JP2010216616A - Electromagnetic brake - Google Patents

Electromagnetic brake Download PDF

Info

Publication number
JP2010216616A
JP2010216616A JP2009066361A JP2009066361A JP2010216616A JP 2010216616 A JP2010216616 A JP 2010216616A JP 2009066361 A JP2009066361 A JP 2009066361A JP 2009066361 A JP2009066361 A JP 2009066361A JP 2010216616 A JP2010216616 A JP 2010216616A
Authority
JP
Japan
Prior art keywords
coil
braking
electromagnetic
holding
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009066361A
Other languages
Japanese (ja)
Other versions
JP5118090B2 (en
Inventor
Masanobu Ito
正信 伊藤
Akitomo Igarashi
章智 五十嵐
Kiyomi Ito
清弥 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mito Engineering Service Co Ltd
Original Assignee
Hitachi Ltd
Mito Engineering Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Mito Engineering Service Co Ltd filed Critical Hitachi Ltd
Priority to JP2009066361A priority Critical patent/JP5118090B2/en
Publication of JP2010216616A publication Critical patent/JP2010216616A/en
Application granted granted Critical
Publication of JP5118090B2 publication Critical patent/JP5118090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Landscapes

  • Cage And Drive Apparatuses For Elevators (AREA)
  • Braking Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic brake in which the exciting power capacity of a coil can be reduced. <P>SOLUTION: Ones of electromagnetic coils 11a, 11b and the coil portions are disposed radially inward of the coil storage parts of yokes as holding coils 11a1, 11b1. The others of the electromagnetic coils 11a, 11b and the coil portions are disposed radially outward of the holding coils 11a1, 11b1 as acceleration coils 11a2, 11b2. The holding coils 11a1, 11b1 allow a current to flow therein from the start of braking release operation to the application of braking. The acceleration coils 11a2, 11b2 allow a current to flow therein in an acceleration period at the start of the braking release operation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、制動ばねで制動片を押圧して制動付加し、電磁石で制動解除する電磁ブレーキに関し、とくに二つの電磁コイル又はコイル部分からなる電磁石のコイル配置及び励磁方法に関する。   The present invention relates to an electromagnetic brake that applies braking by pressing a braking piece with a braking spring and releases braking with an electromagnet, and particularly relates to a coil arrangement and excitation method of an electromagnet composed of two electromagnetic coils or coil portions.

従来より、一つの電磁石を二つの電磁コイルで構成した電磁ブレーキが開示されている(例えば、特許文献1参照)。   Conventionally, an electromagnetic brake in which one electromagnet is constituted by two electromagnetic coils has been disclosed (see, for example, Patent Document 1).

特開平04−203628号公報Japanese Patent Laid-Open No. 04-203628

本発明の課題は、保持コイルの励磁電源容量低減である。すなわち、電磁コイルの所要起磁力U=巻数N×コイル電流Iであり、コイル電流I=励磁電圧E/コイル抵抗Rであるから、所要巻数に対してコイル径が大きいと線長が長くなって自己抵抗が大きくなるので、所要電流を流すために高い電圧を発生する電源が必要となる。また、コイルの消費電力Wは、W=I ×Rであるから、コイル径が大きいと自己抵抗が大きく消費電力も大きくなる。 An object of the present invention is to reduce the excitation power source capacity of the holding coil. That is, since the required magnetomotive force U of the electromagnetic coil U = the number of turns N × the coil current I C and the coil current I C = the excitation voltage E C / the coil resistance R C , if the coil diameter is larger than the required number of turns, the wire length Since the self-resistance becomes large as a result of this, a power source that generates a high voltage is required to pass the required current. Further, since the power consumption W C of the coil is W C = I C 2 × RC , when the coil diameter is large, the self-resistance is large and the power consumption is also large.

前記特許文献1に提案された電磁ブレーキの電磁石は、一つの電磁石に二つの電磁コイルで構成し、一つは常時用いる主コイル、他の一つは非常時に用いる補助コイルである。二つの電磁コイルの配置として、継鉄側に半径方向に並べる、又は軸方向に並べる、又は継鉄側と可動鉄片側に一つずつ設ける場合が開示されている。この特許文献1の従来方法は、常用の主コイルと非常用の補助コイルの配置であって、常時二つの電磁コイルを用いる場合ではない。さらに、制動解除動作のための二つの電磁コイルの具体的な励磁方法及び励磁電源容量の低減については開示されていない。   The electromagnet of the electromagnetic brake proposed in Patent Document 1 is composed of two electromagnetic coils in one electromagnet, one is a main coil that is always used, and the other is an auxiliary coil that is used in an emergency. As an arrangement of the two electromagnetic coils, a case is disclosed in which they are arranged in the radial direction on the yoke side, arranged in the axial direction, or one on the yoke side and the movable iron piece side. The conventional method of Patent Document 1 is an arrangement of a regular main coil and an emergency auxiliary coil, and is not a case where two electromagnetic coils are always used. Furthermore, there is no disclosure about a specific excitation method of two electromagnetic coils for braking release operation and reduction of excitation power source capacity.

本発明の目的は、一つの電磁石に二つの電磁コイル又はコイル部分を半径方向に重ねて配置し、それぞれのコイルを個別の電源で励磁する場合に、コイルの励磁電源容量を低減できる電磁ブレーキを提供するにある。   An object of the present invention is to provide an electromagnetic brake capable of reducing the excitation power capacity of a coil when two electromagnetic coils or coil portions are radially overlapped on one electromagnet and each coil is excited by an individual power source. In offer.

上記目的を達成するため、本発明の請求項1では、被制動体に対向する制動片に押圧力を制動ばねで与えて制動力を付加する制動付加手段と、電磁コイルと継鉄とからなる電磁石で前記制動力を解除する制動解除手段とで構成され、前記電磁コイルは筒状の二つの電磁コイル又はコイル部分からなり、かつ半径方向に重なるように配置される電磁ブレーキにおいて、前記電磁コイル又はコイル部分の一方は保持コイルとして前記継鉄のコイル収納部の半径方向の内側に配置し、前記電磁コイル又はコイル部分の他方は促進コイルとして前記保持コイルの半径方向外側に配置して、前記保持コイルは制動解除動作始めから制動付加まで電流を通流するとともに、前記促進コイルは制動解除動作始めの促進期間に電流を通流したことを特徴とする。   In order to achieve the above object, according to a first aspect of the present invention, the present invention comprises a braking application means for applying a braking force by applying a pressing force to a braking piece facing a braked body with a braking spring, an electromagnetic coil, and a yoke. In the electromagnetic brake, the electromagnetic coil is composed of two electromagnetic coils or coil portions that are cylindrical and are arranged so as to overlap in the radial direction. Alternatively, one of the coil parts is arranged as a holding coil inside the yoke coil storage part in the radial direction, and the other one of the electromagnetic coil or coil part is arranged as a promotion coil radially outside the holding coil, The holding coil passes a current from the start of the braking release operation to the braking addition, and the promotion coil passes a current during the promotion period of the start of the braking release operation.

この構成により、一つの電磁石に二つの電磁コイルを半径方向に重ねて配置する場合に、コイルの励磁電源容量を低減できる電磁ブレーキが得られる。   With this configuration, when two electromagnetic coils are arranged in a radial direction on one electromagnet, an electromagnetic brake capable of reducing the exciting power supply capacity of the coil can be obtained.

また、請求項2では、請求項1において、前記保持コイルは制動解除動作始めから制動付加まで、電流指令値に従って一定電流となるように制御されることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the holding coil is controlled so as to have a constant current according to a current command value from the start of the braking release operation to the addition of the braking.

この構成により、請求項1と同様の効果が得られる。   With this configuration, the same effect as in the first aspect can be obtained.

また、請求項3では、請求項1又は請求項2において、前記保持コイルは制動解除動作始めから制動付加まで、電流指令値に従って一定電流となるように制御されることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the holding coil is controlled to have a constant current according to a current command value from the start of the braking release operation to the addition of the braking.

この構成により、請求項1と同様の効果が得られる。   With this configuration, the same effect as in the first aspect can be obtained.

本発明によれば、一つの電磁石に二つの電磁コイル又はコイル部分を半径方向に重ねて配置し、それぞれのコイルを個別の電源で励磁する場合に、コイルの励磁電源容量を低減できる電磁ブレーキを得ることができる。   According to the present invention, when two electromagnetic coils or coil portions are arranged in a radial direction on one electromagnet and each coil is excited by an individual power source, an electromagnetic brake that can reduce the excitation power capacity of the coil is provided. Obtainable.

本発明の一実施形態になる例えばエレベーターの巻上機に適用した場合の電磁ブレーキの全体構成である。1 is an overall configuration of an electromagnetic brake when applied to, for example, an elevator hoisting machine according to an embodiment of the present invention. 二つの筒状の電磁コイルを半径方向に重ねて形成した電磁石で、図1の一対の電磁石の一方側(図1の左側)を示す側面図である。FIG. 2 is a side view showing one side (left side in FIG. 1) of a pair of electromagnets in FIG. 1, which is an electromagnet formed by overlapping two cylindrical electromagnetic coils in the radial direction. 図2の正面図でA−A視図である。It is an AA view in the front view of FIG. 図1の電磁コイルの励磁回路である。It is an excitation circuit of the electromagnetic coil of FIG. ブレーキの動作及び電磁コイルの励磁を示すタイミング図である。It is a timing diagram which shows operation | movement of a brake, and excitation of an electromagnetic coil. 第2の実施形態で一つの電磁コイルで巻方向が異なる二つのコイル部分の保持コイル、促進コイルからなる図2相当図である。It is the FIG. 2 equivalent figure which consists of a holding coil and a promotion coil of the two coil parts from which winding direction differs by one electromagnetic coil in 2nd Embodiment. 図6の電磁コイル30aの励磁回路で図4相当図である。FIG. 6 is a diagram equivalent to FIG. 4 in the excitation circuit of the electromagnetic coil 30a of FIG.

以下、本発明の電磁ブレーキの実施形態を詳細に説明する。   Hereinafter, embodiments of the electromagnetic brake of the present invention will be described in detail.

本発明の実施例1に係る発明を、図1乃至図5に基づいて説明する。   The invention according to Embodiment 1 of the present invention will be described with reference to FIGS.

図1において、1はエレベーター巻上機の駆動シーブで、この駆動シーブ1に巻き掛けられた主ロープ2の一方側に乗かご3が、他方側につり合おもり4がつるべ式に吊り持ちされており、駆動シーブ1が巻上モータ5で駆動されて乗かご3及びつり合おもり4が昇降運転される。6は被制動体としてのブレーキドラムで、巻上モータ5と駆動シーブ1を結合する軸5a上に設置されている。このブレーキドラム6の制動面6aには一対の制動片7が当接するようになっている。8は一対の制動腕で、前記制動片7を中間部8cに備え一端部8aを可回転的に支持されている。9は一対の制動ばねで、前記制動片7が制動面6aに押圧力を付加するように制動腕8の他端部8bに配置される。   In FIG. 1, 1 is a drive sheave of an elevator hoisting machine. A car 3 is suspended on one side of a main rope 2 wound around the drive sheave 1, and a counterweight 4 is suspended on the other side in a suspending manner. The driving sheave 1 is driven by the hoisting motor 5 and the car 3 and the counterweight 4 are moved up and down. Reference numeral 6 denotes a brake drum as a braked body, which is installed on a shaft 5 a that couples the hoisting motor 5 and the drive sheave 1. A pair of braking pieces 7 abut on the braking surface 6 a of the brake drum 6. A pair of braking arms 8 includes the braking piece 7 in the intermediate portion 8c and rotatably supports the one end portion 8a. Reference numeral 9 denotes a pair of braking springs, which are arranged on the other end portion 8b of the braking arm 8 so that the braking piece 7 applies a pressing force to the braking surface 6a.

10a、10bは固定される一対の電磁石で、前記制動ばね9の押圧力を解除するように、前記制動腕8の他端部8b近辺に設けられる。この電磁石10a、10bはそれぞれ、二つのコイル部分の保持コイル11a1、促進コイル11a2からなる電磁コイル11aと継鉄12a、二つのコイル部分の保持コイル11b1、促進コイル11b2からなる電磁コイル11bと継鉄12bとからなり、この電磁石10a、10bは磁極面13a、13bを有し、磁極面13a、13bに対向して可動片14a、14bが配置される。この可動片14a、14bは軸15a、15bの一端と結合し、この軸15a、15bの他端は前記制動腕8の他端部8bに連結されて制動腕8を駆動し、制動片7まで一体的に駆動するようになっており、前記軸15a、15bは継鉄12a、12bの中央部で摺動支持される。すなわち、左側の電磁石10a、制動ばね9、制動片7系及び右側の電磁石10b、制動ばね9、制動片7系の電磁ブレーキとして独立に機能する二組で構成されている。   A pair of fixed electromagnets 10a and 10b are provided in the vicinity of the other end portion 8b of the braking arm 8 so as to release the pressing force of the braking spring 9. The electromagnets 10a and 10b are respectively composed of a holding coil 11a1 having two coil portions and an electromagnetic coil 11a and a yoke 12a made up of an accelerating coil 11a2, and an electromagnetic coil 11b and a yoke made up of a holding coil 11b1 made of two coils and an accelerating coil 11b2. The electromagnets 10a and 10b have magnetic pole surfaces 13a and 13b, and movable pieces 14a and 14b are arranged to face the magnetic pole surfaces 13a and 13b. The movable pieces 14a and 14b are coupled to one ends of the shafts 15a and 15b. The other ends of the shafts 15a and 15b are connected to the other end portion 8b of the braking arm 8 to drive the braking arm 8 and to the braking piece 7. The shafts 15a and 15b are slidably supported at the central portions of the yokes 12a and 12b. That is, the left electromagnet 10a, the braking spring 9, and the braking piece 7 system and the right electromagnet 10b, the braking spring 9, and the braking piece 7 system are configured in two sets that function independently.

16はコイル励磁電源で前記一対の電磁石10a、10bの電磁コイル11a、11bに通電し電流を制御する。17は一対の前記電磁石10a、10bの電磁コイル11a、10bに通電、遮断する電磁接触器の接点である。   Reference numeral 16 denotes a coil excitation power source that controls the current by energizing the electromagnetic coils 11a and 11b of the pair of electromagnets 10a and 10b. Reference numeral 17 denotes a contact of an electromagnetic contactor that energizes and interrupts the electromagnetic coils 11a and 10b of the pair of electromagnets 10a and 10b.

図2、図3において、前記図1での一対の電磁石10a、10bは同構造、同構成であるので左側の電磁石10aで説明する。前記電磁コイル11aは筒状であり、保持コイル11a1と促進コイル11a2とで構成される。すなわち、一方側のコイルで径が小さい制動解除の保持コイル11a1と、他方側のコイルで径が大きく前記保持コイル11a1の半径方向の外側に重なる制動解除の促進コイル11a2であり、前記継鉄12aの凹部のコイル収納部12cに配置される。この保持コイル11a1、促進コイル11a2への励磁はそれぞれ制動解除の保持電源18、制動解除の促進電源19で行い、継鉄12aに発生する磁束18a、19aの方向が同一になるように励磁される。なお、前記のように可動片14aは軸15aに支持され、この軸15aは継鉄12aの中央部の孔20に設けられる軸受21によって摺動支持される。   2 and 3, since the pair of electromagnets 10a and 10b in FIG. 1 have the same structure and the same configuration, the left electromagnet 10a will be described. The electromagnetic coil 11a is cylindrical and includes a holding coil 11a1 and a promotion coil 11a2. That is, the brake release holding coil 11a1 whose one side coil has a small diameter, and the brake release promotion coil 11a2 whose other side coil has a large diameter and overlaps the outside in the radial direction of the holding coil 11a1, and the yoke 12a. It is arrange | positioned at the coil accommodating part 12c of a recessed part. The holding coil 11a1 and the exciting coil 11a2 are excited by the holding power source 18 for releasing the brake and the promoting power source 19 for releasing the brake, respectively, and are excited so that the directions of the magnetic fluxes 18a and 19a generated in the yoke 12a are the same. . As described above, the movable piece 14a is supported by the shaft 15a, and this shaft 15a is slidably supported by the bearing 21 provided in the hole 20 in the central portion of the yoke 12a.

図4において、前記図1の左側の電磁コイル11aの保持コイル11a1と右側の電磁コイル11bの保持コイル11b1とが並列に接続され、保持電源18で接点17aを介して励磁される。この際、保持電源18は保持コイル11a1、11b1に流す電流i1を電流検出手段22で検出し帰還して、電流指令値23で指令する一定電流出力となるように制御される。前記保持電源18は、例えばスイッチング素子で直流の可変電圧を生成し電流を調整するようになっている。同様に促進コイル11a2、11b2とが並列に接続され、促進電源19で接点17bを介して励磁される。24、25は電流制限抵抗で、電流調整のために前記保持電源18及び促進電源19の回路に必要に応じて挿入される。なお、26、27は常閉接点でエレベーターの非常停止など非常時に開となる。また、ダイオード28と抵抗29とを直列接続したものがそれぞれ保持コイル11a1、11b1及び促進コイル11a2、11b2に並列に接続され、接点26、27が開いた時に保持コイル11a1、11b1及び促進コイル11a2、11b2の還流電流を消費させる。   4, the holding coil 11a1 of the left electromagnetic coil 11a in FIG. 1 and the holding coil 11b1 of the right electromagnetic coil 11b are connected in parallel and excited by the holding power supply 18 through the contact 17a. At this time, the holding power source 18 is controlled so that the current i 1 flowing through the holding coils 11 a 1 and 11 b 1 is detected by the current detection means 22 and fed back to obtain a constant current output commanded by the current command value 23. The holding power source 18 generates a DC variable voltage by a switching element, for example, and adjusts the current. Similarly, the promotion coils 11a2 and 11b2 are connected in parallel and excited by the promotion power source 19 via the contact point 17b. Reference numerals 24 and 25 denote current limiting resistors, which are inserted into the holding power supply 18 and the accelerating power supply 19 as necessary for current adjustment. Reference numerals 26 and 27 are normally closed contacts that are opened in an emergency such as an emergency stop of the elevator. A diode 28 and a resistor 29 connected in series are connected in parallel to the holding coils 11a1, 11b1 and the promotion coils 11a2, 11b2, respectively, and when the contacts 26, 27 are opened, the holding coils 11a1, 11b1 and the promotion coil 11a2, 11b2 reflux current is consumed.

次に、前記図4を参照し図5に基づいて、この実施形態の制動解除から制動付加までの動作、すなわち、T1時点からT4時点までの動作を説明する。   Next, referring to FIG. 4 and based on FIG. 5, the operation from the release of braking to the addition of braking according to this embodiment, that is, the operation from time T1 to time T4 will be described.

T1時点で電源供給の電磁接触器の接点17a、17bが接続して、ステップ状の電流指令により保持電源18から一定電流i1が流れ、保持コイル11a1、11b1に回路の時定数に従って電流ia1、ib1の一定値が流れるとともに、促進電源19から電流i2が流れ、促進コイル11a2、11b2に回路の時定数に従って電流ia2、ib2が流れる。T2時点で接点17bが遮断して促進電源19から促進コイル11a2、11b2への電流ia2、ib2が遮断され、回路の時定数に従って電流が減少し零となり、電磁コイル11a、11bに流れる電流は保持コイル11a1、11b1の電流ia1、ib1だけとなる。そしてT3時点で保持コイル11a1、11b1の電流指令の遮断とともに接点17aが遮断して保持電源18から保持コイル11a1、11b1への電流ia1、ib1が遮断され、回路の時定数に従って電流が減少しT4時点で消滅する。   The contacts 17a and 17b of the magnetic contactor supplied with power supply are connected at time T1, a constant current i1 flows from the holding power supply 18 according to a step-like current command, and the currents ia1 and ib1 flow to the holding coils 11a1 and 11b1 according to the time constant of the circuit Current i2 flows from the accelerating power source 19, and currents ia2 and ib2 flow through the accelerating coils 11a2 and 11b2 according to the circuit time constant. At time T2, the contact point 17b is cut off, and the currents ia2 and ib2 from the accelerating power source 19 to the accelerating coils 11a2 and 11b2 are cut off. The current decreases and becomes zero according to the time constant of the circuit, and the current flowing through the electromagnetic coils 11a and 11b is maintained. Only the currents ia1 and ib1 of the coils 11a1 and 11b1 are obtained. At time T3, the current command of the holding coils 11a1 and 11b1 is cut off, and the contact 17a is cut off to cut off the currents ia1 and ib1 from the holding power supply 18 to the holding coils 11a1 and 11b1, and the current decreases according to the time constant of the circuit. It disappears at that point.

すなわち、T1からT3の期間が制動解除動作で、このうちT1からT2の期間が制動解除の促進期間で制動解除の動作を速めるために前記保持電源18及び促進電源19の両方を有効にする。これにより保持電源18の電流ia1、ib1及び促進電源19の電流ia2、ib2で発生する磁束が加算されるので、前記図2に示した電磁石10aに大きな電磁吸引力が発生し可動片14aを吸引して制動解除の動作を速める。このT1からT2の時間はエレベーターの走行開始時の数秒程度である。   That is, the period from T1 to T3 is a braking release operation, and the period from T1 to T2 is a braking release promotion period, and both the holding power source 18 and the acceleration power source 19 are made effective in order to speed up the braking release operation. As a result, magnetic fluxes generated by the currents ia1 and ib1 of the holding power supply 18 and the currents ia2 and ib2 of the accelerating power supply 19 are added, so that a large electromagnetic attraction force is generated in the electromagnet 10a shown in FIG. To speed up the brake release operation. The time from T1 to T2 is about several seconds when the elevator starts running.

T2からT3の期間が制動解除の保持期間で前記保持電源18だけが有効で制動解除状態を保持する。つまり、可動片14aを吸着すると空隙が小さくなり磁気回路の磁気抵抗が小さくなるので、電流を小さくしても可動片14aの吸着維持ができる。このT2からT3の時間はエレベーターがほぼ定速走行し停止するまでである。前記制動解除の促進期間は数秒程度で、制動解除の保持期間と比較すると非常に短時間であり、制動解除の全期間からするとほとんど無視し得る場合が多い。   The period from T2 to T3 is a braking release holding period, and only the holding power source 18 is effective and holds the braking release state. That is, if the movable piece 14a is attracted, the gap is reduced and the magnetic resistance of the magnetic circuit is reduced. Therefore, even if the current is reduced, the movable piece 14a can be kept attracted. The time from T2 to T3 is until the elevator runs at a substantially constant speed and stops. The acceleration period of the brake release is about several seconds, which is very short compared with the brake release holding period, and is almost negligible in the entire period of brake release.

T3時点以降が制動付加動作で保持電源18側の保持イル11a1、11b1の電流ia1、ib1が消滅して、前記図1の制動ばね9により制動片7の押圧力が復帰して制動付加状態となる。   After the time T3, the braking application operation is performed and the currents ia1 and ib1 of the holding power supply 11a1 and 11b1 on the holding power supply 18 side disappear, and the pressing force of the braking piece 7 is restored by the braking spring 9 of FIG. Become.

保持コイル11a1、11b1を一定電流制御するのは、建物への引込み電源の電圧変動とくに電圧降下、及びコイルに通電すると発熱し自己抵抗値が増大して電流値が低下する。これによって制動解除が維持できなくなり、制動片7が半開状態となってブレーキドラム6と擦って回転し、制動片7が磨耗し制動性能が低下する。このためにエレベーター走行中は制動解除を確実に維持する必要がある。   The constant current control of the holding coils 11a1 and 11b1 is caused by fluctuations in the voltage of the power supply drawn into the building, particularly voltage drop, and when the coil is energized, heat is generated and the self-resistance value increases and the current value decreases. As a result, the release of braking cannot be maintained, the braking piece 7 is in a half-open state and rotates by rubbing against the brake drum 6, and the braking piece 7 is worn and the braking performance is deteriorated. For this reason, it is necessary to reliably maintain the brake release during the traveling of the elevator.

要するに、前記保持電源18は、T1からT3まで一段の広幅パルス状の電流指令により、指令した電流値となるように連続的に制御して保持コイル11a1、11b1にコイル電流ia1、ib1を流す。また、前記促進電源19は制動解除初期のT1からT2までの短時間、促進コイル11a2、11b2に電流ia2、ib2を流す。そして、前記保持電源18と促進電源19との両方で制動解除を速くするコイル電流に設定し、前記保持電源18で制動解除を保持する電流に設定している。   In short, the holding power supply 18 continuously controls the current value to be the commanded current value from T1 to T3 by one-step wide pulse current command, and causes the coil currents ia1 and ib1 to flow through the holding coils 11a1 and 11b1. The accelerating power source 19 supplies currents ia2 and ib2 to the accelerating coils 11a2 and 11b2 for a short time from T1 to T2 at the initial stage of braking release. Then, both the holding power source 18 and the accelerating power source 19 are set to a coil current that speeds up the brake release, and the holding power source 18 is set to a current that holds the brake release.

ところで、前記保持電源18は一定電流制御を行うために高価になる。出力電圧、電流が大きい高容量のものは一層高価になる。従って、できるだけ容量の小さい電源を用いるようにすることが重要である。前記保持コイル11a1、11b1の起磁力、巻数、電流、電圧、抵抗、電力の関係は次の(1)乃至(4)式の通りである。   By the way, the holding power source 18 is expensive because it performs constant current control. High-capacity ones with large output voltage and current are more expensive. Therefore, it is important to use a power supply with a capacity as small as possible. The relationship between magnetomotive force, number of turns, current, voltage, resistance, and power of the holding coils 11a1 and 11b1 is expressed by the following equations (1) to (4).

Figure 2010216616
すなわち、電磁石10aの電磁吸引力を決定する所要起磁力Uは(1)、(2)式から、巻数N、励磁電圧E、コイル抵抗Rで決まる。コイル抵抗Rは巻線の断面積、固有抵抗が一定であれば、(4)式の通り、コイル長さlが長いほど大きくなる。つまり、巻数Nが一定であればコイル抵抗Rが大きいと、大きい励磁電圧Eが必要となる。そして、コイル消費電力Wは(3)式の通り、コイル抵抗Rが大きいと、大きくなる。
Figure 2010216616
That is, the required magnetomotive force U to determine the electromagnetic attraction force of the electromagnet 10a is (1), (2) from the equation, the number of turns N, the excitation voltage E C, determined by the coil resistance R C. If the cross-sectional area of the winding and the specific resistance are constant, the coil resistance RC increases as the coil length l C increases as shown in the equation (4). That is, if the number of turns N is constant, if the coil resistance RC is large, a large excitation voltage E C is required. Then, as the coil power consumption W C is (3), the coil resistance R C is large, increases.

要するに、コイル抵抗Rが小さいほど、低電圧、低電源容量となるばかりでなく、温度上昇も低減できる。従って、保持コイル11a1、11b1はコイル収納部12cの内側に設けて径の小さい、つまり、所要巻数に対してコイル長さlを短くすることが有効である。 In short, the smaller the coil resistance RC , the lower the voltage and power supply capacity, and the lower the temperature rise. Accordingly, it is effective to provide the holding coils 11a1 and 11b1 on the inner side of the coil housing portion 12c and to have a small diameter, that is, to shorten the coil length l C with respect to the required number of turns.

すなわち、一つの電磁石に二つの電磁コイル部分を半径方向に重ねて配置する場合に、本実施形態では一定電流制御するコイル部分の保持コイルを継鉄のコイル収納部半径方向の内側に配置して、もう一つの促進コイルは前記保持コイルの半径方向外側に配置する。この構成により、保持コイルのコイル長さを短くして、励磁電圧及び電源容量を低減できる効果が得られる。   That is, when two electromagnetic coil portions are arranged in a radial direction on one electromagnet, in this embodiment, the holding coil of the coil portion for constant current control is arranged inside the yoke coil housing portion in the radial direction. The other accelerating coil is disposed radially outside the holding coil. With this configuration, the coil length of the holding coil can be shortened to obtain an effect that the excitation voltage and the power source capacity can be reduced.

なお、促進電源19については電流制御無で説明したが、保持電源18と同様に電流帰還して前記図5のT1からT2の制動解除の促進期間に一定電流が流れるようにしても良い。   Although the acceleration power source 19 has been described without current control, current may be fed back in the same manner as the holding power source 18 so that a constant current flows during the braking release acceleration period from T1 to T2 in FIG.

次に、第2の実施例を図6乃至図7を用いて説明する。この実施例が前記第1の実施例と異なるのは、巻方向が異なる二つのコイル部分を1本の巻線から形成し、一つの電磁コイルとした場合である。   Next, a second embodiment will be described with reference to FIGS. This embodiment is different from the first embodiment in the case where two coil portions having different winding directions are formed from one winding to form one electromagnetic coil.

図6は一つの電磁コイルで巻方向が異なる二つのコイル部分の保持コイル、促進コイルからなる図2相当図であり、図7は図6の電磁コイルの励磁回路で図4相当図である。図2、図4と同一部分については同符号を付し説明を省略する。   FIG. 6 is a diagram corresponding to FIG. 2 composed of a holding coil and an accelerating coil of two coil portions having different winding directions in one electromagnetic coil, and FIG. 7 is a diagram corresponding to FIG. The same parts as those in FIGS. 2 and 4 are denoted by the same reference numerals and description thereof is omitted.

図6において、前記図2と同様に、前記図1の左側の電磁石10aで説明する。前記電磁コイル30aは円筒状であり、一つの電磁コイル30aで巻線が例えば右巻きの径が小さい保持コイル30a1と逆の左巻きで径が大きく、前記保持コイル30a1の外径側に重なる促進コイル30a2との二つのコイル部分となるように、1本の巻線で連続的に巻回し、一つの電磁コイル30aとして形成される。保持コイル30a1、促進コイル30a2への励磁はそれぞれ保持電源18、促進電源19で行う。保持コイル30a1に対して、促進コイル30a2の電流方向を逆にすると、それぞれの保持コイル30a1、促進コイル30a2で発生する磁束31a1、31a2の方向は同一となり、磁束の加算となって電磁石10aの電磁吸引力が増大する。   6, description will be made with the electromagnet 10a on the left side of FIG. 1 as in FIG. The electromagnetic coil 30a has a cylindrical shape, and the coil is wound in one electromagnetic coil 30a, for example, a holding coil 30a1 having a small right-handed diameter and a left-handed winding that has a large diameter and overlaps the outer diameter side of the holding coil 30a1. It is continuously wound with one winding so as to be two coil portions with 30a2, and is formed as one electromagnetic coil 30a. Excitation to the holding coil 30a1 and the promotion coil 30a2 is performed by the holding power source 18 and the promotion power source 19, respectively. If the current direction of the accelerating coil 30a2 is reversed with respect to the holding coil 30a1, the directions of the magnetic fluxes 31a1 and 31a2 generated in the holding coil 30a1 and the accelerating coil 30a2 are the same, and the electromagnetic flux of the electromagnet 10a becomes an addition of the magnetic flux. The suction power increases.

図7において、前記図4と同様に、電磁コイル30aの保持コイル30a1と電磁コイル30bの保持コイル30b1とが並列に接続され保持電源18で接点17aを介して励磁される。この際、保持電源18は保持コイル30a1、30b1に流す電流i1を電流検出手段22で検出し帰還して、電流指令値23の一定電流出力となるように制御される。同様に促進コイル30a2、30b2とが並列に接続され促進電源19で接点17bを介して励磁される。電磁コイル30a、30bの巻方向が逆になる中間点32a、32bが保持電源18及び促進電源19の同一極性となるように接続される。そして、電流i1が保持コイル30a1、30b1にそれぞれ電流ia1、ib1が流れ、電流i2が促進コイル30a2、30b2にそれぞれ電流ia2、ib2が流れる。この結果、電磁コイル30aには電流ia1とia2による磁束が発生し、電磁コイル30bには電流ib1とib2による磁束が発生することになる。   In FIG. 7, as in FIG. 4, the holding coil 30a1 of the electromagnetic coil 30a and the holding coil 30b1 of the electromagnetic coil 30b are connected in parallel and excited by the holding power supply 18 via the contact 17a. At this time, the holding power supply 18 is controlled such that the current i1 flowing through the holding coils 30a1 and 30b1 is detected by the current detection means 22 and fed back, so that a constant current output of the current command value 23 is obtained. Similarly, the promotion coils 30a2 and 30b2 are connected in parallel and excited by the promotion power source 19 via the contact point 17b. The intermediate points 32a and 32b where the winding directions of the electromagnetic coils 30a and 30b are reversed are connected so that the holding power source 18 and the accelerating power source 19 have the same polarity. The current i1 flows through the holding coils 30a1 and 30b1, the currents ia1 and ib1, respectively, and the current i2 flows through the promotion coils 30a2 and 30b2, respectively. As a result, magnetic flux due to currents ia1 and ia2 is generated in the electromagnetic coil 30a, and magnetic flux due to currents ib1 and ib2 is generated in the electromagnetic coil 30b.

なお、保持コイル30a1、30b1及び促進コイル30a2、30b2の励磁の時間的経過は、前記図5と同様であり、それぞれ保持コイル11a1、11b1及び促進コイル11a2、11b2に相当する。また、第1の実施形態と同様に、促進電源19を電流制御しても良い。   The time course of excitation of the holding coils 30a1 and 30b1 and the promotion coils 30a2 and 30b2 is the same as that in FIG. 5 and corresponds to the holding coils 11a1 and 11b1 and the promotion coils 11a2 and 11b2, respectively. Moreover, you may carry out electric current control of the promotion power supply 19 similarly to 1st Embodiment.

この実施例による効果は前記の第1の実施形態と同様であるとともに、二つの個別コイルを用いることなく、1本のコイルで巻回して一つの電磁コイルを成形できるので電磁コイルの部品数を少なくできる効果が得られる。   The effect of this example is the same as that of the first embodiment, and it is possible to form one electromagnetic coil by winding with one coil without using two individual coils. An effect that can be reduced is obtained.

7 制動片
9 制動ばね
10a、10b 電磁石
11a、11b 電磁コイル
11a1、11b1 保持コイル
11a2、11b2 促進コイル
12a、12b 継鉄
23 電流指令値
30a、30b 電磁コイル
30a1、30b1 保持コイル
30a2、30b2 促進コイル
7 Braking piece 9 Braking spring 10a, 10b Electromagnet 11a, 11b Electromagnetic coil 11a1, 11b1 Holding coil 11a2, 11b2 Promoting coil 12a, 12b yoke 23 Current command value 30a, 30b Electromagnetic coil 30a1, 30b1 Holding coil 30a2, 30b2 Promoting coil

Claims (3)

被制動体に対向する制動片に押圧力を制動ばねで与えて制動力を付加する制動付加手段と、電磁コイルと継鉄とからなる電磁石で前記制動力を解除する制動解除手段とで構成され、前記電磁コイルは筒状の二つの電磁コイル又はコイル部分からなり、かつ半径方向に重なるように配置される電磁ブレーキにおいて、
前記電磁コイル又はコイル部分の一方は保持コイルとして前記継鉄のコイル収納部の半径方向の内側に配置し、前記電磁コイル又はコイル部分の他方は促進コイルとして前記保持コイルの半径方向外側に配置して、前記保持コイルは制動解除動作始めから制動付加まで電流を通流するとともに、前記促進コイルは制動解除動作始めの促進期間に電流を通流したことを特徴とする電磁ブレーキ。
The brake adding unit applies a braking force by applying a pressing force to the braking piece facing the brake target with a braking spring, and the brake releasing unit releases the braking force with an electromagnet including an electromagnetic coil and a yoke. In the electromagnetic brake, the electromagnetic coil is composed of two cylindrical electromagnetic coils or coil portions and is arranged to overlap in the radial direction.
One of the electromagnetic coil or the coil portion is disposed as a holding coil inside the yoke coil housing portion in the radial direction, and the other of the electromagnetic coil or the coil portion is disposed as a promotion coil radially outside the holding coil. The holding coil passes a current from the start of the braking release operation to the braking addition, and the acceleration coil passes a current during the promotion period at the start of the braking release operation.
前記二つの電磁コイル又はコイル部分の一方の保持コイルと他方の促進コイルとは巻方向が逆であることを特徴とする請求項1記載の電磁ブレーキ。   2. The electromagnetic brake according to claim 1, wherein one holding coil and the other acceleration coil of the two electromagnetic coils or coil portions have opposite winding directions. 前記保持コイルは制動解除動作始めから制動付加まで、電流指令値に従って一定電流となるように制御されることを特徴とする請求項1及び2記載の電磁ブレーキ。   3. The electromagnetic brake according to claim 1, wherein the holding coil is controlled so as to have a constant current according to a current command value from the start of the braking release operation to the addition of braking.
JP2009066361A 2009-03-18 2009-03-18 Electromagnetic brake Active JP5118090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066361A JP5118090B2 (en) 2009-03-18 2009-03-18 Electromagnetic brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066361A JP5118090B2 (en) 2009-03-18 2009-03-18 Electromagnetic brake

Publications (2)

Publication Number Publication Date
JP2010216616A true JP2010216616A (en) 2010-09-30
JP5118090B2 JP5118090B2 (en) 2013-01-16

Family

ID=42975668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066361A Active JP5118090B2 (en) 2009-03-18 2009-03-18 Electromagnetic brake

Country Status (1)

Country Link
JP (1) JP5118090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057960A (en) * 2015-09-18 2017-03-23 株式会社日立製作所 Electromagnetic brake device, hoisting machine and elevator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172934U (en) * 1981-04-28 1982-10-30
JPS6187234U (en) * 1984-11-15 1986-06-07
JPH0854032A (en) * 1994-08-11 1996-02-27 Toshiba Eng Co Ltd Brake device for dynamo-electric machine
JPH09126256A (en) * 1995-10-31 1997-05-13 Shinko Electric Co Ltd Electromagnetic clutch-brake device
JPH11122697A (en) * 1997-10-15 1999-04-30 Alpine Electron Inc Voice coil terminal processing structure for speaker
WO2003031309A1 (en) * 2001-09-28 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Brake controller of elevator
JP2005282640A (en) * 2004-03-29 2005-10-13 Kubota Tekkosho:Kk Electromagnetic coupling
JP2006174616A (en) * 2004-12-16 2006-06-29 Juki Corp Linear actuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172934U (en) * 1981-04-28 1982-10-30
JPS6187234U (en) * 1984-11-15 1986-06-07
JPH0854032A (en) * 1994-08-11 1996-02-27 Toshiba Eng Co Ltd Brake device for dynamo-electric machine
JPH09126256A (en) * 1995-10-31 1997-05-13 Shinko Electric Co Ltd Electromagnetic clutch-brake device
JPH11122697A (en) * 1997-10-15 1999-04-30 Alpine Electron Inc Voice coil terminal processing structure for speaker
WO2003031309A1 (en) * 2001-09-28 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Brake controller of elevator
JP2005282640A (en) * 2004-03-29 2005-10-13 Kubota Tekkosho:Kk Electromagnetic coupling
JP2006174616A (en) * 2004-12-16 2006-06-29 Juki Corp Linear actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057960A (en) * 2015-09-18 2017-03-23 株式会社日立製作所 Electromagnetic brake device, hoisting machine and elevator

Also Published As

Publication number Publication date
JP5118090B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5147753B2 (en) Electromagnetic brake
JP5049672B2 (en) Brake device
JPH07149487A (en) Rail brake gear for linear motor type elevator
JPH09229105A (en) Self-holding type coupling device
JP2011506225A (en) Elevator brake device having permanent magnet bias for applying braking force
JP2008120469A (en) Brake control device for elevator
JP5118090B2 (en) Electromagnetic brake
JP4958931B2 (en) Electromagnetic brake
JP2018142529A (en) Electromagnetic relay
JP3634758B2 (en) Electromagnet unit and solenoid valve using the electromagnet unit
JP4754975B2 (en) Polarized electromagnet
JP5164875B2 (en) Electromagnetic brake control device for elevator
JP5191720B2 (en) Braking device for elevator hoisting machine
WO2020021632A1 (en) Electromagnetic brake device and hoist
CN105905828A (en) Electromagnetic brake device and elevator
CN1279681C (en) Electric motor with brakes
JP2001074050A (en) Radial magnetic bearing
JP5522187B2 (en) NEGATIVE ELECTRIC BRAKE DEVICE, ITS CONTROL METHOD, CONTROL DEVICE, AND DRIVE DEVICE
JP2011146676A (en) Electromagnet device
CN102315044A (en) Coil rack for electromagnetic switch and method for winding coils
JP2010003754A (en) Polarized electromagnet
JP6036131B2 (en) Negative operating electromagnetic brake device, control method and control device, and drive device
JPH09303452A (en) Electro-magnetic clutch and brake for deenergization operational type
WO2022032448A1 (en) Armature assembly and application thereof
JP2007143210A (en) Motor and lens drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Ref document number: 5118090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3