各 工程を行っても良いことはいうまでもない。 Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. In steps 301 to 305, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed. Prior to forming a silicon oxide film on the wafer, It goes without saying that a resist may be applied on the silicon oxide film of the first step, and each step of exposure, development, etching and the like may be performed.
また、 本実施形態の露光装置では、 プレート (ガラス基板) 上に所定のパター ン (回路パターン、 電極パターン等) を形成することによって、 マイクロデバイ スとしての液晶表示素子を得ることもできる。 以下、 第 9図のフローチャートを 参照して、 このときの手法の一例につき説明する。 第 9図において、 パターン形 成工程 4 0 1では、 本実施形態の露光装置を用いてマスクのパターンを感光性基 板 (レジストが塗布されたガラス基板等) に転写露光する、 所謂光リソグラフィ 工程が実行される。 この光リソグラフィー工程によって、 感光性基板上には多数 の電極等を含む所定パターンが形成される。 その後、 露光された基板は、 現像ェ 程、 エッチング工程、 レジスト剥離工程等の各工程を経ることによって、 基板上 に所定のパターンが形成され、 次のカラ一フィルタ一形成工程 4 0 2へ移行する。 次に、 カラ一フィルタ一形成工程 4 0 2では、 R (Red) , G (Green) , B (Blue) に対応した 3つのドットの組がマトリックス状に多数配列されたり、 ま たは R、 G、 Bの 3本のストライプのフィルターの組を複数水平走査線方向に配 列されたりしたカラ一フィルタ一を形成する。 そして、 カラーフィルタ一形成ェ 程 4 0 2の後に、 セル組み立て工程 4 0 3が実行される。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板、 およ びカラーフィルター形成工程 4 0 2にて得られたカラーフィル夕一等を用いて液 晶パネル (液晶セル) を組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パ タ一ン形成工程 4 0 1にて得られた所定パターンを有する基板とカラ一フィルタ 一形成工程 4 0 2にて得られたカラーフィル夕一との間に液晶を注入して、 液晶 パネル (液晶セル) を製造する。  In the exposure apparatus of the present embodiment, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart in FIG. In FIG. 9, in a pattern forming step 401, a so-called photolithography step is performed in which a mask pattern is transferred and exposed to a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment. Is executed. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to various processes such as a developing process, an etching process, a resist stripping process, etc., whereby a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process 402. I do. Next, in the color filter forming process 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, A color filter in which a set of three stripe filters of G and B are arranged in the horizontal scanning line direction is formed. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In the cell assembling step 403, the liquid crystal is formed using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. Assemble the panel (liquid crystal cell). In the cell assembling step 403, for example, the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter set obtained in the color filter forming step 402 are formed. Liquid crystal is injected between them to manufacture liquid crystal panels (liquid crystal cells).
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パネル (液 晶セル) の表示動作を行わせる電気回路、 バックライト等の各部品を取り付けて 液晶表示素子として完成させる。 上述の液晶表示素子の製造方法によれば、 極め て微細な回路パターンを有する液晶表示素子をスループット良く得ることができ る。 なお、 上述の実施形態では、 露光装置に搭載される投影光学系に対して本発明 を適用しているが、 これに限定されることなく、 露光装置に搭載される照明光学 系や、 他の一般的な光学系に対して本発明を適用することもできる。 また、 上述 の実施形態では、 1 5 7 n mの波長光を供給する F 2 レ一ザ一光源を用いている が、 これに限定されることなく、 たとえば 1 9 3 n mの波長光を供給する A r F エキシマレーザ一光源や 1 2 6 n mの波長光を供給する A r 2 レーザー光源など を用いることもできる。 産業上の利用の可能性 Then, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput. In the above embodiment, the present invention is applied to the projection optical system mounted on the exposure apparatus. However, the present invention is not limited to this, and the illumination optical system mounted on the exposure apparatus, The present invention can be applied to a general optical system. Further, in the above-described embodiment, the F 2 laser and one light source that supplies the light of the wavelength of 157 nm are used. However, the present invention is not limited to this. For example, the light of the wavelength of 193 nm is supplied. the wavelength of a r F excimer laser primary light source and 1 2 6 nm may be used as a r 2 laser light source for supplying. Industrial applicability
以上説明したように、 本発明では、 熱膨張率が異なるように設定された光透過 部材と環状部材とが、 実使用温度と異なる所定温度の環境内で保持された状態に おいて互いに固着されているので、 互いに固着された光透過部材と環状部材とが 実使用温度に戻つたときに、 光透過部材の熱膨張率と環状部材の熱膨張率との違 いにより、 光透過部材にはその光軸に関してほぼ回転対称な応力が発生する。 そ の結果、 本発明の光学素子では、 たとえば蛍石のような複屈折性の結晶材料を用 いた光学系に残存する回転対称な複屈折の影響を打ち消すことができる。  As described above, according to the present invention, the light transmitting member and the annular member set so as to have different coefficients of thermal expansion are fixed to each other in a state where they are held in an environment of a predetermined temperature different from the actual use temperature. Therefore, when the light transmitting member and the annular member fixed to each other return to the actual use temperature, the difference between the coefficient of thermal expansion of the light transmitting member and the coefficient of thermal expansion of the annular member causes the light transmitting member to have a different shape. A substantially rotationally symmetric stress is generated with respect to the optical axis. As a result, in the optical element of the present invention, the influence of rotationally symmetric birefringence remaining in an optical system using a birefringent crystal material such as fluorite can be canceled.
したがって、 回転対称な複屈折の影響を打ち消すことのできる本発明の光学素 子を組み込んだ光学系では、 たとえば蛍石のような複屈折性の結晶材料を用いて も良好な光学性能を確保することができる。 また、 たとえば蛍石のような複屈折 性の結晶材料を用いても良好な光学性能を有する本発明の光学系を搭載した露光 装置では、 高解像で高精度な露光を行うことができる。 さらに、 高解像で高精度 な露光を行うことのできる本発明の露光装置を用いて、 高解像度の露光技術にし たがつて高性能のマイクロデバイスを製造することができる。  Therefore, in an optical system incorporating the optical element of the present invention, which can cancel the influence of rotationally symmetric birefringence, good optical performance is ensured even when a birefringent crystal material such as fluorite is used. be able to. In addition, an exposure apparatus equipped with the optical system of the present invention, which has good optical performance even when a birefringent crystal material such as fluorite is used, can perform high-resolution and high-precision exposure. Furthermore, using the exposure apparatus of the present invention capable of performing high-resolution and high-precision exposure, a high-performance microdevice can be manufactured according to a high-resolution exposure technique.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光透過部材と、 1. Light transmitting member,
前記光透過部材の熱膨張率と異なる熱膨張率を有し、 前記光透過部材の外周に 配置された環状部材と、  An annular member having a coefficient of thermal expansion different from the coefficient of thermal expansion of the light transmitting member, and being disposed on the outer periphery of the light transmitting member;
前記光透過部材と前記環状部材との間に配置され、 前記光透過部材の熱膨張率 と前記環状部材の熱膨張率との違いにより、 前記光透過部材に対して応力を発生 させる応力発生部材とを備えていることを特徴とする光学素子。  A stress generating member that is disposed between the light transmitting member and the annular member and that generates stress on the light transmitting member due to a difference between a coefficient of thermal expansion of the light transmitting member and a coefficient of thermal expansion of the annular member; An optical element comprising:
2 . 請求の範囲第 1項に記載の光学素子において、 2. The optical element according to claim 1,
前記応力発生部材は、 前記光透過部材の実使用温度と異なる所定温度の環境内 で、 前記光透過部材の外周と前記環状部材の内周とを固着することを特徴とする 光学素子。  The optical element, wherein the stress generating member fixes an outer periphery of the light transmitting member and an inner periphery of the annular member in an environment at a predetermined temperature different from an actual use temperature of the light transmitting member.
3 . 請求の範囲第 1項または第 2項に記載の光学素子において、 3. The optical element according to claim 1 or 2,
前記環状部材は、 前記光透過部材に前記応力発生部材を介して固着されたィン ナ一リングと、 該ィンナ一リングの径方向に可撓性を有する連結部材を介して、 前記インナ一リングに連結されたアウターリングとを有することを特徴とする光 学素子。  The annular member includes: an inner ring fixed to the light transmitting member via the stress generating member; and a connecting member having flexibility in a radial direction of the inner ring. An optical element comprising: an outer ring connected to the optical element.
4 . 請求の範囲第 3項に記載の光学素子において、 4. The optical element according to claim 3,
前記応力発生部材は、 前記光透過部材の外周と前記環状部材の内周とを固着す る接着剤であり、  The stress generating member is an adhesive for fixing an outer periphery of the light transmitting member and an inner periphery of the annular member,
前記ィンナーリングには、 前記光透過部材の外周と前記環状部材の内周との間 に接着剤を注入するための貫通孔が形成されていることを特徴とする光学素子。  An optical element, wherein the inner ring has a through-hole for injecting an adhesive between an outer periphery of the light transmitting member and an inner periphery of the annular member.
5 . 請求の範囲第 3項または第 4項に記載の光学素子において、 5. The optical element according to claim 3 or 4, wherein
前記アウターリングの外周には、 前記ァウタ一リングの中心に対し、 該ァウタ —リングの外周面から外側に向かって突出した保持部が形成されていることを特 徵とする光学素子。 The outer periphery of the outer ring is arranged with respect to the center of the outer ring. —An optical element characterized in that a holding portion protruding outward from the outer peripheral surface of the ring is formed.
6 . 請求の範囲第 3項乃至第 5項のいずれか 1項に記載の光学素子において、 前記連結部材は、 前記インナーリングに外接するように延びた複数の可撓性部 材を有することを特徴とする光学素子。 6. The optical element according to any one of claims 3 to 5, wherein the connecting member has a plurality of flexible members extending so as to circumscribe the inner ring. Characteristic optical element.
7 . 請求の範囲第 6項に記載の光学素子において、 7. The optical element according to claim 6, wherein
前記ィンナーリングと前記アウターリングと前記複数の可撓性部材とは一体的 に形成されていることを特徴とする光学素子。  The optical element, wherein the inner ring, the outer ring, and the plurality of flexible members are integrally formed.
8 . 請求の範囲第 1項乃至第 7項のいずれか 1項に記載の光学素子において、 前記光透過部材は、 立方晶系に属する結晶で形成された結晶光学部材であるこ とを特徴とする光学素子。 8. The optical element according to any one of claims 1 to 7, wherein the light transmitting member is a crystal optical member formed of a crystal belonging to a cubic system. Optical element.
9 . 光学素子を製造する製造方法において、 9. In a manufacturing method for manufacturing an optical element,
光透過部材と、 該光透過部材の熱膨張率と異なる熱膨張率を有し、 前記光透過 部材の外周に配置される環状部材とをそれぞれ所定位置に位置決めする位置決め 工程と、  A light transmitting member, and a positioning step of positioning the annular member having a thermal expansion coefficient different from that of the light transmitting member at a predetermined position, the annular member being disposed on the outer periphery of the light transmitting member.
前記所定位置に位置決めされた前記光透過部材および前記環状部材を、 前記光 透過部材の実使用温度と異なる所定温度の環境内で保持するための保持工程と、 前記所定位置に位置決めされ且つ前記所定温度の環境内で保持された前記光透 過部材の外周と前記環状部材の内周とを固着する固着工程とを含むことを特徴と する製造方法。  A holding step for holding the light transmitting member and the annular member positioned at the predetermined position in an environment at a predetermined temperature different from an actual use temperature of the light transmitting member; and A fixing step of fixing an outer periphery of the light transmitting member and an inner periphery of the annular member held in a temperature environment.
1 0 . 請求の範囲第 9項に記載の製造方法において、 10. The method according to claim 9, wherein
前記位置決め工程では、 エアベアリングを用いて、 前記光透過部材および前記 環状部材をそれぞれ浮上させて位置決めすることを特徴とする製造方法。 The manufacturing method, wherein in the positioning step, the light transmitting member and the annular member are respectively floated and positioned using an air bearing.
1 1 . 請求の範囲第 9項に記載の製造方法において、 11. The method according to claim 9, wherein:
前記固着工程は、 前記所定温度が前記実使用温度に対して高い温度の場合、 前 記光透過部材に引張に関する内部応力を発生させることを特徴とする製造方法。  The manufacturing method according to claim 1, wherein in the fixing step, when the predetermined temperature is higher than the actual use temperature, an internal stress related to tension is generated in the light transmitting member.
1 2 . 請求の範囲第 9項に記載の製造方法において、 12. The method according to claim 9, wherein
前記固着工程は、 前記所定温度が前記実使用温度に対して低い温度の場合、 前 記光透過部材に圧縮に関する内部応力を発生させることを特徴とする製造方法。  The manufacturing method according to claim 1, wherein, in the fixing step, when the predetermined temperature is lower than the actual use temperature, an internal stress related to compression is generated in the light transmitting member.
1 3 . 立方晶系に属する結晶で形成された結晶光学部材と、 請求の範囲第 1項 乃至第 8項のいずれか 1項に記載の光学素子とを含むことを特徴とする光学系。 13. An optical system comprising: a crystal optical member formed of a crystal belonging to a cubic system; and the optical element according to any one of claims 1 to 8.
1 4 . マスクを照明するための照明光学系と、 1 4. An illumination optical system for illuminating the mask,
前記マスクに形成されたパターンの像を感光性基板上に形成するための請求の 範囲第 1 3項に記載の光学系とを備えていることを特徴とする露光装置。  An exposure apparatus comprising: the optical system according to claim 13 for forming an image of a pattern formed on the mask on a photosensitive substrate.
1 5 . マスクを照明するための請求の範囲第 1 3項に記載の光学系と、 前記マスクに形成されたパターンの像を感光性基板上に形成するための投影光 学系とを備えていることを特徴とする露光装置。 15. An optical system according to claim 13 for illuminating a mask, and a projection optical system for forming an image of a pattern formed on the mask on a photosensitive substrate. An exposure apparatus.
1 6 . 請求の範囲第 1 4項または第 1 5項に記載の露光装置を用いて前記マス クのデバイスパターンを前記感光性基板に露光する露光工程と、 16. An exposure step of exposing the photosensitive substrate to a device pattern of the mask using the exposure apparatus according to claim 14 or 15,
前記露光工程により露光された前記感光性基板を現像する現像工程とを含むこ とを特徴とするデバイスの製造方法。  A developing step of developing the photosensitive substrate exposed in the exposing step.
PCT/JP2002/011478 2001-11-07 2002-11-01 Optical element, method of manufacturing the optical element, optical system, exposure device, and method of manufacturing micro device WO2003040785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003542368A JPWO2003040785A1 (en) 2001-11-07 2002-11-01 Optical element, method for manufacturing the same, optical system, exposure apparatus, and method for manufacturing micro device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001341932 2001-11-07
JP2001-341932 2001-11-07

Publications (1)

Publication Number Publication Date
WO2003040785A1 true WO2003040785A1 (en) 2003-05-15

Family

ID=19155877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011478 WO2003040785A1 (en) 2001-11-07 2002-11-01 Optical element, method of manufacturing the optical element, optical system, exposure device, and method of manufacturing micro device

Country Status (3)

Country Link
JP (1) JPWO2003040785A1 (en)
TW (1) TW577108B (en)
WO (1) WO2003040785A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577693A3 (en) * 2004-02-26 2006-10-11 Carl Zeiss SMT AG Objective comprising at least one optical element
WO2007096250A1 (en) * 2006-02-21 2007-08-30 Carl Zeiss Smt Ag Illumination device of a microlithographic projection exposure apparatus
EP1901101A1 (en) * 2006-09-14 2008-03-19 Carl Zeiss SMT AG Optical element unit and method of supporting an optical element
JP2013506978A (en) * 2009-09-30 2013-02-28 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical structure of a microlithographic projection exposure apparatus
JP2013074089A (en) * 2011-09-28 2013-04-22 Topcon Corp Adhesion method for optical element on optical element holding device, optical element holding device used therefor, and exposure device having optical element
WO2017130579A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Projection lens unit for projector, and projector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420725B2 (en) * 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075352A (en) * 1993-06-16 1995-01-10 Nikon Corp Lens supporting barrel frame
JPH07191248A (en) * 1993-12-27 1995-07-28 Chinon Ind Inc Lens structural body
JPH0875973A (en) * 1994-09-05 1996-03-22 Matsushita Electric Ind Co Ltd Optical element and manufacture therefor
JPH08146276A (en) * 1994-11-16 1996-06-07 Kyocera Corp Holder with lens
JPH11153734A (en) * 1997-08-18 1999-06-08 Carl Zeiss:Fa Electroforming optical system mount part
JP2000028886A (en) * 1998-06-09 2000-01-28 Carl Zeiss:Fa Assembly consisting of optical element and mount
JP2000331927A (en) * 1999-03-12 2000-11-30 Canon Inc Projection optical system and projection aligner using the same
EP1081521A2 (en) * 1999-08-31 2001-03-07 Nikon Corporation Kinematic lens mounting
JP2001141974A (en) * 1999-10-06 2001-05-25 Jenoptik Ag Elastic lens holder
JP2001183564A (en) * 1999-12-24 2001-07-06 Olympus Optical Co Ltd Lens barrel device assembling method, and lens barrel device
JP2001343576A (en) * 2000-03-30 2001-12-14 Canon Inc Supporting structure for optical element, exposure device using the same and manufacturing method of semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075352A (en) * 1993-06-16 1995-01-10 Nikon Corp Lens supporting barrel frame
JPH07191248A (en) * 1993-12-27 1995-07-28 Chinon Ind Inc Lens structural body
JPH0875973A (en) * 1994-09-05 1996-03-22 Matsushita Electric Ind Co Ltd Optical element and manufacture therefor
JPH08146276A (en) * 1994-11-16 1996-06-07 Kyocera Corp Holder with lens
JPH11153734A (en) * 1997-08-18 1999-06-08 Carl Zeiss:Fa Electroforming optical system mount part
JP2000028886A (en) * 1998-06-09 2000-01-28 Carl Zeiss:Fa Assembly consisting of optical element and mount
JP2000331927A (en) * 1999-03-12 2000-11-30 Canon Inc Projection optical system and projection aligner using the same
EP1081521A2 (en) * 1999-08-31 2001-03-07 Nikon Corporation Kinematic lens mounting
JP2001141974A (en) * 1999-10-06 2001-05-25 Jenoptik Ag Elastic lens holder
JP2001183564A (en) * 1999-12-24 2001-07-06 Olympus Optical Co Ltd Lens barrel device assembling method, and lens barrel device
JP2001343576A (en) * 2000-03-30 2001-12-14 Canon Inc Supporting structure for optical element, exposure device using the same and manufacturing method of semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239462B2 (en) 2004-02-26 2007-07-03 Carl Zeiss Smt Ag Objective with at least one optical element
EP1577693A3 (en) * 2004-02-26 2006-10-11 Carl Zeiss SMT AG Objective comprising at least one optical element
WO2007096250A1 (en) * 2006-02-21 2007-08-30 Carl Zeiss Smt Ag Illumination device of a microlithographic projection exposure apparatus
US8081293B2 (en) 2006-02-21 2011-12-20 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
EP1901101A1 (en) * 2006-09-14 2008-03-19 Carl Zeiss SMT AG Optical element unit and method of supporting an optical element
US9134501B2 (en) 2006-09-14 2015-09-15 Carl Zeiss Smt Gmbh Optical element unit and method of supporting an optical element
US9436101B2 (en) 2009-09-30 2016-09-06 Carl Zeiss Smt Gmbh Optical arrangement and microlithographic projection exposure apparatus including same
JP2013506978A (en) * 2009-09-30 2013-02-28 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical structure of a microlithographic projection exposure apparatus
JP2013074089A (en) * 2011-09-28 2013-04-22 Topcon Corp Adhesion method for optical element on optical element holding device, optical element holding device used therefor, and exposure device having optical element
WO2017130579A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Projection lens unit for projector, and projector
JPWO2017130579A1 (en) * 2016-01-29 2018-10-11 富士フイルム株式会社 Projection lens unit of projector and projector
JP2019015986A (en) * 2016-01-29 2019-01-31 富士フイルム株式会社 Projection lens unit for projector and projector
US10401720B2 (en) 2016-01-29 2019-09-03 Fujifilm Corporation Projection lens unit of projector and projector capable of suppressing image deterioration
US10591696B2 (en) 2016-01-29 2020-03-17 Fujifilm Corporation Projection lens unit of projector and projector

Also Published As

Publication number Publication date
JPWO2003040785A1 (en) 2005-03-03
TW577108B (en) 2004-02-21

Similar Documents

Publication Publication Date Title
US7218462B2 (en) Holding mechanism, optical apparatus and device manufacturing method
US7154684B2 (en) Optical element holding apparatus
KR100823790B1 (en) Reflection/refraction optical system, exposure method, projection exposure apparatus, method for manufacturing microdevice, imaging optical system, and projection exposure method
JP4292497B2 (en) Projection optical system, exposure apparatus, and exposure method
JP4333078B2 (en) Projection optical system, exposure apparatus including the projection optical system, exposure method using the projection optical system, and device manufacturing method
KR20100018547A (en) Optical element driver, lens-barrel and exposure apparatus and method for fabricating device
WO1999049366A1 (en) Photomask and projection exposure system
EP1549984A2 (en) Retainer, exposure apparatus, and semiconductor device fabrication method
WO2003088330A1 (en) Projection optical system, exposure system and exposure method
KR20010085778A (en) Photomask, method for manufacturing the same, projection aligner using the photomask, and projection exposing method
JP2002162549A (en) Optical element holder, lens barrel and aligner, and method of manufacturing microdevice
JPWO2003003429A1 (en) Projection optical system, exposure apparatus and method
US7543948B2 (en) Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method
JPWO2003036361A1 (en) Projection optical system and exposure apparatus provided with the projection optical system
KR20030038686A (en) Optical element holding device
US20040218289A1 (en) Mirror holding mechanism in exposure apparatus, and device manufacturing method
WO2002097508A1 (en) Optical system and exposure system provided with the optical system
WO2003040785A1 (en) Optical element, method of manufacturing the optical element, optical system, exposure device, and method of manufacturing micro device
JP2013106017A (en) Optical element holding device, optical device, and exposure device
WO2005078773A1 (en) Imaging optical system, exposure system, and exposure method
WO2003001271A1 (en) Optical system and exposure system provided with the optical system
TW554412B (en) Optical system, projection optical system, exposure device having the projection optical system, and method for manufacturing micro device using the exposure device
US20110065051A1 (en) Supporting device, optical apparatus, exposure apparatus, and device manufacturing method
JP2007266511A (en) Optical system, exposure apparatus, and adjustment method of optical characteristic
KR20090033026A (en) Projection optical system, exposure apparatus, and method of manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003542368

Country of ref document: JP

122 Ep: pct application non-entry in european phase