WO2003031690A2 - Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor - Google Patents

Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor Download PDF

Info

Publication number
WO2003031690A2
WO2003031690A2 PCT/EP2002/010516 EP0210516W WO03031690A2 WO 2003031690 A2 WO2003031690 A2 WO 2003031690A2 EP 0210516 W EP0210516 W EP 0210516W WO 03031690 A2 WO03031690 A2 WO 03031690A2
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
anode
gde
gas diffusion
diffusion electrode
Prior art date
Application number
PCT/EP2002/010516
Other languages
English (en)
French (fr)
Other versions
WO2003031690A3 (de
Inventor
Andreas Bulan
Fritz Gestermann
Manfred Marre
Walter Hansen
Michael Grossholz
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to US10/491,621 priority Critical patent/US7329331B2/en
Priority to HU0401498A priority patent/HUP0401498A2/hu
Priority to KR1020047004765A priority patent/KR100931754B1/ko
Priority to AU2002337113A priority patent/AU2002337113A1/en
Priority to EP02772323.8A priority patent/EP1442157B1/de
Priority to JP2003534656A priority patent/JP4689958B2/ja
Priority to BR0213081-5A priority patent/BR0213081A/pt
Publication of WO2003031690A2 publication Critical patent/WO2003031690A2/de
Publication of WO2003031690A3 publication Critical patent/WO2003031690A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes

Definitions

  • Electrolysis cell in particular for the electrochemical production of chlorine
  • the invention relates to an electrolysis cell, in particular for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride.
  • JP-A-9 078 279 describes that the GDE is glued to the cation exchange membrane.
  • the disadvantage here is that the GDE must be cut out exactly and then glued onto the cation exchange membrane. This process is cumbersome and time-consuming.
  • both the GDE and the membrane must be replaced.
  • the object of the invention is to provide an electrolysis cell that works reliably and is easy to handle.
  • the electrolytic cell according to the invention has an anode carried by an anode frame, a current collector carried by a cathode frame and a gas diffusion electrode (GDE) arranged between the anode and the current collector. such as an oxygen consumption electrode. Furthermore, the electrolytic cell has a cation exchange membrane likewise arranged between the anode and the current collector.
  • the anode compartment is formed from the anode, the anode frame and the rear wall and has an inlet and an outlet for the electrolyte.
  • the cathode compartment is formed from the current collector, the cathode frame and the rear wall and has an inlet and an outlet for gas, in the case of an oxygen consumable cathode for oxygen or oxygen-containing gas.
  • the GDE is fixed on the current collector. Compared to gluing the GDE to the cation exchange membrane, this has the advantage that with one
  • the GDE can be connected to the current collector by gluing. Since the gluing should primarily prevent the GDE from slipping during installation and, when assembled, no large forces act on the GDE, since it is clamped between the anode of the cation exchange membrane and the current collector, it is sufficient to only apply the GDE in some places with the current collector. For example, in the case of a vertically arranged electrolysis cell, it may be sufficient to glue the GDE only in the upper area. By providing little adhesive surface or only adhesive points is an impairment of the behavior of the GDE due to the adhesive, which can have a sealing effect, for example.
  • the GDE is preferably releasably attached to the current collector.
  • Detachable attachment can be done, for example, by sewing on the current collector, which is designed, for example, as a perforated plate or the like.
  • a suitable plastic thread or the like is used, which is not attacked by the chemicals present in the electrolytic cell.
  • an adhesive connection such as a Velcro fastener, between the GDE and the current collector.
  • the current collector is exposed in the area of the cracks in the GDE, so that there is an undesirable formation of hydrogen.
  • cracks occur in the cation exchange membrane, chlorine gets into the oxygen present in the cathode compartment. If, as usual, the oxygen is used in excess, the chlorine comes out of the cell together with the oxygen and then has to be separated or removed in a complex manner. Due to the strong elongation, the recycling of the cation exchange membrane is not possible or the risk of cracking increases when used again. Since the GDE is not firmly connected to the cation exchange membrane according to the invention, there are no corresponding expansion loads in an outer region of the GDE. The appearance of cracks and the. associated disadvantages are thus avoided. Rather, greater flexibility of the GDE is guaranteed.
  • Another advantage of the arrangement of the GDE according to the invention is that the entire area of the GDE is largely used, since not a part of the area is covered by being clamped between the two frames.
  • the GDE is preferably slightly larger than the current collector. During assembly, this edge of the GDE projecting beyond the current collector is then lightly pressed, for example, into the gap between the current collector and the cathode frame. The outer edge of the GDE is thus on the cathode frame.
  • a sealing element which preferably has essentially the dimensions of the cathode frame, and the GDE are preferably arranged such that a sealing surface of the sealing element pointing in the direction of the anode and the surface of the GDE also pointing in the direction of the anode are arranged in one plane. This ensures that the GDE is applied to both the current collector and the cation exchange membrane. This is e.g. prevents the GDE from kinking or slipping.
  • the thickness of the sealing element in the assembled state, the thickness of the sealing element preferably corresponds essentially to the thickness of the GDE.
  • the current collector essentially closes with the cathode frame, so that the current collector and the top of the frame form a plane on which the sealing element can then be placed in the region of the cathode frame and the GDE itself can be placed on the current collector and, in turn, a common one in the direction of the anode have a pointing plane.
  • the current collector is angled at two, for example opposite one another, or on all four side edges, the
  • Edge areas protrude into the cathode space and between the edge areas of the Current collector and the cathode frame, a gap is formed.
  • the current collector and the surface of the cathode frame pointing in the direction of the anode space essentially form a plane.
  • the GDE is also angled in the edge area. The edges of the GDE are pushed into the gap between the current collector and the cathode frame.
  • the current collector is connected to the cathode frame in such a way that the surface of the current collector does not end with the surface of the cathode frame pointing in the direction of the anode, but protrudes therefrom.
  • a thicker seal is then provided, the thickness of which is greater than the distance that the current collector protrudes from the cathode frame.
  • a sealing element which at least partially surrounds the gas diffusion electrode, is provided, which has an extension projecting between the cathode frame and the current collector.
  • the gas diffusion electrode is held between the attachment and the current collector.
  • the hold is done in particular by pinching.
  • the elastic wedge is arranged between the current collector and the seal.
  • This can be a single, preferably frame-shaped, elastic wedge that surrounds the GDE.
  • several wedges arranged at a distance from one another can be provided for fixing the GDE.
  • the GDE is fixed in that the GDE partially encompasses or grips behind the current collector.
  • the gripping takes place on two opposite sides of the Stro collector or, for example, in a rectangular current collector along all four sides.
  • an edge of the GDE can be connected to a rail in order to make it easy to fix it to the current collector.
  • the rail which can be a plastic strip, for example, is designed in such a way that it can be pushed through a gap between the current collector and the cathode frame.
  • FIG. 1 shows a schematic longitudinal section of a first preferred embodiment of the electrolytic cell
  • FIG. 2 shows a schematic longitudinal section of a second preferred embodiment of the electrolytic cell
  • FIG. 3 shows a schematic longitudinal section of a third preferred embodiment of the electrolytic cell
  • Figure 4 is a schematic longitudinal section of a fourth preferred embodiment of the electrolytic cell.
  • FIG. 5 is a schematic longitudinal section of a fifth preferred embodiment of the electrolytic cell and FIG. 6 shows a schematic longitudinal section of a sixth preferred embodiment of the electrolytic cell.
  • the electrolytic cell (FIG. 1) has an anode frame 10 which carries an anode 12.
  • the anode frame 10 is further connected to a rear wall 14, so that the anode frame 10 forms the rear wall 14 and the anode 12 an anode space 16. Furthermore, the anode frame 10 has an inlet 18 and an outlet 20.
  • a cathode frame 22 carries a current collector 24. Furthermore, the cathode frame 22 has a rear wall 26, so that the cathode frame 22, the current collector 24 and the rear wall 26 form a cathode space 28. The cathode frame 22 is also connected to an inlet 30 and an outlet 32.
  • the two frames 10, 22 are braced against one another in the assembled state of the electrolysis cell.
  • a cation exchange membrane 34 is provided to separate the anode compartment 16 from the cathode compartment 28.
  • the cation exchange membrane 34 is larger than the anode 12 or the current collector 24, so that it is also arranged between the two frames 10, 22.
  • the frames preferably have rectangular outer dimensions.
  • the cation exchange membrane is also rectangular, so that the cation exchange membrane is arranged over the entire circumference between the two frames 10, 22.
  • a sealing element 36 or 38 is provided on both sides of the cation exchange membrane 34 for sealing.
  • a gas diffusion electrode 40 is arranged between the cation exchange membrane 34 and the current collector 24. When assembled, the GDE 40 bears on the current collector 24 and the cation exchange membrane 34 on the GDE 40.
  • the GDE 40 is connected to the current collector 24 by clamping, gluing, Velcro fastenings, sewing or the like. Both the current collector 24 and the anode 12 are connected to electrical connections.
  • the current collector 24 projects beyond the cathode frame 22.
  • the seal 38 has a thickness that is greater than the distance between the two surfaces 42, 44 of the cation exchange membrane 34 or of the cathode frame 22. The protrusion created in this way forms a frame into which the GDE 40 can be inserted , This considerably simplifies assembly.
  • the outer dimension of the GDE 40 is slightly larger than that of the current collector 24.
  • the outer dimension of the GDE 40 is slightly smaller than the dimension of the seal 38, so that it is directly on the inside of the Seal 36 is present.
  • hydrochloric acid for example, is supplied to the anode compartment 16 through the inlet 18 in the direction of the arrow 46.
  • the hydrochloric acid is removed again through the outlet 32 in the direction of the arrow 48.
  • Oxygen is supplied to the cathode chamber 28 through the inlet 30 in the direction of the arrow 50 and escapes again through the outlet 32 in the direction of the arrow 52.
  • chlorine is generated in the anode space 16 and escapes through the outlet 20 of the anode space 16.
  • Other flow variants for flowing through the anode space 16 and the cathode space 28 are also possible.
  • FIGS. 2 to 5 are in principle an electrolysis cell similar to the electrolysis cell shown in FIG. 1, so that the same or poor components are identified by the same reference numerals.
  • the essential difference in the embodiment shown in FIG. 2 is that the current collector 54 does not protrude beyond the frame 22, but forms a plane with it.
  • the current collector 54 is arranged in the same plane as the surface 44 of the cathode frame 22. Another resulting from it
  • a seal 56 is provided, which seals 38 ( Figure 1) replaced.
  • the seal 56 is thinner than the seal 38 and can, for example, have the same thickness as the GDE 40.
  • the surface of the GDE 40 pointing in the direction of the anode 12 is thus arranged in a plane like the surface of the seal 56 which is likewise pointing in the direction of the anode 12. This is the case in particular in the assembled state, in which the seal 56 can be compressed. Otherwise, the components of the two illustrated embodiments and the function of the electrolytic cells shown are identical.
  • a seal 60 is provided between the anode frame 10 and the cathode frame 22, which has an extension 62 which projects into the cathode frame 22.
  • the extension 62 is thus arranged between the cathode frame 22 and the current collector 24.
  • this is angled at the area 64 and fixed between the attachment 62 of the seal 60 and the current collector 24, in particular by clamping. This fixation can be circumferential or on two opposite sides of the
  • the seal provided corresponds to the seal 38 (FIG. 1).
  • the difference in this embodiment is that the current collector 24 is only smaller and one
  • Edge region 64 of the gas diffusion electrode 40 is in turn angled.
  • an elastic wedge 66 is provided between the seal 38 and the GDE 40 or the edge area 64 of the GDE 40.
  • the edge region 64 of the GDE 40 is pressed against the current collector 24 by the wedge 66 and thus also fixed in place.
  • Wedge 66 is preferably frame-shaped. More finely, it is possible to use several individual wedges 66.
  • the current collector 54 is configured essentially as in the exemplary embodiment illustrated with reference to FIG.
  • the current collector 54 has a gap 68 at least partially with respect to the cathode frame 22. It is possible to insert a plastic strip 70 through the gap 68, which consists in particular of PVC, to be pushed through.
  • the strip 70 is connected to the GDE 40.
  • the GDE 40 is fixed to the current collector 54 in that the GDE 40 engages behind the current collector 54.
  • This embodiment particularly preferably has. between the seal 56 and the GDE 40 additionally an elastic wedge (not shown here), which is essentially as in the embodiment shown with reference to Figure 4.
  • the wedge preferably runs frame-like around the GDE. However, it is also possible to use several individual wedges at regular or irregular intervals.
  • the current collector 54 does not protrude beyond the frame 22, but forms a plane with it.
  • the difference from the embodiment shown in FIG. 2 is that the current collector is angled around its edges.
  • the GDE 40 is angled at its edges, the edge region 64 being inserted into the gap between the cathode frame 22 and the current collector 54.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Eine Elektrolysezelle, die insbesondere zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff geeignet ist, weist einen Anodenrahmen (10) auf, der eine Anode (12) trägt. Ferner ist ein Kathodenrahmen (22) vorgesehen, der einen Stromkollektor (24) trägt. Zwischen der Anode (12) und dem Stromkollektor (24) ist eine Gasdiffusionselektrode (40) vorgesehen. Erfindungsgemäss ist die Gasdiffusionselektrode (40) beispielsweise durch Kleben oder Klettverschlüsse mit dem Stromkollektor (24) verbunden.

Description

Elektrolysezelle, insbesondere zur elektrochemischen Herstellung von Chlor
Die Erfindung betrifft eine Elektrolysezelle, insbesondere zur elel trochemischen Her- Stellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff.
Es ist bekannt, die Elektrolyse von Salzsäure in einer Elektrolysezelle durclizuführen, bei der der Anodenraum mit einer edelmetallbeschichteten Anode mit Salzsäure gefüllt ist und bei dem sich im Kathodenraum ein sauerstoffhaltiges' Gas bzw. reiner Sauer- stoff befindet. Wie beispielsweise in der US-A-5.770.035 beschrieben, werden Anodenraum und Kathodenraum durch eine Kationenaustauschermembran voneinander getrennt, wobei die Kationenaustauschermembran auf einer Gasdiffusionselektrode, nachfolgend GDE genannt, aufliegt. Die Gasdiffusionselektrode hegt auf dem Stro - köllektor auf.
In der JP-A-9 078 279 wird beschrieben, dass die GDE auf die Kationenaustauschermembran aufgeklebt wird. Nachteil hierbei ist, dass die GDE exakt ausgeschnitten und anschließend exakt auf die Kationenaustauschermembran aufgeklebt werden muss. Dieses Verfahren ist umständlich und aufwändig. Zusätzlich müssen bei einem Scha- den an der Membran oder der GDE sowohl die GDE als auch die Membran ausgewechselt werden.
Aufgabe der Erfindung ist es, eine Elektrolysezelle zu schaffen, die zuverlässig arbeitet und einfach handhabbar ist.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
Die erfindungsgemäße Elektrolysezelle weist eine von einem Anodenrahmen getragene Anode, einen von einem Kathodenrahmen getragenen Stromkollektor und eine zwischen der Anode und dem Stromkollektor angeordnete Gasdiffusionselektrode (GDE), wie beispielsweise eine Sauerstoffverzehrelektrode, auf. Ferner weist die Elektrofyse- zelle eine ebenfalls zwischen der Anode und dem Stromlcollektor angeordnete Kationenaustauschermembran auf. Der Anodenraum wird aus der Anode, dem Anodenrahmen und der Rückwand gebildet und weist einen Einlass und einen Auslass für den Elektrolyten auf. Der Kathodenraum wird aus dem Stromlcollektor, dem Kathodenrahmen und der Rückwand gebildet und weist einen Einlass sowie einen Auslass für Gas, im Falle einer Sauerstoffverzehrkathode für Sauerstoff oder sauerstoffhaltiges Gas, auf.
Erfindungsgemäß ist die GDE am Stromkollektor fixiert. Gegenüber einem Verkleben der GDE mit der Kationenaustauschermembran hat dies den Vorteil, dass bei einer
Beschädigung der GDE oder der Kationenaustauschermembran nicht beide Bauteile ausgewechselt werden müssen.
Das Befestigen der GDE am Stromkollektor hat den weiteren Vorteil, dass ein Verrut- sehen der GDE vermieden ist. Die Entstehung von Wasserstoff an einem freiliegenden
Stromkollektor ist somit ebenfalls vermieden.
Durch das ernndungsgemäße Befestigen der GDE am Stromkollektor ist es möglich, die GDE derart anzuordnen, dass Randbereiche der GDE nicht zwischen Dichtungen angeordnet werden müssen. Es ist somit möglich, weitgehend die gesamte Fläche der
GDE zu nutzen.
Die GDE kann durch Verkleben mit dem Stromkollektor verbunden sein. Da durch das Verkleben in erster Linie während des Einbaus ein Verrutschen der GDE verhindert werden soll und in zusammengebautem Zustand keine großen Kräfte auf die GDE wirken, da diese zwischen der Anode der Kationenaustauschermembran und dem Stromkollektor eingeklemmt ist, ist es ausreichend, die GDE nur an einigen Stellen mit dem Stromkollektor zu verkleben. Beispielsweise bei einer senkrecht angeordneten Elektrolysezelle kann es ausreichend sein, die GDE nur im oberen Bereich zu verkleben. Durch das Vorsehen von wenig Klebstoffflächen bzw. lediglich von Klebstoffpunkten ist eine Beeinträchtigung des Verhaltens der GDE auf Grund des Klebstoffs, der beispielsweise abdichtend wirken kann, verringert.
Vorzugsweise ist die GDE lösbar an dem Stromkollektor befestigt. Eine lösbare Befestigung kann beispielsweise durch Annähen an dem beispielsweise als Lochblech oder dergl. ausgebildeten Stromkollektor erfolgen. Hierzu wird ein geeigneter Kunststofffaden oder dergl. eingesetzt, der von dem in der Elektrolysezelle vorhandenen Chemikalien nicht angegriffen wird. Ebenso ist es möglich, eine Haftverbindung, wie beispielsweise einen Klettverschluss, zwischen der GDE und dem Strom- kollektor vorzusehen.
Ebenso wäre es möglich, die GDE zusammen mit der Kationenaustauschermembran zwischen dem Anodenrahmen und dem Kathodenrahmen einzuklemmen. Hierbei würden ggf. zusätzliche Dichtungen vorgesehen. Bei dieser Anordnung wäre zwar sicher- gestellt, dass die GDE den Stromkollektor vollständig bedeckt, jedoch ist die GDE den im Betrieb auftretenden großen Kräften ausgesetzt. Die Kräfte treten auf Grund eines hydrostatischen Druckunterschiedes zwischen dem Anodenraum und dem Kathodenraum auf, der erforderlich ist, um die GDE gegen den Stromkollektor zu drücken. Bei einer zwischen den beiden Rahmen eingeklemmten GDE können diese Kräfte zur Beschädigung der GDE oder auch der Kationsnaustauschermembran im Dichtungsbereich führen. Treten Risse in der GDE auf, so ist eine unerwünschte Erhöhung der Elektrolysespannung die Folge. Außerdem liegt im Bereich der Risse in der GDE der Stromkollektor frei, so dass es zu einer unerwünschten Bildung von Wasserstoff kommt. Treten andererseits Risse in der Kationenaustauschermembran auf, so gelangt Chlor in den im Kathodenraum vorhandenen Sauerstoff. Wenn, wie üblich durchgeführt, der Sauerstoff im Überschuss eingesetzt wird, gelangt das Chlor zusammen mit dem Sauerstoff aus der Zelle und muss anschließend aufwändig abgetrennt bzw. entfernt werden. Durch die starke Dehnung ist ferner die Wiederverwertung der Kationenaustauschermembran nicht möghch bzw. die Rissgefahr erhöht sich bei einem erneuten Einsatz. Da die GDE erfindungsgemäß nicht fest mit der Kationenaustauschermembran verbunden ist, treten entsprechende Dehnungsbelastungen in einem Außenbereich der GDE nicht auf. Das Auftreten von Rissen und den. hiermit verbundenen Nachteilen ist somit vermieden. Vielmehr ist eine größere Beweglichkeit der GDE gewährleistet. Ein wei- terer Vorteil der erfindungsgemäßen Anordnung der GDE besteht darin, dass weitgehend die gesamte Fläche der GDE genutzt wird, da nicht ein Teil der Fläche durch Einklemmen zwischen den beiden Rahmen abgedeckt ist.
Um ein vollständiges Bedecken des Stro kollektors durch die GDE zu gewährleisten, ist die GDE vorzugsweise geringfügig größer als der Stromkollektor. Beim Zusammenbau wird dieser über den Stromkollektor hinausstehende Rand der GDE beispielsweise sodann leicht in den Spalt zwischen dem Stromkollektor und dem Kathodenrahmen eingedrückt. Der äußere Rand der GDE liegt somit am Kathodenrahmen an.
Ein Dichtelement, das vorzugsweise im Wesentlichen die Abmessungen des Kathodenrahmens aufweist, und die GDE sind vorzugsweise derart angeordnet, dass eine in Richtung der Anode weisende Dichtfläche des Dichtelements und die ebenfalls in Richtung der Anode weisende Oberfläche der GDE in einer Ebene angeordnet sind. Hierdurch ist sichergestellt, dass die GDE sowohl an dem Stromkollektor als auch an der Kationenaustauschermembran anliegt. Hierdurch ist z.B. ein Knicken oder Verrutschen der GDE verhindert. Bei dieser Ausführungsform entspricht in zusammengebautem Zustand die Dicke des Dichtelements vorzugsweise im Wesentlichen der Dicke der GDE. Hierbei schließt der Stromkollektor im Wesentlichen mit dem Kathodenrahmen ab, so dass der Stromkollektor und die Rahmenoberseite eine Ebene bilden, auf die im Bereich des Kathodenrahmens sodann das Dichtelement und auf den Stromkollektor selbst die GDE aufgelegt werden können und wiederum eine gemeinsame, in Richtung der Anode weisende Ebene aufweisen.
Bei einer weiteren Ausführungsform ist der Stromkollektor an zwei, beispielsweise einander gegenüberliegenden, oder an allen vier Seitenrändern abgewinkelt, wobei die
Randbereiche in den Kathodenraum hineinragen und zwischen den Randbereichen des Stromkollektors und dem Kathodenrahmen ein Spalt gebildet wird. Der Stromkollektor und die in Richtung des Anodenraumes weisende Oberfläche des Kathodenrahmens bilden im Wesentlichen eine Ebene. Die GDE ist bei dieser Ausführungsform ebenfalls im Randbereich abgewinkelt. Die Ränder der GDE werden hierbei in den Spalt zwischen Stromkollektor und Kathodenrahmen geschoben.
Bei einer weiteren Ausfuhrungsform ist der Stromkollektor derart mit dem Kathodenrahmen verbunden, dass die Oberfläche des Stromkollektors nicht mit der in Richtung der Anode weisenden Oberfläche des Kathodenrahmens abschließt, sondern über diese hervorsteht. Hierbei ist sodann eine dickere Dichtung vorgesehen, deren Dicke größer ist als der Abstand, den der Stromkollektor über den Kathodenrahmen hervorsteht. Dies hat den Vorteil, dass die Lage der Dichtung durch den Stromkollektor definiert ist. Ferner bildet die Dichtung wiederum einen Rahmen, in den die GDE eingelegt werden kann. Die GDE wird am Stromkollektor z.B. durch Annähen oder mit Klebepunkten fixiert. Dies hat den Vorteil, dass beim Zusammenbau der Elektrolysezelle die Lage dieser Elemente genau definiert ist.
Bei einer weiteren bevorzugten Ausfuhrungsform der Erfindung ist ein Dichtelement, das die Gasdiffusionselektrode zumindest teilweise umgibt, vorgesehen, das einen zwischen den Kathodenrahmen und den Stromkollektor ragenden Ansatz aufweist. Zur
Fixierung der Gasdiffusionselektrode ist die Gasdiffusionselektrode zwischen dem Ansatz und dem Stromkollektor gehalten. Das Halten erfolgt insbesondere durch Einklemmen.
Anstelle oder zusätzlich zu dem Vorsehen eines Ansatzes an dem Dichtelement ist es möghch, einen elastischen Keil zur Fixierung der GDE vorzusehen. Der elastische Keil ist bei dieser Ausführungsform zwischen dem Stromkollektor und der Dichtung angeordnet. Hierbei kann es sich um einen einzelnen, vorzugsweise rahmenförmigen elastischen Keil handeln, der die GDE umgibt. Ferner können mehrere im Abstand zueinander angeordnete Keile zur Fixierung der GDE vorgesehen sein. Bei einer weiteren Ausfuhrungsform erfolgt das Fixieren der GDE dadurch, dass die GDE den Stromkollektor teilweise um- bzw. hintergreift. Vorzugsweise erfolgt das Umgreifen an zwei einander gegenüberliegenden Seiten des Stro kollelctors oder bei einem beispielsweise rechteckigen Stromkollektor entlang allen vier Seiten. Hierzu kann ein Rand der GDE mit einer Schiene verbunden sein, um ein einfaches Fixieren an dem Stromkollektor zu ermöglichen. Die Schiene, bei der es sich beispielsweise um eine Kunststoffleiste handeln kann, ist hierbei derart ausgebildet, dass sie durch einen Spalt zwischen dem Stromkollektor und dem Kathodenrahmen hindurchgeschoben werden kann.
Nachfolgend wird die Erfindung anhand bevorzugter Ausführungsformen unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert.
Es zeigen:
Figur 1 einen schematischen Längsschnitt einer ersten bevorzugten Ausführungsform der Elektrolysezelle,
Figur 2 einen schematischen Längsschnitt einer zweiten bevorzugten Ausführungs- form der Elektrolysezelle,
Figur 3 einen schematischen Längsschnitt einer dritten bevorzugten Ausführungsform der Elektrolysezelle,
Figur 4 einen schematischen Längsschnitt einer vierten bevorzugten Ausführungsform der Elektrolysezelle und
Figur 5 einen schematischen Längsschnitt einer fünften bevorzugten Ausfuhrungsform der Elektrolysezelle und Figur 6 einen schematischen Längsschnitt einer sechsten bevorzugten Ausführungs- form der Elektrolysezelle.
Die Elektrolysezelle (Figur 1) weist einen Anodenrahmen 10 auf, der eine Anode 12 trägt. Der Anodenrahmen 10 ist ferner mit einer Rückwand 14 verbunden, so dass durch den Anodenrahmen 10 die Rückwand 14 und die Anode 12 ein Anodenraum 16 gebildet ist. Femer weist der Anodenrahmen 10 einen Einlass 18 sowie einen Auslass 20 auf.
Ein Kathodenrahmen 22 trägt einen Stromkollektor 24. Ferner weist der Kathodenrahmen 22 eine Rückwand 26 auf, so dass der Kathodenrahmen 22, der Stromkollektor 24 und die Rückwand 26 einen Kathodenraum 28 bilden. Femer ist der Kathodenrahmen 22 mit einem Einlass 30 und einem Auslass 32 verbunden.
Die beiden Rahmen 10,22 werden in zusammengebautem Zustand der Elektrolysezelle gegeneinander verspannt. Zum Trennen des Anodenraums 16 vom Kathodenraum 28 ist eine Kationenaustauschermembran 34 vorgesehen. Die Kationenaustauschermembran 34 ist größer als die Anode 12 bzw. der Stromkollektor 24, so dass sie auch zwischen den beiden Rahmen 10,22 angeordnet ist. Die Rahmen weisen vorzugsweise rechteckige Außenabmessungen auf. Die Kationenaustauschermembran ist ebenfalls rechteckig, so dass die Kationenaustauschermembran im gesamten Umfang zwischen den beiden Rahmen 10,22 angeordnet ist. Zur Abdichtung ist auf beiden Seiten der Kationenaustauschermembran 34 ein Dichtelement 36 bzw. 38 vorgesehen. Des weiteren ist zwischen der Kationenaustauschermembran 34 und dem Stromkollektor 24 eine Gasdiffusionselektrode 40 angeordnet. In zusammengebauten Zustand hegt die GDE 40 auf dem Stromkollektor 24 und die Kationenaustauschermembran 34 an der GDE 40 an.
Erfindungsgemäß ist die GDE 40 mit dem Stromkollektor 24 durch Klemmen, Verkle- ben, Klettverschlüsse, Annähen oder dergl. verbunden. Sowohl der Stromkollektor 24 als auch die Anode 12 sind mit elektrischen Anschlüssen verbunden. In der ersten bevorzugten Ausfuhrungsform der Erfindung (Figur 1) steht der Stromkollektor 24 über den Kathodenrahmen 22 hinaus. Die Dichtung 38 weist eine Dicke auf, die größer ist als der Abstand zwischen den beiden Oberflächen 42,44 der Katio- nenaustauschermembran 34 bzw. des Kathodenrahmens 22. Durch den hierdurch entstehenden Überstand ist ein Rahmen gebildet, in den die GDE 40 eingelegt werden kann. Hierdurch ist die Montage erheblich vereinfacht. Um ein Abdecken des Stromkollektors durch die GDE 40 zu gewährleisten, ist die Außenabmessung der GDE 40 geringfügig größer als diejenige des Stromkollektors 24. Vorzugsweise ist die Außenabmessung der GDE 40 geringfügig kleiner als die Abmessung der Dichtung 38, so dass diese unmittelbar an der Innenseite der Dichtung 36 anliegt.
Im Betrieb der Elektrolysezelle wird durch den Einlass 18 in Richtung des Pfeils 46 beispielsweise Salzsäure dem Anodenraum 16 zugeführt. Während der Elektrolyse wird die Salzsäure durch den Auslass 32 in Richtung des Pfeils 48 wieder abgeführt.
Dem Kathodenraum 28 wird durch den Einlass 30 in Richtung des Pfeils 50 Sauerstoff zugeführt, der durch den Auslass 32 in Richtung des Pfeils 52 wieder entweicht. Während der Elektrolyse wird in dem Anodenraum 16 Chlor erzeugt, das durch den Auslass 20 des Anodenraums 16 entweicht. Ebenso sind andere Strömungsvarianten zur Durch- Strömung des Anodenraums 16 als auch den Kathodenraums 28 möghch.
Bei den in den Figuren 2 bis 5 dargestellten Ausführungsbeispielen handelt es sich prinzipiell um eine der in Figur 1 gezeigten Elektrolysezelle ähnlichen Elektrolysezelle, so dass gleiche oder ärmliche Bestandteile mit den gleichen Bezugszeichen bezeichnet sind.
Der wesentliche Unterschied besteht bei der in Figur 2 dargestellten Ausführungsform darin, dass der Stromkollektor 54 nicht über den Rahmen 22 hinausragt, sondern mit diesem eine Ebene bildet. Der Stromkollektor 54 ist in derselben Ebene wie die Ober- fläche 44 des Kathodenrahmens 22 angeordnet. Ein weiterer sich hieraus ergebender
Unterschied besteht darin, dass eine Dichtung 56 vorgesehen ist, die die Dichtung 38 (Figur 1) ersetzt. Die Dichtung 56 ist dünner als die Dichtung 38 und kann z.B. dieselbe Dicke wie die GDE 40 aufweisen. Die in Richtung der Anode 12 weisende Oberfläche der GDE 40 ist somit in einer Ebene wie die ebenfalls in Richtung der Anode 12 weisende Oberfläche der Dichtung 56 angeordnet. Dies ist insbesondere in zusammengebautem Zustand, in dem die Dichtung 56 zusammengedrückt sein kann, der Fall. Im Übrigen sind die Bauteile der beiden dargestellten Ausführungsformen sowie die Funktion der dargestellten Elektrolysezellen identisch.
Bei der dritten Ausfuhrungsform der Erfindung (Figur 3) ist zwischen dem Anoden- ' rahmen 10 und dem Kathodenrahmen 22 eine Dichtung 60 vorgesehen, die einen Ansatz 62 aufweist, der in den Kathodenrahmen 22 hineinragt. Der Ansatz 62 ist somit zwischen dem Kathodenrahmen 22 und dem Stromkollektor 24 angeordnet. Zur Fixierung der GDE 40 ist diese am Bereich 64 abgewinkelt und zwischen dem Ansatz 62 der Dichtung 60 und dem Stromkollektor 24 insbesondere durch Klemmen fixiert. Diese Fixierung kann umlaufend oder an zwei einander gegenüberliegenden Seiten des
Stromkollektors 24 erfolgen.
Bei der vierten Ausführungsform der Erfindung (Figur 4) entspricht die vorgesehene Dichtung der Dichtung 38 (Figur 1). Der Unterschied bei dieser Ausführungsform besteht darin, dass der Stromkollektor 24 lediglich kleiner ausgebildet ist und ein
Randbereich 64 der Gasdiffusionselektrode 40 wiederum abgewinkelt angeordnet ist. Zur Fixierung der GDE 40 ist zwischen der Dichtung 38 und der GDE 40 bzw. dem Randbereich 64 der GDE 40 ein elastischer Keil 66 vorgesehen. Durch den Keil 66 wird der Randbereich 64 der GDE 40 gegen den Stromkollektor 24 gedrückt und somit diese mitfixiert. Der Keil 66 ist vorzugsweise rahmenförmig. Feiner ist es möglich, mehrere einzelne Keile 66 zu verwenden.
Bei der fünften Ausfürirungsform der Erfindung (Figur 5) ist der Stromkollektor 54 im Wesentlichen wie in dem anhand Figur 2 dargestellten Ausfuhrungsbeispiel ausgebil- det. Allerdings weist der Stromkollektor 54 zumindest teilweise zu dem Kathodenrahmen 22 einen Spalt 68 auf. Es ist möghch, durch den Spalt 68 eine Kunststoffleiste 70, die insbesondere aus PVC besteht, hindurch zu stecken. Die Leiste 70 ist mit der GDE 40 verbunden. Das Fixieren der GDE 40 an dem Stromkollektor 54 erfolgt dadurch, dass die GDE 40 den Stromkollektor 54 hintergreift. Besonders bevorzugt weist diese Ausfuhrungsform . zwischen der Dichtung 56 und der GDE 40 zusätzlich einen elastischen Keil auf (hier nicht dargestellt), welcher im Wesentlichen wie in dem anhand Figur 4 dargestellten Ausführungsbeispiel ausgebildet ist. Vorzugsweise läuft der Keil rahmenförmig um die GDE. Es ist jedoch ebenfalls möghch, mehrere einzelne Keile in regelmäßigen oder unregelmäßigen Abständen einzusetzen.
Bei der sechsten Ausführungsform (Figur 6) ragt der Stromkollektor 54, ähnlich wie bei der in Figur 2 dargestellten Ausführungsform, nicht über den Rahmen 22 hinaus, sondern bildet mit diesem eine Ebene. Der Unterschied zu der in der Figur 2 dargestellten Ausführungsform besteht darin, dass der Stromkollektor an seinen Rändern umlaufend abgewinkelt ist. Die GDE 40 wird hierbei an ihren Rändern abgewinkelt, wobei der Randbereich 64 in den Spalt zwischen Kathodenrahmen 22 und Stromkollektor 54 eingesteckt wird.

Claims

Patentansprtiche
1. Elelctrolysezelle, insbesondere zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff, umfassend wenigstens
einen aus einer Anode (12), einem Anodenrahmen (10)' und einer Rückwand (14) gebildeten Anodenraum (16), wobei der Anodenrahmen (10) die Anode (12) trägt und der Anodenraum (16) einen Einlass (18) und einen Auslass (20) für den Elektrolyten aufweist,
einen aus einem Stromkollektor (24), einem Kathodenrahmen (22) und einer Rückwand (26) gebildeten Kathodenraum (28), wobei der Kathodenrahmen (22) den Stromkollektor (24) trägt und der Kathodenraum (28) einen Einlass (30) und einen Auslass (32) für das Gas aufweisen,
eine zwischen Anode (12) und Stromkollektor (24,54) angeordnete Gasdiffusionselektrode (40) und
eine zwischen Anode (12) und Gasdiffusionselektrode (40) angeordnete Katio- nenaustauschermembran (34),
dadurch gekennzeichnet, dass
die Gasdiffusionselektrode (40) an dem Stromkollektor (24,54) fixiert ist.
2. Elektrolysezelle nach Anspruch 1, dadurch gekennzeichnet, dass die Gasdiffusionselektrode (40) lösbar an dem Stromkollektor (24,54) befestigt ist.
3. Elektrolysezelle nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass die Fläche der Gasdiffusionselektrode (40) so bemessen ist, dass die Gasdiffusionselektrode mit einem Rand über den Stromkollektor (24,54) übersteht.
4. Elektrolysezelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass entlang des Kathodenrahmens (22) ein Dichtelement (38,56,60) verläuft, wobei die in Richtung der Anode (12) weisende Dichtfläche des Dichtelements (38,56,60) in einer Ebene mit der in Richtung der Anode (12) weisenden Oberfläche der Gasdiffusionselektrode (40) angeordnet ist.
5. Elektrolysezelle nach Anspruch s, dadurch gekennzeichnet, dass der Stromkollektor (24) gegenüber dem Kathodenrabmen (22) in Richtung der Katio- nenaustauschermembran (34) vorsteht und von dem entlang des Kathodenrahmens (22) verlaufenden Dichtelement (38,60) umgeben ist.
6. Elektrolysezelle nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass das Dichtelement (60) einen zwischen den Kathodenrahmen (22) und den Stromkollektor (24) ragenden Ansatz (62) aufweist und der Rand (64) der Gasdiffusionselektrode (40) zwischen dem Ansatz (62) und dem Stromkollektor (24) gehalten ist.
7. Elektrolysezelle nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass zum Fixieren der Gasdiffusionselektrode (40) zwischen dem
Stromkollektor (24) und dem Dichtelement (38) mindestens ein elastischer Keil (66) vorgesehen ist.
8. Elektrolysezelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Gasdiffusionselektrode (40) den Stromkollektor (24) teilweise umgreift.
9. Elektrolysezelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein Rand (64) der Gasdiffusionselektrode (40) mit mindestens einer Leiste (70) zum Fixieren an dem Stromkollektor (24) verbunden ist.
PCT/EP2002/010516 2001-10-02 2002-09-19 Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor WO2003031690A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/491,621 US7329331B2 (en) 2001-10-02 2002-09-19 Electrolysis cell, especially for electrochemical production of chlorine
HU0401498A HUP0401498A2 (en) 2001-10-02 2002-09-19 Electrolysis cell, especially for electrochemical production of chlorine
KR1020047004765A KR100931754B1 (ko) 2001-10-02 2002-09-19 특히 전기화학적인 염소의 생산을 위한 전해셀
AU2002337113A AU2002337113A1 (en) 2001-10-02 2002-09-19 Electrolysis cell, especially for electrochemical production of chlorine
EP02772323.8A EP1442157B1 (de) 2001-10-02 2002-09-19 Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor
JP2003534656A JP4689958B2 (ja) 2001-10-02 2002-09-19 塩素の電気化学的製造のための電解槽
BR0213081-5A BR0213081A (pt) 2001-10-02 2002-09-19 Célula de eletrólise particulrmente para preparação eletroquìmica de cloro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10148600A DE10148600A1 (de) 2001-10-02 2001-10-02 Einbau einer Gasdiffusionselektrode in einen Elektrolyseur
DE10148600.6 2001-10-02

Publications (2)

Publication Number Publication Date
WO2003031690A2 true WO2003031690A2 (de) 2003-04-17
WO2003031690A3 WO2003031690A3 (de) 2004-01-08

Family

ID=7701123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010516 WO2003031690A2 (de) 2001-10-02 2002-09-19 Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor

Country Status (11)

Country Link
US (1) US7329331B2 (de)
EP (1) EP1442157B1 (de)
JP (1) JP4689958B2 (de)
KR (1) KR100931754B1 (de)
CN (1) CN100582308C (de)
AU (1) AU2002337113A1 (de)
BR (1) BR0213081A (de)
DE (1) DE10148600A1 (de)
HU (1) HUP0401498A2 (de)
PL (1) PL368302A1 (de)
WO (1) WO2003031690A2 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036284A2 (de) * 2001-10-25 2003-05-01 Bayer Materialscience Ag Gasdiffusionselektroden-trägerstruktur
WO2012139741A3 (de) * 2011-04-15 2013-04-25 Thyssenkrupp Uhde Gmbh Alternativer einbau einer gas-diffusions-elektrode in eine elektrochemische zelle mit percolatortechnologie
EP3819259A1 (de) 2019-11-06 2021-05-12 Covestro Deutschland AG Verfahren zur isocyanat- und polyurethan-herstellung mit verbesserter nachhaltigkeit
DE102020206449A1 (de) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Verfahren zum Befestigen einer Elektrode
DE102020206448A1 (de) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Vorrichtung zum Befestigen einer Elektrode
EP4039638A1 (de) 2021-02-03 2022-08-10 Covestro Deutschland AG Verfahren zur herstellung von kohlenmonoxid als rohstoff zur isocyanatherstellung mit verringertem co2 fussabdruck
EP4234491A1 (de) 2022-02-24 2023-08-30 Covestro Deutschland AG Verfahren zur gasifikation polymerer wertstoffmaterialien für die emissionsarme bereitstellung von für die herstellung von phosgen nutzbarem kohlenmonoxid
EP4310224A1 (de) 2022-07-19 2024-01-24 Covestro Deutschland AG Nachhaltige herstellung organischer aminoverbindungen für die produktion organischer isocyanate
EP4345094A1 (de) 2022-09-30 2024-04-03 Covestro Deutschland AG Verfahren zur phosgen-herstellung mit rückführung von kohlendioxid aus wertstoffrecycling

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924545B2 (ja) * 2003-03-31 2007-06-06 三井化学株式会社 ガス拡散電極の排電方法
US7341184B2 (en) * 2005-02-11 2008-03-11 Fujitsu Transaction Solutions, Inc. Method and system for performing security on multiple unresolved objects in a self checkout
DE102006023261A1 (de) 2006-05-18 2007-11-22 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff
EP2371806B1 (de) 2010-03-30 2017-07-12 Covestro Deutschland AG Verfahren zur Herstellung von Diarylcarbonaten und Polycarbonaten
US9175135B2 (en) 2010-03-30 2015-11-03 Bayer Materialscience Ag Process for preparing diaryl carbonates and polycarbonates
DE102010054159A1 (de) 2010-12-10 2012-06-14 Bayer Materialscience Aktiengesellschaft Verfahren zum Einbau von Sauerstoffverzehrelektroden in elektrochemischen Zellen und elektrochemische Ze lle
JP5831913B2 (ja) * 2010-12-28 2015-12-09 Jx日鉱日石エネルギー株式会社 有機化合物の水素化装置及び水素化方法
JP5819790B2 (ja) * 2012-08-17 2015-11-24 旭化成ケミカルズ株式会社 電解セル及び電解槽
ITMI20130563A1 (it) * 2013-04-10 2014-10-11 Uhdenora Spa Metodo di adeguamento di celle elettrolitiche aventi distanze interelettrodiche finite
DE102015214592A1 (de) * 2015-07-31 2017-02-02 Siemens Aktiengesellschaft Herstellungsverfahren für ein Brenngas und Anlage zur Herstellung eines Brenngases mit einem Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung
KR102518704B1 (ko) 2018-07-06 2023-04-05 아사히 가세이 가부시키가이샤 전극 구조체, 전극 구조체의 제조 방법, 전해셀 및 전해조
JP7122181B2 (ja) * 2018-07-06 2022-08-19 旭化成株式会社 電極構造体、電解セル及び電解槽
CN115323417A (zh) * 2022-05-17 2022-11-11 广东卡沃罗氢科技有限公司 一种工业电解槽

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350580A (en) * 1980-04-25 1982-09-21 Olin Corporation Current distributors for reticulate electrodes
DE4444114A1 (de) * 1994-12-12 1996-09-19 Bayer Ag Druckkompensierte elektrochemische Zelle
EP1029946A2 (de) * 1999-02-16 2000-08-23 Nagakazu Furuya Gasdiffusionselektrodenanordnungen und Verfahren zu ihrer Herstellung
US6113757A (en) * 1997-01-22 2000-09-05 Permelec Electrode Ltd. Electrolytic cell for alkali hydroxide production
EP1041176A1 (de) * 1998-10-13 2000-10-04 Toagosei Co., Ltd. Verfahren zur reduzierung der ladung in gasdiffusionselektroden und ladungsreduzierungsstruktur
EP1092789A1 (de) * 1999-03-31 2001-04-18 Toagosei Co., Ltd. Elektrolytische zelle mit gasdiffusionselektrode und stromverteilungsverfahren für elektrolytische zelle
WO2003023090A1 (en) * 2001-09-07 2003-03-20 Akzo Nobel N.V. Electrolytic cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538271B2 (ja) * 1995-09-12 2004-06-14 ペルメレック電極株式会社 塩酸電解装置
IT1282367B1 (it) 1996-01-19 1998-03-20 De Nora Spa Migliorato metodo per l'elettrolisi di soluzioni acquose di acido cloridrico
JP2952595B1 (ja) * 1998-10-13 1999-09-27 東亞合成株式会社 ガス拡散電極の取付け、排電方法
JP3086854B1 (ja) * 1999-03-18 2000-09-11 長一 古屋 ガス室一体型ガス拡散電極
JP3041794B1 (ja) * 1999-03-31 2000-05-15 東亞合成株式会社 電解槽
JP3373178B2 (ja) * 1999-08-17 2003-02-04 鐘淵化学工業株式会社 電解方法
DE10138214A1 (de) * 2001-08-03 2003-02-20 Bayer Ag Elektrolysezelle und Verfahren zur elektrochemischen Herstellung von Chlor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350580A (en) * 1980-04-25 1982-09-21 Olin Corporation Current distributors for reticulate electrodes
DE4444114A1 (de) * 1994-12-12 1996-09-19 Bayer Ag Druckkompensierte elektrochemische Zelle
US6113757A (en) * 1997-01-22 2000-09-05 Permelec Electrode Ltd. Electrolytic cell for alkali hydroxide production
EP1041176A1 (de) * 1998-10-13 2000-10-04 Toagosei Co., Ltd. Verfahren zur reduzierung der ladung in gasdiffusionselektroden und ladungsreduzierungsstruktur
EP1029946A2 (de) * 1999-02-16 2000-08-23 Nagakazu Furuya Gasdiffusionselektrodenanordnungen und Verfahren zu ihrer Herstellung
EP1092789A1 (de) * 1999-03-31 2001-04-18 Toagosei Co., Ltd. Elektrolytische zelle mit gasdiffusionselektrode und stromverteilungsverfahren für elektrolytische zelle
WO2003023090A1 (en) * 2001-09-07 2003-03-20 Akzo Nobel N.V. Electrolytic cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036284A2 (de) * 2001-10-25 2003-05-01 Bayer Materialscience Ag Gasdiffusionselektroden-trägerstruktur
WO2003036284A3 (de) * 2001-10-25 2004-06-24 Bayer Materialscience Ag Gasdiffusionselektroden-trägerstruktur
WO2012139741A3 (de) * 2011-04-15 2013-04-25 Thyssenkrupp Uhde Gmbh Alternativer einbau einer gas-diffusions-elektrode in eine elektrochemische zelle mit percolatortechnologie
EA023647B1 (ru) * 2011-04-15 2016-06-30 Уденора С.П.А. Альтернативная установка газодиффузионного электрода в электрохимической ячейке с перколяторной технологией
US9562294B2 (en) 2011-04-15 2017-02-07 Uhdenora S.P.A. Alternative installation of a gas diffusion electrode in an electrochemical cell having percolator technology
EP3819259A1 (de) 2019-11-06 2021-05-12 Covestro Deutschland AG Verfahren zur isocyanat- und polyurethan-herstellung mit verbesserter nachhaltigkeit
WO2021089737A1 (de) 2019-11-06 2021-05-14 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur isocyanat- und polyurethan-herstellung mit verbesserter nachhaltigkeit
DE102020206449A1 (de) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Verfahren zum Befestigen einer Elektrode
DE102020206448A1 (de) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Vorrichtung zum Befestigen einer Elektrode
EP4039638A1 (de) 2021-02-03 2022-08-10 Covestro Deutschland AG Verfahren zur herstellung von kohlenmonoxid als rohstoff zur isocyanatherstellung mit verringertem co2 fussabdruck
WO2022167387A1 (de) 2021-02-03 2022-08-11 Covestro Deutschland Ag Verfahren zur herstellung von kohlenmonoxid als rohstoff zur isocyanatherstellung mit verringertem co2 fussabdruck
EP4234491A1 (de) 2022-02-24 2023-08-30 Covestro Deutschland AG Verfahren zur gasifikation polymerer wertstoffmaterialien für die emissionsarme bereitstellung von für die herstellung von phosgen nutzbarem kohlenmonoxid
WO2023161302A1 (de) 2022-02-24 2023-08-31 Covestro Deutschland Ag Verfahren zur gasifikation polymerer wertstoffmaterialien für die emissionsarme bereitstellung von für die herstellung von phosgen nutzbarem kohlenmonoxid
EP4310224A1 (de) 2022-07-19 2024-01-24 Covestro Deutschland AG Nachhaltige herstellung organischer aminoverbindungen für die produktion organischer isocyanate
WO2024017890A2 (de) 2022-07-19 2024-01-25 Covestro Deutschland Ag Nachhaltige herstellung organischer aminoverbindungen für die produktion organischer isocyanate
EP4345094A1 (de) 2022-09-30 2024-04-03 Covestro Deutschland AG Verfahren zur phosgen-herstellung mit rückführung von kohlendioxid aus wertstoffrecycling
WO2024068685A1 (de) 2022-09-30 2024-04-04 Covestro Deutschland Ag Verfahren zur phosgen-herstellung mit rückführung von kohlendioxid aus wertstoffrecycling

Also Published As

Publication number Publication date
CN100582308C (zh) 2010-01-20
KR20040049312A (ko) 2004-06-11
WO2003031690A3 (de) 2004-01-08
CN1564879A (zh) 2005-01-12
JP2005504893A (ja) 2005-02-17
JP4689958B2 (ja) 2011-06-01
US20050173257A1 (en) 2005-08-11
HUP0401498A2 (en) 2004-10-28
EP1442157B1 (de) 2018-10-17
AU2002337113A1 (en) 2003-04-22
PL368302A1 (en) 2005-03-21
BR0213081A (pt) 2004-10-13
EP1442157A2 (de) 2004-08-04
US7329331B2 (en) 2008-02-12
KR100931754B1 (ko) 2009-12-14
DE10148600A1 (de) 2003-04-10

Similar Documents

Publication Publication Date Title
EP1442157A2 (de) Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor
DE112016002760T5 (de) Klemme und Klemmenanordnung
DE102004022969A1 (de) Brennstoffzelle
DE102013214755A1 (de) Elektrisches Speicherelement und Verfahren zu seiner Herstellung
DE202015106197U1 (de) Separatorplatte für ein elektrochemisches System und elektrochemisches System
DE19904809A1 (de) Randschutzstreifen für Elektroden elektrolytischer Zellen
DE2918036A1 (de) Verschlussvorrichtung an einer batterie
EP2065958A1 (de) Bipolarplatten für Stapel von Brennstoffzellen
DE102023110335A1 (de) Verfahren zum Stanzen eines integral geformten Oberabdeckungsbleches, Batterieoberabdeckungstruktur und Herstellungsverfahren dafür
DE2135873B2 (de) Zellenoberteil für Amalgamhochlastzellen
DE2943046A1 (de) Batterie
DE2754550A1 (de) Fugenabdichtung
EP1612877B1 (de) Brennstoffzelle
DE69819545T2 (de) Elektrode zur elektrolytischen raffination oder elektrogewinnung und herstellungsverfahren dafür
DE869941C (de) Zelle fuer Elektrolyseure nach dem Filterpressensystem
DE3051150C2 (de) Basisplatte f}r elektrolytische Raffination
EP1353396A1 (de) Elektrochemische Zelle oder Anordnung von zwei oder mehr zu einem Stapel aufgeschichteten elektrochemischen Zellen
DE2031794C3 (de) Akkumulator
DE139777T1 (de) Verglasungsbausystem und baukoerper dafuer.
EP0552780A1 (de) Elektrischer Anschlusskasten
DE4016725A1 (de) Kraftfahrzeugkarosserie
DE3504726C1 (de) Abschirmgehäuse für Hochfrequenz-Dünnschichtschaltungen
CH622198A5 (en) Cutting body for a cutting tool of a machine tool
DE3426781C2 (de)
WO2024022805A2 (de) Bipolarplatte, bipolarplattensystem, endplatte und brennstoffzelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG AE AG AL AM AT AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MN MX MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VC YU ZA ZM ZW GH GM KE LS MW MZ SL SZ TZ UG ZM ZW

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002772323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 653/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020047004765

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003534656

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028195833

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002772323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10491621

Country of ref document: US