WO2003031309A1 - Brake controller of elevator - Google Patents

Brake controller of elevator Download PDF

Info

Publication number
WO2003031309A1
WO2003031309A1 PCT/JP2001/008510 JP0108510W WO03031309A1 WO 2003031309 A1 WO2003031309 A1 WO 2003031309A1 JP 0108510 W JP0108510 W JP 0108510W WO 03031309 A1 WO03031309 A1 WO 03031309A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake coil
brake
armature
current
coil
Prior art date
Application number
PCT/JP2001/008510
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Kariya
Masanori Yasue
Seiji Watanabe
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CNB018196152A priority Critical patent/CN1229273C/en
Priority to KR10-2003-7007099A priority patent/KR100483661B1/en
Priority to DE60142530T priority patent/DE60142530D1/en
Priority to PCT/JP2001/008510 priority patent/WO2003031309A1/en
Priority to JP2003534301A priority patent/JP4830257B2/en
Priority to EP01972563A priority patent/EP1431226B1/en
Publication of WO2003031309A1 publication Critical patent/WO2003031309A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current

Definitions

  • the brake coil when a start signal for the elevator is issued, the brake coil is biased by closing the biasing circuit, and the armature is sucked against the spring force. The pressing force is released, the braking force is released, and the elevator can be started.
  • the stop signal for the elevator is issued, the energizing circuit is shut off, the armature is opened, and the spring brake is released.
  • the present invention relates to control of an elevator brake that generates a braking force by being pressed. Background art
  • FIG. 10 shows a schematic configuration of a general brake used in a rope type elevator.
  • the elevator car 1 is suspended in a hanging weight 4 by a main rope 3 wound around a sheave 2 of a hoist, and driven by a hoist motor 5.
  • a brake wheel 6 is mounted on a shaft 5a connecting the hoisting motor 5 and the sheave 2.
  • the brakes 9 are pressed against the outer peripheral surface of the brake car 6 by the springs 7 via the brake levers 8, and the braking force is generated by the frictional force.
  • the motor control circuit 10 When the car 1 starts, the motor control circuit 10 energizes the hoisting motor 5 and sends a start signal to the brake control device 11.
  • the brake control circuit 12 is operated, and the chopper circuit 15 is driven by the PWM signal generation circuit 14 of the brake drive circuit 13 to energize the brake coil 16 with a DC variable voltage.
  • the brake coil 16 When the brake coil 16 is energized, the armature 17 is piled on the spring 7 and the armature 17 is sucked, and the brake lever 9 releases the brake car 1 from pressing the brake car 6 to release the braking. Is done.
  • the brake switch 18 closes and it is detected that the release of the braking force is completed.
  • the motor control circuit 10 deactivates the hoisting motor 5 and deactivates the brake coil 16 via the brake control circuit 12 and the brake control circuit 13.
  • the armature 17 is released by being urged, and the brake shoe 19 is pressed against the brake wheel 6 by the spring 7 to generate a braking force.
  • a voltage E indicated by a broken line is output from the brake control device 11. That is, when the suction voltage Ef for suctioning the armature 17 is applied at time t40, the brake coil current Ib gradually increases.
  • the brake coil current Ib temporarily starts to decrease. This is because the electromotive force (hereinafter referred to as the speed electromotive force) is generated by the change rate of the inductance L, that is, the moving speed of the armature 17, in addition to the change in the inductance L by the air gap g.
  • the speed electromotive force is generated by the change rate of the inductance L, that is, the moving speed of the armature 17, in addition to the change in the inductance L by the air gap g.
  • the brake control device 11 holds the applied voltage E of the armature 17 at the suction state. To the required holding voltage Eh. With this decrease, the brake current Ib decreases to the holding current Ih.
  • the applied voltage E becomes zero. Due to the interruption of the energizing circuit, the brake coil current Ib decreases while circulating through the diode 20 connected in parallel with the brake coil 16. With this decrease, the suction of the armature 17 is released, and the brake 7 is pressed by the spring 7 to generate a braking force.
  • the brake coil current Ib temporarily starts to increase. This is due to the release of armature 17 as described above. This is due to the decrease in the inductance L of the brake coil 16 due to the increase in the gap and the speed electromotive force.
  • the brake coil current Ib gradually decreases under the inductance L in that state and becomes zero at time t45.
  • the moment when the braking force is released can be detected by detecting the decrease point of the brake current Ib.
  • the moment when the braking force is generated can be detected by detecting the increasing point of the brake current Ib.
  • the conventional elevator brake is configured as described above.
  • the voltage applied to the brake coil 16 is 0 V
  • the brake coil current Ib is equal to the brake coil 1 It gradually decreases with the time constant determined by the resistance value and the inductance value of 6.
  • the attractive force of the brake coil 16 for attracting the armature 17 is proportional to the square of the brake coil current Ib, and is substantially inversely proportional to the gap between the armature 17 and the brake coil 16. Therefore, when the brake coil current Ib decreases and the suction force decreases, the brake spring 19 is pressed by the force of the spring 7 and collides with the brake vehicle 6. This collision generates noise.
  • Japanese Patent Publication No. 7-64493 Japanese Patent Application No. 63-1586861
  • the US Patent Publication USP 9974 based on this application
  • No. 73 the process of increasing the brake coil current by energizing the brake coil when the start command signal of the elevator was issued using the above characteristics of the elevator of the elevator
  • a start command is issued to the hoist motor to energize it.
  • a stop command signal for the elevator is issued, the brake coil is cut off and the brake is turned off.
  • a stop command is issued to the hoist motor so as to deactivate it, so that the transfer between the brake and the hoist motor 5 can be carried out smoothly.
  • Japanese Patent Publication No. 7-68016 states that at the start of the elevator, the brake coil current must be started immediately within a range that can maintain the unbalanced torque, and then gradually increased. The braking torque of the brake is reduced to drive the motor by the hoisting motor, and then a small current is applied to the brake coil to maintain the brake open state. A device that suppresses heat generation is disclosed.
  • Japanese Patent Application Laid-Open No. 7-24441 discloses that in a brake device that generates a braking force by gripping a rail, a position immediately before a movable piece collides with an electromagnet is required to reduce operating noise. There is disclosed a device that detects the position of the brake shoe just before the brake shoe grips the rail and controls the brake coil current so as to reduce the operation noise.
  • Japanese Patent Publication No. 7-8650 discloses that the current pattern for controlling the brake current is compared with the detected value of the brake current, and the brake current is controlled on and off based on the comparison result.
  • Japanese Patent Publication No. 7-8650 discloses that the current pattern for controlling the brake current is compared with the detected value of the brake current, and the brake current is controlled on and off based on the comparison result.
  • the resistance value of the brake coil fluctuates with temperature, The wear of the brake lining differs for each brake. Furthermore, even with the same model, the setting of the braking torque varies. For this reason, it is not easy to suppress the operation noise by uniformly controlling the current pattern.
  • Japanese Patent Application Laid-Open No. Hei 7-24452 discloses that the brake coil is gently pressed against the guide rail to reduce the operating noise and to maintain the brake coil current in order to shorten the operating time. It is disclosed that the current is reduced to about the current. However, there is a problem that if the brake coil current is reduced, the brake will malfunction due to voltage fluctuations.
  • the armature is sucked by energizing the brake coil, and by the suction, the pressing of the brake shoe on the brake vehicle is released and the braking force is generated in the brake of the elevator where the braking force is released.
  • the bias of the brake coil is reduced so that the attraction of the armature is released by the first brake coil control means, and the brake coil is released during the release of the attraction of the armature by the first brake coil control means.
  • the brake is applied with a current larger than the energization by the first brake coil control means as long as the armature is not re-sucked. This is configured to switch to the second brake coil control means for energizing the coil and energize the brake coil.
  • the pressing force of the spring is weakened, so that the collision noise between the brake shoe and the brake vehicle can be reduced.
  • the switching to the second brake coil control means is performed when the rate of decrease in the brake coil current slows down to a predetermined value or less or when the brake coil current starts increasing, so that the armature suction is released.
  • the bias of the brake coil will be increased.
  • the increased bias value is limited, even if the brake coil is biased by the second brake coil control means, the release of the armature suction is delayed. Is limited.
  • the bias value is increased by detecting that the armature has actually moved, even if the resistance value fluctuates due to a temperature change, it is possible to switch to the second brake coil control means in a timely manner.
  • the present invention provides the first brake coil control means such that the armature is released by gradually decreasing the brake coil current circulating through a branch circuit connected in parallel with the brake coil by shutting off the energizing circuit. It was done.
  • the present invention provides the brake coil control means, wherein the first brake coil control means is energized by a voltage gradually decreasing with time, and the armature suction is released with the decrease in the voltage. Is controlled. For this reason, switching from the first brake coil control means to the second brake coil control means can be performed smoothly.
  • the switching from the first brake coil control means to the second brake coil control means is performed when the rate of decrease of the brake coil current is zero or the brake coil current starts to increase.
  • the present invention provides the brake coil control means, wherein the brake coil current value is multiplied by a brake coil resistance value when the reduction rate of the brake coil current is zero, and the brake coil current value is multiplied by the brake coil current value. Is energized. For this reason, the brake coil can be energized with a current value close to the maximum value in a range where the armature is not re-sucked, and the operating noise of the armature can be reduced.
  • the present invention provides a brake coil resistance value, a brake coil voltage value and a brake coil current value when the brake coil current becomes a constant value in a state where the braking force is released by an activation signal of the elevator. Therefore, even if the resistance value fluctuates due to temperature changes, the resistance value after the fluctuation
  • the brake coil can be energized with a current value close to the maximum value of the allowable range below, and the effect of the invention can be achieved.
  • the present invention calculates the rate of change of the brake coil current, limits the rate of change so that the armature is not re-sucked, and energizes the brake coil with a voltage proportional to the obtained value. It was made.
  • the brake coil is energized based on the rate of change of the brake coil current, so that it is possible to respond sensitively to the operation of the armature.
  • the present invention provides a second brake coil control means comprising a circuit model of a brake coil, and a model current obtained by applying a voltage for energizing the brake coil to the circuit model is supplied to the brake coil.
  • the brake coil is energized with a voltage proportional to the rate of change of the result of subtraction from the current.
  • the brake coil is energized based on the armature's moving speed, that is, the increment value of the brake current due to the speed electromotive force, so that the armature's movement can be controlled smoothly. can do.
  • the present invention obtains the inductance L of the circuit model of the brake coil, and the time constant of the brake coil from the increment ⁇ I of the brake coil current when the voltage Ei is stepwise applied to the brake coil. This time constant is multiplied by the resistance value R of the brake coil.
  • a circuit model of the brake coil can be configured according to the state of each brake.
  • FIG. 1 is a block diagram showing a control circuit of a brake control device for an elevator according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram for explaining the operation.
  • FIG. 3 is a block diagram showing a control circuit of an elevator brake control device according to Embodiment 2 of the present invention
  • FIGS. 4 and 5 are diagrams for explaining the operation.
  • FIG. 6 is a block diagram showing a control circuit of a brake control device for an elevator according to Embodiment 3 of the present invention.
  • Fig. 8 is a flowchart showing the procedure for measuring the inductance of the brake coil. 9 is an explanatory diagram.
  • FIG. 10 is a block diagram showing a control circuit of a conventional brake control device for an elevator
  • FIG. 11 is a diagram for explaining its operation.
  • FIGS. 1 and 2 show a first embodiment of a brake control device for an elevator according to the present invention.
  • FIG. 1 is a block diagram showing a brake control circuit.
  • 1 is a car
  • 2 is a sheave of a hoisting machine
  • 3 is a main rope wound around this sheave 2
  • 4 is a suspended weight suspended in a vine-like manner with the car 1 by the main rope 3.
  • Reference numeral 5 denotes a hoisting motor that rotationally drives the sheave 2 via a shaft 5a
  • reference numeral 6 denotes a brake wheel directly connected to the shaft 5a.
  • Reference numeral 7 denotes a spring that constantly presses the brake shoe 9 via the brake lever 8 and presses against the outer peripheral surface of the brake wheel 6 to generate a braking force by frictional force. 10 controls the hoisting motor 5. It is a motor control circuit. 16 is a brake coil, 17 is an armature opposed to the brake coil 16 via an air gap g, and is sucked against the spring 7 by the bias of the brake coil 16. When the brake 19 is released from the brake car 6 to release the braking force, the braking force is released, and when the bias of the brake coil 16 is released, the spring 7 releases the suction.
  • Reference numeral 18 denotes a brake switch for detecting that the release of the braking force is completed by closing the armature 17 when the armature 17 is sucked, and 19 denotes a current detector for detecting the brake coil current Ib.
  • Reference numeral 30 denotes a brake control circuit that controls the energization and de-energization of the brake coil, and is configured as follows.
  • 3 1 is a mode controller that controls the energizing mode of the brake coil 16, If *, Ih *, and I0 * are the target values of the brake coil current Ib, If * is the attraction current, Ih * Is the holding current, and I 0 * is the zero value as the target value.
  • 3 2 is a switching switch for selecting the target value If *, Ih * and I0 * of the brake coil current Ib, 3 3 is the target value If *, Ih * and I0 * and the brake current I
  • a subtractor 34 for calculating a difference value from b is a current controller for controlling the brake current Ib to be the target values If *, Ih *, and I0 * based on the difference value.
  • 35 is a differentiating circuit for calculating the differential value of the brake current Ib, and 36 is a base for outputting the threshold value
  • Reference numeral 37 denotes a comparator that outputs a positive saturation voltage when the differential value is larger than a threshold value.
  • control voltage circuit 38 and 39 are control voltage circuits that output the voltage values V1 and V2 for energizing the brake coil 16 after a stop signal is issued from the motor control circuit 10, and V1 is a zero value.
  • V2 is a pulse-like voltage that rises by the stop signal and falls after a predetermined time has elapsed since the brake switch 18 was opened, and is set to a high constant voltage within a range where the armature 17 is not re-sucked.
  • the control voltage circuit 38 corresponds to first brake coil control means
  • the control voltage circuit 39 corresponds to second brake coil control means.
  • the switching switch is selectively connected to either the current controller 34 or the output terminal c 0 of the switching switch 40 and outputs the coil control signal E *.
  • 50 is a brake drive circuit for energizing the brake coil 16 and is configured as follows.
  • 51 is a DC power supply for energizing the brake coil 16
  • 52 is a chopper circuit for outputting a DC variable voltage, which constitutes an energizing circuit for the brake coil 16.
  • 5 3 is a branch circuit connected in parallel with the brake coil 16, which is composed of a diode here, and circulates the brake coil current Ib when the energization of the brake coil 16 is cut off by the chopper circuit 52.
  • 5 4 is a PWM signal generator which is connected to the switching switch 4 1 and generates a PWM signal corresponding to the coil control signal E *.
  • 5 is a base driver which controls ON / OFF of the chopper circuit 52 by the above PWM signal. is there.
  • the switching switch 32 selects the terminal a 3, and the switching switch 41 selects the terminal b 1. Therefore, the coil control signal E * becomes 0, and the brake coil 16 is deenergized.
  • the switching switch 41 When the start signal is issued from the motor control circuit 10, the switching switch 41 becomes the mode.
  • the target value If * is selected by being switched by the controller 31 and connected to the terminal a1.
  • the coil control signal E * corresponding to the target value If * is output, and the brake coil current Ib rises from time t11.
  • the suction force fc also increases gradually, and becomes equal to the force fs of the spring 7 at time t 1 2.
  • the brake coil current Ib once starts to decrease. This is due to the fact that the air gap g decreased as the armature 17 was sucked, the inductance L of the brake coil 16 increased, and the speed electromotive force.
  • the brake coil current Ib gradually increases under the inductance L in that state.
  • the switching switch 32 selects the target value Ih *. By this selection, the brake coil current Ib decreases to the holding current Ih necessary to hold the armature 17 in the suction state.
  • the switching switch 32 selects the target value I0 *, and the switching switch 41 is connected to the terminal b2.
  • the coil control signal E * 0.
  • the brake coil current Ib circulates through the diode 53 and gradually decreases at a predetermined time constant Tc, and the attraction force fc also decreases.
  • the force becomes equal to the force fs of the spring 7, and when the brake coil current Ib further decreases and falls below the force fs of the spring, the armature 17 starts to separate from the brake coil 16. As the armature 17 moves, a speed electromotive force is generated, and the rate of decrease in the brake coil current Ib slows down and gradually increases.
  • FIGS. 3 to 5 show a second embodiment of the elevator control apparatus according to the present invention.
  • 60 is a brake control circuit that controls the energization and de-energization of the brake coil, and is configured as follows.
  • 61 is a pattern signal generator, which outputs a ramp signal that decreases linearly.
  • 6 2 is a latch circuit that holds the output of the pattern signal generator 61 when the positive saturation voltage is output from the comparator 37, and 63 is a differential circuit that calculates the differential value of the brake coil current I b
  • the circuit, 6 4 is a proportional element of the gain K d
  • 6 5 is a limiter to keep the armature 17 within the range where it is not re-sucked
  • 6 6 is switched by the output of the comparator 3 7 to the limiter 6 5
  • the connected switch returns to the terminal c1 after a predetermined time has elapsed since the brake switch 18 was opened.
  • Reference numeral 67 denotes an adder for adding the output V of the latch circuit 62 and the output Vd of the limiter 65 to output a coil control signal E *
  • the pattern signal generator 61 corresponds to the first brake coil control means, and the pattern signal generator 61, the latch circuit 62, the differentiation circuit 63, the proportional element 64, and the limit This corresponds to the brake coil control means 2.
  • Mode 0, Mode 1, Mode 2 and Mode 5 are the same as Fig. 2 and the explanation is omitted. Abbreviate.
  • the switching switch 32 selects the target value I0 *, and the switching switch 41 is connected to the terminal b2 to output the ramp signal Vp of the pattern signal generator 61. Is output as the coil control signal E *.
  • the brake coil 16 is controlled by the ramp signal Vp, so that the brake coil current Ib gradually decreases and the suction force fc also decreases.
  • the force becomes equal to the force fs of the spring 7, and when the brake coil current Ib decreases below the force fs of the spring, the armature 17 starts to separate from the brake coil 16. With the movement of the armature 17, the air gap g increases and a speed electromotive force is generated, and the rate of decrease in the brake coil current Ib slows down, and then gradually increases.
  • the comparator 37 connects the switch 66 to the terminal c2, and the latch circuit 62 outputs the saturation signal from the comparator 37. Holds the output Vp of the pattern signal generator 61 when it is issued. Further, the differential value of the brake coil current Ib from the differentiating circuit 63 is limited by the limiter 65, and the value Vd is output. The outputs Vp and Vd are added to form a coil control signal E *. The coil control signal E * further increases the increased brake coil current Ib. However, since the armature 17 is not re-attracted, the increase in the brake coil current Ib slows down and starts to decrease. The output of the differentiating circuit 63 also fluctuates due to such fluctuation of the brake coil current Ib, and pulsates as shown in FIG.
  • Te 1 to Te 2 The comparator 37 operates by the slowdown or gradual increase of the decrease rate of the brake coil current Ib, and the switching switch 66 is connected to the limiter 65.
  • the output Vd of the limiter 65 also increases.
  • the output Vd is added to the output Vp to form a coil control signal E *.
  • Te—Te 3 The coil control signal E * becomes constant by the limiter 65. Since the brake coil current Ib increases, the detachment speed of the armature 17 decreases.
  • the armature 17 is separated from the brake coil 16 by repeating the same change.
  • the brake coil 16 when the armature 17 starts moving, the brake coil 16 is energized with a high voltage (Vp + Vd) within a range where the armature 17 is not re-sucked, and the spring 7 Since the suction force fc slightly smaller than the force fs is generated, noise when the armature 7 17 is released from suction can be reduced.
  • the brake coil 16 is energized with the differential value of the brake coil current Ib, so that the noise can be reduced by quickly responding to the fluctuation of the brake coil current Ib.
  • 6 to 9 show a third embodiment of the elevator control apparatus according to the present invention.
  • 7 1 is a model circuit that simulates the brake coil 16 with the resistance R of the brake coil 16 and the inductance L when the armature 17 is sucked.
  • the differential circuit 6 3 and the proportional element 6 4 The model current I hat is output from the output V p by 7 2 is a subtractor for calculating a difference value between the actual brake coil current I b and the model current I hat, and 7 3 is a reference voltage circuit for outputting a reference voltage E i. It is for measuring.
  • Reference numeral 74 denotes a switching switch that is selectively connected to any one of the current controller 34, the adder 67, and the reference voltage circuit 73 to output the coil control signal E *.
  • the pattern signal generator 61 corresponds to the first brake coil control means, and includes a pattern signal generator 61, a latch circuit 62, a differentiating circuit 63, a proportional element 64, and a model.
  • the circuit 71 corresponds to a second brake coil control means.
  • 80 is a CPU
  • 81 is a ROM in which a program for calculating the inductance L of the brake coil 16 is recorded
  • 82 is a RAM for storing temporary data
  • 83 is an input / output device.
  • Modes 1 to 3 and mode 5 are the same as in Fig. 4 and will not be described.
  • the comparator 37 connects the switching switch 66 to the terminal c2, and the connection state is maintained, and the latch circuit 62 is connected. Holds the output Vp of the pattern signal generator 61 at time 21. Further, a subtractor 72 calculates a difference value (Ib_Ihat) between the brake coil current Ib and the model current Ihat by the model circuit 71. This difference value (Ib-Ihat) is output as a value Vd via a differentiating circuit 63 and a proportional element 64. The output Vd is added to the output Vp by the adder 67 to form a coil control signal E *.
  • Te 21 to Te 22 The armature 17 starts to be displaced, and the difference value (Ib_Ihat) increases as the rate of decrease of the brake coil current Ib slows down or gradually increases.
  • the output Vd proportional to the differential value is added to the output Vp to become the coil control signal E *, so that the attractive force increases and the detachment speed of the armature 17 decreases.
  • Te 24-te 25 Same as (te 22-te 23), and the description is omitted.
  • step S11 confirm that the brake coil current Ib has become the holding current Ih.
  • step S12 connect the switching switch 74 to the reference voltage circuit 73. Apply the reference voltage Ei to the brake coil 16 in steps.
  • step S13 the time t, that is, the time T31 in FIG. 9 is recorded in the memory T1.
  • the brake coil current Ib gradually increases, and the increment ⁇ I is calculated in step S14.
  • step S15 the increment ⁇ I reaches the value calculated by the equation 0.632 X (Ii—Ih) with respect to the target value Ii of the brake coil current Ib with respect to the reference voltage Ei. Check if you have done it. If it has reached, the time t, that is, the time T32 in FIG.
  • step S17 the difference between the contents of the memory T2 and the memory T1, that is, the time constant Tc of the brake coil 16 is obtained.
  • step S 18 the inductance L can be obtained from the product of the time constant T c and the resistance R of the brake coil 16.
  • the resistance R may be a value measured in advance. However, in consideration of the temperature change, in the third embodiment, the coil control signal E when the brake coil current Ib is the holding current Ih is considered. * And will be determined from
  • the brake coil 16 is urged within a range in which the armature 17 is not re-sucked, so that the suction of the armature is released. Noise caused by the force of the spring 7 can be reduced.
  • the model circuit 71 simulates the brake coil 16 in a state where the armature 17 is attracted, the inductance L is also in the attracted state. Therefore, since the coil control signal E * can be calculated from the increment (Ib_Ihat) of the brake coil current Ib due to the moving speed of the armature 17, the vibration component of the coil control signal E * can be suppressed. The movement speed of the armature 17 can be smoothed.
  • the noise can be effectively reduced even if a temperature change occurs.
  • the brake control device for an elevator when the brake coil is energized, the armature is sucked against the spring force, and the suction causes the brake to be applied to the brake vehicle.
  • the pressing force is released to release the braking force, and when the bias of the brake coil is cut off, the suction of the armature is released, and the brake force is pressed by the spring force to generate a braking force. It can be widely used for a type of overnight brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Elevator Control (AREA)
  • Braking Arrangements (AREA)

Abstract

When an armature (17) is attracted while resisting against a spring (7) by energizing a brake coil (16) and a brake shoe (9) pressing a brake wheel (6) is released to generate brake force in the released brake of an elevator, energization of the brake coil (16) is reduced, at first, by a first brake coil control means (38) to release attraction of the armature (17). When the reduction rate of a brake coil current (Ib) slows down to a specified level or below or the brake coil current (Ib) begins to increase during the attraction releasing process of the armature (17) by the first brake coil control means (38), a switching is made to a second brake coil control means (39) and the brake coil (16) is energized within such a range as the armature (17) is not reattracted thus suppressing impact sound of the brake shoe (9) against the brake wheel (6) generated by the force of the spring (7).

Description

明細書 エレベータのブレーキ制御装置 技術分野  Description Elevator brake control device
この発明は、 エレべ一夕の起動信号が発せられると付勢回路の閉成によりブレー キコイルが付勢されてばね力に抗してァ一マチュアが吸引され、 この吸引によって ブレーキ車へのブレーキシュ一の押圧が解かれ、 制動力が解除されてエレベータの 起動を可能とし、 エレべ一夕の停止信号が発せられると付勢回路が遮断されてァー マチュアが開放され、 ばねによってブレーキシュ一が押圧されて制動力を発生させ るエレベータのブレーキの制御に関する。 背景技術  According to the present invention, when a start signal for the elevator is issued, the brake coil is biased by closing the biasing circuit, and the armature is sucked against the spring force. The pressing force is released, the braking force is released, and the elevator can be started. When the stop signal for the elevator is issued, the energizing circuit is shut off, the armature is opened, and the spring brake is released. The present invention relates to control of an elevator brake that generates a braking force by being pressed. Background art
図 1 0は、 ロープ式エレべ一夕に使用される一般的なブレーキの概略構成を示す 。 エレべ一夕のかご 1は、 巻上機のシーブ 2に巻き掛けられた主索 3によってつり 合重り 4とつるベ式に吊持され、 巻上電動機 5によって駆動される。 巻上電動機 5 とシーブ 2を結合する軸 5 aにはブレーキ車 6が取り付けられている。 かご 1が停 止している時は、 ばね 7によってブレーキレバー 8を介してブレーキシュ一 9がブ レーキ車 6の外周面に押圧され、 摩擦力によって制動力が発生している。  FIG. 10 shows a schematic configuration of a general brake used in a rope type elevator. The elevator car 1 is suspended in a hanging weight 4 by a main rope 3 wound around a sheave 2 of a hoist, and driven by a hoist motor 5. A brake wheel 6 is mounted on a shaft 5a connecting the hoisting motor 5 and the sheave 2. When the car 1 is stopped, the brakes 9 are pressed against the outer peripheral surface of the brake car 6 by the springs 7 via the brake levers 8, and the braking force is generated by the frictional force.
かご 1が起動する場合は、 電動機制御回路 1 0は巻上電動機 5を付勢すると共に 、 ブレーキ制御装置 1 1へ起動信号が発せられる。 ブレーキ制御回路 1 2を作動さ せ、 ブレーキ駆動回路 1 3の PWM信号発生回路 1 4によってチヨッパ回路 1 5を 駆動して直流可変電圧でブレーキコイル 1 6を付勢する。 ブレーキコイル 1 6が付 勢されるとばね 7に杭してァ一マチュア 1 7が吸引され、 ブレーキレバ一 8を介し てブレーキシュ一 9によるブレーキ車 6への押圧が解かれて制動が解除される。 ァ —マチュア 1 7が吸引されるとブレーキスィッチ 1 8が閉成して制動力の解除が完 了したことを検出する。  When the car 1 starts, the motor control circuit 10 energizes the hoisting motor 5 and sends a start signal to the brake control device 11. The brake control circuit 12 is operated, and the chopper circuit 15 is driven by the PWM signal generation circuit 14 of the brake drive circuit 13 to energize the brake coil 16 with a DC variable voltage. When the brake coil 16 is energized, the armature 17 is piled on the spring 7 and the armature 17 is sucked, and the brake lever 9 releases the brake car 1 from pressing the brake car 6 to release the braking. Is done. When the armature 17 is sucked, the brake switch 18 closes and it is detected that the release of the braking force is completed.
停止信号が発せられると電動機制御回路 1 0は巻上電動機 5を消勢すると共に、 ブレーキ制御回路 1 2及びブレーキ制御回路 1 3を介してブレーキコイル 1 6を消 勢させてァーマチュア 1 7の吸引を解き、 ばね 7によってブレーキシュ一 9をブレ ーキ車 6に押圧して制動力を発生させる。 When a stop signal is issued, the motor control circuit 10 deactivates the hoisting motor 5 and deactivates the brake coil 16 via the brake control circuit 12 and the brake control circuit 13. The armature 17 is released by being urged, and the brake shoe 19 is pressed against the brake wheel 6 by the spring 7 to generate a braking force.
即ち、 図 1 0のブレーキ制御回路で、 チヨッパ回路 1 5によってブレーキコイル In other words, in the brake control circuit of FIG.
1 6の付勢が遮断されると、 ダイォード 2 0を介して循環電流がブレーキコイル 1 6に流れる。 この循環電流は、 ブレーキコイル 1 6の抵抗値 Rとリアクタンス値 L によって決まる時定数 T cに応じて減少し、 ブレーキコイル電流の減少によって吸 引力も減少する。 吸引力がばね 7の力よりも小さくなると、 ァーマチュア 1 7はブ レーキコイル 1 6から離れ、 ブレーキシュ一 9はばね 7によってブレーキ車 6に押 圧されて制動力を発生させる。 When the energization of 16 is cut off, a circulating current flows through the brake coil 16 via the diode 20. This circulating current decreases in accordance with the time constant Tc determined by the resistance value R and the reactance value L of the brake coil 16, and the suction force decreases with the decrease in the brake coil current. When the suction force becomes smaller than the force of the spring 7, the armature 17 separates from the brake coil 16 and the brake shoe 19 is pressed by the brake wheel 6 by the spring 7 to generate a braking force.
次に、 図 1 1に従って動作の概要を述べると、 ブレーキ制御装置 1 1から破線で 示した電圧 Eが出力される。 即ち、 時刻 t 4 0でァーマチュア 1 7を吸引するため の吸引電圧 E fが印加されると、 ブレーキコイル電流 I bは漸増する。  Next, an outline of the operation according to FIG. 11 will be described. A voltage E indicated by a broken line is output from the brake control device 11. That is, when the suction voltage Ef for suctioning the armature 17 is applied at time t40, the brake coil current Ib gradually increases.
ァーマチュア 1 7が吸引される過程でブレーキコイル電流 I bは一旦減少に転ず る。 インダク夕ンス Lがエアギャップ gによって変化することに加え、 インダク夕 ンス Lの変化率、 即ち、 ァーマチュア 1 7の移動速度によって起電力 (以下、 速度 起電力という。)が発生するためである。時刻 t 4 1でァーマチュア 1 7が吸引され 終ると、 その状態におけるインダク夕ンス Lの下でブレーキコイル電流 I bは渐増 する。  While the armature 17 is being sucked, the brake coil current Ib temporarily starts to decrease. This is because the electromotive force (hereinafter referred to as the speed electromotive force) is generated by the change rate of the inductance L, that is, the moving speed of the armature 17, in addition to the change in the inductance L by the air gap g. When the armature 17 is completely sucked at the time t41, the brake coil current Ib increases under the inductance L in that state.
ァ一マチュア 1 7が吸引されてブレーキスィッチ 1 8が閉成してから所定時間後 の時刻 t 4 2でブレーキ制御装置 1 1はァ一マチュア 1 7の印加電圧 Eを、 吸引状 態を保持するのに必要な保持電圧 E hにまで低下させる。 この低下に伴ってブレー キ電流 I bは保持電流 I hまで減少する。  At time t42, a predetermined time after the armature 17 is sucked and the brake switch 18 is closed, the brake control device 11 holds the applied voltage E of the armature 17 at the suction state. To the required holding voltage Eh. With this decrease, the brake current Ib decreases to the holding current Ih.
時刻 t 4 3でエレべ一夕の停止信号が発せられると印加電圧 Eは零値となる。 こ の付勢回路の遮断により、 ブレーキコイル電流 I bはブレーキコイル 1 6と並列に 接続されたダイオード 2 0を介して循環しながら減少する。 この減少に伴ってァ一 マチュア 1 7の吸引が解かれ、 ばね 7によってブレーキシュ一 9が押圧されて制動 力を発生する。  At time t43, when the stop signal of the elevator is issued, the applied voltage E becomes zero. Due to the interruption of the energizing circuit, the brake coil current Ib decreases while circulating through the diode 20 connected in parallel with the brake coil 16. With this decrease, the suction of the armature 17 is released, and the brake 7 is pressed by the spring 7 to generate a braking force.
ブレーキコイル 1 6が消勢される過程で、 ブレーキコイル電流 I bは一旦増加に 転ずる。 これは、 上記のとおりァーマチュア 1 7の吸引が解かれるのに伴ってエア ギャップが増大してブレーキコイル 1 6のインダク夕ンス Lが減少したことと、 速 度起電力によるものである。 時刻 t 4 4でァーマチュア 1 7が開放され終ると、 そ の状態におけるインダク夕ンス Lの下でブレーキコイル電流 I bは漸減して時刻 t 4 5で零値となる。 In the process of deenergizing the brake coil 16, the brake coil current Ib temporarily starts to increase. This is due to the release of armature 17 as described above. This is due to the decrease in the inductance L of the brake coil 16 due to the increase in the gap and the speed electromotive force. When the armature 17 is released at time t44, the brake coil current Ib gradually decreases under the inductance L in that state and becomes zero at time t45.
従って、 電流検出器 1 9でブレーキコイル電流 I bを検出し、 制動力を解除する ときは、 ブレーキ電流 I bの減少点を検出すれば制動力の解除された瞬間を検出で きる。 また、 制動力を発生させるときは、 ブレーキ電流 I bの増加点を検出すれば 制動力の発生した瞬間を検出することができる。  Therefore, when the brake coil current Ib is detected by the current detector 19 and the braking force is released, the moment when the braking force is released can be detected by detecting the decrease point of the brake current Ib. When the braking force is generated, the moment when the braking force is generated can be detected by detecting the increasing point of the brake current Ib.
従来のエレべ一夕のブレーキは、 上記のとおり構成されており、 かご 1を停止さ せる際にブレーキコイル 1 6に印加される電圧は 0 Vとなり、 ブレーキコイル電流 I bは、 ブレーキコイル 1 6の抵抗値とインダク夕ンス値から決まる時定数で漸減 する。 ァーマチュア 1 7を吸引するブレーキコイル 1 6の吸引力は、 ブレーキコィ ル電流 I bの 2乗に比例し、 ァ一マチュア 1 7とブレーキコイル 1 6間の空隙に略 反比例する。 従って、 ブレーキコイル電流 I bが減少して吸引力が低下すると、 ば ね 7の力によってブレーキシュ一 9が押圧されてブレーキ車 6に衝突する。 この衝 突によって騒音が発生する。  The conventional elevator brake is configured as described above. When the car 1 is stopped, the voltage applied to the brake coil 16 is 0 V, and the brake coil current Ib is equal to the brake coil 1 It gradually decreases with the time constant determined by the resistance value and the inductance value of 6. The attractive force of the brake coil 16 for attracting the armature 17 is proportional to the square of the brake coil current Ib, and is substantially inversely proportional to the gap between the armature 17 and the brake coil 16. Therefore, when the brake coil current Ib decreases and the suction force decreases, the brake spring 19 is pressed by the force of the spring 7 and collides with the brake vehicle 6. This collision generates noise.
ところで、 昨今のエレべ一夕の巻上機は小型化され、 ブレーキ自体の小形化を余 儀なくされ、 ブレーキシュ一 9等も小さくしなければならない。 このような外形上 の要件を満たした上で必要な制動力を得るためには、 ブレーキシュ一 9を押圧する ばね 7の力を大きくしなければならない。 このため、 上記衝突による騒音を増大さ せる、 という問題が生じた。  By the way, recent hoisting machines for elevators have been downsized, the brakes themselves have to be downsized, and the brakes must also be made smaller. In order to obtain the required braking force while satisfying such external requirements, the force of the spring 7 pressing the brake shoe 9 must be increased. For this reason, there has been a problem that noise due to the collision is increased.
特に、 巻上機自体が昇降路内に設置されるエレべ一夕では、 ブレーキの動作音が かご 1内へ伝播されて乗り心地を害する、 という問題があつた。  In particular, in the elevator where the hoist itself is installed in the hoistway, there was a problem that the noise of the brake operation was transmitted into the car 1 and impaired riding comfort.
かかる問題に対して、 日本特公平 7— 6 4 4 9 3号 (日本特願昭 6 3— 1 5 8 6 8 1号) 公報、 及びこの出願を基礎とするアメリカ特許公報 U S P 4 9 7 4 7 0 3 号には、 エレべ一夕のブレーキの上記特性を利用して、 エレべ一夕の起動指令信号 が発せられた場合は、 ブレーキコイルが付勢されてブレーキコイル電流が増加する 過程において減少を検出した後に巻上電動機に起動指令を出して付勢し、 また、 ェ レベータの停止指令信号が発せられた場合は、 ブレーキコイルの付勢が断たれてブ レーキコイル電流が減少する過程において増加を検出した後に巻上電動機に停止指 令を出して消勢すようにして、 ブレーキと巻上電動機 5との間の受継ぎを円滑に行 い、 乗り心地の向上を図るようにしたものが開示されている。 In response to such a problem, Japanese Patent Publication No. 7-64493 (Japanese Patent Application No. 63-1586861) and the US Patent Publication USP 9974 based on this application According to No. 73, the process of increasing the brake coil current by energizing the brake coil when the start command signal of the elevator was issued using the above characteristics of the elevator of the elevator After detecting a decrease in the motor, a start command is issued to the hoist motor to energize it.If a stop command signal for the elevator is issued, the brake coil is cut off and the brake is turned off. After detecting an increase in the process of decreasing the rake coil current, a stop command is issued to the hoist motor so as to deactivate it, so that the transfer between the brake and the hoist motor 5 can be carried out smoothly, An arrangement for improvement is disclosed.
し力、し、 上記特許公報において、 ブレーキコイルの付勢及び消勢時におけるブレ ーキコイル電流の変化を検出するのは、 乗り心地の向上が目的であって、 ブレーキ の動作音を低減させる点については全く言及されておらず、 従って、 上記問題点の 解決に供し得ないものである。  In the above-mentioned patent publication, detecting the change in the brake coil current when the brake coil is energized and de-energized is for the purpose of improving riding comfort and reducing the noise of the brake operation. Is not mentioned at all, and therefore cannot be used to solve the above problems.
また、 日本特公平 7— 6 8 0 1 6号公報には、 エレべ一夕の起動時に、 まず、 不平衡トルクを保持できる範囲でブレーキコイル電流を早急に立ち上げた後、 徐々 に増加させてブレーキの制動トルクを小さくしておいて、 巻上電動機で駆動させ、 以後ブレーキの開放状態を保持できる程度の小電流をブレーキコイルに流すように して、 乗り心地の向上と、 ブレーキコイルの発熱を抑えるようにしたものが開示さ れている。  In addition, Japanese Patent Publication No. 7-68016 states that at the start of the elevator, the brake coil current must be started immediately within a range that can maintain the unbalanced torque, and then gradually increased. The braking torque of the brake is reduced to drive the motor by the hoisting motor, and then a small current is applied to the brake coil to maintain the brake open state. A device that suppresses heat generation is disclosed.
このものについても同様に、 ブレーキの動作音を低減させる点については全く言 及されておらず、 従って、 上記問題点の解決に供し得ないものである。  Similarly, no mention is made of reducing the brake operation sound, and therefore it cannot be used to solve the above-mentioned problems.
更に、 日本特開平 7— 2 4 4 1号公報には、 レールを把持して制動力を発生させ るブレーキ装置において、 動作音を減少させるため、 可動片が電磁石に衝突する寸 前の位置を検出し、 また、 ブレーキシュ一がレールを把持する寸前の位置を検出し て、 それぞれ動作音が減少するようにブレーキコィル電流を制御するようにしたも のが開示されている。  Furthermore, Japanese Patent Application Laid-Open No. 7-24441 discloses that in a brake device that generates a braking force by gripping a rail, a position immediately before a movable piece collides with an electromagnet is required to reduce operating noise. There is disclosed a device that detects the position of the brake shoe just before the brake shoe grips the rail and controls the brake coil current so as to reduce the operation noise.
このものは、 ブレーキの動作音の低減に係るものではあるが、 可動片の位置及び ブレーキシュ一の位置を検出することは容易ではなく、 仮に位置検出が可能であつ たとしても、 上記位置はブレーキライニングの消耗及びブレーキ調整等により変動 し易い、 という問題がある。  Although this relates to the reduction of the brake operation sound, it is not easy to detect the position of the movable piece and the position of the brake shoe, and even if the position can be detected, There is a problem that it tends to fluctuate due to brake lining wear and brake adjustment.
更にまた、 日本特公平 7— 8 0 6 5 0号公報には、 ブレーキ電流を制御する電流 パターンとブレーキ電流の検出値とを比較し、 その比較結果に基いてブレーキ電流 をオン一オフ制御することにより、 ブレーキ開閉に伴う動作音を抑えるようにした ものが開示されている。  Furthermore, Japanese Patent Publication No. 7-8650 discloses that the current pattern for controlling the brake current is compared with the detected value of the brake current, and the brake current is controlled on and off based on the comparison result. Thus, there has been disclosed a device in which an operation sound caused by opening and closing a brake is suppressed.
しかしながら、 ブレーキはブレーキコイルの抵抗値が温度によって変動したり、 ブレーキライニングの消耗が各ブレーキ毎に異なる。 更に、 同機種であっても制動 トルクの設定は区々である。 このため、 電流パターンにって一律に制御することで 、 動作音を抑えることは容易ではない。 However, in the brake, the resistance value of the brake coil fluctuates with temperature, The wear of the brake lining differs for each brake. Furthermore, even with the same model, the setting of the braking torque varies. For this reason, it is not easy to suppress the operation noise by uniformly controlling the current pattern.
更にまた、 日本特開平 7— 2 4 5 2号公報には、 ブレーキシュ一をガイドレール に緩やかに押圧させて動作音を小さくし、 しかも、 動作時間を短縮するために、 ブ レーキコイル電流を保持電流程度に減少するようにしたことが開示されたいる。 しかしながら、 ブレーキコイル電流を減少させると電圧変動によってブレーキが 誤作動する、 という問題がある。  Furthermore, Japanese Patent Application Laid-Open No. Hei 7-24452 discloses that the brake coil is gently pressed against the guide rail to reduce the operating noise and to maintain the brake coil current in order to shorten the operating time. It is disclosed that the current is reduced to about the current. However, there is a problem that if the brake coil current is reduced, the brake will malfunction due to voltage fluctuations.
この発明は、 上記従来のエレべ一夕のブレーキの問題点を解決して動作音の軽減 されたエレべ一夕のブレーキを提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problem of the conventional elevator brake and to provide an elevator brake with reduced operating noise. Disclosure of the invention
この発明は、 ブレーキコイルが付勢されてァーマチュアが吸引され、 この吸引に よりブレーキ車へのブレーキシュ一の押圧が解かれて制動力が解除されたエレべ一 夕のブレーキに制動力を発生させる場合に、 まず第 1のブレーキコイル制御手段に よってァ一マチュアの吸引が解かれるようにブレーキコイルの付勢を減少させ、 こ の第 1のブレーキコイル制御手段によるァーマチュアの吸引解除過程でブレーキコ ィル電流の減少率が所定値以下に鈍化し又はブレーキコイル電流が増加に転じたと きは、 ァーマチュアが再吸引されない範囲内で上記第 1のブレーキコイル制御手段 による付勢よりも大きい電流でブレーキコイルを付勢する第 2のブレーキコイル制 御手段に切替えてブレーキコイルを付勢するようにしたものである。  According to the present invention, the armature is sucked by energizing the brake coil, and by the suction, the pressing of the brake shoe on the brake vehicle is released and the braking force is generated in the brake of the elevator where the braking force is released. In this case, first, the bias of the brake coil is reduced so that the attraction of the armature is released by the first brake coil control means, and the brake coil is released during the release of the attraction of the armature by the first brake coil control means. When the rate of decrease in the coil current slows down to a predetermined value or less or the brake coil current starts increasing, the brake is applied with a current larger than the energization by the first brake coil control means as long as the armature is not re-sucked. This is configured to switch to the second brake coil control means for energizing the coil and energize the brake coil.
これにより、 ァーマチュアの吸引解除過程でブレーキコイルによるァーマチュア の吸引力を再度増加させることで、 ばねによる押圧力が弱まるのでブレーキシュ一 とブレーキ車との衝突音を軽減させることができる。 また、 第 2のブレーキコイル 制御手段への切替えは、 ブレーキコイル電流の減少率が所定値以下に鈍化し又はブ レーキコイル電流が増加に転じたときに行われるので、 ァーマチュアの吸引が解除 され、 ァ一マチュアが動き始めた直後にブレーキコイルの付勢が増大されることに なる。 しかも、 増大される付勢値も制限されるので、 第 2のブレーキコイル制御手 段によってブレーキコイルが付勢されたとしても、 ァ一マチュアの吸引解除の遅滞 は限定されたものとなる。 また、 現実にァーマチュアが移動したことを検出して付 勢値を増大させるようにしたので、 温度変化によって抵抗値が変動しても、 適時に 第 2のブレーキコィル制御手段に切り替えることができる。 Thus, by increasing the armature suction force by the brake coil again during the armature suction release process, the pressing force of the spring is weakened, so that the collision noise between the brake shoe and the brake vehicle can be reduced. The switching to the second brake coil control means is performed when the rate of decrease in the brake coil current slows down to a predetermined value or less or when the brake coil current starts increasing, so that the armature suction is released. Immediately after one amateur starts to move, the bias of the brake coil will be increased. In addition, since the increased bias value is limited, even if the brake coil is biased by the second brake coil control means, the release of the armature suction is delayed. Is limited. Further, since the bias value is increased by detecting that the armature has actually moved, even if the resistance value fluctuates due to a temperature change, it is possible to switch to the second brake coil control means in a timely manner.
また、 この発明は、 第 1のブレーキコイル制御手段を、 付勢回路の遮断によりブ レーキコイルと並列に接続された分岐回路を介して循環するブレーキコイル電流の 漸減によってァーマチュアの吸引が解かれるようにしたものである。  Further, the present invention provides the first brake coil control means such that the armature is released by gradually decreasing the brake coil current circulating through a branch circuit connected in parallel with the brake coil by shutting off the energizing circuit. It was done.
上記分岐回路を循環するブレーキコイル電流は短時間で減衰するため、 ァーマチ ユアの吸引解除の遅滞は限定されたものとなり、 エレべ一夕の稼動率を向上させる ことができる。  Since the brake coil current circulating in the branch circuit is attenuated in a short time, the delay in releasing the suction of the armature is limited, and the operating rate of the elevator can be improved.
更に、 この発明は、 第 1のブレーキコイル制御手段を、 時間経過と共に漸減する 電圧によってブレーキコイルを付勢し、 上記電圧の減少に伴ってァ一マチュアの吸 引が解かれるように上記ブレーキコイルを制御するようにしたものである。 このた め、 第 1のブレーキコィル制御手段から第 2のブレーキコィル制御手段への切替え を円滑に行うことができる。  Further, the present invention provides the brake coil control means, wherein the first brake coil control means is energized by a voltage gradually decreasing with time, and the armature suction is released with the decrease in the voltage. Is controlled. For this reason, switching from the first brake coil control means to the second brake coil control means can be performed smoothly.
更にまた、 この発明は、 第 1のブレーキコイル制御手段から第 2のブレーキコィ ル制御手段への切替えは、 ブレーキコイル電流の減少率が零値又は上記ブレーキコ ィル電流が増加に転じたときに行うようにしたので、 ブレーキシュ一をブレーキ車 に押圧するばね力が変動しても、 また、 ブレーキコイルの抵抗値が温度で変化して も、 適時に切り替えることができる。  Still further, according to the present invention, the switching from the first brake coil control means to the second brake coil control means is performed when the rate of decrease of the brake coil current is zero or the brake coil current starts to increase. Thus, even if the spring force that presses the brake shoe against the brake vehicle changes, or if the resistance value of the brake coil changes with temperature, it can be switched in a timely manner.
更にまた、 この発明は、 第 2のブレーキコイル制御手段を、 ブレーキコイル電流 の減少率が零値のときの上記ブレーキコィル電流値とブレーキコィル抵抗値とを乗 じて得られた電圧値で上記ブレーキコイルを付勢するようにしたものである。 このため、 ァ一マチュアを再吸引しない範囲の最大値に近い電流値でブレーキコ ィルを付勢することができ、 ァ一マチュアの動作音を低減できる。  Still further, the present invention provides the brake coil control means, wherein the brake coil current value is multiplied by a brake coil resistance value when the reduction rate of the brake coil current is zero, and the brake coil current value is multiplied by the brake coil current value. Is energized. For this reason, the brake coil can be energized with a current value close to the maximum value in a range where the armature is not re-sucked, and the operating noise of the armature can be reduced.
更にまた、 この発明は、 ブレーキコイル抵抗値を、 エレべ一夕の起動信号により 制動力が解除された状態で、 ブレーキコイル電流が一定値となったときのブレーキ コィルの電圧値と上記ブレーキコィル電流値の比から求めるようにしたものである このため、 温度変化によって抵抗値が変動したとしても、 その変動後の抵抗値の 下で許容範囲の最大値に近い電流値でブレーキコイルを付勢することができ、 上記 発明の実効を図ることができる。 Still further, the present invention provides a brake coil resistance value, a brake coil voltage value and a brake coil current value when the brake coil current becomes a constant value in a state where the braking force is released by an activation signal of the elevator. Therefore, even if the resistance value fluctuates due to temperature changes, the resistance value after the fluctuation The brake coil can be energized with a current value close to the maximum value of the allowable range below, and the effect of the invention can be achieved.
更にまた、 この発明は, ブレーキコイル電流の変化率を演算し、 この変化率をァ 一マチュアが再吸引されないように制限し、 得られた値に比例した電圧で上記ブレ ーキコイルを付勢するようにしたものである。  Furthermore, the present invention calculates the rate of change of the brake coil current, limits the rate of change so that the armature is not re-sucked, and energizes the brake coil with a voltage proportional to the obtained value. It was made.
このため、 ブレーキコイル電流の変化率に基いてブレーキコイルを付勢するよう にしたので、 ァ一マチュアの作動に対して敏感に対応させることができる。  For this reason, the brake coil is energized based on the rate of change of the brake coil current, so that it is possible to respond sensitively to the operation of the armature.
更にまた、 この発明は、 第 2のブレーキコイル制御手段を、 ブレーキコイルの回 路モデルを具備し、 この回路モデルに上記ブレーキコイルを付勢する電圧を印加し て得られたモデル電流をブレーキコイル電流から減算して、 この減算結果の変化率 に比例した電圧で上記ブレーキコィルを付勢するようにしたものである。  Furthermore, the present invention provides a second brake coil control means comprising a circuit model of a brake coil, and a model current obtained by applying a voltage for energizing the brake coil to the circuit model is supplied to the brake coil. The brake coil is energized with a voltage proportional to the rate of change of the result of subtraction from the current.
このため、 回路モデルのインダク夕ンスは一定値であるからァーマチュアの移動 速度、 即ち、 速度起電力によるブレーキ電流の増分値に基いてブレーキコイルが付 勢されるので、 ァーマチュアの移動を円滑に制御することができる。  Because the inductance of the circuit model is constant, the brake coil is energized based on the armature's moving speed, that is, the increment value of the brake current due to the speed electromotive force, so that the armature's movement can be controlled smoothly. can do.
更にまた、 この発明は、 ブレーキコイルの回路モデルのインダク夕ンス Lを、 上 記ブレーキコイルに電圧 E iをステップ状に加重したときのブレーキコイル電流の 増分 Δ Iからブレーキコイルの時定数を求め、 この時定数にブレーキコイルの抵抗 値 Rを乗じて得るようにしたものである。  Furthermore, the present invention obtains the inductance L of the circuit model of the brake coil, and the time constant of the brake coil from the increment ΔI of the brake coil current when the voltage Ei is stepwise applied to the brake coil. This time constant is multiplied by the resistance value R of the brake coil.
このため、 各ブレーキごとの状態に合わせてブレーキコイルの回路モデルを構成 することができる。 図面の簡単な説明  For this reason, a circuit model of the brake coil can be configured according to the state of each brake. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の実施の形態 1におけるエレべ一夕のブレーキ制御装置の制御回 路を示すプロック図であり、 図 2は同じく動作説明用図である。  FIG. 1 is a block diagram showing a control circuit of a brake control device for an elevator according to Embodiment 1 of the present invention, and FIG. 2 is a diagram for explaining the operation.
図 3はこの発明の実施の形態 2におけるエレベータのブレーキ制御装置の制御回 路を示すプロック図であり、 図 4及び図 5は同じく動作説明用図である。  FIG. 3 is a block diagram showing a control circuit of an elevator brake control device according to Embodiment 2 of the present invention, and FIGS. 4 and 5 are diagrams for explaining the operation.
図 6はこの発明の実施の形態 3におけるエレべ一夕のブレーキ制御装置の制御回 路を示すブロック図であり、 図 7同じく動作説明用図である。  FIG. 6 is a block diagram showing a control circuit of a brake control device for an elevator according to Embodiment 3 of the present invention.
図 8はブレーキコイルのィンダク夕ンスを計測する手順を示す流れ図であり, 図 9は説明用図である。 Fig. 8 is a flowchart showing the procedure for measuring the inductance of the brake coil. 9 is an explanatory diagram.
図 1 0は従来のエレべ一夕のブレーキ制御装置の制御回路を示すブロック図であ り、 図 1 1はその動作説明用図である。 発明を実施するための最良の形態  FIG. 10 is a block diagram showing a control circuit of a conventional brake control device for an elevator, and FIG. 11 is a diagram for explaining its operation. BEST MODE FOR CARRYING OUT THE INVENTION
この発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 図 1及び図 2は、 この発明に係るエレべ一夕のブレーキ制御装置の実施の形態 1 を示す。 図 1はブレーキの制御回路を示すブロック図である。 図において、 1はか ご、 2は巻上機のシーブ、 3はこのシーブ 2に巻き掛けられた主索、 4はこの主索 3によってかご 1とつるベ式に吊持されたつり合重り、 5は軸 5 aを介してシーブ 2を回動駆動する巻上電動機、 6は軸 5 aに直結されたブレーキ車である。  The present invention will be described in more detail with reference to the accompanying drawings. FIGS. 1 and 2 show a first embodiment of a brake control device for an elevator according to the present invention. FIG. 1 is a block diagram showing a brake control circuit. In the figure, 1 is a car, 2 is a sheave of a hoisting machine, 3 is a main rope wound around this sheave 2, and 4 is a suspended weight suspended in a vine-like manner with the car 1 by the main rope 3. Reference numeral 5 denotes a hoisting motor that rotationally drives the sheave 2 via a shaft 5a, and reference numeral 6 denotes a brake wheel directly connected to the shaft 5a.
7は常時ブレーキレバー 8を介してブレーキシュ一 9を押圧してブレーキ車 6の 外周面に圧接させ、 摩擦力によって制動力を発生させているばね、 1 0は巻上電動 機 5を制御する電動機制御回路である。 1 6はブレーキコイル、 1 7はブレーキコ ィル 1 6とエアギャップ gを隔てて対向し、 ブレーキコイル 1 6の付勢によってば ね 7に抗して吸引されるァ一マチュアで、 この吸引によりブレーキ車 6へのブレー キシュ一 9の押圧が解かれて制動力が解除され、 ブレーキコイル 1 6の付勢が断た れるとばね 7によって吸引が解かれるようになつている。 1 8はァ一マチュア 1 7 が吸引されると閉成して制動力の解除が完了したことを検出するブレーキスィッチ 、 1 9はブレーキコイル電流 I bを検出する電流検出器である。  Reference numeral 7 denotes a spring that constantly presses the brake shoe 9 via the brake lever 8 and presses against the outer peripheral surface of the brake wheel 6 to generate a braking force by frictional force. 10 controls the hoisting motor 5. It is a motor control circuit. 16 is a brake coil, 17 is an armature opposed to the brake coil 16 via an air gap g, and is sucked against the spring 7 by the bias of the brake coil 16. When the brake 19 is released from the brake car 6 to release the braking force, the braking force is released, and when the bias of the brake coil 16 is released, the spring 7 releases the suction. Reference numeral 18 denotes a brake switch for detecting that the release of the braking force is completed by closing the armature 17 when the armature 17 is sucked, and 19 denotes a current detector for detecting the brake coil current Ib.
3 0はブレーキコイルの付勢及び消勢を制御するブレーキ制御回路で、 下記のと おり構成されている。 3 1はブレーキコイル 1 6の付勢モードを制御するモード制 御器、 I f *、 I h *及び I 0 *はブレーキコイル電流 I bの目標値で、 I f *は 吸引電流、 I h *は保持電流、 I 0 *は零値をそれぞれ目標値とする。 3 2はブレ —キコイル電流 I bの目標値 I f *、 I h *及び I 0 *を択一する切替えスィッチ 、 3 3は目標値 I f *、 I h *及び I 0 *とブレーキ電流 I bとの差値を算出する 減算器、 3 4は上記差値に基いてブレーキ電流 I bが目標値 I f *、 I h *及び I 0 *になるように制御する電流制御器である。  Reference numeral 30 denotes a brake control circuit that controls the energization and de-energization of the brake coil, and is configured as follows. 3 1 is a mode controller that controls the energizing mode of the brake coil 16, If *, Ih *, and I0 * are the target values of the brake coil current Ib, If * is the attraction current, Ih * Is the holding current, and I 0 * is the zero value as the target value. 3 2 is a switching switch for selecting the target value If *, Ih * and I0 * of the brake coil current Ib, 3 3 is the target value If *, Ih * and I0 * and the brake current I A subtractor 34 for calculating a difference value from b is a current controller for controlling the brake current Ib to be the target values If *, Ih *, and I0 * based on the difference value.
3 5はブレーキ電流 I bの微分値を算出する微分回路、 3 6は閾値を出力する基 準電圧回路で、 通常は零値に設定される。 3 7は上記微分値が閾値よりも大きいと きに正の飽和電圧を出力する比較器である。 35 is a differentiating circuit for calculating the differential value of the brake current Ib, and 36 is a base for outputting the threshold value A quasi-voltage circuit, usually set to zero value. Reference numeral 37 denotes a comparator that outputs a positive saturation voltage when the differential value is larger than a threshold value.
3 8及び 3 9は電動機制御回路 1 0から停止信号が発つせられた後にブレーキコ ィル 1 6を付勢する電圧値 V 1及び V 2を出力する制御電圧回路で、 V 1は零値に 設定され、 V 2は停止信号によって立ち上がってブレーキスィッチ 1 8が開放され てから所定時間経過後に立ち下がるパルス状の電圧であって、 ァーマチュア 1 7が 再吸引されない範囲内で高い一定電圧に設定される。 ここで、 制御電圧回路 3 8は 第 1のブレーキコイル制御手段に相当し、 制御電圧回路 3 9は第 2のブレーキコィ ル制御手段に相当する。  38 and 39 are control voltage circuits that output the voltage values V1 and V2 for energizing the brake coil 16 after a stop signal is issued from the motor control circuit 10, and V1 is a zero value. V2 is a pulse-like voltage that rises by the stop signal and falls after a predetermined time has elapsed since the brake switch 18 was opened, and is set to a high constant voltage within a range where the armature 17 is not re-sucked. You. Here, the control voltage circuit 38 corresponds to first brake coil control means, and the control voltage circuit 39 corresponds to second brake coil control means.
4 0は常時制御電圧回路 3 8に接続され、 比較器 3 7からの正の飽和電圧出力に よって切り替えられて制御電圧回路 3 9に接続される切替えスィッチ、 4 1はモー ド制御器 3 4によって切り替えられて電流制御器 3 4又は切替えスィッチ 4 0の出 力端子 c 0のいずれかに択一して接続されてコイル制御信号 E *を出力する切替え スィッチである。  40 is always connected to the control voltage circuit 38, is switched by the positive saturation voltage output from the comparator 37 and is connected to the control voltage circuit 39, and 41 is a mode controller 3 4 The switching switch is selectively connected to either the current controller 34 or the output terminal c 0 of the switching switch 40 and outputs the coil control signal E *.
5 0はブレーキコイル 1 6を付勢するブレーキ駆動回路で、 下記のとおり構成さ れている。 5 1はブレーキコイル 1 6を付勢する直流電源、 5 2は直流の可変電圧 を出力するチヨッパ回路で、 ブレーキコイル 1 6の付勢回路を構成する。 5 3はブ レーキコイル 1 6と並列に接続された分岐回路で、 ここではダイオードで構成され 、 チヨッパ回路 5 2によってブレーキコイル 1 6の付勢が遮断されるとブレーキコ ィル電流 I bを循環させる。 5 4は切替えスィツチ 4 1に接続されてコイル制御信 号 E *に対応した PWM信号を発生する PWM信号発生器、 5 5は上記 PWM信号 によってチヨッパ回路 5 2をオン、 オフ制御するベースドライバである。  50 is a brake drive circuit for energizing the brake coil 16 and is configured as follows. 51 is a DC power supply for energizing the brake coil 16, and 52 is a chopper circuit for outputting a DC variable voltage, which constitutes an energizing circuit for the brake coil 16. 5 3 is a branch circuit connected in parallel with the brake coil 16, which is composed of a diode here, and circulates the brake coil current Ib when the energization of the brake coil 16 is cut off by the chopper circuit 52. . 5 4 is a PWM signal generator which is connected to the switching switch 4 1 and generates a PWM signal corresponding to the coil control signal E *. 5 is a base driver which controls ON / OFF of the chopper circuit 52 by the above PWM signal. is there.
次に、 図 2に従って動作を説明する。  Next, the operation will be described with reference to FIG.
1 . モード 0 ( a 3, b l, c 1 )  1. Mode 0 (a3, bl, c1)
かご 1が停止している間は、 切替えスィッチ 3 2は端子 a 3が、 また、 切替えス イッチ 4 1は端子 b 1がそれぞれ選択される。 このため、 コイル制御信号 E * = 0 となり、 ブレーキコイル 1 6は消勢される。  While the car 1 is stopped, the switching switch 32 selects the terminal a 3, and the switching switch 41 selects the terminal b 1. Therefore, the coil control signal E * becomes 0, and the brake coil 16 is deenergized.
2 . モード 1 ( a l, b 1 , c 1 )  2. Mode 1 (al, b1, c1)
電動機制御回路 1 0から起動信号が発せられると、 切替えスィッチ 4 1はモード 制御器 3 1によって切り替えられて端子 a 1に接続されて目標値 I f *が選択され る。 この目標値 I f *に相当したコイル制御信号 E *が出力されてブレーキコイル 電流 I bは時刻 t 1 1から立ち上がる。 吸引力 f cも応じて漸増し、 時刻 t 1 2で ばね 7の力 f sに等しくなる。 更に付勢されてァ一マチュア 1 7が吸引されるとブ レーキコイル電流 I bは一旦減少に転ずる。 ァーマチュア 1 7が吸引されるのに伴 つてエアギャップ gが減少してブレーキコイル 1 6のィンダク夕ンス Lが増大した ことと、 速度起電力によるものである。 ァ一マチュア 1 7が吸引され終ると、 その 状態におけるィンダク夕ンス Lの下でブレーキコィル電流 I bは漸増する。 When the start signal is issued from the motor control circuit 10, the switching switch 41 becomes the mode. The target value If * is selected by being switched by the controller 31 and connected to the terminal a1. The coil control signal E * corresponding to the target value If * is output, and the brake coil current Ib rises from time t11. The suction force fc also increases gradually, and becomes equal to the force fs of the spring 7 at time t 1 2. When the armature 17 is further energized and sucked, the brake coil current Ib once starts to decrease. This is due to the fact that the air gap g decreased as the armature 17 was sucked, the inductance L of the brake coil 16 increased, and the speed electromotive force. When the armature 17 has been sucked, the brake coil current Ib gradually increases under the inductance L in that state.
時刻 t 1 3で、 ブレーキコイル電流 I bが吸弓 I電流 I f に達するとコイル制御信 号 E *は減少してブレーキコイル電流 I bは吸引電流 I f に保たれる。  At time t13, when the brake coil current Ib reaches the bowing I current If, the coil control signal E * decreases and the brake coil current Ib is maintained at the attracting current If.
3 . モード 2 ( a 2 , b 1 , c 1 )  3.Mode 2 (a 2, b 1, c 1)
ァーマチュア 1 7が吸引されてブレーキスィッチ 1 8が閉成してから所定時間経 過した時刻 t 1 4で、 切替えスィッチ 3 2は目標値 I h *を選択する。 この選択に よりブレーキコイル電流 I bはァ一マチュア 1 7を吸引状態で保持するに必要な保 持電流 I hにまで低下する。  At time t14, which is a predetermined time after the armature 17 is sucked and the brake switch 18 is closed, the switching switch 32 selects the target value Ih *. By this selection, the brake coil current Ib decreases to the holding current Ih necessary to hold the armature 17 in the suction state.
4. モード 3 ( a 3 , b 2 , c 1 )  4. Mode 3 (a 3, b 2, c 1)
時刻 t 1 5で電動機制御回路 1 0から停止信号が発せられると、 切替えスィッチ 3 2は目標値 I 0 *を選択し、 切替えスィッチ 4 1は端子 b 2に接続される。 この とき切替えスィッチ 4 0は端子 c 1に接続されているので、 コイル制御信号 E * = 0となる。 ブレーキコイル電流 I bはダイオード 5 3を介して循環して所定の時定 数 T cで漸減し、 吸引力 f cも減少する。 時刻 t 1 6でばね 7の力 f sに等しくな り、 更にブレーキコイル電流 I bが減少してばねの力 f sを下回るとァーマチュア 1 7がブレーキコイル 1 6から離れ始める。 ァ一マチュア 1 7の移動に伴って速度 起電力が発生し、 ブレーキコイル電流 I bの減少率は鈍化し、 やかで漸増に転じる  When a stop signal is issued from the motor control circuit 10 at time t15, the switching switch 32 selects the target value I0 *, and the switching switch 41 is connected to the terminal b2. At this time, since the switching switch 40 is connected to the terminal c1, the coil control signal E * = 0. The brake coil current Ib circulates through the diode 53 and gradually decreases at a predetermined time constant Tc, and the attraction force fc also decreases. At time t16, the force becomes equal to the force fs of the spring 7, and when the brake coil current Ib further decreases and falls below the force fs of the spring, the armature 17 starts to separate from the brake coil 16. As the armature 17 moves, a speed electromotive force is generated, and the rate of decrease in the brake coil current Ib slows down and gradually increases.
5 . モ一ド 4 ( a 3 , b 2 , c 2 ) 5 Mode 4 (a 3, b 2, c 2)
ブレーキコイル電流 I bの減少率が零値又は増加に転じると、 時刻 t 1 7で比較 器 3 7は切替えスィッチ 4 0を端子 c 2に接続し、 電圧回路 3 9から電圧値 V 2が コイル制御信号 E *として出力される。 ブレーキコイル 1 6は再び付勢されてコィ ル電流 I bは漸増する。 このコイル電流 I bの漸増により吸引力 f cは略一定して 推移する。 この吸引力 f cの下でァ一マチュア 1 7は移動を続け、 時刻 t 1 8で解 放される。 切替えスィッチ 4 0は、 ブレーキスィッチ 1 8が開放されてから所定時 間経過後の時刻 t 1 9でリセッ卜されて端子 c 1に接続されて零値を出力する。 6 . モ一ド 5 ( a 3 , b 1 , c 1 ) When the decrease rate of the brake coil current Ib turns to zero or increases, at time t17, the comparator 37 connects the switching switch 40 to the terminal c2, and the voltage value V2 from the voltage circuit 39 becomes the coil. Output as control signal E *. The brake coil 16 is re-energized and The current Ib gradually increases. With the gradual increase of the coil current Ib, the attractive force fc changes substantially constant. Under this suction force fc, the armature 17 continues to move and is released at time t18. The switching switch 40 is reset at a time t19 after a predetermined time has elapsed since the brake switch 18 was released, and is connected to the terminal c1 to output a zero value. 6 Mode 5 (a 3, b 1, c 1)
時刻 t 1 9でモード 0の設定となり、 コイル電流 I bは漸減して零値となる。 上記実施の形態 1によれば、 ァーマチュア 1 7が移動し始めると、 再吸引されな い範囲内で高い電圧 V 2でブレーキコイル 1 6を付勢し、 ばね 7の力よりも若千小 さい吸引力 f cを発生させたので、 ァ一マチュアの吸引を解除させるときのばね 7 の力による騒音を軽減させることができる。 図 3から図 5は、 この発明に係るエレべ一夕のブレーキ制御装置の実施の形態 2 を示す。  At time t19, mode 0 is set, and the coil current Ib gradually decreases to zero. According to the first embodiment, when the armature 17 starts to move, the brake coil 16 is urged at a high voltage V2 within a range where it is not re-sucked, and is slightly less than the force of the spring 7. Since the suction force fc is generated, noise caused by the force of the spring 7 when the suction of the armature is released can be reduced. FIGS. 3 to 5 show a second embodiment of the elevator control apparatus according to the present invention.
図 3において、 図 1と同符合は同一部分を示し、 説明を省略する。  3, the same symbols as those in FIG. 1 indicate the same parts, and the description will be omitted.
6 0はブレーキコイルの付勢及び消勢を制御するブレーキ制御回路で、 下記のと おり構成されている。 6 1はパターン信号発生器で、 ここでは直線状に減少するラ ンプ信号を出力する。 6 2は比較器 3 7から正の飽和電圧が出力された時点のパ夕 ーン信号発生器 6 1の出力を保持するラッチ回路、 6 3はブレーキコイル電流 I b の微分値を算出する微分回路、 6 4はゲイン K dの比例要素、 6 5はァ一マチュア 1 7が再吸引されない範囲内に抑えるためのリミッタ、 6 6は比較器 3 7の出力に よって切り替えられてリミッタ 6 5へ接続される切替えスィッチで、 ブレーキスィ ツチ 1 8が開放されてから所定時間経過後に端子 c 1側へ復帰する。 6 7はラッチ 回路 6 2の出力 V と、 リミッタ 6 5の出力 V dを加算してコイル制御信号 E *を 出力する加算器である。  60 is a brake control circuit that controls the energization and de-energization of the brake coil, and is configured as follows. 61 is a pattern signal generator, which outputs a ramp signal that decreases linearly. 6 2 is a latch circuit that holds the output of the pattern signal generator 61 when the positive saturation voltage is output from the comparator 37, and 63 is a differential circuit that calculates the differential value of the brake coil current I b The circuit, 6 4 is a proportional element of the gain K d, 6 5 is a limiter to keep the armature 17 within the range where it is not re-sucked, 6 6 is switched by the output of the comparator 3 7 to the limiter 6 5 The connected switch returns to the terminal c1 after a predetermined time has elapsed since the brake switch 18 was opened. Reference numeral 67 denotes an adder for adding the output V of the latch circuit 62 and the output Vd of the limiter 65 to output a coil control signal E *.
ここで、 パターン信号発生器 6 1は第 1のブレーキコイル制御手段に相当し、 パ ターン信号発生器 6 1、 ラッチ回路 6 2、 微分回路 6 3、 比例要素 6 4及びリミツ 夕 6 5は第 2のブレーキコイル制御手段に相当する。  Here, the pattern signal generator 61 corresponds to the first brake coil control means, and the pattern signal generator 61, the latch circuit 62, the differentiation circuit 63, the proportional element 64, and the limit This corresponds to the brake coil control means 2.
次に、 図 4従って動作を説明する。  Next, the operation will be described with reference to FIG.
1 . モード 0、 モード 1、 モード 2及びモード 5は、 図 2と同様であり、 説明を省 略する。 1. Mode 0, Mode 1, Mode 2 and Mode 5 are the same as Fig. 2 and the explanation is omitted. Abbreviate.
2. モード 3 (a 3, b 2, c 1)  2. Mode 3 (a 3, b 2, c 1)
時刻 t 15で電動機制御回路 10から停止信号が発せられると、 切替えスィッチ 32は目標値 I 0 *を選択し、 切替えスィツチ 41は端子 b 2に接続されてパター ン信号発生器 61のランプ信号 Vpをコイル制御信号 E*として出力する。 ブレー キコイル 16はランプ信号 Vpによって制御されてブレーキコイル電流 I bは漸減 し、 吸引力 f cも減少する。 時刻 t 16でばね 7の力 f sに等しくなり、 更にブレ ーキコイル電流 I bが減少してばねの力 f sを下回るとァ一マチュア 17がブレー キコイル 16から離れ始める。 ァーマチュア 17の移動に伴ってエアギャップ gが 増大して速度起電力が発生し、 ブレーキコイル電流 I bの減少率は鈍化し、 やがて 漸増に転じる。  When a stop signal is issued from the motor control circuit 10 at time t15, the switching switch 32 selects the target value I0 *, and the switching switch 41 is connected to the terminal b2 to output the ramp signal Vp of the pattern signal generator 61. Is output as the coil control signal E *. The brake coil 16 is controlled by the ramp signal Vp, so that the brake coil current Ib gradually decreases and the suction force fc also decreases. At time t16, the force becomes equal to the force fs of the spring 7, and when the brake coil current Ib decreases below the force fs of the spring, the armature 17 starts to separate from the brake coil 16. With the movement of the armature 17, the air gap g increases and a speed electromotive force is generated, and the rate of decrease in the brake coil current Ib slows down, and then gradually increases.
3. モード 4 (a 3, b 2, c 2)  3. Mode 4 (a 3, b 2, c 2)
ブレーキコイル電流 I bの減少率が零値又は増加に転じると、 時刻 t 17で比較 器 37は切替えスィッチ 66を端子 c 2に接続すると共に、 ラッチ回路 62は、 比 較器 37から飽和信号が発せられた時のパターン信号発生器 61の出力 Vpを保持 する。 また、 微分回路 63からのブレーキコイル電流 I bの微分値がリミッタ 65 で制限されて値 V dが出力される。 出力 Vpと Vdは加算されてコィル制御信号 E *となる。 コイル制御信号 E*は増加に転じたブレーキコイル電流 I bを更に増大 させる。 しかし、 ァーマチュア 17を再吸引するものではないから、 ブレーキコィ ル電流 I bの増加は鈍化し減少に転ずる。 ブレーキコイル電流 I bのこのような変 動によって微分回路 63の出力も変動し、 図 4に示したとおり脈動する。  When the decrease rate of the brake coil current Ib turns to zero or increases, at time t17, the comparator 37 connects the switch 66 to the terminal c2, and the latch circuit 62 outputs the saturation signal from the comparator 37. Holds the output Vp of the pattern signal generator 61 when it is issued. Further, the differential value of the brake coil current Ib from the differentiating circuit 63 is limited by the limiter 65, and the value Vd is output. The outputs Vp and Vd are added to form a coil control signal E *. The coil control signal E * further increases the increased brake coil current Ib. However, since the armature 17 is not re-attracted, the increase in the brake coil current Ib slows down and starts to decrease. The output of the differentiating circuit 63 also fluctuates due to such fluctuation of the brake coil current Ib, and pulsates as shown in FIG.
図 5に従って、 モード 4における動作を詳述する。  The operation in mode 4 will be described in detail with reference to FIG.
( 1 ) て 1— て 2 :ブレーキコイル電流 I bの減少率の鈍化又は漸増により比較器 37が作動して切替えスィッチ 66がリミッタ 65へ接続される。 ァーマチュア 1 7が変位し始めてブレーキコイル電流 I bが増加するとリミッタ 65の出力 Vdも 増大する。 出力 Vdは出力 Vpと合算されてコイル制御信号 E*となる。  (1) Te 1 to Te 2: The comparator 37 operates by the slowdown or gradual increase of the decrease rate of the brake coil current Ib, and the switching switch 66 is connected to the limiter 65. When the armature 17 starts to be displaced and the brake coil current Ib increases, the output Vd of the limiter 65 also increases. The output Vd is added to the output Vp to form a coil control signal E *.
(2) て 2— て 3 : リミッタ 65によりコイル制御信号 E *は一定値となる。 ブレ ーキコイル電流 I bは増加するのでァーマチュア 17の離脱速度は遅くなる。 (2) Te—Te 3: The coil control signal E * becomes constant by the limiter 65. Since the brake coil current Ib increases, the detachment speed of the armature 17 decreases.
(3) て 3— て 4:コイル制御信号 E*はリミッタ 65によって制限されるため、 ブレーキコイル電流 I bの増加は止まり、 その微分値は零値となる。 ブレーキコィ ル電流 I bが減少すると微分値は負値となる。 このため、 E * <V pとなって吸引 力は減少してァーマチュア 1 7の離脱速度が速くなる。 (3) Te 3—Te 4: Since the coil control signal E * is limited by the limiter 65, The brake coil current Ib stops increasing, and its differential value becomes zero. When the brake coil current Ib decreases, the differential value becomes negative. For this reason, E * <Vp, the suction force decreases, and the detachment speed of the armature 17 increases.
( 4 ) て 4—て 5 て 1—て 2と同様である。  (4) Same as 4—5 and 1—1—2.
( 5 ) て 5一 て 6 て 2— て 3と同様である。  (5) Same as 5 1 6 1 2 3
( 6 ) て 6— て 7 て 3— て 4と同様である。  (6) Same as 6—7—3—3—4.
以下、 同様の変動を繰り返してァーマチュア 1 7はブレーキコイル 1 6から離脱す る。 Hereinafter, the armature 17 is separated from the brake coil 16 by repeating the same change.
上記実施の形態 2によれば、 ァーマチュア 1 7が移動し始めると、 ァーマチュア 1 7が再吸引されない範囲内で高い電圧 (V p + V d ) でブレーキコイル 1 6を付 勢し、 ばね 7の力 f sよりも若干小さい吸引力 f cを発生させたので、 ァーマチュ 7 1 7の吸引が解除されるときの騒音を軽減させることができる。  According to the second embodiment, when the armature 17 starts moving, the brake coil 16 is energized with a high voltage (Vp + Vd) within a range where the armature 17 is not re-sucked, and the spring 7 Since the suction force fc slightly smaller than the force fs is generated, noise when the armature 7 17 is released from suction can be reduced.
特に、 この実施の形態 2では、 ブレーキコイル電流 I bの微分値でブレーキコィ ル 1 6を付勢したので、 ブレーキコイル電流 I bの変動に迅速に対応して騒音を軽 減させることができる。 図 6から図 9は、 この発明に係るエレべ一夕のブレーキ制御装置の実施の形態 3 を示す。  In particular, in the second embodiment, the brake coil 16 is energized with the differential value of the brake coil current Ib, so that the noise can be reduced by quickly responding to the fluctuation of the brake coil current Ib. 6 to 9 show a third embodiment of the elevator control apparatus according to the present invention.
図 6において、 図 1又は図 3と同符合は同一部分を示し、 説明を省略する。 7 1はブレーキコイル 1 6の抵抗 Rと、 ァ一マチュア 1 7が吸引されたときのィ ンダク夕ンス Lでブレーキコイル 1 6を模擬したモデル回路で、 微分回路 6 3と比 例要素 6 4による出力 V pからモデル電流 I h a tを出力する。 7 2は実際のブレ ーキコイル電流 I bとモデル電流 I h a tとの差値を求める減算器、 7 3は基準電 圧 E iを出力する基準電圧回路であって、 ブレーキコイル 1 6のインダクタンス L を測定するためのものである。 7 4は電流制御器 3 4、 加算器 6 7及び基準電圧回 路 7 3のいずれかに択一して接続されてコイル制御信号 E *を出力する切替えスィ ツチである。  6, the same reference numerals as those in FIG. 1 or FIG. 3 indicate the same parts, and the description will be omitted. 7 1 is a model circuit that simulates the brake coil 16 with the resistance R of the brake coil 16 and the inductance L when the armature 17 is sucked.The differential circuit 6 3 and the proportional element 6 4 The model current I hat is output from the output V p by 7 2 is a subtractor for calculating a difference value between the actual brake coil current I b and the model current I hat, and 7 3 is a reference voltage circuit for outputting a reference voltage E i. It is for measuring. Reference numeral 74 denotes a switching switch that is selectively connected to any one of the current controller 34, the adder 67, and the reference voltage circuit 73 to output the coil control signal E *.
ここで、 パターン信号発生器 6 1は第 1のブレーキコイル制御手段に相当し、 パターン信号発生器 6 1、 ラッチ回路 6 2、 微分回路 6 3、 比例要素 6 4及びモデ ル回路 71は第 2のブレーキコイル制御手段に相当する。 Here, the pattern signal generator 61 corresponds to the first brake coil control means, and includes a pattern signal generator 61, a latch circuit 62, a differentiating circuit 63, a proportional element 64, and a model. The circuit 71 corresponds to a second brake coil control means.
80は CPU、 81はブレーキコイル 16のインダク夕ンス Lを算出するための プログラムが記録された ROM、 82は一時的なデータが格納される RAM、 83 は入出力装置である。  80 is a CPU, 81 is a ROM in which a program for calculating the inductance L of the brake coil 16 is recorded, 82 is a RAM for storing temporary data, and 83 is an input / output device.
次に、 図 7従って動作を説明する。  Next, the operation will be described with reference to FIG.
1. モード 1からモード 3まで、 及びモード 5は図 4と同様であり、 説明を省略す る。  1. Modes 1 to 3 and mode 5 are the same as in Fig. 4 and will not be described.
2. モード 4 (a 3, b 2, c 2)  2. Mode 4 (a 3, b 2, c 2)
ブレーキコイル電流 I bの減少率が零値又は増加に転じると、 時刻て 21で比較 器 37は切替えスィッチ 66を端子 c 2に接続し、 この接続状態が保持されると共 に、 ラッチ回路 62は時刻て 21におけるパターン信号発生器 61の出力 Vpを保 持する。 また、 減算器 72でブレーキコイル電流 I bとモデル回路 71によるモデ ル電流 I h a tの差値 ( I b _ I h a t ) が演算される。 この差値 ( I b— I h a t) は微分回路 63及び比例要素 64を介して値 Vdとして出力される。 出力 Vd は加算器 67によって出力 Vpと加算されてコイル制御信号 E*となる。  When the rate of decrease of the brake coil current Ib turns to zero or increases, at time 21 the comparator 37 connects the switching switch 66 to the terminal c2, and the connection state is maintained, and the latch circuit 62 is connected. Holds the output Vp of the pattern signal generator 61 at time 21. Further, a subtractor 72 calculates a difference value (Ib_Ihat) between the brake coil current Ib and the model current Ihat by the model circuit 71. This difference value (Ib-Ihat) is output as a value Vd via a differentiating circuit 63 and a proportional element 64. The output Vd is added to the output Vp by the adder 67 to form a coil control signal E *.
図 7に従って、 モード 4における動作を詳述する。  The operation in mode 4 will be described in detail with reference to FIG.
(1) て 21— て 22 : ァ一マチュア 17が変位し始めてブレーキコイル電流 I b の減少率の鈍化又は漸増により差値 (I b_ I ha t) も増加する。 その微分値に 比例した出力 Vdが出力 Vpに加算されてコイル制御信号 E*となるため、 吸引力 が増大し、 ァ一マチュア 17の離脱速度は低下する。  (1) Te 21 to Te 22: The armature 17 starts to be displaced, and the difference value (Ib_Ihat) increases as the rate of decrease of the brake coil current Ib slows down or gradually increases. The output Vd proportional to the differential value is added to the output Vp to become the coil control signal E *, so that the attractive force increases and the detachment speed of the armature 17 decreases.
(2) て 22— て 23 :ァーマチュア 17の離脱速度が低下するとブレーキコイル 16に誘起される速度起電力が低下するためブレーキコイル電流 I bは減少し、 モ デル電流 I h a tとの差値 ( I b _ I h a t ) も減少する。 このため、 コイル制御 信号 E*が減少して吸引力も低下しァーマチュア 17の離脱速度は増加する。  (2) te 22 te 23: When the separation speed of the armature 17 decreases, the speed electromotive force induced in the brake coil 16 decreases, so that the brake coil current Ib decreases and the difference value from the model current Ihat ( I b _ I hat) also decreases. For this reason, the coil control signal E * decreases, the suction force decreases, and the armature 17 detachment speed increases.
(3) て 23_て 24:ァーマチュア 17の離脱速度は増加すると、 再び差値 (I b- I ha t) が増加し、 コイル制御信号 E*が増加する。 これにより吸引力が増 大し、 ァーマチュア 17の離脱速度は低下する。  (3) te 23_te 24: When the detachment speed of the armature 17 increases, the difference value (Ib-Ihat) increases again, and the coil control signal E * increases. As a result, the suction force increases, and the detachment speed of the armature 17 decreases.
(4) て 24—て 25 : (て 22— て 23) と同様であり、 説明を省略する。  (4) Te 24-te 25: Same as (te 22-te 23), and the description is omitted.
以下、 上記動作が繰り返されてァーマチュア 17の吸引が解除される。 次に、 図 8及び図 9に基いてブレーキコイル 1 6のインダク夕ンス Lの計測につ いて述べる。 Thereafter, the above operation is repeated, and the suction of the armature 17 is released. Next, the measurement of the inductance L of the brake coil 16 will be described with reference to FIGS.
手順 S 1 1で、 ブレーキコイル電流 I bが保持電流 I hになったことを確認して 手順 S 1 2で切替えスィッチ 7 4を基準電圧回路 7 3に接続する。 ブレーキコイル 1 6に基準電圧 E iをステップ状に印加する。 手順 S 1 3で、 その時刻 t、 即ち、 図 9の時刻 T 3 1をメモリ T 1に記録する。 ブレーキコイル電流 I bは漸増し、 そ の増分 Δ Iを手順 S 1 4で演算する。 手順 S 1 5で増分 Δ Iが基準電圧 E iに対す るブレーキコイル電流 I bの目標値 I iに対して式 0 . 6 3 2 X ( I i— I h ) で 演算された値に達したか否か調べる。 達した場合は、 手順 S 1 6で、 その時刻 t、 即ち、 図 9の時刻 T 3 2をメモリ T 2に記録する。 手順 S 1 7でメモリ T 2とメモ リ T 1の内容の差、 即ち、 ブレーキコイル 1 6の時定数 T cを求める。 手順 S 1 8 で、 この時定数 T cとブレーキコイル 1 6の抵抗 Rとの積からインダク夕ンス Lを 求めることができる。  In step S11, confirm that the brake coil current Ib has become the holding current Ih. In step S12, connect the switching switch 74 to the reference voltage circuit 73. Apply the reference voltage Ei to the brake coil 16 in steps. In step S13, the time t, that is, the time T31 in FIG. 9 is recorded in the memory T1. The brake coil current Ib gradually increases, and the increment ΔI is calculated in step S14. In step S15, the increment ΔI reaches the value calculated by the equation 0.632 X (Ii—Ih) with respect to the target value Ii of the brake coil current Ib with respect to the reference voltage Ei. Check if you have done it. If it has reached, the time t, that is, the time T32 in FIG. 9 is recorded in the memory T2 in step S16. In step S17, the difference between the contents of the memory T2 and the memory T1, that is, the time constant Tc of the brake coil 16 is obtained. In step S 18, the inductance L can be obtained from the product of the time constant T c and the resistance R of the brake coil 16.
なお、 抵抗 Rは、 予め計測された値を用いてもよいが、 温度変化を考慮して、 こ の実施の形態 3ではブレーキコイル電流 I bが保持電流 I hのときのコイル制御信 号 E *とから求めることとする。  The resistance R may be a value measured in advance. However, in consideration of the temperature change, in the third embodiment, the coil control signal E when the brake coil current Ib is the holding current Ih is considered. * And will be determined from
以上述べたとおり、 上記実施の形態 3によっても、 ァーマチュア 1 7が移動し始 めると、 再吸引されない範囲内でブレーキコイル 1 6を付勢するようにしたので、 ァ一マチュアの吸引を解除させるときのばね 7の力による騒音を軽減させることが できる。  As described above, according to the third embodiment as well, when the armature 17 starts to move, the brake coil 16 is urged within a range in which the armature 17 is not re-sucked, so that the suction of the armature is released. Noise caused by the force of the spring 7 can be reduced.
特に、 モデル回路 7 1はァーマチュア 1 7が吸引された状態でのブレーキコイル 1 6を模擬したものであるから、 インダク夕ンス Lも吸引状態のものである。 従つ て、 ァーマチュア 1 7の移動速度によるブレーキコイル電流 I bの増分 (I b _ I h a t ) からコイル制御信号 E *を算出することができるので、 コイル制御信号 E *の振動成分を抑えることができ、 ァ一マチュア 1 7の移動速度を円滑化させるこ とができる。  In particular, since the model circuit 71 simulates the brake coil 16 in a state where the armature 17 is attracted, the inductance L is also in the attracted state. Therefore, since the coil control signal E * can be calculated from the increment (Ib_Ihat) of the brake coil current Ib due to the moving speed of the armature 17, the vibration component of the coil control signal E * can be suppressed. The movement speed of the armature 17 can be smoothed.
また、 上記実施の形態 3では、 モデル回路 7 1の抵抗 R及びインダク夕ンス Lは 実測値を採用したので、 温度変化が生じても騒音軽減の実効を図ることができる。 産業上の利用可能性 Further, in the third embodiment, since the resistance R and the inductance L of the model circuit 71 adopt the actually measured values, the noise can be effectively reduced even if a temperature change occurs. Industrial applicability
以上述べたとおり、 この発明に係るエレべ一夕のブレーキ制御装置は、 ブレーキ コイルが付勢されるとばね力に抗してァ一マチュアが吸引され、 この吸引によりブ レーキ車へのブレーキシュ一の押圧が解かれて制動力が解除され、 ブレーキコイル の付勢が断たれるとァ一マチュアの吸引が解かれ、 ばね力によってブレーキシュ一 が押圧されて制動力を発生させる、 いわゆるドラムタイプのエレべ一夕のブレーキ に広く用いることができる。 特に、 ブレーキ自体の小形化に伴って、 必要な制動力 を得るためにばね力を大きくしてブレーキシュ一を強圧するブレーキに適している また、 巻上機自体が昇降路内に設置されるエレべ一夕で、 ブレーキの動作音がか ご内へ伝播される蓋然性の高いエレべ一夕にも適している。  As described above, according to the brake control device for an elevator according to the present invention, when the brake coil is energized, the armature is sucked against the spring force, and the suction causes the brake to be applied to the brake vehicle. When the pressing force is released to release the braking force, and when the bias of the brake coil is cut off, the suction of the armature is released, and the brake force is pressed by the spring force to generate a braking force. It can be widely used for a type of overnight brake. Particularly suitable for brakes that increase the spring force to obtain the required braking force as the size of the brake itself is reduced and that the brake shoe is strongly pressed.The hoisting machine itself is installed in the hoistway It is also suitable for high-elevation nights where the sound of brake operation is transmitted to the car.
更に、 共同住宅等、 特に騒音が問題となる環境に設置されるエレべ一夕にも適し ている。  Furthermore, it is also suitable for overnight installations in apartments and other environments where noise is a problem.

Claims

請求の範囲 The scope of the claims
1 . 付勢回路の閉成によりブレーキコイルが付勢されるとばね力に抗してァ一マチ ユアが吸引され、 この吸引によりブレーキ車へのブレーキシュ一の押圧が解かれて 制動力が解除され、 上記付勢回路が断たれると上記ァーマチュアの吸引が解かれ、 上記ばね力によって上記ブレーキシュ一が押圧されて制動力を発生させるエレべ一 夕のブレーキにおいて、 エレべ一夕の起動信号が発せられると上記付勢回路により 上記ブレーキコイルを付勢して制動力を解除させる制動解除手段と、 エレべ一夕の 停止信号が発せられると上記付勢回路を遮断し、 ブレーキコイルの付勢を減少させ て上記ァーマチュアの吸引が解かれるように上記ブレーキコイルを制御する第 1の ブレーキコイル制御手段と、 上記ァーマチュアが再吸引されない範囲内で上記第 1 のブレーキコイル制御手段による付勢よりも増大させて上記ブレーキコイルを付勢 する第 2のブレーキコイル制御手段と、 上記第 1のブレーキコイル制御手段による 上記ァーマチュアの吸弓 I解除過程で上記ブレーキコィル電流の減少率が所定値以下 に鈍化し又は上記ブレーキコイル電流が増加に転じている間は上記第 2のブレーキ コイル制御手段に切り替えて上記ブレーキコイルを付勢する切替え手段とを備えた ェレベータのブレーキ制御装置。 1. When the brake coil is energized by closing the energizing circuit, the armature is sucked against the spring force, and the suction of the brake shoe on the brake car is released by this suction, and the braking force is reduced. The armature is released from suction when the urging circuit is released and the armature is released, and the brake force is pressed by the spring force to generate a braking force. A brake release means for urging the brake coil by the energizing circuit to release the braking force when a start signal is issued, and to interrupt the energizing circuit when a stop signal for the elevator is issued, the brake coil First brake coil control means for controlling the brake coil so that the attraction of the armature is released by reducing the urging of the armature, as long as the armature is not re-sucked. The second brake coil control means for energizing the brake coil by increasing the force more than the urging by the first brake coil control means, and the armature bowing I releasing process by the first brake coil control means. Switching means for switching to the second brake coil control means and energizing the brake coil while the reduction rate of the brake coil current is slowed down to a predetermined value or less or the brake coil current is increasing. Elevator brake control device.
2 . 第 1のブレーキコイル制御手段を、 付勢回路の遮断によりブレーキコイルと並 列に接続された分岐回路を介して循環するブレーキコイル電流で付勢し、 上記ブレ ーキコイル電流の減少に伴ってァーマチュアの吸引が解かれるように上記ブレーキ コィルを制御するものとした請求の範囲第 1項に記載のェレべ一夕のブレーキ制御  2. The first brake coil control means is energized by a brake coil current circulating through a branch circuit connected in parallel with the brake coil by shutting off the energizing circuit, and with the decrease in the brake coil current. 2. The brake control according to claim 1, wherein the brake coil is controlled so that the armature is released.
3 . 第 1のブレーキコイル制御手段を、 時間経過と共に漸減する電圧によってブレ ーキコイルを付勢し、 上記電圧の減少に伴ってァ一マチュアの吸引が解かれるよう に上記ブレーキコイルを制御するものとした請求の範囲第 1項に記載のエレべ一夕 のブレーキ制御装置。 3. The first brake coil control means controls the brake coil so that the brake coil is energized by a voltage gradually decreasing with time and the attraction of the armature is released with the decrease in the voltage. 2. The brake control device for an elevator according to claim 1, wherein:
4. 切替え手段を、 ブレーキコイル電流の減少率が零値又は上記ブレーキコイル電 流が増加に転じている間は第 2のブレーキコイル制御手段に切り替えて上記ブレー キコイルを付勢するものとした請求の範囲第 1項に記載のエレべ一夕のブレーキ制 4. The switching means is to switch to the second brake coil control means to energize the brake coil while the reduction rate of the brake coil current is zero or the brake coil current is increasing. Elevator overnight brake system described in Paragraph 1
5 . 第 2のブレーキコイル制御手段を、 ブレーキコイル電流の減少率が零値のとき の上記ブレーキコイル電流値とブレーキコイル抵抗値とを乗じて得られた電圧値で 上記ブレーキコイルを付勢するものとした請求の範囲第 1項に記載のエレべ一夕の ブレーキ制御装置。 5. The second brake coil control means energizes the brake coil with a voltage value obtained by multiplying the brake coil current value and the brake coil resistance value when the reduction rate of the brake coil current is zero. 2. The brake control device for an elevator according to claim 1, wherein:
6 . ブレーキコイル抵抗値を、 エレべ一夕の起動信号により制動力が解除された状 態で、 ブレーキコィル電流が一定値となったときのブレーキコィルの電圧値と上記 ブレーキコイル電流値の比から求めるものとした請求の範囲第 5項に記載のエレべ 一夕のブレーキ制御装置。  6. Find the brake coil resistance from the ratio between the brake coil voltage and the above-mentioned brake coil current when the brake coil current becomes a constant value with the braking force released by the start signal of the elevator. 6. The brake control device for an elevator according to claim 5, wherein:
7 . 第 2のブレーキコイル制御手段を、 ァーマチュアが再吸引されないように上限 値が制限されたブレーキコイル電流の変化率に比例した電圧で上記ブレーキコイル を付勢するものとした請求の範囲第 1項に記載のエレべ一夕のブレーキ制御装置。7. The second brake coil control means for energizing the brake coil with a voltage proportional to the rate of change of the brake coil current whose upper limit is limited so that the armature is not re-sucked. The brake control device for the elevator according to the paragraph.
8 . 第 2のブレーキコイル制御手段を、 ブレーキコイルの回路モデルを有し、 この 回路モデルに上記ブレーキコィルを付勢する電圧を印加して得られたモデル電流を ブレーキコイル電流から減算し、 この減算結果の変化率に比例した電圧で上記ブレ —キコイルを付勢するものとした請求の範囲第 1項に記載のエレべ一夕のブレーキ 制御装置。 8. The second brake coil control means has a circuit model of a brake coil, and subtracts a model current obtained by applying a voltage for activating the brake coil to the circuit model from the brake coil current. 2. The apparatus according to claim 1, wherein the brake coil is energized with a voltage proportional to a rate of change of the result.
9 . ブレーキコイルの回路モデルのリアクタンス Lを、 エレベータの起動信号によ りァーマチュアが吸引されて制動力が解消された状態で、 ブレーキコイル電流が一 定値 I hのときに、 上記ブレーキコイルに電圧 E iをステップ状に加重したときの ブレーキコイル電流の増分 Δ Iが、 上記電圧 E iに対する上記ブレーキコイル電流 の目標値 I iに対して  9. The reactance L of the circuit model of the brake coil is changed by applying a voltage to the brake coil when the brake coil current is a constant value Ih in a state where the armature is attracted by the elevator start signal and the braking force is released. The increment ΔI of the brake coil current when Ei is weighted in a step-like manner is determined by the target value Ii of the brake coil current with respect to the voltage Ei.
Δ I = 0 . 6 3 2 X ( I i - I h )  Δ I = 0.6. 3 2 X (I i-I h)
で表された値になったときの時間 T cに上記ブレーキコイルの抵抗値 Rを乗じて得 られた値とした請求の範囲第 8項に記載のエレベータのブレーキ制御装置。 9. The elevator brake control device according to claim 8, wherein a value obtained by multiplying a time Tc at which the value represented by the following expression is obtained by a resistance value R of the brake coil is obtained.
PCT/JP2001/008510 2001-09-28 2001-09-28 Brake controller of elevator WO2003031309A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CNB018196152A CN1229273C (en) 2001-09-28 2001-09-28 Brake controller of elevator
KR10-2003-7007099A KR100483661B1 (en) 2001-09-28 2001-09-28 Brake controller of elevator
DE60142530T DE60142530D1 (en) 2001-09-28 2001-09-28 BRAKE CONTROL FOR LIFT
PCT/JP2001/008510 WO2003031309A1 (en) 2001-09-28 2001-09-28 Brake controller of elevator
JP2003534301A JP4830257B2 (en) 2001-09-28 2001-09-28 Elevator brake control device
EP01972563A EP1431226B1 (en) 2001-09-28 2001-09-28 Brake controller of elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/008510 WO2003031309A1 (en) 2001-09-28 2001-09-28 Brake controller of elevator

Publications (1)

Publication Number Publication Date
WO2003031309A1 true WO2003031309A1 (en) 2003-04-17

Family

ID=11737770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008510 WO2003031309A1 (en) 2001-09-28 2001-09-28 Brake controller of elevator

Country Status (6)

Country Link
EP (1) EP1431226B1 (en)
JP (1) JP4830257B2 (en)
KR (1) KR100483661B1 (en)
CN (1) CN1229273C (en)
DE (1) DE60142530D1 (en)
WO (1) WO2003031309A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033165A1 (en) * 2004-09-24 2006-03-30 Mitsubishi Denki Kabushiki Kaisha Armature movement detection apparatus and armature position estimation apparatus for an elevator brake
JP2006256763A (en) * 2005-03-16 2006-09-28 Hitachi Ltd Brake control device for elevator
JP2007040975A (en) * 2005-07-01 2007-02-15 Honda Motor Co Ltd Air gap deduction system of electromagnetic actuator
KR100807943B1 (en) * 2006-12-07 2008-02-28 미쓰비시덴키 가부시키가이샤 Armature movement detection apparatus and armature position estimation apparatus for an elevator brake
JP2010189138A (en) * 2009-02-18 2010-09-02 Hitachi Ltd Electromagnetic brake
JP2010216616A (en) * 2009-03-18 2010-09-30 Hitachi Ltd Electromagnetic brake
CN102226957A (en) * 2011-03-22 2011-10-26 天津大学 Circuit for realizing power-on voltage-multiplying accelerated suction and low power consumption maintenance of electromagnetic brake
US8585158B2 (en) 2008-06-17 2013-11-19 Otis Elevator Company Safe control of a brake using low power control devices
CN109360482A (en) * 2018-12-05 2019-02-19 苏州市职业大学 A kind of elevator brake actual training device
US20210101777A1 (en) * 2019-10-03 2021-04-08 Otis Elevator Company Elevator brake control

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115396B2 (en) * 2002-04-19 2008-07-09 三菱電機株式会社 Emergency brake device for elevator
CN100562476C (en) * 2005-09-06 2009-11-25 三菱电机株式会社 Brake device for elevator
FI120986B (en) * 2008-11-03 2010-05-31 Kone Corp Arrangement and method of monitoring brake operation and lift system
JP5568319B2 (en) * 2010-01-07 2014-08-06 株式会社日立産機システム Brake control device for hoisting machine
EP4089299A1 (en) 2012-11-15 2022-11-16 Otis Elevator Company Brake
WO2014077813A1 (en) * 2012-11-15 2014-05-22 Otis Elevator Company Elevator brake
FI126171B (en) 2014-06-19 2016-07-29 Kone Corp System, machine brake and procedure for controlling a machine brake
CN106687403B (en) * 2014-09-12 2020-07-28 奥的斯电梯公司 Elevator brake control system
CN105417297B (en) * 2015-12-25 2018-08-07 辽宁优力安机电设备有限公司 Magneto-rheologic liquid brake elevator starts braking method and starts braking system
JP6734103B2 (en) * 2016-04-06 2020-08-05 川崎重工業株式会社 Robot controller and robot equipped with the same controller
DE102016124122A1 (en) * 2016-12-13 2018-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Current regulator for additional volume valve
US20220081253A1 (en) * 2018-12-20 2022-03-17 Inventio Ag Method and brake controller for controlling a brake in an elevator system
CN109802602B (en) * 2019-03-08 2021-03-02 日立电梯(中国)有限公司 Band-type brake follow current circuit, band-type brake braking system and band-type brake follow current control method
CN112744735B (en) * 2019-10-30 2024-02-06 奥的斯电梯公司 Brake device for elevator system and detection method thereof
CN111064392B (en) * 2019-12-10 2021-08-31 日立楼宇技术(广州)有限公司 Band-type brake control method, device, circuit and storage medium
CN115043282A (en) * 2021-03-08 2022-09-13 奥的斯电梯公司 Elevator brake performance detection method and detection device and elevator brake
CN113635327B (en) * 2021-09-23 2023-01-13 上海卓昕医疗科技有限公司 Multi-degree-of-freedom robot and operation auxiliary positioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072452A (en) * 1993-06-15 1995-01-06 Mitsubishi Electric Corp Brake control device for linear motor-driven elevator
JPH072441A (en) * 1993-06-17 1995-01-06 Mitsubishi Electric Corp Braking device for elevator
JP2001294372A (en) * 2000-04-07 2001-10-23 Mitsubishi Electric Corp Brake controlling device for elevator
JP7064493B2 (en) * 2016-11-04 2022-05-10 テレフオンアクチーボラゲット エルエム エリクソン(パブル) How to perform access procedures, devices, and network nodes
JP7068016B2 (en) * 2018-04-12 2022-05-16 株式会社Soken Vehicle remote control support system
JP7080650B2 (en) * 2017-01-25 2022-06-06 バイオセンス・ウエブスター・(イスラエル)・リミテッド Analysis and mapping of ECG signals to eliminate Brugada syndrome and determination of ablation points

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764493B2 (en) * 1988-06-27 1995-07-12 三菱電機株式会社 Elevator control equipment
JPH0768016B2 (en) * 1988-12-23 1995-07-26 三菱電機株式会社 AC elevator control device
JPH0780650B2 (en) * 1990-08-13 1995-08-30 日本オーチス・エレベータ株式会社 Brake control system of elevator controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072452A (en) * 1993-06-15 1995-01-06 Mitsubishi Electric Corp Brake control device for linear motor-driven elevator
JPH072441A (en) * 1993-06-17 1995-01-06 Mitsubishi Electric Corp Braking device for elevator
JP2001294372A (en) * 2000-04-07 2001-10-23 Mitsubishi Electric Corp Brake controlling device for elevator
JP7064493B2 (en) * 2016-11-04 2022-05-10 テレフオンアクチーボラゲット エルエム エリクソン(パブル) How to perform access procedures, devices, and network nodes
JP7080650B2 (en) * 2017-01-25 2022-06-06 バイオセンス・ウエブスター・(イスラエル)・リミテッド Analysis and mapping of ECG signals to eliminate Brugada syndrome and determination of ablation points
JP7068016B2 (en) * 2018-04-12 2022-05-16 株式会社Soken Vehicle remote control support system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033165A1 (en) * 2004-09-24 2006-03-30 Mitsubishi Denki Kabushiki Kaisha Armature movement detection apparatus and armature position estimation apparatus for an elevator brake
JP2006256763A (en) * 2005-03-16 2006-09-28 Hitachi Ltd Brake control device for elevator
JP4607631B2 (en) * 2005-03-16 2011-01-05 株式会社日立製作所 Brake control device for elevator
JP2007040975A (en) * 2005-07-01 2007-02-15 Honda Motor Co Ltd Air gap deduction system of electromagnetic actuator
KR100807943B1 (en) * 2006-12-07 2008-02-28 미쓰비시덴키 가부시키가이샤 Armature movement detection apparatus and armature position estimation apparatus for an elevator brake
US8585158B2 (en) 2008-06-17 2013-11-19 Otis Elevator Company Safe control of a brake using low power control devices
JP2010189138A (en) * 2009-02-18 2010-09-02 Hitachi Ltd Electromagnetic brake
JP2010216616A (en) * 2009-03-18 2010-09-30 Hitachi Ltd Electromagnetic brake
CN102226957A (en) * 2011-03-22 2011-10-26 天津大学 Circuit for realizing power-on voltage-multiplying accelerated suction and low power consumption maintenance of electromagnetic brake
CN109360482A (en) * 2018-12-05 2019-02-19 苏州市职业大学 A kind of elevator brake actual training device
CN109360482B (en) * 2018-12-05 2024-04-26 苏州市职业大学 Elevator brake training device
US20210101777A1 (en) * 2019-10-03 2021-04-08 Otis Elevator Company Elevator brake control

Also Published As

Publication number Publication date
DE60142530D1 (en) 2010-08-19
CN1229273C (en) 2005-11-30
EP1431226B1 (en) 2010-07-07
KR100483661B1 (en) 2005-04-19
KR20030051881A (en) 2003-06-25
JPWO2003031309A1 (en) 2005-01-20
EP1431226A4 (en) 2009-08-12
EP1431226A1 (en) 2004-06-23
JP4830257B2 (en) 2011-12-07
CN1478050A (en) 2004-02-25

Similar Documents

Publication Publication Date Title
WO2003031309A1 (en) Brake controller of elevator
JP5053075B2 (en) Elevator equipment
JP5138361B2 (en) Elevator equipment
JP4705407B2 (en) Elevator control device
EP2321211B1 (en) Elevator system, and method in conjunction with an elevator system
JP2006256763A (en) Brake control device for elevator
WO2007108068A1 (en) Elevator device
JP5117845B2 (en) Elevator equipment
AU2019409946B2 (en) Method and brake controller for controlling a brake of an elevator system
AU2009200418B2 (en) A method of managing the power supply to a non-reversible actuator for a vehicle wheel brake
JP4275377B2 (en) Brake control device for elevator
JP4298418B2 (en) Elevator brake equipment
WO2006033165A1 (en) Armature movement detection apparatus and armature position estimation apparatus for an elevator brake
JP2018024491A (en) Elevator system
JP2002003095A (en) Elevator control device
JP5073678B2 (en) Electromagnetic brake control device
JP2011105484A (en) Device for detecting failure of electromagnetic brake
JP6449806B2 (en) Elevator apparatus and operation control method thereof
JP5160094B2 (en) Electromagnetic brake control device
JPH08333058A (en) Elevator device
WO2018042920A1 (en) Elevator system and control method therefor
JP2010149955A (en) Elevator brake control device
JPWO2022209711A5 (en)
JPH0569041U (en) Motor brake controller
JPS6243978Y2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2003534301

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001972563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037007099

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018196152

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037007099

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001972563

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037007099

Country of ref document: KR