WO2003037954A1 - Phenolic resin, epoxy resin, process for producing the same, and resin composition for semiconductor encapsulation material - Google Patents

Phenolic resin, epoxy resin, process for producing the same, and resin composition for semiconductor encapsulation material Download PDF

Info

Publication number
WO2003037954A1
WO2003037954A1 PCT/JP2002/010859 JP0210859W WO03037954A1 WO 2003037954 A1 WO2003037954 A1 WO 2003037954A1 JP 0210859 W JP0210859 W JP 0210859W WO 03037954 A1 WO03037954 A1 WO 03037954A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
phenol
mass
epoxy resin
phenolic resin
Prior art date
Application number
PCT/JP2002/010859
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Mori
Original Assignee
Nippon Petrochemicals Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co.,Ltd. filed Critical Nippon Petrochemicals Co.,Ltd.
Publication of WO2003037954A1 publication Critical patent/WO2003037954A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a phenolic resin, an epoxy resin, and a semiconductor having an excellent balance of heat resistance, moisture resistance, crack resistance, and moldability, which are useful as an electrical insulating material, particularly a resin for a semiconductor sealing material and a resin for a laminated board.
  • the present invention relates to a composition for a sealing material. Background art
  • phenol resin used in the resin composition for semiconductor encapsulant a phenol resin such as a phenol novolak resin or a cresol novolak resin has conventionally been used as a curing agent, and a cresol nopolak skeleton has been used as a main agent.
  • Epoxy resin is used.
  • these resins are used, there is a problem that the moisture absorption characteristics of the semiconductor package are poor, and as a result, the occurrence of cracks during immersion in the solder bath as described above is inevitable.
  • the amount of low molecular weight components is adjusted by distilling or reprecipitating an epoxy resin or a phenol resin as a raw material thereof in a DCPD / phenol-modified epoxy resin. Discloses that good fluidity can be obtained without impairing heat resistance. However, adjustment by distillation is difficult, and there are problems such as an increase in the amount of residual phenol in the resin. Further, since the adjustment by reprecipitation uses a solvent, there is a problem that it is necessary to remove the solvent from the resin again.
  • the problem to be solved by the present invention is to provide a phenolic resin, an epoxy resin, and an efficient production method thereof, which are excellent in heat resistance after curing, have good fluidity, and are excellent in moldability when sealing a semiconductor.
  • An object of the present invention is to provide an epoxy resin composition using the above resin. Disclosure of the invention
  • a phenol and an unsaturated cyclic hydrocarbon having two or more carbon-carbon double bonds (hereinafter simply referred to as “unsaturated
  • Contains a suitable amount of monofunctional components (hereinafter sometimes simply referred to as “monofunctional components”), especially 1: 1 adducts of ether compounds or phenols with unsaturated cyclic hydrocarbons.
  • the present invention relates to a phenol resin obtained by reacting a phenol with an unsaturated cyclic hydrocarbon compound having two or more carbon-carbon double bonds, wherein the number average molecular weight in terms of polystyrene is 320 or less. And a phenolic resin characterized in that the content of a monofunctional component containing only one phenolic hydroxyl group in one molecule is more than 2% by mass and not more than 20% by mass in the resin.
  • a reaction step of bringing a phenol into contact with an unsaturated cyclic hydrocarbon compound having at least two carbon-carbon double bonds in the presence of an acid catalyst and a concentration step of mainly removing unreacted phenols
  • a method for producing a phenolic resin containing: a) the catalyst concentration in the reaction system is adjusted to a predetermined concentration in the reaction step, and the reaction product is concentrated under the predetermined conditions in the concentration step, whereby the number average molecular weight in terms of polystyrene is reduced.
  • a phenolic resin characterized in that the content of the monofunctional component containing not more than 320 and one phenolic hydroxyl group in the resin is more than 2% by mass and not more than 20% by mass. It relates to a manufacturing method.
  • the present invention also relates to an epoxy resin obtained by reacting a phenol resin obtained by the above-mentioned production method with ephalohydrins.
  • an epoxy resin composition for a semiconductor encapsulant containing an epoxy resin, a curing agent comprising a phenol resin obtained by the above-mentioned production method, a curing accelerator and an inorganic filler as essential components, or an epoxy resin composition obtained by the above-mentioned production method.
  • the present invention relates to an epoxy resin composition for a semiconductor encapsulant, comprising an epoxy resin, a curing agent, a curing accelerator and an inorganic filler as essential components.
  • the phenolic resin of the present invention comprises a phenol having a phenolic hydroxyl group and an unsaturated compound having two or more carbon-carbon double bonds in the presence of an acid catalyst. It is produced by reacting with a cyclic hydrocarbon compound.
  • unsaturated cyclic hydrocarbon compounds having two or more carbon-carbon double bonds examples include dicyclopentene, 4-vinylcyclohexene, 5-vinyl norborna-2-ene, 3a, 4, 7, 7a —Tetrahydroindene, ⁇ -binene, limonene and the like. These can be used alone or in combination.
  • dicyclopentene is preferred because the resulting resin has excellent heat resistance, moisture resistance and mechanical properties.
  • the phenols are not particularly limited as long as they are aromatic compounds having a phenolic hydroxyl group in which a hydroxyl group is directly substituted on an aromatic ring, and examples thereof include phenol, o_cresol, and m-cresol. , P-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-isopropylphenol, m-propylphenol, p-propylphenol, p_sec-butylphenol, p_tert-butylphenol Monovalent phenols such as, p-cyclohexylphenol, p-chlorophenol, o-bromophenol, m-bromophenol, p-bromophenol, ⁇ -naphthol, / 3-naphthol; resorcinol, catechol , Hydroquinone, 2,2-bis (4, -hydroxyphenyl) propane, 1,1, 1-bis (dihydroxypheny
  • phenol, ⁇ _cresol, m_cresol, ⁇ -naphthol, ⁇ -naphthol, and 2,2-bis (4'-hydroxyphenyl) propane are economical and easy to manufacture. It is preferable from the viewpoint of. These can be used alone or in combination.
  • the molar ratio between the unsaturated cyclic hydrocarbon and the phenol used in the reaction is appropriately adjusted depending on the molecular weight and melt viscosity of the desired phenol resin.
  • the phenols / unsaturated cyclic hydrocarbons 1 to 20 (molar ratio) are preferred.
  • the phenolic resin with low melt viscosity and the epoxy resin with low melt viscosity obtained by epoxidation can be used for semiconductor encapsulants because they can be filled with high filler and have low linear expansion coefficient. It is also preferable because the moisture resistance is improved.
  • the acid catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid, boron trifluoride, boron trifluoride / ether complex, boron trifluoride / phenol complex, A Friedel-Crafts catalyst such as boron fluoride / water complex, boron trifluoride / alcohol complex, boron trifluoride / amine complex, or a mixture thereof is used.
  • boron trifluoride, boron trifluoride / phenol complex, and boron trifluoride ether complex are preferably used in view of catalytic activity and ease of catalyst removal.
  • the content of the 1: 1 additive in the phenol resin is controlled to be more than 2% by mass and not more than 20% by mass. If the content is less than 2% by mass, the fluidity will be low, and if it exceeds 20% by mass, the heat resistance will be reduced, which is not preferable.
  • the polystyrene reduced number average molecular weight is a number average molecular weight calculated from the molecular weight converted to the molecular weight of polystyrene having the same retention time in GPC measurement.
  • the method for producing a phenolic resin of the present invention includes a reaction step and a concentration step, both of which affect the amount of the monofunctional component.
  • the concentration of the catalyst used in the reaction affects the reaction mechanism between the phenols and the unsaturated cyclic hydrocarbons and the position of addition, and therefore, the concentration of the catalyst is 0.01 relative to the total mass of the phenols, the unsaturated cyclic hydrocarbons, and the catalyst. ⁇ 0.5% by mass, and It is preferably in the range of 0.3 to 0.3% by mass.
  • concentration of the catalyst is more than 0.5% by mass, the reaction proceeds too fast.
  • the catalyst concentration is less than 0.01% by mass, the reaction progresses remarkably slow. It is not preferable because the control of the control becomes difficult.
  • the water concentration in the phenols and unsaturated cyclic hydrocarbons before the addition of the catalyst before the start of the reaction is preferably 500 ppm or less.
  • phenols easily contain water, so it is preferable to control the water by performing a dehydration operation as appropriate. Examples of the dehydration method include a method in which phenols are azeotroped with an organic solvent as necessary under a nitrogen stream.
  • the amount of the catalyst used and the amount of water in the raw material are not limited to the above ranges, and it is preferable to appropriately adjust the balance within a range where the resin composition can be controlled.
  • the inside of the reactor is usually replaced with an inert gas such as nitrogen or argon.
  • the reaction is preferably performed in a closed system replaced with an inert gas, but the reaction can be performed in an open system while supplying the inert gas into the reactor.
  • the amount of water in the reaction system is not more than 50 ppm by preventing water from entering the system.
  • the reaction method is not particularly limited. For example, a predetermined amount of a phenol and an acid catalyst are charged into a reactor, and then the reaction is carried out by dropwise addition of an unsaturated cyclic hydrocarbon.
  • the reaction temperature may be appropriately adjusted according to the degree of progress of the reaction, and is not particularly limited. In the present invention, the reaction temperature is usually 30 to 150, preferably 50 to 120. By conducting the reaction in the range of ° C, the progress of the reaction can be favorably controlled.
  • the reaction time may be stopped when the amount of the monofunctional component in the resin reaches a desired amount, and is not particularly limited, but is usually from 10 minutes to 60 hours, preferably from 1 to 60 hours.
  • the reaction can be carried out efficiently by conducting the reaction for 20 hours, more preferably for 2 to 10 hours.
  • the end point of the reaction is determined by confirming the resin composition in the reaction solution.
  • the reaction is terminated by deactivating the catalyst. It is important to ensure that the reaction is stopped.
  • the means for deactivation is not particularly limited, but it is preferable to use a means for reducing the residual amount of ionic impurities such as boron and fluorine in the finally obtained phenol resin to 100 ppm or less.
  • alkali bases such as alkali metals, alkaline earth metals or their oxides, hydroxides, carbonates, ammonium hydroxide, and ammonia gas can be used, but quick and simple treatment is possible.
  • hydrotalcites as a deactivator since the amount of ionic impurities remaining after the treatment is small.
  • the phenolic resin of the present invention when used as a resin for a sealing material, it exhibits excellent curability and moldability, and provides excellent heat resistance and moisture resistance after curing. It is important to control physical properties as follows.
  • the content of a compound containing two phenolic hydroxyl groups (hereinafter sometimes referred to as a binuclear component) in which two molecules of a phenol are added to one molecule of an unsaturated cyclic hydrocarbon is determined by the viscosity of the resin. Therefore, it is important to make appropriate adjustments since it has a significant effect on fluidity, curability, etc.
  • the content of the binuclear component in the phenol resin is preferably from 30 to 90% by mass, and particularly preferably in the range of from 40 to 80% by mass.
  • the content of the binuclear component is less than 30% by mass, the fluidity of the resin decreases and moldability deteriorates. If the content is more than 90% by mass, the fluidity is good, but after curing. It is not preferable because the crosslink density decreases.
  • the amount of the binuclear component can be controlled mainly by the reaction molar ratio of the phenols and the unsaturated cyclic hydrocarbon, and it is preferable to control the amount of the binuclear component by appropriately adjusting the molar ratio.
  • the viscosity of the resin greatly affects the flow characteristics at the time of molding, so it must be adjusted appropriately.
  • the viscosity it is effective to grasp the solution viscosity of a 50% resin solution of n-butanol by, for example, the Canon-Fenske kinematic viscosity tube method. preferably to fall in the range of 1 0mm 2 / sec ⁇ 20 0mm 2 Z sec in by that solution viscosity law, preferred especially 3 0 mm 2 / sec ⁇ 1 8 0 mm 2 / sec controlled resin in the range of Exhibits flow characteristics.
  • the phenolic hydroxyl group content in the resin affects the curing characteristics and the like, and thus needs to be appropriately adjusted.
  • the phenolic hydroxyl group content is not particularly limited, but is, for example, 165 gZe as the equivalent of the hydroxyl group in the resin measured by the reverse titration method of the acetylated compound in a pyridine-acetic anhydride solution. c! ⁇ 300 gZe Q is preferable, and especially resin adjusted to liO gZe (! ⁇ 250 g / e Q not only exhibits favorable curing characteristics but also has good balance with fluidity when molding. Handling is very good.
  • a phenol resin satisfying the above resin properties can be produced.
  • the above reaction solution is treated in a concentration step after removing a deactivator or the like by filtration.
  • concentration step unreacted phenols are recovered and the amount of the monofunctional component is controlled, so that a phenol resin is obtained.
  • concentration conditions are Although certain conditions are not determined from the relationship between the temperature and pressure in the concentration system and the vapor pressure, the most efficient concentration can be achieved by performing the following conditions.
  • the temperature in the system is not particularly limited as long as the resin does not decompose, but is preferably 250 or less, more preferably 180 to 220. is there.
  • the pressure in the system it may be carried out under any of normal pressure, reduced pressure, and pressurized conditions.However, in order to smoothly and rapidly perform concentration in the above-mentioned temperature range, the pressure in the system should be reduced. preferable. Specifically, the range is preferably 66.5 kPa (500 torr) or less, and particularly preferably 40 kPa (300 torr) or less.
  • the pressure of steam or nitrogen introduced into the system is not particularly limited, but specifically, is preferably in the range of 0.3 to 2.0 MPa, more preferably 0.5 to 1.5 MPa. Impurities can be removed efficiently when blowing operation is performed in the range of MPa.
  • the method of concentration is not particularly limited, but preferred examples of the concentration method include the following.
  • the filtered reaction solution filtrate
  • heating is started and the pressure inside the system is continuously reduced.
  • the pressure in the system reaches 200, the pressure in the system is reduced to full pressure, and the pressure is reduced to 13 kPa (100 torr) or less.
  • high-pressure steam is blown into the system under reduced pressure, and finally nitrogen is blown so that no steam remains, thereby completing the concentration.
  • the end point of the concentration is determined by confirming the amount of unreacted phenols and the amount of monofunctional components detected in the region of polystyrene reduced number average molecular weight of 320 or less by GPC analysis.
  • the content of the monofunctional component in the phenolic resin should be more than 2% by mass and not more than 20% by mass. Is necessary. It is preferable that the content of unreacted phenols is low from the viewpoint of environmental considerations when using the product, but from the viewpoint of production efficiency and quality, the residual amount in the resin is 500 ppm or less. Is sufficient, preferably 20 ppm or less, more preferably 100 ppm or less.
  • the amount is more than 500 ppm, it is not preferable from the viewpoint of the performance of the resin and the influence on the environment.On the other hand, if the amount is less than 500 ppm, there is a problem that the concentration time becomes longer. It is important to take this into account.
  • the phenol resin of the present invention can be obtained by controlling the amount of the monofunctional component in the reaction step and the concentration step.
  • the monofunctional component will be specifically described in the case where phenol is used as the phenols and dicyclopentene is used as the unsaturated cyclic hydrocarbon.
  • the monofunctional component mainly includes a compound A represented by the following general formula (1) and a compound B represented by the following general formula (2).
  • Aliphatic hydrogen content of the molecule A 1 / (A 1 + A 2) (A 1 is 1 H- NMR measurement Chiya one Bok on chemical shift I 0 to 4. 8 p peak area intensity of pm, A 2 is the peak area intensity when the chemical shift on the 1 H-NMR measurement chart is 6.5 to 8.5 ppm)
  • Ether-type product content B 3 / (B 1 + B 2 + B 3) (B 1 is 13 C—chemical shift on NMR measurement channel 13 0 to 13 3 ppm area intensity , B 2 is 1 3 C-NMR measurement Chiya one bets on the chemical shift 1 3 7 ⁇ : L 40 ppm of integrated intensity, B 3 is 1 3 C-NMR measurement Chiya one bets on the chemical shift 1 5 5 to; L 60 ppm area intensity)
  • Compound B can be identified by calculating the aliphatic hydrogen content in the molecule to be 76% from the following Formula 3 from iH_NMR measurement.
  • C 1 is 1 H- NMR peak area intensity of a chemical shift is Less than six p pm on measurement chart, C 2 is 1 H- NMR measurement Chiya one bets on the chemical shift Bok force from 6.5 to 8. 5 ppm peak area intensity
  • the contents of the compound A and the compound B in the phenol resin can be determined by measuring the amounts detected in a region corresponding to a polystyrene-equivalent number average molecular weight of 320 or less by GPC analysis.
  • the reaction step it is important to confirm the amount of compound A and compound B produced.At the end of the reaction step, the total content of compounds A and B If the content is more than 2% by mass and not more than 25% by mass of the total fat, the monofunctional components can be efficiently controlled in the subsequent concentration step, and their content is finally controlled to an appropriate amount. A phenolic resin can be obtained.
  • the total content of compounds A and B in the resin can be more than 2% by mass and 20% by mass or less. Further, the total content of the compounds A and B is preferably set to 3 to 18% by mass.
  • a phenolic resin of the present invention In the method for producing a phenolic resin of the present invention, it is essential to perform the above-described reaction control and concentration control, and by performing these at the same time, a phenolic resin having a good balance of heat resistance and fluidity is obtained. be able to.
  • the phenolic resin obtained as described above has excellent heat resistance, moisture resistance, crack resistance, and excellent flowability, and therefore has good moldability. It is useful as a curing agent for epoxy resins for boards or as a raw material for epoxy resins, but its use is not particularly limited.
  • the epoxy resin of the present invention can be obtained by reacting the above phenol resin with ephalohydrins in the presence of a base catalyst to dalicidylate.
  • the glycidylation reaction can be performed by a conventional method. Specifically, for example, in the presence of a base such as sodium hydroxide and potassium hydroxide, usually at a temperature of 10 to L50, preferably at a temperature of 30 to 80, the phenol resin is converted to epichlorohydrin, It can be obtained by reacting with a daricidylating agent such as epibromhydrin, washing with water and drying.
  • a base such as sodium hydroxide and potassium hydroxide
  • the amount of the glycidylating agent to be used is preferably 2 to 20-fold molar equivalent, particularly preferably 3 to 7-fold molar equivalent to the phenol resin.
  • the water can be distilled off by azeotropic distillation with the glycidylating agent under reduced pressure, so that the reaction can proceed more quickly.
  • the epoxy resin of the present invention when used in the electronic field, by-product chloride Salts such as sodium must be completely removed in the washing step. At this time, the unreacted dalicidylating agent may be recovered by distillation to concentrate the reaction solution, and then the concentrate may be dissolved in a solvent and washed with water.
  • the solvent include methyl isobutyl ketone, cyclohexanone, benzene, and butyl sorb. The concentrate washed with water is heated and concentrated.
  • the content of a compound in which two glycidyl groups are added to a binuclear component in a resin greatly affects the viscosity, flowability, and curability of the resin. Therefore, it is important to make appropriate adjustments. That is, the content of the binuclear epoxidation component in the epoxy resin is preferably from 30 to 90% by mass, particularly preferably from 40 to 80% by mass. If the amount is less than 30% by mass, the fluidity is reduced, which greatly affects the moldability of the cured product. If the amount is more than 90% by mass, good fluidity is obtained, but the crosslink density is reduced. It is not preferable because the curing characteristics are deteriorated.
  • the viscosity of the resin greatly affects the flow characteristics during molding, it must be adjusted appropriately. Although there is no particular limitation on the definition of the viscosity, it is effective to grasp the solution viscosity of a 50% resin solution of 1,4-dioxane by, for example, the Canon-Fenske kinematic viscosity tube method. in solution viscosity by law, 1 0 0 mm 2, sec more preferably in the range, in particular 7 0 mm 2 / sec control compounds in the following ranges exhibit desirable flow properties.
  • the content of the epoxy group in the epoxy resin is usually from 200 to 500 g / eq, preferably from 250 to 450 g / eq. If the content of the epoxy group is 500 g ZeQ or more, the crosslinking density is too low, which is not preferable.
  • an epoxy resin satisfying the above physical properties Can be manufactured.
  • the epoxy resin thus obtained has excellent fluidity and good moldability as compared with an epoxy resin having a similar structure obtained by a conventional method. Further, since the concentration of the epoxy group is high, it is excellent in curability and heat resistance. Particularly, the semiconductor sealing material is extremely useful because of its advantages such as remarkably excellent solder crack resistance. It is also useful as a raw material of an epoxy resin composition for a laminate, and can be used as a varnish or the like for an electric laminate because of its excellent solubility of the epoxy resin in a solvent.
  • an oligomer type epoxy resin obtained by modifying the epoxy resin of the present invention with a brominated polyphenol may be used for a laminate.
  • a resin having heat resistance imparted by blending or modifying a polyfunctional epoxy resin can also be used.
  • the resin in order to obtain a polymer type epoxy resin, the resin can be used as a raw material resin for a two-step method reaction.
  • they are also useful for powder coatings, brake shoes, etc., and their uses are not particularly limited.
  • the epoxy resin composition of the present invention contains an epoxy resin, a curing agent, and an inorganic filler as essential components.
  • the epoxy resin of the present invention is used as an epoxy resin, or the phenol resin of the present invention is used as a curing agent. It is characterized by being used.
  • epoxy resin of the present invention is used as the epoxy resin
  • another epoxy resin may be used in combination.
  • any known epoxy resin can be used.
  • an orthocresol novolak type epoxy resin is particularly preferable because of its excellent heat resistance
  • a biphenyl type bifunctional epoxy resin is preferable because of its excellent fluidity.
  • the above-mentioned other known epoxy resins can also be used as epoxy resins when the phenolic resin of the present invention is used as a curing agent.
  • the curing agent in addition to the phenolic resin of the present invention, all compounds that are commonly used as curing agents for epoxy resins can be used, and are not particularly limited. Examples thereof include diethylenetriamine and triethylene. Aliphatic amines such as lentetramine, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, phenol novolak resin, orthocresol nopolak resin, bisphenol A novolak resin, bis Phenol F-nopolak resin, phenols-di-cyclopentene polyaddition resin, dihydroxyxnaphtalene nopolak resin, polyhydric phenols with xylidene as a bonding group, phenolaralkyl resins, naphthol resins, Polyamide resins and their modifications Anhydrides such as maleic anhydride, maleic anhydride, hydrofluoric anhydride, hexahydrophthalic anhydride,
  • aromatic hydrocarbon-formaldehyde resins such as the above-mentioned phenol nopolak resins are excellent in heat resistance and moldability, and phenol aralkyl resins are excellent in heat resistance, moldability and low water absorption. It is preferred because of its superiority.
  • the amount of the curing agent used is not particularly limited as long as it provides sufficient heat resistance to the epoxy resin composition.
  • the number of epoxy groups contained in one molecule of the epoxy resin and the amount of the curing agent This is the amount at which the number of active hydrogens becomes close to the equivalent.
  • a curing accelerator can be appropriately used.
  • a curing accelerator Any known compounds can be used.Examples include phosphorus compounds, tertiary amines, imidazoles, metal salts of organic acids, Lewis acid / amine complex salts, and the like. These may be used alone or in combination of two or more. Combinations are also possible.
  • the inorganic filler enhances the mechanical strength and hardness of the semiconductor encapsulating material, achieves a low water absorption and a low coefficient of linear expansion, and can enhance the crack preventing effect.
  • the inorganic filler used is not particularly limited, and examples thereof include fused silica, crystalline silica, alumina, talc, clay, and glass fiber.
  • fused silica and crystalline silica are generally used especially for semiconductor encapsulating materials, and fused silica is preferred because of its excellent fluidity.
  • Spherical silica, pulverized silica and the like can also be used.
  • the blending amount of the inorganic filler is not particularly limited, but is preferably in the range of 75 to 95% by mass in the composition. Particularly, in a semiconductor encapsulant application, the solder crack resistance is extremely low. This range is preferable because it is excellent. In the present invention, even if it is 75% by mass or more, fluidity and moldability are not impaired at all.
  • various known additives such as a coloring agent, a flame retardant, a release agent, and a staple coupling agent can be appropriately compounded as necessary.
  • Semiconductor encapsulating materials include brominated epoxy resins such as tetrabromo A-type epoxy resin and brominated phenol nopolak-type epoxy resin, flame retardants such as antimony trioxide and hexabromobenzene, carbon black and red iron. It is preferable to appropriately add a coloring agent, a female agent such as a natural wax and a synthetic wax, and an additive such as a low stress additive such as silicone oil, synthetic rubber and silicone rubber.
  • an epoxy resin, a curing agent, and an inorganic filler, as well as a curing accelerator and other additives were sufficiently mixed with a mixer or the like. Thereafter, the mixture is melted and kneaded with a hot roll or a kneader, and then subjected to injection molding or cooling followed by grinding.
  • the properties of the phenol resin were measured by the following methods.
  • Compound A was isolated and purified from phenolic resin using preparative GPC, open column, etc., and identified using NMR and the like.
  • the aromatic hydrocarbon solvent is not used in the synthesis, the component detected during the retention time corresponding to Compound A (polystyrene-equivalent number average molecular weight of not less than 230 and less than 320) Is measured in advance, and the measured amount is subtracted from the amount of the retention time component when synthesized using an aromatic hydrocarbon solvent, and the area is calculated from the measurement chart of the entire phenol resin. From the ratio, the content of compound A with respect to the entire phenol resin was determined. The measurement was performed using a 1% by mass solution of phenolic resin in tetrahydrofuran (THF) using a high-performance liquid chromatography system “Millennium” manufactured by WATERS.
  • THF tetrahydrofuran
  • Compound B was isolated and purified from phenolic resin using preparative GPC, open column, etc., and identified using NMR and the like.
  • the amount of the component corresponding to Compound B (substance detected in the range of polystyrene-equivalent number average molecular weight of 100 or more and less than 230) using analytical GPC was measured, and the measurement chart for the entire phenol resin was measured. From the area ratio of, the content of compound B with respect to the entire phenol resin was determined. The measurement was performed using a 1% by mass solution of a phenolic resin in tetrahydrofuran (THF) using a high-performance liquid mouth chromatography system “Millennium” manufactured by WATERS.
  • THF tetrahydrofuran
  • the phenol resin obtained in the production was heated and refluxed in a mixed solution of pyridine and acetic anhydride, and the solution after the reaction was determined by back titration with a hydration power rim.
  • a n-butanol solution having a solid content concentration of 50 ⁇ 0.01% was used, and the measurement was carried out at a constant-temperature bath water temperature of 25 using a backflow type Canon Fenske viscometer.
  • a 1,4-dioxane solution having a solid concentration of 50 ⁇ 0.01% was prepared and measured with a reverse-flow type Canon Fenske viscometer at a constant temperature water temperature of 25 :.
  • the content of Compound A and Compound B in this resin was 2.5% by mass and 3.2% by mass, respectively.
  • the content of the binuclear component was 63% by mass.
  • the softening point was 87 and the hydroxyl equivalent was 177 g / eQ.
  • n-butanol The solution viscosity was 86 mm 2 sec.
  • a 3-liter 4-neck flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 177 g of the phenolic resin (I) produced in Production Example 1 and 400 g of epichlorohydrin, followed by stirring. Dissolved.
  • the pressure in the reaction system was adjusted to 20 kPa (150 torr), and the temperature was raised to 68.
  • the reaction was carried out for 3.5 hours while continuously adding 100 g of an aqueous solution of sodium hydroxide having a concentration of 48% by mass.
  • the water produced by the reaction and the aqueous sodium hydroxide solution were decomposed by refluxing an azeotrope of water-hydrazine hydrin and continuously removed out of the reaction system.
  • the methyl isobutyl ketone liquid layer was distilled under normal pressure, followed by vacuum distillation at 0.67 kPa (5 torr) and 140 ° C to obtain 2 16 g of epoxy resin (I) was obtained.
  • the epoxy resin obtained had an epoxy equivalent of 269 gZe Q, a 1,4-dioxane 50% by mass solution viscosity of 22 mm 2 / sec, and a binuclear epoxy.
  • the content of the silicified component was 51% by mass.
  • the reactor was charged with phenol and toluene, heated to 160 to azeotrope with toluene, and toluene was distilled off. Sampling is performed as appropriate to confirm that the water content of the phenol in the system is 10 O ppm or less, and then to 100 g (11.2 mol) of the dehydrated phenol is added to trifluoride. After adding 15 g of boron-phenol complex to make it homogeneous, 188 g (1.4 mol) of dispenser was slowly added dropwise over 1 hour while maintaining the liquid temperature at 80. After completion of the dropwise addition, the temperature was raised to 140 and the mixture was further stirred for 3 hours.
  • the reaction solution was cooled to 90, and 50 g of magnesium hydroxide / aluminum hydroxide / hydrite talcite (Kyowa Word 100,000) was added to deactivate the catalyst.
  • the reaction was filtered.
  • the obtained filtrate was distilled and concentrated at 190 under a reduced pressure of 13 kPa (lOOtrr) for 5 hours to obtain 415 g of a phenol resin (II).
  • the obtained phenol resin had a softening point of 95.0 and a phenolic hydroxyl equivalent of 170 g / eQ.
  • the content of compound A in the phenol resin was 1.1% by mass, and the content of compound B was 0.4% by mass. Further, the content of the binuclear component was 65% by mass, and the solution viscosity of 50% by mass of n-butanol was 90 mm 2 / sec.
  • Production was performed in the same manner as in Production Example 2 except that 170 g of the phenolic resin (II) produced by the method of Production Comparative Example 1 was used. Resin (II) was obtained.
  • the epoxy equivalent of the obtained epoxy resin was 2663 gZe Q, the content of the binuclear epoxidation component was 53% by mass, and the solution viscosity of 50% by mass of 1,4-dioxane was 26 mm 2 / sec. there were.
  • the softening point of this resin was 84, and the hydroxyl equivalent was 301 g / eQ.
  • the solution viscosity of the 50% by mass n-butanol solution at 25 ° C. was 64 mm 2 Zsec.
  • the resin contained 6.3% by mass of compound A and 16.9% by mass of compound B.
  • the content of the binuclear component was 51% by mass.
  • a 3-liter 4-neck flask equipped with a stirrer, reflux condenser and thermometer was charged with 301 g of the phenolic resin (III) produced in Production Comparative Example 3 and 680 g of epichlorohydrin, and then stirred. , Dissolved.
  • the pressure in the reaction system was adjusted to 2 OkPa (150 torr), and the temperature was raised to 68X :.
  • the reaction was continued for 3.5 hours while continuously adding 170 g of a 48% by mass aqueous sodium hydroxide solution thereto.
  • the water produced by the reaction and the aqueous sodium hydroxide solution were decomposed by refluxing an azeotropic mixture of water and epichlorohydrin, and were continuously removed to the outside of the reaction system.
  • the resulting resin, a mixture of sodium chloride, and methyl isobutyl ketone 500 g and 60 g of a 10% by mass aqueous sodium hydroxide solution were added, and the mixture was reacted at 85 t: for 1.5 hours.
  • 100 g of methyl isobutyl ketone and 300 g of water were added, and the lower layer aqueous solution of an inorganic salt was separated and removed. The separation between the oil and water layers was very good.
  • the obtained epoxy resin had an epoxy equivalent of 34.1 g Zeq, a 1,4-dioxane of 50% by mass, a solution viscosity of 12 mm 2 , sec, and a binuclear epoxidized component of 42% by mass. Met.
  • the glass transition temperature was measured by DMA as an index of hardening using the test specimen for evaluation.
  • the sample was left in an atmosphere of 85% RH for 16 hours to perform a moisture absorption treatment, and the water absorption was measured. Further, after that, the crack occurrence rate when immersed in a solder bath at 260 for 10 seconds was examined. Table 1 shows the results.
  • the mixture prepared according to the composition shown in Table 2 was kneaded with a hot roll at 100 for 8 minutes and then pulverized. Things to 1 2 ⁇ : L 4MP a (1 2 0 0 ⁇ 1 4 0 0 kgcm 2) Te a pressure of evening to create a breccias bets, plunger pressure 0. 8 MP a by transfer molding machine using the same (80 kg / cm 2 ), mold temperature: 17.5: Molding time: 100 seconds, sealing was performed, and a flat package with a thickness of 2 mm was prepared as an evaluation test piece. Thereafter, post-curing was performed at 175 for 8 hours.
  • Example 2 has a good balance between fluidity and heat resistance, Comparative Example 3 has poor fluidity, and Comparative Example 4 has poor heat resistance.
  • the phenol novolak used was phenolic TD-213 (manufactured by Dainippon Ink and Chemicals, Inc., softening point: 80, hydroxyl equivalent: 104 gZeQ).
  • a phenolic resin composition, an epoxy resin composition, and a semiconductor encapsulant having good fluidity, excellent moldability when encapsulating a semiconductor, and further having excellent heat resistance after encapsulation and curing are provided.
  • a stop material can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A phenolic resin or epoxy resin useful as a resin for semiconductor encapsulation materials, which gives a cured composition having an excellent balance among heat resistance, moisture resistance, crack resistance, and moldability. The phenolic resin is one which is obtained by reacting a phenol with an unsaturated cyclic hydrocarbon compound having two or more carbon-carbon double bonds in the presence of an acid catalyst and has a number-average molecular weight of 320 or lower in terms of polystyrene, and in which the content of monofunctional components having only one phenolic hydroxy group per molecule is 2 to 20 wt.%, excluding 2 wt.%, based on the resin.

Description

明 細 書 フエノール樹脂、 エポキシ樹脂、 その製造方法及び半導体封止材用樹脂 組成物 技術分野  Technical Field Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant
本発明は、 電気絶縁材料、 特に半導体封止材用樹脂や積層板用樹脂と して有用な耐熱性、 耐湿性、 耐クラック性および成形性のバランスに優 れたフエノール樹脂およびエポキシ樹脂ならびに半導体封止材用組成物 に関する。 背景技術  The present invention relates to a phenolic resin, an epoxy resin, and a semiconductor having an excellent balance of heat resistance, moisture resistance, crack resistance, and moldability, which are useful as an electrical insulating material, particularly a resin for a semiconductor sealing material and a resin for a laminated board. The present invention relates to a composition for a sealing material. Background art
近年、 半導体関連技術は急速に進歩しており、 各部品およびその原料 に対する要求特性が厳しいものとなってきている。 特に、 半導体のメモ リーの集積度の向上に伴う配線の微細化、 チップサイズの大型化が進ん でおり、 更には実装方法もスルーホール実装から表面実装への移行が進 んでいる。 しかしながら、 表面実装の自動化ラインにおいては、 リード 線の半田付けの際に半導体パッケージが急激な温度変化を受け、 半導体 封止材用樹脂成形部にクラックが生じたり、 リード線樹脂間の界面が劣 化して耐湿性が低下するという問題がある。  In recent years, semiconductor-related technologies have advanced rapidly, and the required characteristics of each component and its raw material have become strict. In particular, the miniaturization of wiring and the increase in chip size have been progressing as semiconductor memory integration has increased, and the mounting method has also shifted from through-hole mounting to surface mounting. However, in automated lines for surface mounting, the semiconductor package is subject to sudden temperature changes during soldering of the lead wires, causing cracks in the resin molding for the semiconductor encapsulant and poor interface between the lead wire resins. There is a problem that moisture resistance is reduced.
半導体封止材用樹脂組成物に用いられるフエノール榭脂としては、 従 来、 硬化剤としてフエノールノボラック樹脂ゃクレゾールノボラック樹 脂等のフエノール樹脂が使用されたり、 また主剤として、 クレゾールノ ポラック骨格を有するエポキシ樹脂が使用されている。 しかしこれらの 樹脂を用いた場合、 半導体パッケージの吸湿特性が悪く、 その結果とし て前述のような半田浴浸漬時におけるクラックの発生が避けられないと いう問題がある。  As the phenol resin used in the resin composition for semiconductor encapsulant, a phenol resin such as a phenol novolak resin or a cresol novolak resin has conventionally been used as a curing agent, and a cresol nopolak skeleton has been used as a main agent. Epoxy resin is used. However, when these resins are used, there is a problem that the moisture absorption characteristics of the semiconductor package are poor, and as a result, the occurrence of cracks during immersion in the solder bath as described above is inevitable.
そこで最近では、 半導体封止材用樹脂組成物の耐湿性、 耐熱性を改善 するために、 エポキシ樹脂原料および、 エポキシ樹脂の硬化剤としての フエノール樹脂を改良する検討がなされており、 たとえば、 特開昭 6 1 - 2 9 1 6 1 5号公報において、 フエノール類とジシクロペン夕ジェン (以下、 D C P Dと称することがある。) から誘導されるエポキシ樹脂を 必須成分とする耐湿性、 耐熱性および内部可塑性のバランスに優れたェ ポキシ樹脂組成物が提案されている。 しかしながら、 必ずしも成形性が 十分とはいえない。 Therefore, recently, in order to improve the moisture resistance and heat resistance of a resin composition for a semiconductor encapsulant, an epoxy resin raw material and a curing agent for an epoxy resin have been used. Studies have been made to improve phenolic resins. For example, in JP-A-6-192615, phenolic resins are derived from phenols and dicyclopentene (hereinafter sometimes referred to as DCPD). An epoxy resin composition containing an epoxy resin as an essential component and having an excellent balance of moisture resistance, heat resistance and internal plasticity has been proposed. However, moldability is not always sufficient.
また特開平 9 - 4 8 8 3 9号公報では、 D C P D · フエノール変性ェ ポキシ樹脂において、 エポキシ樹脂またはその原料となるフエノール樹 脂を蒸留あるいは再沈殿を行い、 低分子量成分の量を調整することによ り、耐熱性を損なわずに良好な流動性が得られることが開示されている。 しかしながら、 蒸留による調整は困難であり、 また樹脂中の残存フエノ ール量が増加するなどの問題点がある。 また再沈殿による調整は溶剤を 使用するため、樹脂から再び溶剤を除去する必要がある等の問題がある。 本発明が解決しょうとする課題は、硬化後の耐熱性に優れるとともに、 流動性が良好で半導体を封止する際の成形性に優れるフエノール樹脂、 エポキシ樹脂およびそれらの効率的な製造方法ならびにそれらの樹脂を 用いたエポキシ樹脂組成物を提供することにある。 発明の開示  In Japanese Patent Application Laid-Open No. 9-48883, the amount of low molecular weight components is adjusted by distilling or reprecipitating an epoxy resin or a phenol resin as a raw material thereof in a DCPD / phenol-modified epoxy resin. Discloses that good fluidity can be obtained without impairing heat resistance. However, adjustment by distillation is difficult, and there are problems such as an increase in the amount of residual phenol in the resin. Further, since the adjustment by reprecipitation uses a solvent, there is a problem that it is necessary to remove the solvent from the resin again. The problem to be solved by the present invention is to provide a phenolic resin, an epoxy resin, and an efficient production method thereof, which are excellent in heat resistance after curing, have good fluidity, and are excellent in moldability when sealing a semiconductor. An object of the present invention is to provide an epoxy resin composition using the above resin. Disclosure of the invention
本発明者は、 上記課題を解決すべく鋭意検討を重ねた結果、 酸触媒の 存在下でフエノール類と炭素一炭素二重結合を 2個以上有する不飽和環 状炭化水素 (以下単に 「不飽和環状炭化水素」 と称することがある。) と を付加反応させて得られるフエノール樹脂中に、 ポリスチレン換算数平 均分子量が 3 2 0以下であり、 かつ 1分子中にフエノール性水酸基を 1 つのみ含有する一官能性成分 (以下、 単に 「一官能性成分」 と称するこ とがある。)、 特にエーテル型化合物やフエノール類と不飽和環状炭化水 素との 1 : 1付加物が適量含まれていると、 硬化後の耐熱性と成形時の 流動性のバランスが優れることを見出した。 さらに、 フエノール樹脂の 製造において、 フエノール類と不飽和環状炭化水素との反応方法や反応 生成物の濃縮方法を工夫することにより、 一官能性成分の含有量を適量 に制御するフエノール樹脂の効率的な製造方法を完成するに至った。 すなわち、 本発明は、 フエノール類と炭素一炭素二重結合を 2個以上 有する不飽和環状炭化水素化合物とを反応させて得られるフエノール樹 脂において、 ポリスチレン換算数平均分子量が 3 2 0以下であり、 かつ 1分子中にフエノール性水酸基を 1つのみ含有する一官能性成分の含有 量が、 該樹脂中の 2質量%を超え 2 0質量%以下であることを特徴とす るフエノール樹脂に関する。 As a result of intensive studies to solve the above problems, the present inventors have found that, in the presence of an acid catalyst, a phenol and an unsaturated cyclic hydrocarbon having two or more carbon-carbon double bonds (hereinafter simply referred to as “unsaturated The phenolic resin obtained by the addition reaction of and has a number average molecular weight in terms of polystyrene of not more than 320 and only one phenolic hydroxyl group per molecule. Contains a suitable amount of monofunctional components (hereinafter sometimes simply referred to as “monofunctional components”), especially 1: 1 adducts of ether compounds or phenols with unsaturated cyclic hydrocarbons. In this case, it was found that the balance between heat resistance after curing and fluidity during molding was excellent. Furthermore, in the production of phenolic resins, the reaction method and reaction of phenols with unsaturated cyclic hydrocarbons By devising a method for concentrating the product, an efficient method for producing a phenol resin in which the content of the monofunctional component is controlled to an appropriate amount has been completed. That is, the present invention relates to a phenol resin obtained by reacting a phenol with an unsaturated cyclic hydrocarbon compound having two or more carbon-carbon double bonds, wherein the number average molecular weight in terms of polystyrene is 320 or less. And a phenolic resin characterized in that the content of a monofunctional component containing only one phenolic hydroxyl group in one molecule is more than 2% by mass and not more than 20% by mass in the resin.
さらに、 酸触媒の存在下にフエノール類と炭素一炭素二重結合を 2個 以上有する不飽和環状炭化水素化合物とを接触させる反応工程と、 主と して未反応のフエノール類を除去する濃縮工程とを含むフエノール樹脂 の製造方法において、 反応工程において反応系中の触媒濃度を所定の濃 度に調節し、 濃縮工程において所定の条件で反応生成物を濃縮すること により、 ポリスチレン換算数平均分子量が 3 2 0以下で、 かつフエノー ル性水酸基を 1つのみ含有する一官能性成分の該樹脂中における含有量 が 2質量%を超え 2 0質量%以下にすることを特徴とするフエノール樹 脂の製造方法に関する。  Further, a reaction step of bringing a phenol into contact with an unsaturated cyclic hydrocarbon compound having at least two carbon-carbon double bonds in the presence of an acid catalyst, and a concentration step of mainly removing unreacted phenols In a method for producing a phenolic resin containing: a) the catalyst concentration in the reaction system is adjusted to a predetermined concentration in the reaction step, and the reaction product is concentrated under the predetermined conditions in the concentration step, whereby the number average molecular weight in terms of polystyrene is reduced. A phenolic resin characterized in that the content of the monofunctional component containing not more than 320 and one phenolic hydroxyl group in the resin is more than 2% by mass and not more than 20% by mass. It relates to a manufacturing method.
また、 上記製造法により得られたフエノール樹脂とェピハロヒ ドリン 類との反応で得られるエポキシ樹脂に関する。  The present invention also relates to an epoxy resin obtained by reacting a phenol resin obtained by the above-mentioned production method with ephalohydrins.
さらに、 エポキシ樹脂、 上記製造法により得られるフエノール樹脂等 からなる硬化剤、 硬化促進剤および無機充填剤を必須成分として含有す る半導体封止材用のエポキシ樹脂組成物あるいは上記製造法により得ら れるエポキシ樹脂、 硬化剤、 硬化促進剤および無機充填剤を必須成分と して含有する半導体封止材用のエポキシ樹脂組成物に関する。 発明を実施するための最良の形態  Furthermore, an epoxy resin composition for a semiconductor encapsulant containing an epoxy resin, a curing agent comprising a phenol resin obtained by the above-mentioned production method, a curing accelerator and an inorganic filler as essential components, or an epoxy resin composition obtained by the above-mentioned production method. The present invention relates to an epoxy resin composition for a semiconductor encapsulant, comprising an epoxy resin, a curing agent, a curing accelerator and an inorganic filler as essential components. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明のフエノール樹脂は、 酸触媒の存在下にて、 フエノール性水酸 基を有するフエノ一ル類と炭素一炭素二重結合を 2個以上有する不飽和 環状炭化水素化合物とを反応させることにより製造される。 The phenolic resin of the present invention comprises a phenol having a phenolic hydroxyl group and an unsaturated compound having two or more carbon-carbon double bonds in the presence of an acid catalyst. It is produced by reacting with a cyclic hydrocarbon compound.
炭素一炭素二重結合を 2個以上有する不飽和環状炭化水素化合物とし ては、 ジシクロペン夕ジェン、 4—ビニルシクロへキセン、 5 _ビニル ノルボルナ一 2 —ェン、 3 a, 4 , 7 , 7 a —テトラヒ ドロインデン、 α—ビネン、 リモネン等が挙げられる。 これらは単独でも混合しても用 いることができる。 特にジシクロペン夕ジェンは、 得られる樹脂の耐熱 性、 耐湿性および機械的特性に優れる点から好ましい。  Examples of unsaturated cyclic hydrocarbon compounds having two or more carbon-carbon double bonds include dicyclopentene, 4-vinylcyclohexene, 5-vinyl norborna-2-ene, 3a, 4, 7, 7a —Tetrahydroindene, α-binene, limonene and the like. These can be used alone or in combination. In particular, dicyclopentene is preferred because the resulting resin has excellent heat resistance, moisture resistance and mechanical properties.
フエノール類としては、 ヒ ドロキシル基が芳香族環に直接置換したフ ェノール性水酸基を有する芳香族化合物である限り特に限定されるもの ではないが、 例えばフエノール、 ο _クレゾ一ル、 m—クレゾ一ル、 p —クレゾール、 o _ェチルフエノール、 m—ェチルフエノール、 p—ェ チルフエノール、 o —イソプロピルフエノール、 m—プロピルフエノー ル、 p—プロピルフエノール、 p _ s e c —ブチルフエノール、 p _ t e r t —プチルフエノール、 p—シクロへキシルフェノール、 p—クロ 口フエノール、 o—ブロモフエノール、 m—ブロモフエノール、 p—ブ ロモフエノール、 α—ナフ トール、 /3—ナフ トール等の一価フエノール 類 ; レゾルシン、 カテコール、 ハイ ドロキノン、 2, 2 —ビス (4, ― ヒ ドロキシフエニル) プロパン、 1 , 1, 一ビス (ジヒ ドロキシフエ二 ル) メタン、 1, 1 ' —ビス (ジヒ ドロキシナフチル) メタン、 テ卜ラ メチルビフエノール、 ビフエノール等の二価フエノール類 ; 卜リスヒ ド ロキシフエニルメタン等の三価フエノ一ル類を挙げることができる。 特 にフエノール、 ο _クレゾ一ル、 m _クレゾ一ル、 α —ナフ ト一ル、 β —ナフ トール及び 2, 2—ビス (4 ' —ヒ ドロキシフエニル) プロパン 等が経済性及び製造の容易さの点から好ましい。 これらは単独でも混合 しても用いることができる。  The phenols are not particularly limited as long as they are aromatic compounds having a phenolic hydroxyl group in which a hydroxyl group is directly substituted on an aromatic ring, and examples thereof include phenol, o_cresol, and m-cresol. , P-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-isopropylphenol, m-propylphenol, p-propylphenol, p_sec-butylphenol, p_tert-butylphenol Monovalent phenols such as, p-cyclohexylphenol, p-chlorophenol, o-bromophenol, m-bromophenol, p-bromophenol, α-naphthol, / 3-naphthol; resorcinol, catechol , Hydroquinone, 2,2-bis (4, -hydroxyphenyl) propane, 1,1, 1-bis (dihydroxyphenyl) methane, 1,1'-bis (dihydroxynaphthyl) methane, divalent phenols such as tetramethylbiphenyl, biphenyl, etc .; trishydroxyphenylmethane And other trivalent phenols. In particular, phenol, ο_cresol, m_cresol, α-naphthol, β-naphthol, and 2,2-bis (4'-hydroxyphenyl) propane are economical and easy to manufacture. It is preferable from the viewpoint of. These can be used alone or in combination.
反応に使用する不飽和環状炭化水素とフエノール類のモル比は、 目的 とするフエノール樹脂の分子量および溶融粘度により、 適宜に調節され る。 通常は、 フエノール類 Ζ不飽和環状炭化水素 = 1〜 2 0 (モル比) の範囲が好ましい。 特に溶融粘度を低くするには、 フエノール類 Ζ不飽 和環状炭化水素 = 2〜 1 5 (モル比) の範囲が好ましい。 なお、 溶融粘 度が低いフエノール樹脂、 及びこれをエポキシ化して得られる溶融粘度 の低いエポキシ樹脂は、 いずれも半導体封止材料に用いた場合にフィラ 一の高充填が可能で線膨張係数が小さくなり、 また、 耐湿性が向上する ので好ましい。 The molar ratio between the unsaturated cyclic hydrocarbon and the phenol used in the reaction is appropriately adjusted depending on the molecular weight and melt viscosity of the desired phenol resin. Usually, the phenols / unsaturated cyclic hydrocarbons = 1 to 20 (molar ratio) are preferred. In particular, to lower the melt viscosity, phenols The range of the sum of the cyclic hydrocarbons = 2 to 15 (molar ratio) is preferable. The phenolic resin with low melt viscosity and the epoxy resin with low melt viscosity obtained by epoxidation can be used for semiconductor encapsulants because they can be filled with high filler and have low linear expansion coefficient. It is also preferable because the moisture resistance is improved.
酸触媒としては、 塩酸、 硫酸、 硝酸などの無機酸およびぎ酸、 酢酸、 シユウ酸などの有機酸、 三フッ化ホウ素、 三フッ化ホウ素 · エーテル錯 体、 三フッ化ホウ素 · フエノール錯体、 三フッ化ホウ素 · 水錯体、 三フ ッ化ホウ素 · アルコール錯体、 三フッ化ホウ素 · アミン錯体などのフリ 一デル · クラフ ト触媒、 または、 これらの混合物等が用いられる。 これ らの中でも特に、 触媒活性および触媒除去の容易さの点から、 三フッ化 ホウ素、 三フッ化ホウ素 · フエノール錯体、 三フッ化ホウ素 ' エーテル 錯体が好ましく用いられる。  Examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid, boron trifluoride, boron trifluoride / ether complex, boron trifluoride / phenol complex, A Friedel-Crafts catalyst such as boron fluoride / water complex, boron trifluoride / alcohol complex, boron trifluoride / amine complex, or a mixture thereof is used. Among these, boron trifluoride, boron trifluoride / phenol complex, and boron trifluoride ether complex are preferably used in view of catalytic activity and ease of catalyst removal.
本発明では、 ポリスチレン換算数平均分子量が 3 2 0以下でありかつ 1分子中にフエノール性水酸基を 1つしか含有しない一官能性成分、 特 にエーテル型化合物やフエノール類と不飽和環状炭化水素との 1 : 1付 加物のフエノール樹脂中における含有量を 2質量%を超え 2 0質量%以 下に制御することを特徴とする。 含有量が 2質量%以下では流動性が低 くなり、 2 0質量%を超えると耐熱性が低下するため好ましくない。 なおポリスチレン換算数平均分子量とは、 G P C測定において、 同等 の保持時間を有するポリスチレンの分子量に換算した分子量から計算し た数平均分子量である。  In the present invention, a monofunctional component having a number average molecular weight in terms of polystyrene of not more than 320 and containing only one phenolic hydroxyl group per molecule, particularly an ether type compound or phenols and an unsaturated cyclic hydrocarbon, (1) The content of the 1: 1 additive in the phenol resin is controlled to be more than 2% by mass and not more than 20% by mass. If the content is less than 2% by mass, the fluidity will be low, and if it exceeds 20% by mass, the heat resistance will be reduced, which is not preferable. The polystyrene reduced number average molecular weight is a number average molecular weight calculated from the molecular weight converted to the molecular weight of polystyrene having the same retention time in GPC measurement.
本発明のフエノール樹脂の製造方法においては、 反応工程と濃縮工程 を含み、 いずれも一官能性成分の量に影響を及ぼす。  The method for producing a phenolic resin of the present invention includes a reaction step and a concentration step, both of which affect the amount of the monofunctional component.
以下に一官能性成分およびその制御方法について詳しく説明する。 まず、 反応工程について説明する。  Hereinafter, the monofunctional component and its control method will be described in detail. First, the reaction step will be described.
反応に使用する触媒の濃度は、 フエノール類と不飽和環状炭化水素の 反応機構や付加位置に影響を与えるため、 フエノール類、 不飽和環状炭 化水素および触媒の合計質量に対して 0 . 0 1〜 0 . 5質量%、 さらには 0 . 0 3〜 0 . 3質量%とするのが好ましい。 例えば、 フエノールとジシ クロペン夕ジェンとを三フッ化ホウ素 · フエノール錯体の存在下に反応 させる場合は、 フエノール、 ジシクロペン夕ジェンおよび三フッ化ホウ 素 · フエノール錯体の合計質量に対して、 三フッ化ホウ素が上記範囲と なるようにする。 触媒濃度が 0 . 5質量%より多い場合は、 反応の進行が 速くなりすぎ、 また 0 . 0 1質量%未満の場合は、 反応の進行が著しく遅 くなり、 いずれも一官能性成分の量の制御が困難となるため好ましくな い。 The concentration of the catalyst used in the reaction affects the reaction mechanism between the phenols and the unsaturated cyclic hydrocarbons and the position of addition, and therefore, the concentration of the catalyst is 0.01 relative to the total mass of the phenols, the unsaturated cyclic hydrocarbons, and the catalyst. ~ 0.5% by mass, and It is preferably in the range of 0.3 to 0.3% by mass. For example, when phenol and dicyclopentene are reacted in the presence of boron trifluoride / phenol complex, the total mass of phenol, dicyclopentene and boron trifluoride / phenol complex, Boron should be in the above range. When the catalyst concentration is more than 0.5% by mass, the reaction proceeds too fast. When the catalyst concentration is less than 0.01% by mass, the reaction progresses remarkably slow. It is not preferable because the control of the control becomes difficult.
なお、 触媒濃度は反応の全工程にわたって維持する必要がある。 した がって、 フエノール類と触媒を先に反応器に仕込み、 不飽和環状炭化水 素を滴下して加えることにより反応させる場合、 反応開始時点の触媒濃 度は、 実際上フエノール類に対する濃度となるが、 反応開始時から終了 時まで上記の触媒濃度の範囲が維持されるようにする。  It is necessary to maintain the catalyst concentration throughout the entire process of the reaction. Therefore, when phenols and a catalyst are charged into a reactor first and then reacted by dropwise addition of an unsaturated cyclic hydrocarbon, the catalyst concentration at the start of the reaction is practically the same as the concentration with respect to the phenols. However, the above range of the catalyst concentration is maintained from the start to the end of the reaction.
また、 上記触媒濃度領域においては、 水分が触媒活性および反応生成 物の組成に影響する。 水分量が多いと触媒活性が低下し、 反応の進行が 遅くなる結果、 樹脂組成の制御が困難となる。 そのため、 反応開始前に おける触媒添加前のフエノール類および不飽和環状炭化水素中の水分濃 度を 5 0 0 p p m以下とすることが好ましい。 特にフエノール類は水分 を含有し易いため、 適宜、 脱水操作を行って水分を制御することが好ま しい。 脱水方法としては例えば、 窒素気流下においてフエノール類を必 要に応じて有機溶剤とともに共沸する方法等が挙げられる。  Further, in the above-mentioned catalyst concentration region, water affects the catalytic activity and the composition of the reaction product. If the amount of water is large, the catalytic activity decreases, and the progress of the reaction slows down. As a result, it becomes difficult to control the resin composition. Therefore, the water concentration in the phenols and unsaturated cyclic hydrocarbons before the addition of the catalyst before the start of the reaction is preferably 500 ppm or less. In particular, phenols easily contain water, so it is preferable to control the water by performing a dehydration operation as appropriate. Examples of the dehydration method include a method in which phenols are azeotroped with an organic solvent as necessary under a nitrogen stream.
上記触媒の使用量と原料中の水分量は、 上記の範囲に限定されるもの ではなく、 樹脂組成を制御しうる範囲で適宜そのバランスを調整するこ とが好ましい。  The amount of the catalyst used and the amount of water in the raw material are not limited to the above ranges, and it is preferable to appropriately adjust the balance within a range where the resin composition can be controlled.
反応に際しては、 通常、 反応器内を窒素、 アルゴン等の不活性ガスで 置換する。 不活性ガスで置換された密閉系において反応を行うのが好ま しいが、 反応器内に不活性ガスを供給しつつ開放系で反応を行なうこと もできる。 反応においては、 系内に水分が入り込まないようにして、 反 応系中の水分量を 5 0 O p p m以下とすることが好ましい。 反応方法は特に限定されるものではないが、 例えば、 反応器に所定量 のフエノール類および酸触媒等を仕込み、 次いで不飽和環状炭化水素類 を滴下して反応を行う。 During the reaction, the inside of the reactor is usually replaced with an inert gas such as nitrogen or argon. The reaction is preferably performed in a closed system replaced with an inert gas, but the reaction can be performed in an open system while supplying the inert gas into the reactor. In the reaction, it is preferable that the amount of water in the reaction system is not more than 50 ppm by preventing water from entering the system. The reaction method is not particularly limited. For example, a predetermined amount of a phenol and an acid catalyst are charged into a reactor, and then the reaction is carried out by dropwise addition of an unsaturated cyclic hydrocarbon.
反応温度は、 反応の進行度に応じて適宜調整すれば良く、 特に限定さ れるものではないが、 本発明においては、 通常 3 0〜 1 5 0で、 好まし くは 5 0〜 1 2 0 °Cの範囲で反応を行うことにより、 反応の進行を好ま しく制御することができる。  The reaction temperature may be appropriately adjusted according to the degree of progress of the reaction, and is not particularly limited. In the present invention, the reaction temperature is usually 30 to 150, preferably 50 to 120. By conducting the reaction in the range of ° C, the progress of the reaction can be favorably controlled.
反応時間は、 樹脂中の一官能性成分の量が所望の量となるところで停 止させれば良く、 特に制限されるものではないが、 通常 1 0分〜 6 0時 間、 好ましくは 1〜 2 0時間、 さらに好ましくは 2〜 1 0時間の範囲で 反応を行うことにより、 効率的に反応を行うことができる。  The reaction time may be stopped when the amount of the monofunctional component in the resin reaches a desired amount, and is not particularly limited, but is usually from 10 minutes to 60 hours, preferably from 1 to 60 hours. The reaction can be carried out efficiently by conducting the reaction for 20 hours, more preferably for 2 to 10 hours.
反応の終点は、 反応液中の樹脂組成を確認することによって決められ る。  The end point of the reaction is determined by confirming the resin composition in the reaction solution.
反応は触媒を失活させることにより終了させる。 その際、 反応を確実 に停止させることが重要である。 失活の手段は特に制限されないが、 最 終的に得られるフエノール樹脂中のホウ素、 フッ素等のイオン性不純物 の残存量が 1 0 0 p p m以下となるような手段を用いるのが好ましい。 失活剤として、 アルカリ金属、 アルカリ土類金属もしくはそれらの酸化 物、 水酸化物、 炭酸塩、 水酸化アンモニゥム、 アンモニアガス等の無機 塩基類等を用いることができるが、 速く簡潔な処理が可能で、 かつ処理 後のイオン性不純物の残存量も少ないことからハイ ドロタルサイ ト類を 失活剤として用いるのが好ましい。  The reaction is terminated by deactivating the catalyst. It is important to ensure that the reaction is stopped. The means for deactivation is not particularly limited, but it is preferable to use a means for reducing the residual amount of ionic impurities such as boron and fluorine in the finally obtained phenol resin to 100 ppm or less. As the quenching agent, alkali bases such as alkali metals, alkaline earth metals or their oxides, hydroxides, carbonates, ammonium hydroxide, and ammonia gas can be used, but quick and simple treatment is possible. In addition, it is preferable to use hydrotalcites as a deactivator since the amount of ionic impurities remaining after the treatment is small.
また本発明のフエノール樹脂を封止材用樹脂として使用した場合に、 優れた硬化性、 成形性等を示し、 硬化後に優れた耐熱性、 耐湿性等を付 与するために、 フエノール樹脂の樹脂物性を以下のように制御すること が重要である。 不飽和環状炭化水素 1分子にフエノール類が 2分子付加 した、 フエノール性水酸基を 2つ含有する化合物 (以下、 2核体成分と 称することがある。) の樹脂中における含有量は、 樹脂の粘度、 流動性、 硬化性等に大きく影響するため、 適宜調整することが重要である。 フェノール樹脂中の 2核体成分の含有量としては、 3 0〜 9 0質量% が好ましく挙げられ、 特に 4 0〜 8 0質量%の範囲において好ましい硬 化特性を示す。 2核体成分の含有量が 3 0質量%未満の場合は樹脂の流 動性が低下して成形性が悪くなり、 また 9 0質量%より多い場合は流動 性は良好であるものの硬化後の架橋密度が低下するため好ましくない。 2核体成分の量は、 主としてフエノール類と不飽和環状炭化水素の反応 モル比によって制御可能であり、 モル比を適宜調整して 2核体成分の量 を制御するのが好ましい。 In addition, when the phenolic resin of the present invention is used as a resin for a sealing material, it exhibits excellent curability and moldability, and provides excellent heat resistance and moisture resistance after curing. It is important to control physical properties as follows. The content of a compound containing two phenolic hydroxyl groups (hereinafter sometimes referred to as a binuclear component) in which two molecules of a phenol are added to one molecule of an unsaturated cyclic hydrocarbon is determined by the viscosity of the resin. Therefore, it is important to make appropriate adjustments since it has a significant effect on fluidity, curability, etc. The content of the binuclear component in the phenol resin is preferably from 30 to 90% by mass, and particularly preferably in the range of from 40 to 80% by mass. If the content of the binuclear component is less than 30% by mass, the fluidity of the resin decreases and moldability deteriorates. If the content is more than 90% by mass, the fluidity is good, but after curing. It is not preferable because the crosslink density decreases. The amount of the binuclear component can be controlled mainly by the reaction molar ratio of the phenols and the unsaturated cyclic hydrocarbon, and it is preferable to control the amount of the binuclear component by appropriately adjusting the molar ratio.
また、 樹脂粘度は成形時の流動特性に大きく影響を与えるため適度に 調節する必要がある。 粘度の規定については特に限定されるものではな いが、 例えばキャノン一フェンスケ動粘度管手法による、 n—ブ夕ノー ルの 5 0 %樹脂溶液の溶液粘度を把握することが有効であり、 同法によ る溶液粘度において 1 0mm2/s e c〜 20 0mm2Z s e cの範囲 に入るものが好ましく、 特に 3 0 mm2/ s e c〜 1 8 0 mm2/ s e c の範囲で制御された樹脂は好ましい流動特性を発揮する。 In addition, the viscosity of the resin greatly affects the flow characteristics at the time of molding, so it must be adjusted appropriately. Although there is no particular limitation on the viscosity, it is effective to grasp the solution viscosity of a 50% resin solution of n-butanol by, for example, the Canon-Fenske kinematic viscosity tube method. preferably to fall in the range of 1 0mm 2 / sec~ 20 0mm 2 Z sec in by that solution viscosity law, preferred especially 3 0 mm 2 / sec~ 1 8 0 mm 2 / sec controlled resin in the range of Exhibits flow characteristics.
また、 樹脂中のフエノール性水酸基含有量は硬化特性等に影響するた め、 適宜調節する必要がある。 フエノール性水酸基含有量の規定につい ては特に制限されるものではないが、 例えばピリジン—無水酢酸溶液中 でのァセチル化物のアル力リ逆滴定法で測定された樹脂中水酸基の当量 で 1 65 gZe c!〜 3 00 gZe Qの範囲が好ましく、 特に l i O gZ e (!〜 2 5 0 g/e Qに調整された樹脂は好ましい硬化特性を発揮する だけでなく、 流動性とのバランスが良く成型時のハンドリ ングが非常に 良好である。  In addition, the phenolic hydroxyl group content in the resin affects the curing characteristics and the like, and thus needs to be appropriately adjusted. The phenolic hydroxyl group content is not particularly limited, but is, for example, 165 gZe as the equivalent of the hydroxyl group in the resin measured by the reverse titration method of the acetylated compound in a pyridine-acetic anhydride solution. c! ~ 300 gZe Q is preferable, and especially resin adjusted to liO gZe (! ~ 250 g / e Q not only exhibits favorable curing characteristics but also has good balance with fluidity when molding. Handling is very good.
本明細書に記載の製造方法によれば、 上記の樹脂物性を満足するフエ ノール樹脂を製造することができる。  According to the production method described in the present specification, a phenol resin satisfying the above resin properties can be produced.
次に、 濃縮工程について説明する。  Next, the concentration step will be described.
上記の反応液は、 濾過により失活剤等を除去したのち濃縮工程で処理 される。 濃縮工程では、 未反応のフエノール類が回収されるとともに一 官能性成分の量が制御され、フエノール樹脂が得られる。 濃縮条件は、 濃縮系内の温度や圧力と蒸気圧との関係から一定の条件が定められるも のではないが、 以下の条件で行うことにより最も効率的な濃縮が可能と なる。 The above reaction solution is treated in a concentration step after removing a deactivator or the like by filtration. In the concentration step, unreacted phenols are recovered and the amount of the monofunctional component is controlled, so that a phenol resin is obtained. The concentration conditions are Although certain conditions are not determined from the relationship between the temperature and pressure in the concentration system and the vapor pressure, the most efficient concentration can be achieved by performing the following conditions.
すなわち、 系内温度については、 樹脂の分解が起こらない範囲であれ ば特に制限されるものではないが、 2 5 0 以下が好ましく、 さらに好 ましくは 1 8 0〜 2 2 0での範囲である。  That is, the temperature in the system is not particularly limited as long as the resin does not decompose, but is preferably 250 or less, more preferably 180 to 220. is there.
系内圧力については、 常圧、 減圧、 加圧のいずれの条件下で実施して も良いが、 前記の温度範囲で濃縮を円滑にかつ迅速にすませるために系 内を減圧下にすることが好ましい。 具体的には、 6 6. 5 k P a ( 5 0 0 t o r r ) 以下の範囲が好ましく、 特に 4 0 k P a ( 3 0 0 t o r r ) 以下にすることが好ましい。  Regarding the pressure in the system, it may be carried out under any of normal pressure, reduced pressure, and pressurized conditions.However, in order to smoothly and rapidly perform concentration in the above-mentioned temperature range, the pressure in the system should be reduced. preferable. Specifically, the range is preferably 66.5 kPa (500 torr) or less, and particularly preferably 40 kPa (300 torr) or less.
さらに、 樹脂中の未反応フエノール類を効率良く除去するために、 減 圧条件下において系内に窒素あるいは高圧水蒸気等を吹き込む操作を行 うのが好ましい。  Further, in order to efficiently remove unreacted phenols in the resin, it is preferable to perform an operation of blowing nitrogen or high-pressure steam into the system under reduced pressure conditions.
系内に導入する水蒸気あるいは窒素の圧力については特に限定される ものではないが、 具体的には 0. 3〜 2. 0 M P aの範囲が好ましく、 よ り好ましくは 0. 5〜 1. 5 MP aの範囲で吹き込み操作を行った場合に 効率良く不純物を除去できる。  The pressure of steam or nitrogen introduced into the system is not particularly limited, but specifically, is preferably in the range of 0.3 to 2.0 MPa, more preferably 0.5 to 1.5 MPa. Impurities can be removed efficiently when blowing operation is performed in the range of MPa.
濃縮方法は特に制限されるものではないが、 好ましい濃縮方法として 以下の例が挙げられる。 濾過を行った反応液 (濾液) を濃縮を行う釜に 移送した後、 加熱を開始すると同時に系内を連続的に減圧していく。 系 内が 2 0 0でに到達した時点で系内をフル減圧とし、 1 3 k P a ( 1 0 0 t o r r ) 以下とする。 任意の時間、 この状態で濃縮を行った後、 減 圧下において高圧水蒸気を系内に吹き込み、 最終的に水蒸気を残留させ ないよう窒素を吹き込むことにより濃縮を終了する。  The method of concentration is not particularly limited, but preferred examples of the concentration method include the following. After the filtered reaction solution (filtrate) is transferred to the concentration vessel, heating is started and the pressure inside the system is continuously reduced. When the pressure in the system reaches 200, the pressure in the system is reduced to full pressure, and the pressure is reduced to 13 kPa (100 torr) or less. After concentrating in this state for an arbitrary time, high-pressure steam is blown into the system under reduced pressure, and finally nitrogen is blown so that no steam remains, thereby completing the concentration.
濃縮の終了点は、 G P C分析により、 未反応フエノール類およびポリ スチレン換算数平均分子量 3 2 0以下の領域に検出される一官能性成分 の量を確認することによって決定される。 フエノール樹脂中における一 官能性成分の含有量は、 2質量%を超え 2 0質量%以下になつているこ とが必要である。 また、 未反応フエノール類の含有量は製品を使用する 際の環境への配慮の点からは少ない方が好ましいが、 生産効率および品 質の面から、 樹脂中の残存量が 5 0 0 p p m以下になるようにすれば十 分であり好ましくは 2 0 O p p m以下、 さらに好ましくは 1 0 0 p p m 以下である。 すなわち、 5 0 0 p p mより多い場合は、 樹脂の性能や環 境への影響の面から好ましくなく、 一方、 より少なく しょうとすると濃 縮時間が長くなる等の問題があるため、 それらのバランスを考慮するこ とが大切である。 The end point of the concentration is determined by confirming the amount of unreacted phenols and the amount of monofunctional components detected in the region of polystyrene reduced number average molecular weight of 320 or less by GPC analysis. The content of the monofunctional component in the phenolic resin should be more than 2% by mass and not more than 20% by mass. Is necessary. It is preferable that the content of unreacted phenols is low from the viewpoint of environmental considerations when using the product, but from the viewpoint of production efficiency and quality, the residual amount in the resin is 500 ppm or less. Is sufficient, preferably 20 ppm or less, more preferably 100 ppm or less. In other words, if the amount is more than 500 ppm, it is not preferable from the viewpoint of the performance of the resin and the influence on the environment.On the other hand, if the amount is less than 500 ppm, there is a problem that the concentration time becomes longer. It is important to take this into account.
以上のように、 反応工程および濃縮工程において一官能性成分の量を 制御することにより、本発明のフエノール樹脂を得ることが可能となる。 以下、一官能性成分について、フエノール類としてフエノールを用い、 不飽和環状炭化水素としてジシクロペン夕ジェンを用いた場合において 具体的に説明する。  As described above, the phenol resin of the present invention can be obtained by controlling the amount of the monofunctional component in the reaction step and the concentration step. Hereinafter, the monofunctional component will be specifically described in the case where phenol is used as the phenols and dicyclopentene is used as the unsaturated cyclic hydrocarbon.
この場合、 一官能性成分としては、 主に下記の一般式 ( 1 ) で示され る化合物 Aおよび一般式 ( 2 ) で示される化合物 Bが含まれる。  In this case, the monofunctional component mainly includes a compound A represented by the following general formula (1) and a compound B represented by the following general formula (2).
Figure imgf000011_0001
Figure imgf000011_0001
または  Or
( 2 ) 化合物 Aおよび化合物 Bは、 ゲル · パーミエーショ ン ' クロマトダラ フィ一 (G P C ) により分取して単離した成分を核磁気共鳴 (N M R、 磁気周波数 40 0 MH z;)で分析することにより同定することができる。 化合物 Aは、 Η— NMR測定結果から、 以下の計算式 1により分子 中の脂肪族水素含有率が約 6 0 %と計算され、また化学シフ ト 4. 9 ρ ρ m付近にフエノール性水酸基に由来するシングルピークが観測されるこ となどから同定できる。 また、 1 3 C— NMR測定結果から、 以下の計算 式 2により求めることができる。 (2) Compound A and Compound B were separated by gel permeation (Chromatography) (GPC) and the components isolated by nuclear magnetic resonance (NMR, It can be identified by analyzing at a magnetic frequency of 400 MHz; Compound A was found to have an aliphatic hydrogen content of about 60% in the molecule by the following formula 1 from the results of 計算 -NMR measurement, and a chemical shift of phenolic hydroxyl group around 4.9 ρ pm. It can be identified by observing a single peak of origin. Also, it can be obtained from the 13 C-NMR measurement result by the following calculation formula 2.
計算式 1  Formula 1
分子中の脂肪族水素含有率 = A 1 / (A 1 +A 2 ) (A 1は1 H— NMR測定チヤ一卜上の化学シフ 卜が 0〜4. 8 p pm のピーク面積強度、 A 2は1 H— NMR測定チャート上の化学シフ トが 6. 5〜 8. 5 p p mのピーク面積強度) Aliphatic hydrogen content of the molecule = A 1 / (A 1 + A 2) (A 1 is 1 H- NMR measurement Chiya one Bok on chemical shift I 0 to 4. 8 p peak area intensity of pm, A 2 is the peak area intensity when the chemical shift on the 1 H-NMR measurement chart is 6.5 to 8.5 ppm)
計算式 2  Formula 2
エーテル型生成体含有率 = B 3 / (B 1 + B 2 + B 3 ) (B 1は1 3 C— NMR測定チヤ一ト上の化学シフ 卜 1 3 0〜 1 3 3 p pmの面積強度、 B 2は1 3 C— NMR測定チヤ一ト上の化学シフ ト 1 3 7〜: L 40 p p mの面積強度、 B 3は1 3 C— NMR測定チヤ一ト上の化 学シフ ト 1 5 5〜; L 6 0 p p mの面積強度) Ether-type product content = B 3 / (B 1 + B 2 + B 3) (B 1 is 13 C—chemical shift on NMR measurement channel 13 0 to 13 3 ppm area intensity , B 2 is 1 3 C-NMR measurement Chiya one bets on the chemical shift 1 3 7~: L 40 ppm of integrated intensity, B 3 is 1 3 C-NMR measurement Chiya one bets on the chemical shift 1 5 5 to; L 60 ppm area intensity)
化合物 Bは、 i H_NMR測定から、 以下の計算式 3により分子中の 脂肪族水素含有率が 7 6 %と計算されることから同定できる。  Compound B can be identified by calculating the aliphatic hydrogen content in the molecule to be 76% from the following Formula 3 from iH_NMR measurement.
計算式 3  Formula 3
分子中の脂肪族水素含有率 = C 1 Z (C 1 +C 2 )  Aliphatic hydrogen content in molecule = C 1 Z (C 1 + C 2)
(C 1は1 H— NMR測定チャー ト上の化学シフ トが 0〜6 p pmの ピーク面積強度、 C 2は1 H— NMR測定チヤ一ト上の化学シフ 卜力 6. 5〜 8. 5 p pmのピーク面積強度) (C 1 is 1 H- NMR peak area intensity of a chemical shift is Less than six p pm on measurement chart, C 2 is 1 H- NMR measurement Chiya one bets on the chemical shift Bok force from 6.5 to 8. 5 ppm peak area intensity)
フエノール樹脂中の化合物 Aおよび化合物 Bの含有量は、 GP C分析 により、 ポリスチレン換算数平均分子量 3 2 0以下相当の領域に検出さ れるそれらの量を測定することにより求めることができる。  The contents of the compound A and the compound B in the phenol resin can be determined by measuring the amounts detected in a region corresponding to a polystyrene-equivalent number average molecular weight of 320 or less by GPC analysis.
反応工程において、 化合物 Aおよび化合物 Bの生成量を確認すること が重要であり、 反応工程終了時に化合物 Aおよび Bの合計の含有量が樹 脂全体の 2質量%を超え 2 5質量%以下であれば、 後の濃縮工程で効率 的に一官能性成分を制御することができ、 最終的にそれらの含有量が適 量に制御されたフエノール樹脂を得ることが可能となる。 In the reaction step, it is important to confirm the amount of compound A and compound B produced.At the end of the reaction step, the total content of compounds A and B If the content is more than 2% by mass and not more than 25% by mass of the total fat, the monofunctional components can be efficiently controlled in the subsequent concentration step, and their content is finally controlled to an appropriate amount. A phenolic resin can be obtained.
濃縮工程においては、 減圧下で高圧水蒸気の吹き込み操作を行うこと により、 樹脂中の化合物 Aおよび Bの合計の含有量が 2質量%を超え 2 0質量%以下とすることができる。 さらには、 化合物 Aおよび Bの合計 の含有量を 3〜 1 8質量%にするのが好ましい。  In the concentration step, by performing a high-pressure steam blowing operation under reduced pressure, the total content of compounds A and B in the resin can be more than 2% by mass and 20% by mass or less. Further, the total content of the compounds A and B is preferably set to 3 to 18% by mass.
本発明のフエノール樹脂の製造方法は、 上記の反応制御および濃縮制 御を行うことが肝要であり、 これらを同時に実施することにより、 耐熱 特性と流動性のバランスの良好なフエノ一ル樹脂を得ることができる。 以上のようにして得られたフエノール樹脂は、 耐熱性、 耐湿性、 耐ク ラック性に優れ、 さらに流動性に優れるため成形性が良好であり、 電気 絶縁材料、 特に半導体封止材用あるいは積層板用のエポキシ樹脂の硬化 剤として、 もしくはエポキシ樹脂の原料として有用であるが、 特にその 用途が限定されるものではない。  In the method for producing a phenolic resin of the present invention, it is essential to perform the above-described reaction control and concentration control, and by performing these at the same time, a phenolic resin having a good balance of heat resistance and fluidity is obtained. be able to. The phenolic resin obtained as described above has excellent heat resistance, moisture resistance, crack resistance, and excellent flowability, and therefore has good moldability. It is useful as a curing agent for epoxy resins for boards or as a raw material for epoxy resins, but its use is not particularly limited.
続いて本発明のエポキシ樹脂の製造方法について説明する。  Next, a method for producing the epoxy resin of the present invention will be described.
本発明のエポキシ樹脂は、 上記のフエノール樹脂を、 塩基触媒の存在 下でェピハロヒドリン類と反応させダリシジル化することにより得るこ とができる。  The epoxy resin of the present invention can be obtained by reacting the above phenol resin with ephalohydrins in the presence of a base catalyst to dalicidylate.
グリシジル化の反応は、 常法により行うことができる。 具体的には、 例えば、 水酸化ナトリウム、 水酸化カリウム等の塩基の存在下、 通常 1 0〜: L 5 0で、 好ましくは 3 0〜 8 0 の温度で、 フェノール樹脂を、 ェピクロルヒ ドリ ン、 ェピブロムヒ ドリン等のダリシジル化剤と反応さ せたのち、 水洗、 乾燥することにより得ることができる。  The glycidylation reaction can be performed by a conventional method. Specifically, for example, in the presence of a base such as sodium hydroxide and potassium hydroxide, usually at a temperature of 10 to L50, preferably at a temperature of 30 to 80, the phenol resin is converted to epichlorohydrin, It can be obtained by reacting with a daricidylating agent such as epibromhydrin, washing with water and drying.
グリシジル化剤の使用量は、 フエノール樹脂に対して好ましくは 2〜 2 0倍モル当量、 特に好ましくは 3〜 7倍モル当量である。  The amount of the glycidylating agent to be used is preferably 2 to 20-fold molar equivalent, particularly preferably 3 to 7-fold molar equivalent to the phenol resin.
また反応の際、 減圧下にて、 グリシジル化剤との共沸蒸留により水を 留去することによって反応をより速く進行させることができる。  Further, at the time of the reaction, the water can be distilled off by azeotropic distillation with the glycidylating agent under reduced pressure, so that the reaction can proceed more quickly.
また本発明のエポキシ樹脂を電子分野で使用する場合、 副生する塩化 ナトリゥム等の塩は、水洗工程で完全に除去しておかなければならない。 この際、 未反応のダリシジル化剤を蒸留により回収して反応溶液を濃縮 した後、 濃縮物を溶剤に溶解して水洗してもよい。 好ましい溶剤として は、 メチルイソブチルケトン、 シクロへキサノン、 ベンゼン、 プチルセ 口ソルブ等を挙げることができる。水洗した濃縮物は、加熱濃縮を行う。 本発明のエポキシ樹脂を封止材用樹脂として使用した場合に、 優れた 硬化性、 成形性等を示し、 硬化後に優れた耐熱性、 耐湿性等を付与する ために、 エポキシ樹脂の樹脂物性を以下のように制御することが重要で ある。 In addition, when the epoxy resin of the present invention is used in the electronic field, by-product chloride Salts such as sodium must be completely removed in the washing step. At this time, the unreacted dalicidylating agent may be recovered by distillation to concentrate the reaction solution, and then the concentrate may be dissolved in a solvent and washed with water. Preferred examples of the solvent include methyl isobutyl ketone, cyclohexanone, benzene, and butyl sorb. The concentrate washed with water is heated and concentrated. When the epoxy resin of the present invention is used as a resin for a sealing material, it exhibits excellent curability, moldability, etc., and imparts excellent heat resistance, moisture resistance, and the like after curing. It is important to control as follows.
樹脂中の 2核体成分にグリシジル基が 2つ付加した化合物 (以下、 2 核体エポキシ化成分と表現することがある) の含有量は、 樹脂の粘度、 流動性、 硬化性に大きく影響を与えるため、 適宜調整することが重要で ある。 すなわちエポキシ樹脂中の 2核体エポキシ化成分の含有量は、 3 0〜 9 0質量%であるのが好ましく、 特に 4 0〜 8 0質量%の範囲が好 ましい。 3 0質量%未満の場合は、 流動性が低下し硬化物の成形性に大 きく影響を与え、 また 9 0質量%より多い場合は良好な流動性が得られ るものの、 架橋密度が低下し硬化特性を悪化させるため好ましくない。 樹脂粘度は成形時の流動特性に大きく影響を与えるため適度に調節す る必要がある。 この粘度の規定については特に限定されるものではない が、 例えばキャノン—フェンスケ動粘度管手法による、 1, 4 一ジォキ サンの 5 0 %樹脂溶液の溶液粘度を把握することが有効であり、 同法に よる溶液粘度において、 1 0 0 m m 2 , s e c以下の範囲が好ましく、 特に 7 0 m m 2 / s e c以下の範囲で制御された化合物は好ましい流動 特性を発揮する。 The content of a compound in which two glycidyl groups are added to a binuclear component in a resin (hereinafter sometimes referred to as a binuclear epoxidation component) greatly affects the viscosity, flowability, and curability of the resin. Therefore, it is important to make appropriate adjustments. That is, the content of the binuclear epoxidation component in the epoxy resin is preferably from 30 to 90% by mass, particularly preferably from 40 to 80% by mass. If the amount is less than 30% by mass, the fluidity is reduced, which greatly affects the moldability of the cured product. If the amount is more than 90% by mass, good fluidity is obtained, but the crosslink density is reduced. It is not preferable because the curing characteristics are deteriorated. Since the viscosity of the resin greatly affects the flow characteristics during molding, it must be adjusted appropriately. Although there is no particular limitation on the definition of the viscosity, it is effective to grasp the solution viscosity of a 50% resin solution of 1,4-dioxane by, for example, the Canon-Fenske kinematic viscosity tube method. in solution viscosity by law, 1 0 0 mm 2, sec more preferably in the range, in particular 7 0 mm 2 / sec control compounds in the following ranges exhibit desirable flow properties.
エポキシ樹脂中のエポキシ基の含量は、通常 2 0 0〜 5 0 0 g / e q、 好ましくは 2 5 0〜4 5 0 g / e qであるのが望ましい。 エポキシ基の 含量が 5 0 0 g Z e Q以上の場合には、 架橋密度が低くなりすぎるため 好ましくない。  The content of the epoxy group in the epoxy resin is usually from 200 to 500 g / eq, preferably from 250 to 450 g / eq. If the content of the epoxy group is 500 g ZeQ or more, the crosslinking density is too low, which is not preferable.
本発明に記載の製造法によれば、 上記の物性を満足するエポキシ樹脂 を製造することができる。 According to the production method described in the present invention, an epoxy resin satisfying the above physical properties Can be manufactured.
このようにして得られたエポキシ樹脂は、 従来の方法で得られる同様 の構造を有するエポキシ樹脂と比較すると流動性に優れ成形性が良好で ある。 またエポキシ基の濃度が高いため硬化性および耐熱性に優れる。 特に耐ハンダクラック性に著しく優れる等の利点から半導体封止材料用 途が極めて有用である。 また、 積層板用のエポキシ樹脂組成物原料とし ても有用であり、 エポキシ樹脂の溶剤への溶解性に優れるために電気積 層板用途でのワニス等として用いることができる。  The epoxy resin thus obtained has excellent fluidity and good moldability as compared with an epoxy resin having a similar structure obtained by a conventional method. Further, since the concentration of the epoxy group is high, it is excellent in curability and heat resistance. Particularly, the semiconductor sealing material is extremely useful because of its advantages such as remarkably excellent solder crack resistance. It is also useful as a raw material of an epoxy resin composition for a laminate, and can be used as a varnish or the like for an electric laminate because of its excellent solubility of the epoxy resin in a solvent.
また、 本発明のエポキシ樹脂を臭素化多価フエノール類で変性を施し たオリゴマー型エポキシ樹脂を積層板用途に用いることもできる。 さら にはこれに多官能型エポキシ樹脂を配合或いは変性して耐熱性を付与さ せたものも使用できる。 また高分子型エポキシ樹脂を得るため、 2段法 反応の原料樹脂として当該樹脂を使用することも可能である。 その他、 粉体塗料、 ブレーキシュ一等にも有用であり、 特にその用途が限定され るものではない。  Further, an oligomer type epoxy resin obtained by modifying the epoxy resin of the present invention with a brominated polyphenol may be used for a laminate. Further, a resin having heat resistance imparted by blending or modifying a polyfunctional epoxy resin can also be used. In addition, in order to obtain a polymer type epoxy resin, the resin can be used as a raw material resin for a two-step method reaction. In addition, they are also useful for powder coatings, brake shoes, etc., and their uses are not particularly limited.
続いて、 本発明の半導体封止材用エポキシ樹脂組成物について説明す る。  Next, the epoxy resin composition for a semiconductor encapsulant of the present invention will be described.
本発明のエポキシ樹脂組成物は、 エポキシ樹脂、 硬化剤および無機充 填剤を必須成分として含有するが、 エポキシ樹脂として本発明のェポキ シ樹脂を用い、 または、 硬化剤として本発明のフエノール樹脂を用いる ことを特徴とする。  The epoxy resin composition of the present invention contains an epoxy resin, a curing agent, and an inorganic filler as essential components. The epoxy resin of the present invention is used as an epoxy resin, or the phenol resin of the present invention is used as a curing agent. It is characterized by being used.
エポキシ樹脂として、 本発明のエポキシ樹脂を用いる場合、 さらにそ の他のエポキシ樹脂を併用しても構わない。他のエポキシ樹脂としては、 公知のものが何れも使用でき、 例えばビスフエノール Aジグリシジルェ 一テル型エポキシ樹脂、 フエノールノボラック型エポキシ樹脂、 オルソ クレゾ一ルノボラック型エポキシ樹脂、 ビスフエノール Aノポラック型 エポキシ樹脂、 ビスフエノール Fノポラック型エポキシ樹脂、 臭素化フ ェノールノポラック型エポキシ樹脂、 ナフ トールノボラック型エポキシ 樹脂、 ビフエニル型 2官能エポキシ樹脂等が挙げられるが、 これらに限 定されるものではない。 When the epoxy resin of the present invention is used as the epoxy resin, another epoxy resin may be used in combination. As the other epoxy resin, any known epoxy resin can be used. For example, bisphenol A diglycidyl ether type epoxy resin, phenol novolak type epoxy resin, ortho cresol novolak type epoxy resin, bisphenol A nopolak type epoxy resin, bis Phenol F nopolak type epoxy resin, brominated phenol nopolak type epoxy resin, naphthol novolak type epoxy resin, biphenyl type bifunctional epoxy resin, etc. It is not specified.
これらの中でも、 特に耐熱性に優れる点からオルソクレゾ一ルノボラ ック型エポキシ樹脂が、 また流動性に優れる点からビフエ二ル型ニ官能 エポキシ樹脂が好ましい。 上記の他の公知のエポキシ樹脂は、 本発明の フエノール樹脂を硬化剤として用いる場合にもエポキシ樹脂として用い ることができる。  Among these, an orthocresol novolak type epoxy resin is particularly preferable because of its excellent heat resistance, and a biphenyl type bifunctional epoxy resin is preferable because of its excellent fluidity. The above-mentioned other known epoxy resins can also be used as epoxy resins when the phenolic resin of the present invention is used as a curing agent.
硬化剤としては、 本発明のフエノール樹脂に加え、 通常エポキシ樹脂 の硬化剤として常用されている化合物はすべて使用することができ、 特 に限定されるものではないが、 例えばジエチレントリァミン、 卜リエチ レンテトラミンなどの脂肪族ァミン類、 メタフエ二レンジァミン、 ジァ ミノジフエニルメタン、 ジァミノジフエニルスルホンなどの芳香族アミ ン類、 フエノールノボラック樹脂、 オルソクレゾ一ルノポラック樹脂、 ビスフエノール Aノボラック樹脂、 ビスフエノール Fノポラック樹脂、 フエノ一ル類—ジシク口ペン夕ジェン重付加型樹脂、 ジヒ ドロキシナフ タレンノポラック樹脂、 キシリデンを結接基とした多価フエノール類、 フエノールァラルキル樹脂、 ナフ トール類樹脂、 ポリアミ ド樹脂および これらの変性物、 無水マレイン酸、 無水フ夕ル酸、 無水へキサヒ ドロフ タル酸、 無水ピロメリ ッ ト酸などの酸無水物系硬化剤、 ジシアンジアミ ド、 イミダゾール、 三フッ化ホウ素 , アミン錯体、 グァニジン誘導体等 の潜在性硬化剤等が挙げられる。  As the curing agent, in addition to the phenolic resin of the present invention, all compounds that are commonly used as curing agents for epoxy resins can be used, and are not particularly limited. Examples thereof include diethylenetriamine and triethylene. Aliphatic amines such as lentetramine, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, phenol novolak resin, orthocresol nopolak resin, bisphenol A novolak resin, bis Phenol F-nopolak resin, phenols-di-cyclopentene polyaddition resin, dihydroxyxnaphtalene nopolak resin, polyhydric phenols with xylidene as a bonding group, phenolaralkyl resins, naphthol resins, Polyamide resins and their modifications Anhydrides such as maleic anhydride, maleic anhydride, hydrofluoric anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, etc., dicyandiamide, imidazole, boron trifluoride, amine complexes, guanidine derivatives, etc. Latent curing agents and the like.
中でも半導体封止材用としては上記フエノールノポラック樹脂等の芳 香族炭化水素一ホルムアルデヒド樹脂が耐熱性、 成形性に優れ、 またフ エノールァラルキル樹脂が耐熱性、 成形性、 低吸水性に優れる点から好 ましい。  Above all, for semiconductor encapsulants, aromatic hydrocarbon-formaldehyde resins such as the above-mentioned phenol nopolak resins are excellent in heat resistance and moldability, and phenol aralkyl resins are excellent in heat resistance, moldability and low water absorption. It is preferred because of its superiority.
硬化剤の使用量は、 エポキシ樹脂組成物に十分な耐熱性を付与する量 であれば特に限定されないが、 好ましくはエポキシ樹脂の一分子中に含 まれるエポキシ基の数と、 硬化剤中の活性水素の数が当量付近となる量 である。  The amount of the curing agent used is not particularly limited as long as it provides sufficient heat resistance to the epoxy resin composition.Preferably, the number of epoxy groups contained in one molecule of the epoxy resin and the amount of the curing agent This is the amount at which the number of active hydrogens becomes close to the equivalent.
また、 硬化促進剤を適宜使用することができる。 硬化促進剤としては 公知のものがいずれも使用できるが、 例えば、 リン系化合物、 第 3級ァ ミン、 イミダゾール、 有機酸金属塩、 ルイス酸 · アミン錯塩等が挙げら れ、 これらは単独のみならず 2種以上の併用も可能である。 In addition, a curing accelerator can be appropriately used. As a curing accelerator Any known compounds can be used.Examples include phosphorus compounds, tertiary amines, imidazoles, metal salts of organic acids, Lewis acid / amine complex salts, and the like. These may be used alone or in combination of two or more. Combinations are also possible.
無機充填剤は、半導体封止材料の機械的強度、硬度を高め、低吸水率、 低線膨張係数を達成し、 クラック防止効果を高めることができる。  The inorganic filler enhances the mechanical strength and hardness of the semiconductor encapsulating material, achieves a low water absorption and a low coefficient of linear expansion, and can enhance the crack preventing effect.
用いる無機充填剤としては特に限定されないが、 溶融シリカ、 結晶シ リカ、 アルミナ、 タルク、 クレー、 ガラス繊維等が挙げられる。 これら の中でも、 特に半導体封止材料用途においては溶融シリカ、 結晶シリカ が一般的に用いられており、 特に流動性に優れる点から溶融シリカが好 ましい。 また球状シリカ、 粉砕シリカ等も使用できる。  The inorganic filler used is not particularly limited, and examples thereof include fused silica, crystalline silica, alumina, talc, clay, and glass fiber. Among these, fused silica and crystalline silica are generally used especially for semiconductor encapsulating materials, and fused silica is preferred because of its excellent fluidity. Spherical silica, pulverized silica and the like can also be used.
無機充填剤の配合量は特に限定されるものではないが、 組成物中 7 5 〜 9 5質量%の範囲であることが好ましく、 特に半導体封止剤用途にお いて耐ハンダクラック性が非常に優れるため、 この範囲が好ましい。 本 発明においては 7 5質量%以上としても流動性、 成形性を全く損なうこ とがない。  The blending amount of the inorganic filler is not particularly limited, but is preferably in the range of 75 to 95% by mass in the composition. Particularly, in a semiconductor encapsulant application, the solder crack resistance is extremely low. This range is preferable because it is excellent. In the present invention, even if it is 75% by mass or more, fluidity and moldability are not impaired at all.
上記の成分の他に必要に応じて、 着色剤、 難燃剤、 離型剤、 または力 ップリング剤などの公知の各種の添加剤も適宜配合することができる。 半導体封止材料としては、 テトラブロモ A型エポキシ樹脂、 ブロム化フ ェノールノポラック型エポキシ樹脂等の臭素化エポキシ樹脂、 三酸化ァ ンチモン、 へキサブロモベンゼン等の難燃剤、 カーボンブラック、 ベン ガラ等の着色剤、 天然ワックス、 合成ワックス等の雌型剤及びシリコン オイル、 合成ゴム、 シリコーンゴム等の低応力添加剤等の添加剤を適宜 配合することが好ましい。  In addition to the above components, various known additives such as a coloring agent, a flame retardant, a release agent, and a staple coupling agent can be appropriately compounded as necessary. Semiconductor encapsulating materials include brominated epoxy resins such as tetrabromo A-type epoxy resin and brominated phenol nopolak-type epoxy resin, flame retardants such as antimony trioxide and hexabromobenzene, carbon black and red iron. It is preferable to appropriately add a coloring agent, a female agent such as a natural wax and a synthetic wax, and an additive such as a low stress additive such as silicone oil, synthetic rubber and silicone rubber.
また、上記の各成分を用いて成型材料を調製するには、エポキシ樹脂、 硬化剤、 および無機充填剤、 さらには硬化促進剤、 その他の添加剤をミ キサ一等によって十分に均一に混合した後、 更に熱ロールまたはニーダ 一等で溶融混練し、 射出成形あるいは冷却後粉砕等を行う。  To prepare a molding material using each of the above components, an epoxy resin, a curing agent, and an inorganic filler, as well as a curing accelerator and other additives were sufficiently mixed with a mixer or the like. Thereafter, the mixture is melted and kneaded with a hot roll or a kneader, and then subjected to injection molding or cooling followed by grinding.
[実施例] [Example]
次に本発明を製造例、 実施例およびその比較例により具体的に説明す る。 Next, the present invention will be specifically described with reference to Production Examples, Examples and Comparative Examples. You.
なお、 フエノール樹脂の特性は以下の方法により測定した。  The properties of the phenol resin were measured by the following methods.
1 ) 化合物 Aの含有量 (質量%)  1) Compound A content (% by mass)
化合物 Aをフエノール樹脂中から分取 G P C、 オープンカラム等を用 い単離精製し、 NMR等を用いて同定を行った。 また、 分析 G P Cを用 レ 芳香族炭化水素溶剤を合成に用いなかった場合に、 化合物 Aに該当 する保持時間に検出される成分 (ポリスチレン換算数平均分子量 2 3 0 以上 3 2 0未満の範囲内に検出される物質) の量を予め測定しておき、 その測定量を芳香族炭化水素溶剤を用い合成した場合の該保持時間成分 の量から差し引き、 フエノール樹脂全体の測定チャー トより、 その面積 比からフエノール樹脂全体に対する化合物 Aの含有量を求めた。 測定は フエノール樹脂の 1質量%テトラヒ ドロフラン (TH F) 溶液で WAT E R S社製高速液体クロマトグラフィーシステム 「ミ レニアム」 を用い て行った。  Compound A was isolated and purified from phenolic resin using preparative GPC, open column, etc., and identified using NMR and the like. In addition, if the aromatic hydrocarbon solvent is not used in the synthesis, the component detected during the retention time corresponding to Compound A (polystyrene-equivalent number average molecular weight of not less than 230 and less than 320) Is measured in advance, and the measured amount is subtracted from the amount of the retention time component when synthesized using an aromatic hydrocarbon solvent, and the area is calculated from the measurement chart of the entire phenol resin. From the ratio, the content of compound A with respect to the entire phenol resin was determined. The measurement was performed using a 1% by mass solution of phenolic resin in tetrahydrofuran (THF) using a high-performance liquid chromatography system “Millennium” manufactured by WATERS.
2 ) 化合物 Bの含有量 (質量%) 2) Content of compound B (% by mass)
化合物 Bをフエノール樹脂中から分取 G P C、 オープンカラム等を用 い単離精製し、 NMR等を用いて同定を行った。 また、 分析 G P Cを用 い化合物 Bに該当する成分 (ポリスチレン換算数平均分子量 1 0 0以上 2 3 0未満の範囲内に検出される物質) の量を測定し、 フエノール樹脂 全体の測定チヤ一トの面積比からフエノール樹脂全体に対する化合物 B の含有量とした。 測定はフエノール樹脂の 1質量%テトラヒ ドロフラン (TH F) 溶液で WAT E R S社製高速液体ク口マトグラフィーシステ ム 「ミ レニアム」 を用いて行った。  Compound B was isolated and purified from phenolic resin using preparative GPC, open column, etc., and identified using NMR and the like. In addition, the amount of the component corresponding to Compound B (substance detected in the range of polystyrene-equivalent number average molecular weight of 100 or more and less than 230) using analytical GPC was measured, and the measurement chart for the entire phenol resin was measured. From the area ratio of, the content of compound B with respect to the entire phenol resin was determined. The measurement was performed using a 1% by mass solution of a phenolic resin in tetrahydrofuran (THF) using a high-performance liquid mouth chromatography system “Millennium” manufactured by WATERS.
3 ) OH当量  3) OH equivalent
製造で得られたフエノール樹脂をピリジン—無水酢酸混合溶液中で加 熱還流し、 反応後の溶液を水酸化力リゥムで逆滴定することにより決定 した。  The phenol resin obtained in the production was heated and refluxed in a mixed solution of pyridine and acetic anhydride, and the solution after the reaction was determined by back titration with a hydration power rim.
4) 軟化点  4) Softening point
J I S K 2 2 0 7に記載の環球式軟化点測定法に従い測定した。 5 ) 5 0質量% n—ブ夕ノール溶液の溶液粘度 It was measured according to the ring and ball softening point measurement method described in JISK2207. 5) Solution viscosity of 50% by mass n-butanol solution
固形分濃度 5 0 ± 0. 0 0 1 %の n _ブ夕ノール溶液とし、逆流型キヤ ノンフェンスケ粘度計で恒温槽水温 2 5でで測定した。  A n-butanol solution having a solid content concentration of 50 ± 0.01% was used, and the measurement was carried out at a constant-temperature bath water temperature of 25 using a backflow type Canon Fenske viscometer.
6 ) 5 0質量% 1, 4—ジォキサン溶液の溶液粘度  6) 50% by mass solution viscosity of 1,4-dioxane solution
固形分濃度 5 0 ± 0. 0 0 1 %の 1, 4 _ジォキサン溶液とし、 逆流型 キヤノンフェンスケ粘度計で恒温槽水温 2 5 :で測定した。  A 1,4-dioxane solution having a solid concentration of 50 ± 0.01% was prepared and measured with a reverse-flow type Canon Fenske viscometer at a constant temperature water temperature of 25 :.
7 ) 2核体成分量および 2核体エポキシ化成分量  7) Amount of binuclear component and amount of binuclear epoxidation component
フェノール樹脂の 1質量% T H F溶液を用い、 WATE R S社製の示 差屈折検出器 「WAT E R S 4 1 0」 により検出し、 同社製高速液体ク 口マトグラフィーシステム 「ミ レニアム」 を用いて測定した。  Using a 1% by weight phenol resin in THF solution, detection was performed with a differential refraction detector “WAT ERS 410” manufactured by WATE RS, and measured using the company's high-performance liquid chromatography system “Millennium”. .
<製造実施例 1 > <Production Example 1>
[フエノール樹脂(I)の製造]  [Production of phenolic resin (I)]
攪拌機、 温度計を設置した 4つ口フラスコにフエノール 1 5 0 0 gに トルエン 1 0 0 gを添加して、 共沸脱水を行い、 フエノール中の水分を 40 0 p pmとした。 このフエノール 1 0 5 0 g ( 1 1. 1モル) に三フ ッ化ホウ素 · フエノール錯体 1. 5 gを添加し十分攪拌した。 その後攪拌 しながらジシクロペン夕ジェン 1 8 8 g ( 1. 4モル) を系内温度 7 0 X: に保ちながら 2時間かけて添加した。 その後、 系内温度を 1 0 0でに昇 温後加熱攪拌を 2時間保持した。 系内温度を 9 0^まで低下させた後、 得られた反応生成物溶液にハイ ド口タルサイ ト「KW— 1 0 0 0」 (商品 名 : 協和化学工業 (株) 製) 8 gを添加し反応を失活させた。 反応溶液 をろ過し、 得られた溶液から未反応フエノールを蒸留回収しながら 1 9 0 に昇温し 1 3 k P a ( l O O t o r r ) の減圧下で窒素バブリング を施し 3時間保持した。 その結果、 赤褐色のフエノール樹脂(I) 4 1 1 g を得た。  To a four-necked flask equipped with a stirrer and a thermometer, 150 g of phenol was added with 100 g of toluene, and azeotropic dehydration was performed to reduce the water content of the phenol to 400 ppm. 1.5 g of boron trifluoride / phenol complex was added to 105 g (11.1 mol) of the phenol, and the mixture was sufficiently stirred. Thereafter, while stirring, 188 g (1.4 mol) of dicyclopentene was added over 2 hours while maintaining the system temperature at 70 X :. Thereafter, the temperature inside the system was raised to 100, and then the heating and stirring were maintained for 2 hours. After lowering the temperature in the system to 90 ^, 8 g of talcite “KW-1000” (trade name, manufactured by Kyowa Chemical Industry Co., Ltd.) was added to the obtained reaction product solution. To inactivate the reaction. The reaction solution was filtered, the temperature was raised to 190 while unreacted phenol was recovered by distillation from the resulting solution, and nitrogen bubbling was performed under a reduced pressure of 13 kPa (lOOtor), and the mixture was maintained for 3 hours. As a result, 411 g of a reddish brown phenol resin (I) was obtained.
この樹脂の化合物 Aおよび化合物 Bの含有量はそれぞれ 2. 5質量%、 3. 2質量%であった。 また 2核体成分の含有量は 6 3質量%であった。 この樹脂の各物性を測定したところ、 軟化点は 8 7で、 水酸基当量は 1 7 7 g / e Qであった。 n—ブ夕ノール 5 0質量%溶液の 2 5でにお ける溶液粘度は 86 mm2 s e cであった。 The content of Compound A and Compound B in this resin was 2.5% by mass and 3.2% by mass, respectively. The content of the binuclear component was 63% by mass. When each physical property of this resin was measured, the softening point was 87 and the hydroxyl equivalent was 177 g / eQ. n-butanol The solution viscosity was 86 mm 2 sec.
ぐ製造実施例 2 > Manufacturing Example 2>
[エポキシ樹脂(I)の製造]  [Production of epoxy resin (I)]
(ダリシジル化反応)  (Dalicidylation reaction)
撹拌機、還流冷却器および温度計付きの 3リ ッ トル 4つ口フラスコに、 製造実施例 1で製造したフエノール樹脂 (I) 1 77 gとェピクロルヒ ド リン 400 gとを仕込んだ後、 撹拌、 溶解した。 反応系内の圧力を 2 0 k P a ( 1 50 t o r r ) に調節し、 68でに昇温した。 そこへ、 濃度 4 8質量%の水酸化ナトリゥム水溶液 1 0 0 gを連続的に添加しながら 3. 5時間反応させた。該反応により生成する水および水酸化ナトリウム 水溶液の水を、水—ェピク口ルヒ ドリン共沸混合物の還流により分解し、 反応系外へ連続的に除去した。 反応終了後、 反応系を常圧に戻し、 1 1 0でまで昇温して反応系の水を完全に除去した。 過剰のェピクロルヒ ド リンを常圧下で蒸留除去し、 さらに 2 k P a ( 1 5 t o r r ) の減圧下 に 1 40 で蒸留を行った。  A 3-liter 4-neck flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 177 g of the phenolic resin (I) produced in Production Example 1 and 400 g of epichlorohydrin, followed by stirring. Dissolved. The pressure in the reaction system was adjusted to 20 kPa (150 torr), and the temperature was raised to 68. The reaction was carried out for 3.5 hours while continuously adding 100 g of an aqueous solution of sodium hydroxide having a concentration of 48% by mass. The water produced by the reaction and the aqueous sodium hydroxide solution were decomposed by refluxing an azeotrope of water-hydrazine hydrin and continuously removed out of the reaction system. After completion of the reaction, the pressure of the reaction system was returned to normal pressure, and the temperature was raised to 110 to completely remove water from the reaction system. Excess epichlorohydrin was distilled off under normal pressure, and further distilled at 140 under a reduced pressure of 2 kPa (15 torr).
(水洗)  (Washing)
生成した樹脂、 塩化ナトリウムの混合物に、 メチルイソプチルケトン 300 gおよび 1 0質量%の水酸化ナトリゥム水溶液 3 6 gを加え、 8 5 で 1. 5時間反応を行った。 反応終了後、 メチルイソプチルケトン 7 50 gおよび水 300 gを加え、 下層の無機塩水溶液を分液除去した。 油層と水層の分離性は非常に良かった。  To a mixture of the resulting resin and sodium chloride, 300 g of methyl isobutyl ketone and 36 g of a 10% by mass aqueous sodium hydroxide solution were added, and the mixture was reacted at 85 for 1.5 hours. After the completion of the reaction, 750 g of methyl isobutyl ketone and 300 g of water were added, and the lower aqueous solution of the inorganic salt was separated and removed. The separation between the oil and water layers was very good.
次にメチルイソブチルケトン液層に水 1 50 gを加えて洗浄し、 リン 酸で中和し、 水層を分離したのちさらに水 80 0 gで洗浄して水層を分 離した。  Next, 150 g of water was added to the methyl isobutyl ketone liquid layer for washing, neutralized with phosphoric acid, and the aqueous layer was separated, and further washed with 800 g of water to separate the aqueous layer.
定量的に無機塩類を回収した後、 メチルイソプチルケトン液層を常圧 下で蒸留し、 続いて 0. 6 7 k P a ( 5 t o r r)、 140 °Cで減圧蒸留 を行い、 2 1 6 gのエポキシ樹脂(I)を得た。  After quantitatively recovering the inorganic salts, the methyl isobutyl ketone liquid layer was distilled under normal pressure, followed by vacuum distillation at 0.67 kPa (5 torr) and 140 ° C to obtain 2 16 g of epoxy resin (I) was obtained.
得られたエポキシ樹脂は、 エポキシ当量が 2 6 9 gZe Q、 1 , 4— ジォキサン 50質量%の溶液粘度が 2 2mm2/s e c、 2核体ェポキ シ化成分の含有量が 5 1質量%であった。 The epoxy resin obtained had an epoxy equivalent of 269 gZe Q, a 1,4-dioxane 50% by mass solution viscosity of 22 mm 2 / sec, and a binuclear epoxy. The content of the silicified component was 51% by mass.
ぐ製造比較例 1 > Comparative Manufacturing Example 1>
[フエノール樹脂 (II) の製造]  [Production of phenolic resin (II)]
反応器にフエノールと トルエンを仕込み、 1 6 0 に加熱して、 トル ェンとの共沸をするとともに、 トルエンを留去した。 適宜にサンプリ ン グをして系内フエノールの水分量が 1 0 O p pm以下であることを確認 した後、 この脱水後のフエノール 1 0 5 0 g ( 1 1. 2モル) に三フッ化 ホウ素 · フェノール錯体を 1 5 g添加して均一にした後、 液温を 8 0で に保持しながらジシク口ペン夕ジェン 1 8 8 g ( 1. 4モル) を 1時間か けて徐々に滴下し、 滴下終了後、 1 4 0でに昇温し、 更に 3時間攪拌し た。  The reactor was charged with phenol and toluene, heated to 160 to azeotrope with toluene, and toluene was distilled off. Sampling is performed as appropriate to confirm that the water content of the phenol in the system is 10 O ppm or less, and then to 100 g (11.2 mol) of the dehydrated phenol is added to trifluoride. After adding 15 g of boron-phenol complex to make it homogeneous, 188 g (1.4 mol) of dispenser was slowly added dropwise over 1 hour while maintaining the liquid temperature at 80. After completion of the dropwise addition, the temperature was raised to 140 and the mixture was further stirred for 3 hours.
なお、 ジシクロペン夕ジェンなどは別に測定して水分量が 1 0 0 p p m以下であることを確認している。また反応系の水分量も適宜に測定し、 その水分量が 1 0 0 p pm以下であることを確認している。  It was confirmed that the water content was less than 100 ppm by separately measuring dicyclopentene and the like. The water content of the reaction system was also measured appropriately, and it was confirmed that the water content was 100 ppm or less.
反応液を 9 0でに冷却して、 水酸化マグネシウム · 水酸化アルミニゥ ム /ハイ ド口タルサイ ト (キヨ一ワード 1 0 0 0 ) を 5 0 g添加し、 触 媒を失活させた後、 反応液を濾過した。 得られた濾過液を 1 9 0で、 1 3 k P a ( l O O t o r r ) の減圧下で 5時間蒸留濃縮し、 フエノール 樹脂 (II) 4 1 5 gを得た。  The reaction solution was cooled to 90, and 50 g of magnesium hydroxide / aluminum hydroxide / hydrite talcite (Kyowa Word 100,000) was added to deactivate the catalyst. The reaction was filtered. The obtained filtrate was distilled and concentrated at 190 under a reduced pressure of 13 kPa (lOOtrr) for 5 hours to obtain 415 g of a phenol resin (II).
得られたフエノール樹脂の軟化点は 9 5. 0 、フエノール性水酸基当 量は 1 7 0 g / e Qであった。  The obtained phenol resin had a softening point of 95.0 and a phenolic hydroxyl equivalent of 170 g / eQ.
G P C測定によるこのフエノ一ル樹脂中の化合物 Aの含有率は 1. 1 質量%、 化合物 Bの含有率は 0. 4質量%であった。 また、 2核体成分の 含有量は 6 5質量%、 n—ブ夕ノール 5 0質量%の溶液粘度は 9 0 mm 2 / s e cであった。 According to GPC measurement, the content of compound A in the phenol resin was 1.1% by mass, and the content of compound B was 0.4% by mass. Further, the content of the binuclear component was 65% by mass, and the solution viscosity of 50% by mass of n-butanol was 90 mm 2 / sec.
ぐ製造比較例 2 > Manufacturing Comparative Example 2>
[エポキシ樹脂 (II) の製造]  [Manufacture of epoxy resin (II)]
製造比較例 1の方法で製造されたフエノール樹脂 (II) 1 7 0 gを使 用した以外は、 製造実施例 2と同様に製造を行い、 2 1 6 gのエポキシ 樹脂 (II) を得た。 Production was performed in the same manner as in Production Example 2 except that 170 g of the phenolic resin (II) produced by the method of Production Comparative Example 1 was used. Resin (II) was obtained.
得られたエポキシ樹脂のエポキシ当量は 2 6 3 gZe Q、 2核体ェポ キシ化成分の含有量は 53質量%、 1 , 4一ジォキサン 50質量%の溶 液粘度は 26 mm2/ s e cであった。 The epoxy equivalent of the obtained epoxy resin was 2663 gZe Q, the content of the binuclear epoxidation component was 53% by mass, and the solution viscosity of 50% by mass of 1,4-dioxane was 26 mm 2 / sec. there were.
ぐ製造比較例 3> Production Comparative Example 3>
[フエノール樹脂 (III) の製造]  [Production of phenolic resin (III)]
共沸脱水後の水分量が 950 p pmのフエノールを用いた以外は製造 実施例 1と同様に反応を行い、 フエノール樹脂 (III) 40 8 gを得た。  The reaction was carried out in the same manner as in Production Example 1 except that phenol having a water content of 950 ppm after azeotropic dehydration was used, to obtain 408 g of a phenol resin (III).
この樹脂の軟化点は 8 4で、 水酸基当量は 3 0 1 g / e Qであった。 n—ブ夕ノール 50質量%溶液の 2 5 °Cにおける溶液粘度は 6 4 mm2 Zs e cであった。 またこの樹脂は化合物 Aを 6. 3質量%、 化合物 Bを 1 6. 9質量%含んでいた。 The softening point of this resin was 84, and the hydroxyl equivalent was 301 g / eQ. The solution viscosity of the 50% by mass n-butanol solution at 25 ° C. was 64 mm 2 Zsec. The resin contained 6.3% by mass of compound A and 16.9% by mass of compound B.
また 2核体成分の含有量は 5 1質量%であった。  The content of the binuclear component was 51% by mass.
ぐ製造比較例 4 > Comparative Manufacturing Example 4>
[エポキシ樹脂 (III) の製造]  [Production of epoxy resin (III)]
(グリシジル化反応)  (Glycidylation reaction)
撹拌機、還流冷却器および温度計付きの 3リ ッ トル 4つ口フラスコに、 製造比較例 3で製造したフエノール樹脂 (III) 30 1 gとェピクロルヒ ドリン 6 8 0 gとを仕込んだ後、 撹拌、 溶解した。 反応系内の圧力を 2 O k P a ( 1 50 t o r r) に調節し、 68 X:に昇温した。 そこへ、 濃 度 48質量%の水酸化ナトリウム水溶液 1 70 gを連続的に添加しなが ら 3. 5時間反応させた。該反応により生成する水および水酸化ナトリゥ ム水溶液の水を、 水一ェピクロルヒ ドリン共沸混合物の還流により分解 し、 反応系外へ連続的に除去した。 反応終了後、 反応系を常圧に戻し、 1 1 0でまで昇温して反応系の水を完全に除去した。 過剰のェピクロル ヒ ドリンを常圧下で蒸留除去し、 さらに 2 k P a ( 1 5 t o r r ) の減 圧下に 140でで蒸留を行った。  A 3-liter 4-neck flask equipped with a stirrer, reflux condenser and thermometer was charged with 301 g of the phenolic resin (III) produced in Production Comparative Example 3 and 680 g of epichlorohydrin, and then stirred. , Dissolved. The pressure in the reaction system was adjusted to 2 OkPa (150 torr), and the temperature was raised to 68X :. The reaction was continued for 3.5 hours while continuously adding 170 g of a 48% by mass aqueous sodium hydroxide solution thereto. The water produced by the reaction and the aqueous sodium hydroxide solution were decomposed by refluxing an azeotropic mixture of water and epichlorohydrin, and were continuously removed to the outside of the reaction system. After completion of the reaction, the pressure of the reaction system was returned to normal pressure, and the temperature was raised to 110 to completely remove water from the reaction system. Excess epichlorhydrin was distilled off under normal pressure and further distilled at 140 under reduced pressure of 2 kPa (15 torr).
(水洗)  (Washing)
生成した樹脂、 塩化ナトリウムの混合物に、 メチルイソプチルケトン 5 0 0 gおよび 1 0質量%の水酸化ナトリゥム水溶液 6 0 gを加え、 8 5 t:で 1. 5時間反応を行った。 反応終了後、 メチルイソプチルケトン 1 0 0 0 gおよび水 3 0 0 gを加え、下層の無機塩水溶液を分液除去した。 油層と水層の分離性は非常に良かった。 The resulting resin, a mixture of sodium chloride, and methyl isobutyl ketone 500 g and 60 g of a 10% by mass aqueous sodium hydroxide solution were added, and the mixture was reacted at 85 t: for 1.5 hours. After the completion of the reaction, 100 g of methyl isobutyl ketone and 300 g of water were added, and the lower layer aqueous solution of an inorganic salt was separated and removed. The separation between the oil and water layers was very good.
次にメチルイソプチルケトン液層に水 3 0 0 gを加えて洗浄し、 リン 酸で中和し、 水層を分離したのちさらに水 8 0 O gで洗浄して水層を分 離した。  Next, 300 g of water was added to the methyl isobutyl ketone liquid layer for washing, neutralized with phosphoric acid, and the aqueous layer was separated, and then further washed with 80 Og of water to separate the aqueous layer.
定量的に無機塩類を回収した後、 メチルイソプチルケトン液層を常圧 下で蒸留し、 続いて 0. 6 7 k P a ( 5 t o r r )、 1 4 0 で減圧蒸 留を行い、 3 6 7 gのエポキシ樹脂 (III) を得た。  After quantitatively recovering the inorganic salts, the methyl isobutyl ketone liquid layer was distilled under normal pressure, followed by distillation under reduced pressure at 0.67 kPa (5 torr) and 140. 7 g of epoxy resin (III) was obtained.
得られたエポキシ樹脂は、 エポキシ当量が 3 4 1 gZe q、 1 , 4— ジォキサン 5 0質量%の溶液粘度が 1 2 mm2, s e c、 2核体ェポキ シ化成分の含有量が 42質量%であった。 The obtained epoxy resin had an epoxy equivalent of 34.1 g Zeq, a 1,4-dioxane of 50% by mass, a solution viscosity of 12 mm 2 , sec, and a binuclear epoxidized component of 42% by mass. Met.
<実施例 1および比較例 1、 2 > <Example 1 and Comparative Examples 1 and 2>
ここまで製造したフエノール樹脂を用いてエポキシ樹脂組成物として の流動性と硬化性についての比較を行った。 表 1で示される配合に従つ て調製した混合物を熱ロールにて 1 0 0 、 8分間混練し、 その後粉砕 したものを 1 2〜 1 4 MP a ( 1 2 0 0〜 1 4 0 0 k g c m2) の圧 力にてタブレツ トを作成し、 それを用いてトランスファー成形機にてプ ランジャー圧力 0. 8 M P a ( 8 0 k gZc m2)、 金型温度 1 7 5で、 成形時間 1 0 0秒の条件下にて封止し、 厚さ 2 mmのフラッ トパッケ一 ジを評価用試験片として作成した。 その後 1 7 5でで 8時間の後硬化を 施した。 エポキシ樹脂組成物の流動性の指標としてゲルタイムと試験用 金型を用い 1 7 5T:、 0. 7 M P a ( 7 0 k g/ c m2), 1 2 0秒の条 件のスパイラルフローの測定を行った。 また、 評価用試験片を用いて硬 化性の指標として D M Aによるガラス転移温度の測定を行った。 また 8 5で、 8 5 %RHの雰囲気中 1 6 8時間放置し吸湿処理を行い吸水率の 測定を行った。 また、 この後 2 6 0でのハンダ浴に 1 0秒浸せきさせた 際のクラック発生率を調べた。 これらの結果を表 1に示す。 実施例 1は 流動性と耐熱性のバランスがよく、 比較例 1は流動性が悪く、 また比較 例 2は耐熱性が劣る。 Using the phenolic resin manufactured so far, we compared the fluidity and curability of the epoxy resin composition. The mixture prepared according to the composition shown in Table 1 was kneaded with a hot roll for 100 minutes and 8 minutes, and then ground to 12 to 14 MPa (1200 to 140 kgcm). 2 ) A tablet is created with the pressure of 2 ), and using this, a plunger pressure of 0.8 MPa (80 kgZc m 2 ), a mold temperature of 175 and a molding time of 1 Sealing was performed under the condition of 00 seconds, and a flat package having a thickness of 2 mm was prepared as a test piece for evaluation. Thereafter, post-curing was performed at 175 for 8 hours. The epoxy resin composition 1 7 using the test mold and gel time as an indicator of flowability of 5T :, 0. 7 MP a (7 0 kg / cm 2), the measurement of the spiral flow of 1 2 0 sec conditions went. In addition, the glass transition temperature was measured by DMA as an index of hardening using the test specimen for evaluation. At 85, the sample was left in an atmosphere of 85% RH for 16 hours to perform a moisture absorption treatment, and the water absorption was measured. Further, after that, the crack occurrence rate when immersed in a solder bath at 260 for 10 seconds was examined. Table 1 shows the results. Example 1 The fluidity and heat resistance are well-balanced. Comparative Example 1 has poor fluidity, and Comparative Example 2 has poor heat resistance.
なお、 フエノールノポラックは夕マノール 7 5 8 (荒川化学 (株) 製、 軟化点 8 3 :、 水酸基当量 1 0 4 g Z e Q ) を用いた。 オルソクレゾ一 ルノボラックエポキシは E S C N- 2 2 0 L (住友化学 (株) 製、 軟化 点 6 6で、 エポキシ当量 2 1 2 g / e q ) を用いた。  As the phenol nopolak, evening manol 758 (manufactured by Arakawa Chemical Co., Ltd., softening point: 83, hydroxyl equivalent: 104 g ZeQ) was used. Orthocresol L-novolak epoxy used was ESCN-220L (manufactured by Sumitomo Chemical Co., Ltd., having a softening point of 66 and an epoxy equivalent of 212 g / eq).
【表 1】  【table 1】
Figure imgf000024_0001
<実施例 2および比較例 3、 4>
Figure imgf000024_0001
<Example 2 and Comparative Examples 3, 4>
フエノール樹脂を原料としたエポキシ樹脂を用いた組成物としての流 動性と硬化性についての比較を行った。 表 2で示される配合に従って調 製した混合物を熱ロールにて 1 0 0で、 8分間混練し、 その後粉砕した ものを 1 2〜: L 4MP a ( 1 2 0 0〜 1 4 0 0 k g c m2) の圧力に て夕ブレッ トを作成し、 それを用いてトランスファー成形機にてプラン ジャー圧力 0. 8 MP a ( 8 0 k g/ c m2), 金型温度 1 7 5 :、 成形 時間 1 0 0秒の条件下にて封止し、 厚さ 2 mmのフラッ トパッケージを 評価用試験片として作成した。 その後 1 7 5でで 8時間の後硬化を施し た。 エポキシ樹脂組成物の流動性の指標としてゲルタイムと試験用金型 を用い 1 7 5で、 0. 7 M P a ( 7 0 k gノ c m2)、 1 2 0秒の条件の スパイラルフローの測定を行った。 また、 評価用試験片を用いて硬化性 の指標として DM Aによるガラス転移温度の測定を行った。また 8 5で、 8 5 % RHの雰囲気中 1 6 8時間放置し吸湿処理を行い吸水率の測定を 行った。 また、 この後 2 6 0でのハンダ浴に 1 0秒浸せきさせた際のク ラック発生率を調べた。 これらの結果を表 2に示す。 実施例 2は流動性 と耐熱性のバランスがよく、 比較例 3は流動性が悪く、 また比較例 4は 耐熱性が劣る。 A comparison was made of the fluidity and curability of a composition using an epoxy resin made from phenolic resin. The mixture prepared according to the composition shown in Table 2 was kneaded with a hot roll at 100 for 8 minutes and then pulverized. Things to 1 2~: L 4MP a (1 2 0 0~ 1 4 0 0 kgcm 2) Te a pressure of evening to create a breccias bets, plunger pressure 0. 8 MP a by transfer molding machine using the same (80 kg / cm 2 ), mold temperature: 17.5: Molding time: 100 seconds, sealing was performed, and a flat package with a thickness of 2 mm was prepared as an evaluation test piece. Thereafter, post-curing was performed at 175 for 8 hours. 1 7 5 using the gel time and the test mold as an indication of the flowability of the epoxy resin composition, 0. 7 MP a (7 0 kg Roh cm 2), we measured the spiral flow conditions 1 2 0 sec Was. Using the test specimen for evaluation, the glass transition temperature was measured by DMA as an index of curability. At 85, the sample was allowed to stand in an atmosphere of 85% RH for 16 hours, subjected to moisture absorption treatment, and measured for water absorption. Further, after that, the crack generation rate when immersed in a solder bath at 260 for 10 seconds was examined. Table 2 shows the results. Example 2 has a good balance between fluidity and heat resistance, Comparative Example 3 has poor fluidity, and Comparative Example 4 has poor heat resistance.
なお、 フエノールノボラックはフエノライ ト TD— 2 1 3 1 (大日本 インキ化学 (株) 製、 軟化点 8 0 :、 水酸基当量 1 0 4 gZe Q ) を用 いた。 The phenol novolak used was phenolic TD-213 (manufactured by Dainippon Ink and Chemicals, Inc., softening point: 80, hydroxyl equivalent: 104 gZeQ).
【表 2】 [Table 2]
Figure imgf000026_0001
Figure imgf000026_0001
産業上の利用可能性 Industrial applicability
本発明によれば、 流動性が良好で半導体を封止する際の成形性に優れ る上に、 更に封止硬化後の耐熱性に優れるフエノール樹脂組成物、 ェポ キシ樹脂組成物及び半導体封止材料を提供することができる。  According to the present invention, a phenolic resin composition, an epoxy resin composition, and a semiconductor encapsulant having good fluidity, excellent moldability when encapsulating a semiconductor, and further having excellent heat resistance after encapsulation and curing are provided. A stop material can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 .フエノール類と炭素一炭素二重結合を 2個以上有する不飽和環状炭化水素化 合物とを反応させて得られるフエノール樹脂において、 ポリスチレン換算数平均分 子量が 3 2 0以下であり、 かつ 1分子中にフエノール性水酸基を 1つのみ含有する 一官能性成分の含有量が、 該樹脂の 2質量%を超え 2 0質量%以下であることを特 徴とするフエノール樹脂。  1.The phenolic resin obtained by reacting phenols with an unsaturated cyclic hydrocarbon compound having two or more carbon-carbon double bonds has a polystyrene equivalent number average molecular weight of not more than 320, A phenol resin characterized in that the content of the monofunctional component containing only one phenolic hydroxyl group in one molecule is more than 2% by mass and not more than 20% by mass of the resin.
2 . フエノール類がフエノールであり、 炭素一炭素二重結合を 2個以上有する不 飽和環状炭化水素化合物がジシクロペン夕ジェンであることを特徴とする請求の範 囲第 1項に記載のフェノール樹脂。  2. The phenolic resin according to claim 1, wherein the phenol is phenol, and the unsaturated cyclic hydrocarbon compound having two or more carbon-carbon double bonds is dicyclopentene.
3.—官能性成分中に少なくとも下記の一般式( 1 )で示される化合物 Aおよび一 般式 (2 ) で示される化合物 Bが含まれることを特徴とする請求の範囲第 2項に記 載のフエノール樹脂。  3.—The functional component contains at least a compound A represented by the following general formula (1) and a compound B represented by the general formula (2), described in claim 2. Phenolic resin.
Figure imgf000027_0001
Figure imgf000027_0001
または  Or
( 2 )(2)
4. 酸触媒の存在下にフエノール類と炭素—炭素二重結合を 2個以上有する不飽 和環状炭化水素化合物とを接触させる反応工程と、 主として未反応のフエノ一ル類 を除去する濃縮工程とを含むフエノール樹脂の製造方法において、 反応工程におい て反応系中の触媒濃度を所定の濃度に調節し、 濃縮工程において所定の条件で反応 生成物を濃縮することにより、 ポリスチレン換算数平均分子量が 3 2 0以下で、 か つフエノール性水酸基を 1つのみ含有する一官能性成分の該樹脂中における含有量 を、 2質量%を超え 20質量%以下とすることを特徴とするフエノール樹脂の製造 方法。 4. A reaction step of contacting a phenol with an unsaturated cyclic hydrocarbon compound having two or more carbon-carbon double bonds in the presence of an acid catalyst, and a concentration step of mainly removing unreacted phenols In a method for producing a phenolic resin containing a phenol resin, the concentration of the catalyst in the reaction system is adjusted to a predetermined concentration in the reaction step, and the reaction product is concentrated under predetermined conditions in the concentration step, whereby the number average molecular weight in terms of polystyrene is reduced. 3 0 or less, or A method for producing a phenol resin, wherein the content of a monofunctional component having only one phenolic hydroxyl group in the resin is more than 2% by mass and not more than 20% by mass.
5. 反応工程で使用する酸触媒が三フッ化ホウ素 ·フエノール錯体であることを 特徴とする請求の範囲第 4項に記載のフェノール樹脂の製造方法。  5. The method for producing a phenolic resin according to claim 4, wherein the acid catalyst used in the reaction step is a boron trifluoride / phenol complex.
6. 酸触媒の使用量がフエノール類、 炭素一炭素二重結合を 2個以上有する不飽 和環状炭化水素化合物および酸触媒の合計量に対して、 0.01〜0. 5質量%であ ることを特徴とする請求の範囲第 4項または第 5項に記載のフエノール樹脂の製造 方法。  6. The amount of acid catalyst used is 0.01 to 0.5% by mass based on the total amount of phenols, unsaturated cyclic hydrocarbon compounds having two or more carbon-carbon double bonds, and acid catalyst. 6. The method for producing a phenolic resin according to claim 4 or claim 5, characterized in that:
7. 酸触媒添加前のフエノール類中の水分濃度が 500 p pm以下であることを 特徴とする請求の範囲第 4項から第 6項のいずれかに記載のフエノール樹脂の製造 方法。  7. The method for producing a phenol resin according to any one of claims 4 to 6, wherein the water concentration in the phenols before the addition of the acid catalyst is 500 ppm or less.
8. 濃縮工程において、 40 kPa (300 t o r r) 以下に減圧した後、 高圧 の水蒸気を吹き込むことにより、 樹脂中の未反応フエノール類の残存量を 500 p pm以下にすることを特徴とする請求の範囲第 4項から第 7項のいずれかに記載の フエノール樹脂の製造方法。  8. In the concentration step, after reducing the pressure to 40 kPa (300 torr) or less, by blowing high-pressure steam, the residual amount of unreacted phenols in the resin is reduced to 500 ppm or less. Item 8. The method for producing a phenolic resin according to any one of Items 4 to 7.
9. フエノール類がフエノールであり、 炭素一炭素二重結合を 2個以上有する不 飽和環状炭化水素化合物がジシクロペン夕ジェンであることを特徴とする請求の範 囲第 4から第 8項のいずれかに記載のフェノール樹脂の製造方法  9. The phenol according to any one of claims 4 to 8, wherein the phenol is a phenol, and the unsaturated cyclic hydrocarbon compound having two or more carbon-carbon double bonds is dicyclopentene. Method for producing phenolic resin described in
10. 濃縮工程において、 40 kP a (300 t o r r) 以下に減圧した後、 高 圧の水蒸気を吹き込むことにより、 樹脂中の前記化合物 Aおよび Bの合計の含有量 が 2質量%を超え 20質量%以下にすることを特徴とする請求の範囲第 9項に記載 のフエノール樹脂の製造方法。  10. In the concentration step, after reducing the pressure to 40 kPa (300 torr) or less, by blowing high-pressure steam, the total content of the compounds A and B in the resin exceeds 2% by mass to 20% by mass. 10. The method for producing a phenolic resin according to claim 9, wherein:
1 1. 請求の範囲第 1項から第 3項のいずれかに記載のフエノール樹脂とェピハ ロヒドリン類との反応で得られるエポキシ樹脂。  1 1. An epoxy resin obtained by reacting the phenolic resin according to any one of claims 1 to 3 with an epihalohydrin.
12. 請求の範囲第 4項から第 10項のいずれかに記載の製造方法によりフエノ ール樹脂を製造し、 次いで塩基触媒の存在下で当該フエノール樹脂とェピハロヒド リン類を反応させるエポキシ樹脂の製造方法。  12. Production of a phenolic resin by the production method according to any one of claims 4 to 10, and then production of an epoxy resin by reacting the phenolic resin with ephalohydrins in the presence of a base catalyst. Method.
13. エポキシ樹脂、 硬化剤、 硬化促進剤および無機充填剤を必須成分として含 有する半導体封止材用のエポキシ樹脂組成物において、 硬化剤が請求の範囲第 1項 から第 3項のいずれかに記載のフエノール樹脂であることを特徴とするエポキシ樹 脂組成物。 13. Including epoxy resin, curing agent, curing accelerator and inorganic filler as essential components An epoxy resin composition for a semiconductor encapsulant, wherein the curing agent is the phenolic resin according to any one of claims 1 to 3.
1 4. 請求の範囲第 1 1項に記載のエポキシ樹脂、 硬化剤、 硬化促進剤および無 機充填剤を必須成分として含有することを特徴とする半導体封止材用のエポキシ樹 脂組成物。  1 4. An epoxy resin composition for a semiconductor encapsulant, comprising the epoxy resin according to claim 11, a curing agent, a curing accelerator, and an inorganic filler as essential components.
PCT/JP2002/010859 2001-11-02 2002-10-18 Phenolic resin, epoxy resin, process for producing the same, and resin composition for semiconductor encapsulation material WO2003037954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-338489 2001-11-02
JP2001338489A JP3955199B2 (en) 2001-11-02 2001-11-02 Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant

Publications (1)

Publication Number Publication Date
WO2003037954A1 true WO2003037954A1 (en) 2003-05-08

Family

ID=19152976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010859 WO2003037954A1 (en) 2001-11-02 2002-10-18 Phenolic resin, epoxy resin, process for producing the same, and resin composition for semiconductor encapsulation material

Country Status (2)

Country Link
JP (1) JP3955199B2 (en)
WO (1) WO2003037954A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965360B1 (en) 2008-08-12 2010-06-22 제일모직주식회사 Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484040A2 (en) * 1990-10-31 1992-05-06 MITSUI TOATSU CHEMICALS, Inc. Process of preparing a phenolic polymer
JPH06298903A (en) * 1993-04-19 1994-10-25 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH07118366A (en) * 1993-10-25 1995-05-09 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH0853539A (en) * 1994-08-12 1996-02-27 Dainippon Ink & Chem Inc Production of phenol resin and epoxy resin
JPH0948839A (en) * 1995-08-08 1997-02-18 Dainippon Ink & Chem Inc Epoxy resin composition and semiconductor sealer
WO2000066645A1 (en) * 1999-04-30 2000-11-09 Nippon Petrochemicals Company, Limited Processes for producing hydrocarbon/phenol resin and producing epoxy resin
WO2001012695A1 (en) * 1999-08-13 2001-02-22 Nippon Petrochemicals Company, Limited Phenolic resin, epoxy resin, and processes for producing these
JP2001335621A (en) * 2000-05-30 2001-12-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484040A2 (en) * 1990-10-31 1992-05-06 MITSUI TOATSU CHEMICALS, Inc. Process of preparing a phenolic polymer
JPH06298903A (en) * 1993-04-19 1994-10-25 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH07118366A (en) * 1993-10-25 1995-05-09 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH0853539A (en) * 1994-08-12 1996-02-27 Dainippon Ink & Chem Inc Production of phenol resin and epoxy resin
JPH0948839A (en) * 1995-08-08 1997-02-18 Dainippon Ink & Chem Inc Epoxy resin composition and semiconductor sealer
WO2000066645A1 (en) * 1999-04-30 2000-11-09 Nippon Petrochemicals Company, Limited Processes for producing hydrocarbon/phenol resin and producing epoxy resin
WO2001012695A1 (en) * 1999-08-13 2001-02-22 Nippon Petrochemicals Company, Limited Phenolic resin, epoxy resin, and processes for producing these
JP2001335621A (en) * 2000-05-30 2001-12-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP3955199B2 (en) 2007-08-08
JP2003137980A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP2004156024A (en) Epoxy resin composition, production method for epoxy resin, new epoxy resin and new phenol resin
GB2316407A (en) Epoxy resins and compositions containing them
EP1595905B1 (en) Process for producing high-purity epoxy resin and epoxy resin composition
JP4210216B2 (en) Phenol resin, epoxy resin, method for producing the same, and epoxy resin composition
TW452944B (en) Phenolic resin, resin composition, molding material for encapsulation, and electronic component device
JP3074013B2 (en) Epoxy resin composition and cured product thereof
JP2004123859A (en) Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
WO2003037954A1 (en) Phenolic resin, epoxy resin, process for producing the same, and resin composition for semiconductor encapsulation material
TW201313769A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JP4408978B2 (en) Production method of polyvalent hydroxy resin and epoxy resin
JP4004787B2 (en) Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant
JP2741075B2 (en) Epoxy resin composition
JP2001114863A (en) Epoxy resin composition and its cured material
JP3721319B2 (en) Method for producing phenolic resin and epoxy resin
JP2732126B2 (en) High heat resistance, low water absorption resin composition
JP4334446B2 (en) Semiconductor sealing material
JP2870709B2 (en) New compounds, resins, resin compositions and cured products
JPH10324733A (en) Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
JP2865439B2 (en) Epoxy resin and its cured product
JPH04275317A (en) New novolak type resin and its production
JPH11158255A (en) Novel polyhydroxy compound, novel epoxy resin, their production, and epoxy resin composition and cured article prepared by using them
JP3063322B2 (en) Bisphenols, epoxy resins and compositions thereof
JP2870710B2 (en) New compounds, resins, resin compositions and cured products
JP3118494B2 (en) Curing agent for epoxy resin and epoxy resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)