JP5049672B2 - Brake device - Google Patents

Brake device Download PDF

Info

Publication number
JP5049672B2
JP5049672B2 JP2007169382A JP2007169382A JP5049672B2 JP 5049672 B2 JP5049672 B2 JP 5049672B2 JP 2007169382 A JP2007169382 A JP 2007169382A JP 2007169382 A JP2007169382 A JP 2007169382A JP 5049672 B2 JP5049672 B2 JP 5049672B2
Authority
JP
Japan
Prior art keywords
magnetic
yoke
permanent magnet
braking
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007169382A
Other languages
Japanese (ja)
Other versions
JP2009007104A (en
Inventor
正信 伊藤
哲志 小野
秀樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mito Engineering Service Co Ltd
Original Assignee
Hitachi Ltd
Mito Engineering Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Mito Engineering Service Co Ltd filed Critical Hitachi Ltd
Priority to JP2007169382A priority Critical patent/JP5049672B2/en
Priority to CN200810098698XA priority patent/CN101332966B/en
Publication of JP2009007104A publication Critical patent/JP2009007104A/en
Priority to HK09103747.1A priority patent/HK1125616A1/en
Application granted granted Critical
Publication of JP5049672B2 publication Critical patent/JP5049672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被制動体に対して制動片を押圧することにより制動力を得るブレーキ装置に係り、例えば、エレベーター巻上機のブレーキ装置に関するものである。   The present invention relates to a brake device that obtains a braking force by pressing a brake piece against a braked body, for example, a brake device for an elevator hoisting machine.

従来より、ブレーキ装置として継鉄と電磁コイルからなる電磁石とは別に永久磁石を備えた磁気吸引手段が提案されている(例えば特許文献1参照)。   Conventionally, a magnetic attraction means including a permanent magnet has been proposed as a brake device in addition to an electromagnet composed of a yoke and an electromagnetic coil (see, for example, Patent Document 1).

また、継鉄、電磁コイル及び永久磁石からなる前記磁気吸引手段が提案されている(例えば特許文献2、3参照)。   Moreover, the said magnetic attraction means which consists of a yoke, an electromagnetic coil, and a permanent magnet is proposed (for example, refer patent document 2, 3).

また、被制動体に対して制動片をばね力で押圧することにより制動付加し、電磁石の磁気力で制動解除する電磁ブレーキ装置あるいはこの電磁ブレーキ装置を用いたエレベーターが提案されている(例えば特許文献4、5参照)。
特開2004−353684号公報 特開2000−150228号公報 特開2002−198218号公報 特開2006−256763号公報 特開平10−129989号公報
Further, an electromagnetic brake device that applies braking by pressing a braking piece against a braked body with a spring force and releases the braking by the magnetic force of an electromagnet or an elevator using this electromagnetic brake device has been proposed (for example, a patent). References 4 and 5).
JP 2004-353684 A JP 2000-150228 A JP 2002-198218 A JP 2006-256663 A JP 10-129989 A

エレベーター用ブレーキ装置などによく見られるように、一般にブレーキ装置として電磁ブレーキが用いられている。すなわち、励磁電源の通電、遮断でブレーキの解除、付加が比較的簡単に行われるためである。励磁電源遮断時、被制動体にばね力で押圧して制動付加し、励磁電源を通電時、電磁石の磁気力で被制動体への押圧を解除して制動解除するものである。この場合、ばね力に十分対抗できる磁気力の電磁石が必要である。   As is often seen in elevator brake devices and the like, electromagnetic brakes are generally used as brake devices. That is, the release and addition of the brake can be performed relatively easily by turning on and off the excitation power source. When the excitation power supply is cut off, the braked body is pressed by a spring force to apply braking, and when the excitation power supply is energized, the electromagnetic force of the electromagnet releases the pressure applied to the braked body to release the brake. In this case, an electromagnet having a magnetic force that can sufficiently resist the spring force is required.

近年、エレベーターでは昇降路頂部の機械室を不要とする機械室レスエレベーターが主流となってきた。この場合、昇降路内の限られた空間に巻上機を設置する必要がある。すなわち、巻上機の小型化、とくにブレーキ装置の小型化が重要となってきた。そこで、電磁石に永久磁石を併用して小型化することが考えられている。   In recent years, machine room-less elevators that do not require a machine room at the top of the hoistway have become mainstream. In this case, it is necessary to install the hoisting machine in a limited space in the hoistway. That is, downsizing of the hoisting machine, particularly downsizing of the brake device has become important. Therefore, it is considered to reduce the size by using a permanent magnet together with the electromagnet.

電磁石と永久磁石を併用したブレーキ装置は上記特許文献1に提案され、電磁石の継鉄内に永久磁石を埋設し、永久磁石の磁気力で被制動体を圧接して制動を付加し、電磁石の磁気力で永久磁石の磁気力を反発させて被制動体の圧接を解除して制動解除するものであるが、本発明で提案するばね力で制動付加し、永久磁石と電磁石の併用で電磁石による制動解除するブレーキ装置と構造、構成が異なる。   A brake device using both an electromagnet and a permanent magnet has been proposed in Patent Document 1 described above. A permanent magnet is embedded in the yoke of the electromagnet, the braked body is pressed by the magnetic force of the permanent magnet, and braking is applied. The magnetic force of the permanent magnet is repelled by the magnetic force, and the pressure contact of the braked body is released to release the brake, but braking is applied by the spring force proposed in the present invention, and the permanent magnet and the electromagnet are used together by the electromagnet. The structure and configuration are different from the brake device that releases the brake.

また、継鉄、電磁コイル及び永久磁石からなる前記磁気吸引手段として、特許文献2に磁力式アクチュエータ、特許文献3にハイブリッド型磁石が提案されているが、ブレーキ装置としての考慮はない。   Further, as the magnetic attraction means comprising a yoke, an electromagnetic coil, and a permanent magnet, a magnetic actuator is proposed in Patent Document 2 and a hybrid magnet is proposed in Patent Document 3, but there is no consideration as a brake device.

また、特許文献4にドラムブレーキの一例を示す。被制動体としてのブレーキドラムに対して制動片をばね力で押圧することにより制動付加し、電磁石の磁気力で制動解除する電磁ブレーキ装置あるいはこの電磁ブレーキ装置を用いたエレベーターが開示されている。   Patent Document 4 shows an example of a drum brake. An electromagnetic brake device that applies braking by pressing a braking piece against a brake drum as a braked body with a spring force and releases the braking with a magnetic force of an electromagnet, or an elevator using the electromagnetic brake device is disclosed.

また、特許文献5にディスクブレーキの一例を示す。被制動体としてのディスクに対して、ディスク外周側面をばね力で制動片を介して押圧することにより制動付加し、電磁石の磁気力で制動解除する電磁ブレーキ装置が開示されている。   Patent Document 5 shows an example of a disc brake. An electromagnetic brake device is disclosed in which braking is applied to a disk as a body to be braked by pressing the outer peripheral side surface of the disk with a spring force through a braking piece, and braking is released by the magnetic force of an electromagnet.

本発明の目的は、小型化できるブレーキ装置を提供することにある。   The objective of this invention is providing the brake device which can be reduced in size.

上記目的を達成するため、本発明では、被制動体に制動片を押圧し制動を付加するための制動ばねと、この制動ばねの付勢力に抗して作動し制動を解除する磁気駆動手段とで構成したブレーキ装置において、前記磁気駆動手段は第1継鉄と第2継鉄と電磁コイル及び永久磁石とで構成し、この第1継鉄と第2継鉄の構成で少なくとも一つの電磁コイルと永久磁石とを配置し、永久磁石の磁極面をこの磁気駆動手段の動作方向に配置して、この両者で発生する磁束を吸引時では加算するとともに、前記第1継鉄と第2継鉄の一方を固定体、他方を可動体にし、かつ、前記電磁コイルと前記永久磁石の吸引力を前記可動体を吸引する方向と同一方向とし、一方、前記電磁コイルを付勢して、制動解保持中には一定の保持電流とし、且つ、この保持電流を消勢して制動付加動作を行うコイル電流励磁回路を備えたことを特徴とする。 In order to achieve the above object, according to the present invention, a braking spring for pressing a braking piece against a braked body to apply braking, and a magnetic drive means that operates against the urging force of the braking spring and releases braking. In the brake device configured as described above, the magnetic drive means includes a first yoke, a second yoke, an electromagnetic coil, and a permanent magnet, and at least one electromagnetic coil has the configuration of the first yoke and the second yoke. And the permanent magnet are arranged, the magnetic pole surface of the permanent magnet is arranged in the operating direction of the magnetic drive means, and the magnetic flux generated by both is added during the attraction, and the first and second yokes are added. while the fixed body of the other to the movable member, and the electromagnetic coil the suction force of the permanent magnet and the same direction for attracting the movable member, whereas, urges the electromagnetic coil, the brake solutions During holding, the holding current is constant, and this holding Characterized by comprising a coil current excitation circuit for performing Braking additional action by de-energizing the flow.

この構成により、制動解除保持時に永久磁石の磁気力により、電磁コイルの磁気力を低減、すなわち電磁コイルの励磁電流を低減できるので電磁コイルを小型化でき、全体として磁気吸引手段、ブレーキ装置を小型化できる。また、永久磁石の磁束を効率よく得られる。 With this configuration, the magnetic force of the permanent magnet can be reduced by the magnetic force of the permanent magnet at the time of braking release holding, that is, the exciting current of the electromagnetic coil can be reduced. Can be Moreover, the magnetic flux of a permanent magnet can be obtained efficiently.

また、本発明では、請求項1において、前記磁気駆動手段は、前記永久磁石と電磁コイルとをこの磁気駆動手段の動作方向に直列に配置したことを特徴とする。 In the present invention , the magnetic drive means according to claim 1 is characterized in that the permanent magnet and the electromagnetic coil are arranged in series in the operation direction of the magnetic drive means.

この構成により、永久磁石の磁束を効率よく得られるとともに、請求項1と同様に電磁コイルを小型化でき、全体として磁気吸引手段、ブレーキ装置を小型化できる。   With this configuration, the magnetic flux of the permanent magnet can be obtained efficiently, the electromagnetic coil can be miniaturized as in the first aspect, and the magnetic attraction means and the brake device can be miniaturized as a whole.

本発明によれば、小型化できるブレーキ装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the brake device which can be reduced in size can be provided.

以下、本発明の実施形態を図面に基き説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1乃至図7は、図1は本発明の一実施形態になるブレーキ装置の全体構成図、図2は図1の磁気駆動手段の拡大図、図3は図2の永久磁石の形状を示す図、図4は図1の電磁コイルの励磁回路、図5(a)、(b)は図2の磁気駆動手段におけるコイル電流遮断時及びコイル電流通流時の磁束の流れ図、図6(a)、(b)は図5(a)、(b)の磁気回路、図7は制動解除動作から制動付加動作までの電磁コイルの通電電流、磁石空隙などタイミングを示す図を示す。   1 to 7 are diagrams showing the overall configuration of a brake device according to an embodiment of the present invention, FIG. 2 is an enlarged view of the magnetic drive means of FIG. 1, and FIG. 3 shows the shape of the permanent magnet of FIG. 4 and FIG. 4 are excitation circuits for the electromagnetic coil of FIG. 1, FIGS. 5A and 5B are flow charts of magnetic flux when the coil current is interrupted and when the coil current is passed in the magnetic drive means of FIG. ), (B) are magnetic circuits of FIGS. 5 (a) and 5 (b), and FIG. 7 is a diagram showing timings such as energization current of the electromagnetic coil and magnet gap from the braking release operation to the braking addition operation.

図1において、1は被制動体としてのブレーキドラムで、このブレーキドラム1の内周制動面1aに一対の制動片2が当接するようになっている。3は一対の制動腕で、前記制動片2を中間部3cに備え一端部3aを可回転的に支持されている。4は一対の制動ばねで、前記制動片2が制動面1aに押圧力を付加するように制動腕3の他端部3bに配置される。   In FIG. 1, reference numeral 1 denotes a brake drum as a body to be braked, and a pair of braking pieces 2 abut on an inner peripheral braking surface 1 a of the brake drum 1. Reference numeral 3 denotes a pair of braking arms. The braking piece 2 is provided in the intermediate portion 3c, and the one end portion 3a is rotatably supported. Reference numeral 4 denotes a pair of braking springs, which are arranged on the other end 3b of the braking arm 3 so that the braking piece 2 applies a pressing force to the braking surface 1a.

5a、5bは磁気駆動手段で、前記制動ばね4の押圧力を解除するように、前記制動腕3の他端部3b近辺に設けられる。前記磁気駆動手段5a、5bは磁石部10a、10bと第2継鉄9a、9bからなり、この磁石部10a、10bは永久磁石6a、6bと、電磁コイル7a、7bと、第1継鉄8a、8bとで構成される。前記第1継鉄8a、8bには電磁コイル7a、7b及び永久磁石6a、6bが配置され、磁石部10a、10bは磁極面11a、11bを有し、この磁極面11a、11bに対向して各々第2継鉄9a、9bが配置される。すなわち、磁気駆動手段として同様形状、構成のものを2組有し、前記ブレーキドラム1の中心線に対してほぼ左右対称に配置される。また、前記第2継鉄9a、9bは前記制動腕3の他端部3bに連結されて制動腕3の他端部3bを駆動し、制動片2まで一体的に駆動するようになっている。この実施例では第1継鉄8a、8b側が固定で第2継鉄9a、9b側が可動であり、前記電磁コイル7a、7bに通電すると第2継鉄9a、9bが吸引され、前記制動腕3を引込む方向に作動する。12は前記電磁コイル7a、7bに通電するコイル電流励磁回路であり、前記電磁コイル7a、7bに流す電流を制御する。13はこのコイル電流励磁回路12に供給する交流電源、14はこの交流電源13を接続又は遮断する電磁接触器の接点であり、この接点を介して前記コイル電流励磁回路12に接続される。15は前記電磁コイル7a、7bへの通電、遮断する電磁接触器の常閉接点である。   Reference numerals 5a and 5b denote magnetic drive means, which are provided in the vicinity of the other end 3b of the brake arm 3 so as to release the pressing force of the brake spring 4. The magnetic drive means 5a and 5b are composed of magnet portions 10a and 10b and second yokes 9a and 9b. The magnet portions 10a and 10b are permanent magnets 6a and 6b, electromagnetic coils 7a and 7b, and a first yoke 8a. , 8b. The first yokes 8a and 8b are provided with electromagnetic coils 7a and 7b and permanent magnets 6a and 6b, and the magnet portions 10a and 10b have magnetic pole surfaces 11a and 11b, which are opposed to the magnetic pole surfaces 11a and 11b. Second yokes 9a and 9b are respectively arranged. That is, two sets of magnetic drive means having the same shape and configuration are disposed substantially symmetrically with respect to the center line of the brake drum 1. The second yokes 9a and 9b are connected to the other end portion 3b of the braking arm 3 to drive the other end portion 3b of the braking arm 3 so as to be integrally driven to the braking piece 2. . In this embodiment, the first yokes 8a, 8b are fixed and the second yokes 9a, 9b are movable. When the electromagnetic coils 7a, 7b are energized, the second yokes 9a, 9b are attracted and the braking arm 3 is moved. Operates in the direction of retracting. Reference numeral 12 denotes a coil current excitation circuit for energizing the electromagnetic coils 7a and 7b, and controls the current flowing through the electromagnetic coils 7a and 7b. Reference numeral 13 denotes an AC power supply supplied to the coil current excitation circuit 12, and reference numeral 14 denotes a contact of an electromagnetic contactor for connecting or cutting off the AC power supply 13. The contact is connected to the coil current excitation circuit 12 through this contact. Reference numeral 15 denotes a normally closed contact of an electromagnetic contactor for energizing and interrupting the electromagnetic coils 7a and 7b.

図2において、第1継鉄8a、8bはE字状断面で、このE字状断面の窪みに環状の永久磁石6a、6bと電磁コイル7a、7bとが第2継鉄9a、9bの可動方向に対して直列状に配置され磁石部10a、10bが形成される。永久磁石6a、6bの磁極面11c及び第1継鉄8a、8bの磁極面11dが並行して、空隙δで第2継鉄9a、9bに対向するようになっている。この実施例では永久磁石6a、6bの磁極面11cが第1継鉄8a、8bの磁極面11cより突出している。第2継鉄9a、9bはそれぞれ軸16a、16bに支持され、この軸16a、16bは第1継鉄8a、8bの中心部で軸受17に可動支持される。電磁コイル7a、7bに通電すると第2継鉄9a、9bが吸引され、矢印の引込む方向に可動する。18は空隙保持片で第2継鉄9a、9bが磁石部10a、10bに吸引される時、一定空隙を保持する。 In FIG. 2, the first yokes 8a and 8b have an E-shaped cross section, and annular permanent magnets 6a and 6b and electromagnetic coils 7a and 7b are movable in the E-shaped cross section. Magnet portions 10a and 10b are formed in series with respect to the direction. Permanent magnet 6a, the magnetic pole surface 11c and the first yoke 8a of 6b, pole faces 11d and 8b are parallel, a second yoke 9a in the gap [delta] g, faces toward 9b. In this embodiment, the magnetic pole surfaces 11c of the permanent magnets 6a and 6b protrude from the magnetic pole surfaces 11c of the first yokes 8a and 8b. The second yokes 9a and 9b are supported by shafts 16a and 16b, respectively. The shafts 16a and 16b are movably supported by the bearing 17 at the center of the first yokes 8a and 8b. When the electromagnetic coils 7a and 7b are energized, the second yokes 9a and 9b are attracted and moved in the direction in which the arrows are drawn. Reference numeral 18 denotes a gap holding piece, which holds a fixed gap when the second yokes 9a, 9b are attracted to the magnet portions 10a, 10b.

図3は図1の永久磁石6a、6bで、断面が横凹状の環状永久磁石であり、凹状の突出部にN極、S極が形成され、この例では外周側がN極、内周側がS極であるが、逆に形成されても良い。   FIG. 3 shows the permanent magnets 6a and 6b shown in FIG. 1, which are annular permanent magnets having a transversely concave cross section. N and S poles are formed on the concave protrusion, and in this example, the outer peripheral side is the N pole and the inner peripheral side is the S. Although it is a pole, it may be formed in reverse.

図4において、19は交流を直流に変換する直流変換素子、20はコイル電流制限抵抗、21は前記コイル電流制限抵抗と並列接続して短絡させる常閉接点で電源側の接点14が導通後一定時限で開放される。22は前記電磁コイル7a、7bと並列に接続される放電抵抗で、電源が遮断された時に電磁コイル7a、7bに蓄えられたエネルギを放出消費するもので電磁コイル7a、7b自体の合成抵抗の約10倍程度に設定される。この電磁コイル7a、7bと放電抵抗22の並列接続に対して前記直流変換素子19の直流出力が常閉接点15を介して接続される。23は還流ダイオードで、電磁コイル7a、7bの通電が遮断される時電磁コイル7a、7bからの放電電流をゆっくり消滅させる。この場合、直流変換素子19が兼用しても良い。前記常閉接点15は電磁コイル7a、7bからの放電電流を速く消滅させる時に開放される。   In FIG. 4, 19 is a DC conversion element for converting alternating current to direct current, 20 is a coil current limiting resistor, 21 is a normally closed contact that is connected in parallel with the coil current limiting resistor and short-circuited, and the contact 14 on the power supply side is constant after conduction. Opened in time. A discharge resistor 22 is connected in parallel with the electromagnetic coils 7a and 7b, and discharges and consumes the energy stored in the electromagnetic coils 7a and 7b when the power is cut off. It is set to about 10 times. A DC output of the DC conversion element 19 is connected via a normally closed contact 15 to the parallel connection of the electromagnetic coils 7 a and 7 b and the discharge resistor 22. Reference numeral 23 denotes a free-wheeling diode that slowly extinguishes the discharge current from the electromagnetic coils 7a and 7b when the energization of the electromagnetic coils 7a and 7b is interrupted. In this case, the DC conversion element 19 may also be used. The normally closed contact 15 is opened when the discharge current from the electromagnetic coils 7a and 7b is quickly extinguished.

図5(a)、図5(b)において、前述したように磁気駆動手段5a、5bはほぼ同じものが左右対称に配置されるので一方側の磁気駆動手段5aに符号を付し、他方側は省略する。図5(a)は制動付加状態で電磁コイル7a、7b非通電、前記磁気駆動手段5aが開放の状態で磁石部10aと第2継鉄9a間の開放空隙δgo時の磁束φgp、φの流れを示す。また、図5(b)は制動解除状態で電磁コイル7a通電、前記磁気駆動手段5aが吸引状態で磁石部10aと第2継鉄9a間の吸引空隙δgc時の磁束φgp、φの流れを示す。図6(a)、(b)はそれぞれ図5(a)、(b)の磁気回路を示す。 In FIGS. 5 (a) and 5 (b), as described above, the magnetic drive means 5a and 5b are substantially the same in the left-right symmetry. Is omitted. FIG. 5A shows the magnetic fluxes φ gp and φ when the electromagnetic coils 7a and 7b are de-energized with braking applied, and when the magnetic drive means 5a is open and the open gap δ go between the magnet portion 10a and the second yoke 9a. The flow of y is shown. FIG. 5 (b) shows that the magnetic coil 7a is energized in the brake released state, and the magnetic fluxes φ gp and φ e at the time of the suction gap δ gc between the magnet portion 10a and the second yoke 9a when the magnetic driving means 5a is in the attracted state. Show the flow. 6 (a) and 6 (b) show the magnetic circuits of FIGS. 5 (a) and 5 (b), respectively.

図5(a) 及び図6(a)の電磁コイル7aが非通電時において、永久磁石6aの起磁力Uによる磁束φは空隙部から第2継鉄9aを通過して還流する磁束φgp及び第1継鉄8a内を還流し前記磁束φに分流される。この時磁石空隙δgoが大きいので磁気抵抗Rgo>>0である。また、図5(b) 及び図6(b)の電磁コイル7aが通電時において、前記永久磁石6aの起磁力Uによる磁束φとともに、電磁コイル7aの起磁力Uによる磁束φが前記第1継鉄8a、第2継鉄9a及び空隙部を還流する。 Figure 5 (a) and the electromagnetic coil 7a in FIG. 6 (a) during the de-energized, the magnetic flux phi p by magnetomotive force U p of the permanent magnet 6a is flux flowing back through the second yoke 9a from the gap portion phi diverted to the flux phi y refluxing gp and the first yoke 8a. At this time, since the magnet gap δ go is large, the magnetic resistance R go >> 0. The electromagnetic coil 7a is at the time of energization shown in FIG. 5 (b) and 6 (b), with the magnetic flux phi p by magnetomotive force U p of the permanent magnet 6a, the magnetic flux phi e by magnetomotive force U e of the electromagnetic coil 7a The first yoke 8a, the second yoke 9a and the gap are refluxed.

すなわち、図6(a)、(b)に示すように、第1及び第2継鉄8a、9a間の磁気吸引力となる空隙部の磁束φは次の通りである。 That is, as shown in FIG. 6 (a), (b) , first and second yoke 8a, the magnetic flux phi g of the gap portion as a magnetic attraction force between 9a is as follows.

図5(a)、図6(a)の開放状態(電磁コイル7a非通電時)

Figure 0005049672
5 (a) and 6 (a) in an open state (when the electromagnetic coil 7a is not energized)
Figure 0005049672

図5(b)、図6(b)の吸引状態(電磁コイル7a通電時)

Figure 0005049672
Fig. 5 (b) and Fig. 6 (b) attracted state (when electromagnetic coil 7a is energized)
Figure 0005049672

図5(b)、図6(b)の吸引状態で永久磁石6aがない場合(電磁コイル7a通電時のみ)

Figure 0005049672
When there is no permanent magnet 6a in the attracted state of FIGS. 5 (b) and 6 (b) (only when the electromagnetic coil 7a is energized)
Figure 0005049672

図5(b)、図6(b)の吸引状態で永久磁石6aの効果

Figure 0005049672
The effect of the permanent magnet 6a in the attracted state of FIGS. 5 (b) and 6 (b)
Figure 0005049672

ここに、
:永久磁石6aの起磁力
:電磁コイル7aの起磁力
go:開放時の空隙部の磁気抵抗
gc:吸引時の空隙部の磁気抵抗
:第1継鉄8a側磁路の磁気抵抗
:第2継鉄9aの磁気抵抗
φ:空隙部の磁束
φgp:永久磁石6aの起磁力による空隙部の磁束
φge:電磁コイル7a起磁力による空隙部の磁束
φ:永久磁石6aの起磁力Uによる第1継鉄8aの磁束
φ:電磁コイル7aの起磁力Uによる発生磁束
したがって、吸引状態で永久磁石6aの効果は(4)式の通りで、この効果が得られる条件は、

Figure 0005049672
here,
U p : Magnetomotive force U e of the permanent magnet 6 a: Magnetomotive force R go of the electromagnetic coil 7 a: Magnetic resistance R gc of the air gap when opened R gc : Magnetic resistance R c of the air gap when attracted R y : Magnet of the first yoke 8 a magnetic resistance of the road R a: magnetoresistance phi g of the second yoke 9a: magnetic flux of the void portion phi gp: flux phi ge of gap portions by the magnetomotive force of the permanent magnets 6a: flux of the gap portion by an electromagnetic coil 7a magnetomotive force phi y : Magnetic flux φ e of the first yoke 8a due to the magnetomotive force U p of the permanent magnet 6a: Magnetic flux generated by the magnetomotive force U e of the electromagnetic coil 7a Therefore, the effect of the permanent magnet 6a in the attracted state is as shown in the equation (4) The condition for obtaining this effect is
Figure 0005049672

であり、実用上(5)式の条件を満足するように設定される。この場合、吸引時は空隙δgcが小さく磁気抵抗Rgcが非常に小さくなり、また、図2、図5のように永久磁石6aの磁極部を第1継鉄8aの磁極面11dより突出して配置してあるので、空気部を通過して第1継鉄8aに磁束が流れるので、磁気抵抗Rは大きくなる。つまり、上記(5)式の条件を満足し永久磁石の効果が得られる条件になる。 In practice, it is set so as to satisfy the condition of equation (5). In this case, at the time of attraction, the gap δ gc is small and the magnetic resistance R gc is very small, and the magnetic pole portion of the permanent magnet 6a protrudes from the magnetic pole surface 11d of the first yoke 8a as shown in FIGS. Since the magnetic flux R flows through the first yoke 8a through the air portion, the magnetic resistance Ry is increased. That is, the condition of the above expression (5) is satisfied and the effect of the permanent magnet is obtained.

図4乃至図7に基づいて、この実施例の制動解除から制動付加まで、すなわち、T1時点からT7時点までの動作時のコイル電流及び永久磁石の磁束などのタイミングを説明する。   Based on FIGS. 4 to 7, the timing of the coil current, the magnetic flux of the permanent magnet, and the like during the operation from the release of the brake to the addition of the brake, that is, from the time T1 to the time T7 will be described.

T1時点で電源供給の接点14が接続、T5時点で遮断となり、T6でコイル電流が消滅する。制動解除時動作のT1からT4の期間は接点21が接続され、(a)のコイル電圧に示すように抵抗20が短絡されたパルス状の電圧となる。つまり、T1時点で制動解除指令を受けると、(e)の接点動作で接点14及び接点21が接続し、電磁コイル7a、7bに電流が流れ始め、(b)のコイル電流のように回路の時定数に従って増加し一定値となる。一方、永久磁石6a、6bによる空隙部通過の磁束φgoは、T1時点までは(1)式の通りで空隙部の磁気抵抗Rgoが大きく、ほとんど零である。T1時点でコイル電流が通電すると、主に電磁コイル7a、7bによる磁束φgeで第2継鉄9a、9bを磁気吸引し、(c)の磁石空隙が小さくなる。これとともに永久磁石6a、6bによる空隙通過磁束φgpも増大し、永久磁石6a、6bの磁束φgpと電磁コイル7a、7bの磁束φgeが合計されて流れる。第2継鉄9a、9bを吸引保持状態で永久磁石6a、6bによる空隙通過磁束は一定となる。 The power supply contact 14 is connected at time T1, and is cut off at time T5, and the coil current disappears at time T6. During the period from T1 to T4 of the brake release operation, the contact 21 is connected, resulting in a pulsed voltage in which the resistor 20 is short-circuited as shown in the coil voltage of (a). That is, when a braking release command is received at time T1, the contact 14 and the contact 21 are connected by the contact operation of (e), the current starts to flow through the electromagnetic coils 7a and 7b, and the circuit current is like the coil current of (b). It increases according to the time constant and becomes a constant value. On the other hand, the magnetic flux φ go passing through the gap by the permanent magnets 6a and 6b is almost zero until the time T1, as shown in the equation (1), and the magnetic resistance R go of the gap is large. When the coil current is applied at time T1, the second yokes 9a and 9b are magnetically attracted mainly by the magnetic flux φge generated by the electromagnetic coils 7a and 7b, and the magnet gap in (c) is reduced. This together with the permanent magnet 6a, also increases the air gap magnetic flux passing through phi gp by 6b, permanent magnets 6a, 6b of the magnetic flux phi gp and the electromagnetic coil 7a, flows are summed 7b of the magnetic flux phi ge. When the second yokes 9a and 9b are attracted and held, the gap passing magnetic flux by the permanent magnets 6a and 6b is constant.

第1継鉄8a、8bと第2継鉄9a、9bとの間の磁石空隙δは、(c)に示すようにT1時点からゆっくりと狭くなるが、途中のT2から急激に狭くなり、T3時点で完全に第2継鉄9a、9b側に吸引、吸着し、T4時点では吸引、吸着保持状態となる。 The first yoke 8a, 8b and a second yoke 9a, the magnet gap [delta] g between 9b, becomes slowly narrowed from time T1 as shown in (c), abruptly narrowed from the middle of T2, At the time T3, the suction and suction are completely performed on the second yokes 9a and 9b, and at the time T4, the suction and suction holding state is achieved.

このT1時点からT4時点までの制動解除時初期動作では、通電初期のコイル電流が大きくなるようなパルス状の電圧を与えて制動解除動作を速くしている。そして、第2継鉄9a、9bが完全に吸引された後は、磁石空隙が小さくなるので磁気回路の磁気抵抗が減少し、電磁コイル7a、7bに流れる励磁電流は少なくても、ばね力に打ち勝つ吸引力が発生するので、点線のようにT4時点で接点21を遮断して電圧を下げて、すなわちコイル電流を下げて、T4からT5までの期間は一定の保持電流にする。この期間、永久磁石6a、6bの磁束φgpが加わっているので、この磁束φgp分は(b)コイル電流を実線のように低減することができる。 In the initial operation at the time of brake release from the time T1 to the time T4, a pulse voltage is applied to increase the coil current at the initial energization, thereby speeding up the brake release operation. After the second yokes 9a and 9b are completely attracted, the magnet gap is reduced, so that the magnetic resistance of the magnetic circuit is reduced and the spring force is reduced even if the exciting current flowing through the electromagnetic coils 7a and 7b is small. Since the attractive force to overcome is generated, the contact 21 is cut off at the time T4 as shown by the dotted line, the voltage is lowered, that is, the coil current is lowered, and the holding current is kept constant during the period from T4 to T5. During this period, since the permanent magnet 6a, the magnetic flux phi gp and 6b are applied, the magnetic flux phi gp content can be reduced as shown by the solid line of (b) the coil current.

そして、T5時点で制動付加指令により、接点14が遮断し、(a)のコイル電圧が消勢し電磁コイル7a、7bの電流が(b)のように回路の時定数に従って減少し、T6時点で零となる。第2継鉄9a、9bはばね力で押し戻され、磁石空隙も前記図5(a)のように戻って大きくなる。永久磁石6a、6bの磁束は電磁コイル7a、7bの磁束の消滅とともに磁石空隙δが大きくなって、空隙部通過磁束φgpはほとんど零になる。 Then, the contact 14 is cut off by the braking addition command at the time T5, the coil voltage (a) is deenergized, and the currents of the electromagnetic coils 7a and 7b decrease according to the time constant of the circuit as shown in (b). Becomes zero. The second yokes 9a and 9b are pushed back by the spring force, and the magnet gap also returns and becomes larger as shown in FIG. 5 (a). Permanent magnets 6a, 6b of the magnetic flux electromagnetic coils 7a, together with the disappearance of magnetic flux 7b is larger magnet gap [delta] g is the gap portion passes magnetic flux phi gp becomes almost zero.

この場合、図7に示すT1からT4の制動解除動作時間は1乃至2秒程度で非常に短く、制動解除保持時間が圧倒的に長い。したがって、図7の(b)コイル電流で示す点線から実線の電流低減分の効果は大きく、結果として電磁コイル7a、7bの温度上昇低減になるので電磁コイルの小型化、磁石部10aの小型化、磁気駆動手段5aの小形化、すなわち、ブレーキ装置の小型化となる効果が得られる。   In this case, the brake release operation time from T1 to T4 shown in FIG. 7 is about 1 to 2 seconds, which is very short, and the brake release holding time is overwhelmingly long. Therefore, the effect of the current reduction from the dotted line to the solid line shown by (b) coil current in FIG. 7 is large, and as a result, the temperature rise of the electromagnetic coils 7a and 7b is reduced. Thus, the effect of downsizing the magnetic drive means 5a, that is, downsizing the brake device can be obtained.

次に、磁気駆動手段5a、5bの他の実施形態を図8乃至図13に基づいて説明する。   Next, another embodiment of the magnetic drive means 5a, 5b will be described with reference to FIGS.

図8(a)、(b)は前記図5(a)、(b)相当図で、二組の磁気駆動手段5a、5bの第1継鉄8a、8bを共通化したものである。すなわち、図5(a)、(b)の第1継鉄8a、8bを共通一体化して第1継鉄8として、永久磁石6a、6b及び電磁コイル7a、7bを図5(a)、(b)と同様に、第2継鉄9a、9bの吸引可動方向に対して直列状に配置し、永久磁石6a、6bの磁極面は第2継鉄9a、9bの吸引方向に配置される。   FIGS. 8A and 8B are diagrams corresponding to FIGS. 5A and 5B, in which the first yokes 8a and 8b of the two sets of magnetic drive means 5a and 5b are shared. That is, the first yokes 8a and 8b of FIGS. 5 (a) and 5 (b) are integrally integrated to form the first yoke 8 so that the permanent magnets 6a and 6b and the electromagnetic coils 7a and 7b are formed as shown in FIGS. Similarly to b), the second yokes 9a and 9b are arranged in series with respect to the attracting movable direction, and the magnetic pole surfaces of the permanent magnets 6a and 6b are arranged in the attracting direction of the second yokes 9a and 9b.

これにより二つの第1継鉄8a、8bが共通一体化できるので、部品数が少なくなり小型化できる効果が得られる。作用は前記図4、図5の実施例と同じである。   As a result, the two first yokes 8a and 8b can be integrated together, so that the number of components can be reduced and the size can be reduced. The operation is the same as that of the embodiment shown in FIGS.

また、図9(a)、(b)は前記図8(a)、(b)相当図で、前記図8(a)、(b)と異なるのは、電磁コイル7a、7bを共通一体化して電磁コイル7として、一方の第2継鉄9a、9b側に対向する永久磁石6a、6bの磁極方向と他方の第2継鉄9a、9b側に対向する永久磁石6a、6bの磁極方向が逆になるように配置し、電磁コイル7a、7bによる磁束方向と協調して第2継鉄9a、9b側に磁束が流れるようにしていることである。   9 (a) and 9 (b) are diagrams corresponding to FIGS. 8 (a) and 8 (b). The difference from FIGS. 8 (a) and 8 (b) is that the electromagnetic coils 7a and 7b are integrally integrated. As the electromagnetic coil 7, the direction of the magnetic poles of the permanent magnets 6a, 6b facing the second yokes 9a, 9b and the direction of the magnetic poles of the permanent magnets 6a, 6b facing the other second yokes 9a, 9b are set. It arrange | positions so that it may become reverse, and is making it the magnetic flux flow to the 2nd yoke 9a, 9b side in cooperation with the magnetic flux direction by electromagnetic coil 7a, 7b.

これにより二つの電磁コイル7a、7bが共通一体化できるので、前記図8(a)、(b)の実施例よりさらに部品数が少なくなり小型化できる効果が得られる。作用は前記図4、図5の実施例と同じである。なお、図10、図11に図5(a)、(b)の左半分相当図で示すように、図5(a)、図8(a)、図9(a)で示した永久磁石6a、6bの磁極面を第1継鉄8a、8bの磁極面と同一面あるいは凹む位置にしても良い。また、図12に示すように、図5(a)、(b)で示した永久磁石6a、6bを電磁コイル7a、7bの反第2継鉄9a、9b側に配置しても良い。   As a result, the two electromagnetic coils 7a and 7b can be integrated together, so that the number of components can be further reduced and the size can be reduced as compared with the embodiment shown in FIGS. The operation is the same as that of the embodiment shown in FIGS. 10 and 11, the permanent magnet 6a shown in FIG. 5 (a), FIG. 8 (a), and FIG. 9 (a), as shown in the left half of FIG. 5 (a) and FIG. 5 (b). , 6b may be the same plane as the first yokes 8a, 8b or a recessed position. Further, as shown in FIG. 12, the permanent magnets 6a and 6b shown in FIGS. 5 (a) and 5 (b) may be arranged on the side opposite to the second yokes 9a and 9b of the electromagnetic coils 7a and 7b.

また、図13(a)、(b)に示すように、凹状断面の永久磁石6a、6bの凹部内に電磁コイル7a、7bを収納して永久磁石6a、6bと電磁コイル7a、7bとを一体化し、永久磁石6a、6bの磁極面を前記図5、図10、図11と同様に第1継鉄8a、8bの磁極面より突出あるいは磁極面と同一面あるいは凹む位置にしても良い。これにより、前記図5、図10、図11と同様の効果が得られる。   Further, as shown in FIGS. 13 (a) and 13 (b), the electromagnetic coils 7a and 7b are housed in the recesses of the permanent magnets 6a and 6b having a concave cross section, and the permanent magnets 6a and 6b and the electromagnetic coils 7a and 7b are connected. The magnetic pole surfaces of the permanent magnets 6a and 6b may be integrated with each other so as to protrude from the magnetic pole surfaces of the first yokes 8a and 8b or be flush with or recessed from the magnetic pole surfaces in the same manner as in FIGS. As a result, the same effects as in FIGS. 5, 10, and 11 can be obtained.

次に、他の実施形態を図14乃至図17に基づいて説明する。   Next, another embodiment will be described with reference to FIGS.

図14(a)、(b)は図5(a)、(b)の磁気駆動手段5a、5bの左側半分相当図、図15は図3相当図で、図14(a)、(b)が図5(a)、(b)と異なるのは、図15の大径と小径の二つの筒状永久磁石6a1、6a2を電磁コイル7a、7bの外周側及び内周側に並行してそれぞれ配置したことである。すなわち、前記図3で示した永久磁石の凹断面の底部を省略した形状になる。したがって、永久磁石から発生する磁束は第1継鉄8a、8bの一部の電磁コイル7a、7b周辺及び第2継鉄9a、9bを循環する。これにより、前記図3の永久磁石6a、6bより断面形状が簡素で安価になる効果が得られる。また作用は図5(a)、(b)と同じである。なお、永久磁石6a、6bの磁極面を前記図5、図10、図11と同様に第1継鉄8a、8bの磁極面より突出、磁極面と同一面あるいは凹む位置にしても良い。   14A and 14B are diagrams corresponding to the left half of the magnetic drive means 5a and 5b in FIGS. 5A and 5B, FIG. 15 is a diagram corresponding to FIG. 3, and FIGS. 5 (a) and 5 (b) is different from FIG. 15 in that the two cylindrical permanent magnets 6a1 and 6a2 having a large diameter and a small diameter are arranged in parallel to the outer peripheral side and the inner peripheral side of the electromagnetic coils 7a and 7b, respectively. It is arranged. That is, the bottom of the concave cross section of the permanent magnet shown in FIG. 3 is omitted. Therefore, the magnetic flux generated from the permanent magnet circulates around the electromagnetic coils 7a and 7b of the first yokes 8a and 8b and the second yokes 9a and 9b. Thereby, the effect is obtained that the sectional shape is simpler and cheaper than the permanent magnets 6a and 6b of FIG. The operation is the same as in FIGS. 5 (a) and 5 (b). Note that the magnetic pole surfaces of the permanent magnets 6a and 6b may protrude from the magnetic pole surfaces of the first yokes 8a and 8b, and be in the same plane as the magnetic pole surfaces, or may be recessed, as in FIGS.

また、図16(a)、(b) で示すように、前記図12で示したように図15の永久磁石6a、6bを第1継鉄8a、8b底部の電磁コイル7a、7bを挟むように並行に配置しても良い。   Further, as shown in FIGS. 16 (a) and 16 (b), as shown in FIG. 12, the permanent magnets 6a and 6b of FIG. 15 sandwich the electromagnetic coils 7a and 7b at the bottom of the first yokes 8a and 8b. May be arranged in parallel.

また、図17(a)、(b) は図9(a)、(b) 相当図で、電磁コイル7a、7bの外周側及び内周側に図15の永久磁石6a、6bを並行に配置したことであり、前記図5、図10、図11と同様に第1継鉄8a、8bの磁極面より永久磁石6a、6bの磁極面が突出あるいは同一平面あるいは凹む位置にしても良い。効果及び作用は前記図9(a)、(b)と同様である。   FIGS. 17A and 17B are diagrams corresponding to FIGS. 9A and 9B, and the permanent magnets 6a and 6b of FIG. 15 are arranged in parallel on the outer peripheral side and inner peripheral side of the electromagnetic coils 7a and 7b. Accordingly, the magnetic pole surfaces of the permanent magnets 6a and 6b may protrude from the magnetic pole surfaces of the first yokes 8a and 8b, or be in the same plane or indented positions as in FIGS. The effect and action are the same as those in FIGS. 9 (a) and 9 (b).

次に、他の実施形態を図18乃至図22に基づいて説明する。   Next, another embodiment will be described with reference to FIGS.

図18(a)、(b)は前記図5(a)、(b)の左側半分相当図、図19は図18(a)、(b)の永久磁石6aを示す図、図20乃至図22は図10乃至図12相当図で、永久磁石6aの配置を示す。   18 (a) and 18 (b) are diagrams corresponding to the left half of FIGS. 5 (a) and 5 (b), FIG. 19 is a diagram showing the permanent magnet 6a of FIGS. 18 (a) and 18 (b), and FIGS. 22 is a view corresponding to FIGS. 10 to 12 and shows the arrangement of the permanent magnets 6a.

図18(a)、(b)において、永久磁石6aと電磁コイル7aが第2継鉄9aの可動方向に対して直列状に配置されるが、図5(a)、(b)と異なる点は永久磁石6aの形状と磁極の配置で、図19に示すように環状円板の永久磁石6aであり、この例では外周面側にN、内周側にS磁極が形成されるが、逆に形成されても良い。すなわち、永久磁石6aの磁極が第2継鉄9aに対向してなく、第2継鉄9aの可動方向と直角方向になっており、この方向に磁束が発生する。図18(a)、(b)の磁気回路は前記図6(a)、(b)と同じであるので省略する。   18 (a) and 18 (b), the permanent magnet 6a and the electromagnetic coil 7a are arranged in series with respect to the movable direction of the second yoke 9a, but are different from FIGS. 5 (a) and 5 (b). FIG. 19 shows the shape of the permanent magnet 6a and the arrangement of the magnetic poles. As shown in FIG. 19, the permanent magnet 6a is an annular disk. In this example, N is formed on the outer peripheral surface side and S magnetic poles are formed on the inner peripheral side. May be formed. That is, the magnetic pole of the permanent magnet 6a is not opposed to the second yoke 9a, but is perpendicular to the movable direction of the second yoke 9a, and magnetic flux is generated in this direction. The magnetic circuits in FIGS. 18A and 18B are the same as those in FIGS. 6A and 6B, and will be omitted.

これにより永久磁石6aの形状が環状円板であるため、前記図3、図15の永久磁石6aより断面形状が簡素でさらに安価になる効果が得られる。また作用は前記図5(a)、(b)と同じである。なお、永久磁石6aの配置は図18(a)、図20乃至図22に示すように、前記図5、図10乃至図12と同様に、第1継鉄8aの磁極面11dより突出、磁極面と同一面、凹む位置あるいは電磁コイル7aの反第2継鉄9a側に配置しても良い。   Thereby, since the shape of the permanent magnet 6a is an annular disc, the sectional shape is simpler and cheaper than the permanent magnet 6a shown in FIGS. The operation is the same as in FIGS. 5 (a) and 5 (b). As shown in FIGS. 18 (a) and 20 to 22, the arrangement of the permanent magnet 6a protrudes from the magnetic pole surface 11d of the first yoke 8a, as shown in FIGS. It may be arranged on the same surface as the surface, a recessed position, or on the side opposite to the second yoke 9a of the electromagnetic coil 7a.

次に、更に、他の実施形態を図23乃至図26に基づいて説明する。   Next, another embodiment will be described with reference to FIGS.

図23(a)、(b)は前記図5(a)、(b)の左側半分相当図、図24(a)、(b)は図14(a)、(b)相当図、図25(a)、(b)は図18(a)、(b)相当図、図26は磁気回路で前記図6相当図である。   23A and 23B are diagrams corresponding to the left half of FIGS. 5A and 5B, FIGS. 24A and 24B are diagrams corresponding to FIGS. 14A and 14B, and FIG. FIGS. 18A and 18B are diagrams corresponding to FIGS. 18A and 18B, and FIG. 26 is a magnetic circuit corresponding to FIG.

図23(a)、(b)が前記図5(a)、(b)と異なる点は、永久磁石6aが第2継鉄9a側に配置され、電磁コイル7aが第1継鉄8a側に配置される点である。永久磁石6aは前記図3の形状ものが用いられ、磁極面が固定側の第1継鉄8a側に対向して、第2継鉄9aの可動方向に配置され磁束が発生するようになっている。この実施例では永久磁石6aの磁極面が第2継鉄9aの磁極面11eより突出している。   23 (a) and 23 (b) are different from FIGS. 5 (a) and 5 (b) in that the permanent magnet 6a is disposed on the second yoke 9a side, and the electromagnetic coil 7a is disposed on the first yoke 8a side. It is a point to be placed. The permanent magnet 6a having the shape shown in FIG. 3 is used, and the magnetic pole surface faces the fixed first yoke 8a side and is arranged in the movable direction of the second yoke 9a to generate a magnetic flux. Yes. In this embodiment, the magnetic pole surface of the permanent magnet 6a protrudes from the magnetic pole surface 11e of the second yoke 9a.

図24(a)、(b)が前記図14(a)、(b)と異なる点は、同様に永久磁石6aが第2継鉄9a側に配置され、電磁コイル7aが第1継鉄8a側に配置される点である。永久磁石6aは前記図15の形状ものが用いられ、磁極面が可動側の第2継鉄9aの可動方向に配置され、第1継鉄8a側に対向し磁束が発生するようになっている。この実施例では永久磁石6aの磁極面が第2継鉄9aの磁極面11eより突出している。   24 (a) and 24 (b) are different from FIGS. 14 (a) and 14 (b) in that the permanent magnet 6a is disposed on the second yoke 9a side, and the electromagnetic coil 7a is disposed on the first yoke 8a. It is a point arranged on the side. The permanent magnet 6a having the shape shown in FIG. 15 is used, the magnetic pole surface is arranged in the movable direction of the second yoke 9a on the movable side, and a magnetic flux is generated facing the first yoke 8a side. . In this embodiment, the magnetic pole surface of the permanent magnet 6a protrudes from the magnetic pole surface 11e of the second yoke 9a.

また、図25(a)、(b)が前記図18(a)、(b)と異なる点は、同様に永久磁石6aが第2継鉄9a側に配置され、電磁コイル7aが第1継鉄8a側に配置される点である。永久磁石6aは前記図19の形状ものが用いられ、磁極面が可動側の第2継鉄9aの可動方向と直角に配置され、磁束が可動方向に対して直角方向に発生するようになっている。この実施例では永久磁石6aが第2継鉄9aの磁極面11eより突出している。   25 (a) and 25 (b) are different from FIGS. 18 (a) and 18 (b) in that the permanent magnet 6a is arranged on the second yoke 9a side and the electromagnetic coil 7a is connected to the first yoke. It is a point arrange | positioned at the iron 8a side. The permanent magnet 6a having the shape shown in FIG. 19 is used, the magnetic pole surface is arranged perpendicular to the movable direction of the second yoke 9a on the movable side, and magnetic flux is generated in a direction perpendicular to the movable direction. Yes. In this embodiment, the permanent magnet 6a protrudes from the magnetic pole surface 11e of the second yoke 9a.

図26(a)、(b)はそれぞれ図23(a)、(b)の磁気回路を示す。図23(a) 及び図24(a)の電磁コイル7aが非通電時において、永久磁石6aの起磁力Uによる磁束φは空隙部から第1継鉄8aを通過して還流する磁束φgp及び第2継鉄9a内を還流する磁束φaに分流される。また、図23(b) 及び図24(b)の電磁コイル7a、7bが通電時において、前記永久磁石6aによる磁束φとともに、電磁コイル7aの起磁力Uによる磁束φgeが前記第1継鉄8a、第2継鉄9a及び空隙部を還流する。 26 (a) and 26 (b) show the magnetic circuits of FIGS. 23 (a) and 23 (b), respectively. The electromagnetic coil 7a is at the time of non-energization of FIG 23 (a) and FIG. 24 (a), the magnetic flux phi p by magnetomotive force U p of the permanent magnet 6a is flux flowing back through the first yoke 8a from the gap portion phi diverted magnetic flux phi a refluxing gp and the second yoke 9a. Further, FIG. 23 (b) and the electromagnetic coil 7a in FIG. 24 (b), 7b are at the time of energization, the with the magnetic flux phi p by the permanent magnet 6a, the magnetomotive force U e flux phi ge by said first electromagnetic coil 7a The yoke 8a, the second yoke 9a, and the gap are refluxed.

すなわち、図26(a)、(b)に示すように、第1及び第2継鉄9a、9b間の磁気吸引力となる空隙部の磁束φは次の通りである。 That is, as shown in FIG. 26 (a), (b) , first and second yoke 9a, the magnetic flux phi g of the gap portion as a magnetic attraction force between 9b are as follows.

図23(a)、図26(a)の開放状態(電磁コイル7a非通電時)

Figure 0005049672
23 (a) and 26 (a) in an open state (when the electromagnetic coil 7a is not energized)
Figure 0005049672

図23(b)、図24(b)の吸引状態(電磁コイル7a通電時)

Figure 0005049672
Fig. 23 (b) and Fig. 24 (b) attracted state (when electromagnetic coil 7a is energized)
Figure 0005049672

図23(b)、図26(b)の吸引状態で永久磁石6aがない場合(電磁コイル7a通電時のみ)

Figure 0005049672
When there is no permanent magnet 6a in the attracted state of FIGS. 23 (b) and 26 (b) (only when the electromagnetic coil 7a is energized)
Figure 0005049672

図23(b)、図26(b)の吸引状態で永久磁石6aの効果

Figure 0005049672
The effect of the permanent magnet 6a in the attracted state of FIGS. 23 (b) and 26 (b)
Figure 0005049672

ここに、
:永久磁石6aの起磁力
:電磁コイル7aの起磁力
go:開放時の空隙部の磁気抵抗
gc:吸引時の空隙部の磁気抵抗
:第1継鉄8a側磁路の磁気抵抗
:第2継鉄9aの磁気抵抗
φ:空隙部の磁束
φgp:永久磁石6aの起磁力による空隙部の磁束
φge:電磁コイル7a起磁力による空隙部の磁束
φ:永久磁石6aの起磁力Uによる第1継鉄8aの磁束
φ:電磁コイル7a、の起磁力Uによる発生磁束
したがって、吸引状態で永久磁石6aの効果は(9)式の通りで、この効果が得られる条件は、

Figure 0005049672
here,
U p : Magnetomotive force U e of the permanent magnet 6 a: Magnetomotive force R go of the electromagnetic coil 7 a: Magnetic resistance R gc of the air gap when opened R gc : Magnetic resistance R c of the air gap when attracted R y : Magnet of the first yoke 8 a magnetic resistance of the road R a: magnetoresistance phi g of the second yoke 9a: magnetic flux of the void portion phi gp: flux phi ge of gap portions by the magnetomotive force of the permanent magnets 6a: flux of the gap portion by an electromagnetic coil 7a magnetomotive force phi y : Magnetic flux φ e of the first yoke 8a due to the magnetomotive force U p of the permanent magnet 6a: Magnetic flux generated by the magnetomotive force U e of the electromagnetic coil 7a Therefore, the effect of the permanent magnet 6a in the attracted state is as shown in Equation (9) And the condition for obtaining this effect is
Figure 0005049672

であり、前記(1)〜(5)式の磁気抵抗RとRが入れ替った式となる。この実施例の実用上(10)式の条件を満足するように設定される。この場合、吸引時は空隙δgcが小さく磁気抵抗Rgcが非常に小さくなり、また、図23乃至図26のように永久磁石6a、6bの磁極部を第2継鉄9a、9bの磁極面より突出して配置してあるので、空気部を通過して第1継鉄8a、8bに磁束が流れるので、磁気抵抗Raは大きくなる。つまり、上記(10)式の条件を満足し永久磁石6a、6bの効果が得られる条件になる。 , And the a (1) to (5) reluctance R y and R a are interchanged expression. In practice, this embodiment is set so as to satisfy the condition of the expression (10). In this case, at the time of attraction, the gap δ gc is small and the magnetic resistance R gc is very small, and the magnetic pole portions of the permanent magnets 6a and 6b are used as the magnetic pole surfaces of the second yokes 9a and 9b as shown in FIGS. because are arranged more projecting, first yoke 8a through the air portion, the magnetic flux flows in 8b, the magnetic resistance R a increases. That is, the condition of the above expression (10) is satisfied, and the effect of the permanent magnets 6a and 6b is obtained.

なお、図23、図24の永久磁石6a、6bの配置は前記図10、図11と同様に、第2継鉄9a、9bの磁極面と同一面、凹む位置に配置しても良い。これにより、前記図10、図11と同様に効果が得られる。   The permanent magnets 6a and 6b in FIGS. 23 and 24 may be arranged on the same concave surface as the magnetic pole surfaces of the second yokes 9a and 9b, as in FIGS. Thereby, an effect is acquired similarly to the said FIG. 10, FIG.

また、前記図2乃至図22で示した永久磁石6a、6b及び電磁コイル7a、7b配置した第1継鉄8a、8bのいずれかと、前記図23乃至図26で示した永久磁石6a、6bを配置した第2継鉄9a、9bのいずれかを対向させて構成した磁気駆動手段としても良い。すなわち、磁気駆動手段は第1継鉄8a、8bと第2継鉄9a、9bと電磁コイル7a、7b及び永久磁石6a、6bとで構成し、この第1継鉄8a、8bと第2継鉄9a、9bの構成で少なくとも一つの電磁コイル7a、7bと少なくとも一つの永久磁石6a、6bを配置する。   Further, the permanent magnets 6a and 6b and the first yokes 8a and 8b arranged in the electromagnetic coils 7a and 7b shown in FIGS. 2 to 22 and the permanent magnets 6a and 6b shown in FIGS. Magnetic driving means configured by facing any one of the arranged second yokes 9a and 9b may be used. That is, the magnetic drive means is composed of the first yokes 8a and 8b, the second yokes 9a and 9b, the electromagnetic coils 7a and 7b, and the permanent magnets 6a and 6b, and the first yokes 8a and 8b and the second yoke. At least one electromagnetic coil 7a, 7b and at least one permanent magnet 6a, 6b are arranged in the configuration of iron 9a, 9b.

次に、前記図4のコイル電流励磁回路12の他の例を図27乃至図30に基づいて説明する。図27、図28及び図30は図4相当図、図29及び図31は図7相当図である。   Next, another example of the coil current excitation circuit 12 shown in FIG. 4 will be described with reference to FIGS. 27, 28 and 30 are equivalent to FIG. 4, and FIGS. 29 and 31 are equivalent to FIG.

図27において、図4と同一部分については同一符号を付して説明を省略する。12はコイル電流励磁回路12、19は交流を直流に変換する直流変換素子、24はトランジスタ等の半導体素子で構成されたコイル電流供給手段、25は前記電磁コイル7a、7bに流す電流を指令するためのコイル電流指令手段、26は前記電磁コイル7a、7bの電流を検出するための電流検出手段、27はコイル電流制御手段であり、前記コイル電流指令手段25の指令値と前記電流検出手段26の検出値を入力して、前記コイル電流指令手段25の指令値と前記電流検出手段26の検出値とが一致するようにコイル電流供給手段24へ駆動信号を出力し、前記電磁コイル7a、7bの電流を制御する。前記コイル電流励磁回路12は前記直流変換素子19と、前記コイル電流供給手段24と、前記コイル電流指令手段25と、前記電流検出手段26と、コイル電流制御手段27とで構成される。すなわち、この実施例はコイル電流を検知して直流電圧を制御する。   In FIG. 27, the same parts as those in FIG. Reference numeral 12 is a coil current excitation circuit 12, 19 is a DC conversion element for converting AC to DC, 24 is a coil current supply means composed of a semiconductor element such as a transistor, and 25 is a command for a current to flow through the electromagnetic coils 7a and 7b. A coil current command means 26 for detecting the current of the electromagnetic coils 7a and 7b, and 27 a coil current control means. The command value of the coil current command means 25 and the current detection means 26 And a drive signal is output to the coil current supply means 24 so that the command value of the coil current command means 25 and the detection value of the current detection means 26 coincide with each other, and the electromagnetic coils 7a, 7b. To control the current. The coil current excitation circuit 12 includes the DC conversion element 19, the coil current supply means 24, the coil current command means 25, the current detection means 26, and a coil current control means 27. That is, this embodiment detects the coil current and controls the DC voltage.

図28において、図4と同一部分については同一符号を付して説明を省略する。   In FIG. 28, the same parts as those in FIG.

24はサイリスタ、トライアックなどの交流電圧制御素子からなるコイル電流供給手段で、交流電源13から電磁接触器の接点14を介して交流電力が入力される。そして、コイル電流指令手段25の指令値とコイル電流の電流検出手段26の検出値をコイル電流制御手段27に入力して、前記コイル電流指令手段25の指令値と前記電流検出手段26の検出値とが一致するようにコイル電流供給手段24へ駆動信号を出力し交流電圧を制御して、その後直流変換素子19を介して直流電力に変換し、常閉接点15を介して前記電磁コイル7a、7bに通電し、コイル電流を制御するようになっている。すなわち、この実施例はコイル電流を検知して交流電圧を制御する。   Reference numeral 24 denotes a coil current supply means including an AC voltage control element such as a thyristor or a triac. AC power is input from the AC power supply 13 through the contact 14 of the electromagnetic contactor. Then, the command value of the coil current command means 25 and the detection value of the coil current detection means 26 are input to the coil current control means 27, and the command value of the coil current command means 25 and the detection value of the current detection means 26 are input. Is output to the coil current supply means 24 to control the AC voltage, then converted to DC power via the DC conversion element 19, and the electromagnetic coil 7a, 7b is energized to control the coil current. That is, this embodiment detects the coil current and controls the AC voltage.

図29において、図27及び図28の動作タイミングを示す。図7と同一部分については同一符号を付して説明を省略する。   In FIG. 29, the operation timing of FIGS. 27 and 28 is shown. The same parts as those in FIG.

T1時点で電源供給の接点17が接続、T5時点で接点17が遮断となり、T7時点で完全にコイル電流が消滅する。制動解除時動作はT1からT5の期間の2段階のコイル電流指令によりコイル電流が2段階に変化する。このうち、T1からT4は解除動作促進期間、T4からT5は解除動作保持期間である。また、制動付加動作はT5でコイル電流指令が遮断、接点14が遮断となってコイル電流が消滅する。   At the time T1, the power supply contact 17 is connected, at the time T5 the contact 17 is cut off, and at the time T7, the coil current completely disappears. In the brake release operation, the coil current changes in two stages according to the two-stage coil current command in the period from T1 to T5. Among them, T1 to T4 are release operation promotion periods, and T4 to T5 are release operation holding periods. Further, in the braking addition operation, the coil current command is cut off at T5, the contact 14 is cut off, and the coil current disappears.

図30において、図4と同一部分については同一符号を付して説明を省略する。12はコイル電流励磁回路12、28は一定の直流電流が流れる定電流ダイオードである。この定電流ダイオード28により電源電圧の変動に関係なく一定電流を通電することができる。動作タイミングは前記図7と同じであるので省略する。   In FIG. 30, the same parts as those of FIG. Reference numeral 12 denotes a coil current excitation circuit 12 and 28 denotes a constant current diode through which a constant direct current flows. The constant current diode 28 can supply a constant current regardless of the fluctuation of the power supply voltage. The operation timing is the same as in FIG.

次に、図31乃至図33に基づいて、ブレーキドラム1の外周面を制動するブレーキ装置について説明する。前記図1はブレーキドラム1の内周面を制動するブレーキ装置を示した。図1と同一部分については同一符号を付して説明を省略する。   Next, a brake device that brakes the outer peripheral surface of the brake drum 1 will be described with reference to FIGS. 31 to 33. FIG. 1 shows a brake device that brakes the inner peripheral surface of the brake drum 1. The same parts as those in FIG.

図31において、1は被制動体としてのブレーキドラム1で、このブレーキドラム1の外周制動面1bに一対の制動片2が当接するようになっている。3は一対の制動腕3で、前記制動片2を中間部3cに備え一端部3aを可回転的に支持されている。4は一対の制動ばねで、前記制動片2が制動面1bに押圧力を外側から付加するように制動腕3の他端部3bに配置される。   In FIG. 31, reference numeral 1 denotes a brake drum 1 as a braked body, and a pair of braking pieces 2 abut on an outer peripheral braking surface 1 b of the brake drum 1. Reference numeral 3 denotes a pair of braking arms 3, which are provided with the braking piece 2 in an intermediate portion 3c and rotatably supported at one end portion 3a. Reference numeral 4 denotes a pair of braking springs, which are arranged on the other end 3b of the braking arm 3 so that the braking piece 2 applies a pressing force to the braking surface 1b from the outside.

5a、5bは磁気駆動手段で、前記制動ばね4の押圧力を解除するように、前記制動腕3の他端部3b近辺に設けられる。この磁気駆動手段は、例えば図32に示すように前記図2と同じ構造で、図2の磁気駆動手段の左右が逆に配置され、可動側の第2継鉄9a、9bの動きが第1継鉄8a、8bを軸が貫通して外方向に押し出すように配置される。   Reference numerals 5a and 5b denote magnetic drive means, which are provided in the vicinity of the other end 3b of the brake arm 3 so as to release the pressing force of the brake spring 4. For example, as shown in FIG. 32, this magnetic drive means has the same structure as that of FIG. 2, the left and right sides of the magnetic drive means of FIG. 2 are arranged in reverse, and the movement of the second yokes 9a and 9b on the movable side is the first. It arrange | positions so that a shaft may penetrate the yokes 8a and 8b and it may push outward.

また、前記図8のように第1継鉄8a、8bを共通化した場合は、図33に示すように、一方の第2継鉄9aの動きが第1継鉄8の中心を軸16aが貫通して、また他方の第2継鉄9bの動きが第1継鉄8の外側を連結部材29a、29bを介して、それぞれの第2継鉄9a、9bの位置の逆側に出るようになっている。   Further, when the first yokes 8a and 8b are made common as shown in FIG. 8, the movement of one second yoke 9a is centered on the first yoke 8 as shown in FIG. The movement of the other second yoke 9b passes through the outside of the first yoke 8 through the connecting members 29a and 29b to the opposite side of the positions of the second yokes 9a and 9b. It has become.

この場合、連結部材29aは第1継鉄8に支持される支持部材30の軸受31に摺動されている。   In this case, the connecting member 29 a is slid on the bearing 31 of the support member 30 supported by the first yoke 8.

上記のように、ブレーキドラム1の外周を制動する場合も前記実施形態で説明した内周を制動する磁気駆動手段を適用することができる。   As described above, also when braking the outer periphery of the brake drum 1, the magnetic drive means for braking the inner periphery described in the above embodiment can be applied.

また、図34に基づいて、被制動体として制動円板の側面を挟圧するディスク型ブレーキ装置について説明する。   Further, based on FIG. 34, a disc-type brake device that clamps a side surface of a brake disc as a braked body will be described.

このブレーキ装置は回転支持される被制動体としての制動円板32の側面を挟圧して制動するようになっている。すなわち、これまで説明した磁気駆動手段同様構造で、磁石部33と第2継鉄34で磁気駆動手段35が構成され、この磁石部33は永久磁石36、電磁コイル37及び第1継鉄38からなる。前記磁石部33はキャリパ39に支持されて軸40に摺動支持され、キャリパ39の先端部に制動片41aが設けられる。一方、第2継鉄34に軸42が結合され先端部に制動片41bが設けられる。この軸42は前記キャリパ39に軸受43で摺動支持される。前記第1継鉄38と第2継鉄34間に制動ばね44が設けられ、押し広げるようにばね力が作用する。このばね力が前記軸42及びキャリパ39を介して制動円板32を制動片41a、41bで挟圧するようになっている。このディスク型ブレーキ装置においても、上記これまで説明した磁気駆動手段が用いられる。   This brake device brakes by pressing the side surface of a brake disc 32 as a braked body that is rotatably supported. That is, the magnetic drive means 35 is composed of the magnet portion 33 and the second yoke 34 in the same structure as the magnetic drive means described so far. The magnet portion 33 is composed of the permanent magnet 36, the electromagnetic coil 37 and the first yoke 38. Become. The magnet portion 33 is supported by a caliper 39 and slidably supported by a shaft 40, and a brake piece 41 a is provided at the tip of the caliper 39. On the other hand, a shaft 42 is coupled to the second yoke 34, and a braking piece 41b is provided at the tip. The shaft 42 is slidably supported by the caliper 39 with a bearing 43. A braking spring 44 is provided between the first yoke 38 and the second yoke 34, and a spring force acts so as to spread it. This spring force holds the brake disc 32 between the brake pieces 41a and 41b via the shaft 42 and the caliper 39. Also in this disk type brake device, the magnetic drive means described above is used.

次に、上記説明したブレーキ装置がエレベーターに用いられる実施形態を図35に基づいて説明する。図35はブレーキドラム1を押圧するブレーキ装置の例として、図1で説明したブレーキドラム1の内周面を制動する場合の例であるが、図34で説明したディスク型ブレーキ装置も同様である。図1と同一部分については同一符号を付して説明を省略する。   Next, an embodiment in which the brake device described above is used in an elevator will be described with reference to FIG. FIG. 35 shows an example in which the inner peripheral surface of the brake drum 1 described in FIG. 1 is braked as an example of a brake device that presses the brake drum 1, but the same applies to the disc type brake device described in FIG. . The same parts as those in FIG.

図35において、44は巻上機のシーブで、このシーブ44に巻掛けられた主ロープ45の一方側に乗かご46が、他方側につり合おもり47がつるべ式に吊り持ちされており、シーブ44が巻上機モータ48で駆動されて乗かご46及びつり合おもり47が昇降運転される。1は被制動体としてのブレーキドラム1あるいは制動円板で巻上機モータ48とシーブ44を結合する軸49上に設置されている。このブレーキドラム1あるいは制動円板を制動するように上記説明したブレーキ装置が設けられる。前記巻上機はシーブ44、巻上機モータ48及びブレーキ装置で構成される。そして、エレベーターの昇降運転時には巻上機モータ48に通電するとともに、磁気駆動手段5a、5bの電磁コイル7a、7bに通電して制動を解除し、停止時には巻上機モータ48に通電遮断するとともに、電磁コイル7a、7bの通電遮断して制動が付加される。   In FIG. 35, 44 is a sheave of a hoisting machine, and a car 46 is suspended on one side of a main rope 45 wound around the sheave 44, and a counterweight 47 is suspended on the other side. The sheave 44 is driven by a hoisting motor 48 and the car 46 and the counterweight 47 are moved up and down. Reference numeral 1 denotes a brake drum 1 or a brake disc as a braked body, which is installed on a shaft 49 that connects the hoist motor 48 and the sheave 44. The brake device described above is provided so as to brake the brake drum 1 or the brake disc. The hoisting machine includes a sheave 44, a hoisting machine motor 48, and a brake device. The hoisting motor 48 is energized during the elevator lift operation, the electromagnetic coils 7a, 7b of the magnetic drive means 5a, 5b are energized to release the braking, and the hoisting motor 48 is de-energized when stopped. The electromagnetic coils 7a and 7b are deenergized to apply braking.

本発明の一実施形態になるブレーキ装置の全体構成図である。1 is an overall configuration diagram of a brake device according to an embodiment of the present invention. 図1の磁気駆動手段の拡大図である。It is an enlarged view of the magnetic drive means of FIG. 図2の永久磁石の形状を示す図である。It is a figure which shows the shape of the permanent magnet of FIG. 図1の電磁コイルの励磁回路図である。It is an excitation circuit diagram of the electromagnetic coil of FIG. 図2の磁気駆動手段における磁束の流れ図で、図5(a)は電磁コイル非通電、開放時の図5(b)は電磁コイル通電、吸引時の磁束の流れ図である。2 is a flow chart of magnetic flux in the magnetic drive means of FIG. 2. FIG. 5A is a flow chart of magnetic flux when electromagnetic coil is not energized, and FIG. 図5の磁気回路図で、図6(a)電磁コイル非通電、開放時の図6(b)は電磁コイル通電、吸引時の磁気回路図である。FIG. 6B is a magnetic circuit diagram of FIG. 6A when the electromagnetic coil is not energized and opened, and FIG. 6B is a magnetic circuit diagram when the electromagnetic coil is energized and attracted. 制動解除動作から制動付加動作までの電磁コイルの通電電流、磁石空隙などタイミングを示す図である。It is a figure which shows timings, such as an energization current of an electromagnetic coil, a magnet space | gap, from a braking release operation to a braking addition operation. 本発明の他の実施形態になる図5相当図で二組の磁気駆動手段の第1継鉄を共通化した図で、図8(a)は電磁コイル非通電、開放時の図8(b)は電磁コイル通電、吸引時の磁束の流れ図ある。FIG. 8 (a) is a diagram in which the first yokes of two sets of magnetic drive means are shared in the equivalent view of FIG. 5 according to another embodiment of the present invention. FIG. ) Is a flow chart of magnetic flux when an electromagnetic coil is energized and attracted. 図8相当図で電磁コイルを共通一体化した図で、図9(a)は電磁コイル非通電、開放時の図9(b)は電磁コイル通電、吸引時の磁束の流れ図ある。FIG. 9A is a diagram in which the electromagnetic coils are commonly integrated in FIG. 8, and FIG. 9A is a flow diagram of magnetic flux when the electromagnetic coil is energized and attracted, while FIG. 図8、図9に示された永久磁石の磁極面を第一継鉄の磁極面と同一にした磁束の流れ図である。FIG. 10 is a flow diagram of magnetic flux in which the magnetic pole surface of the permanent magnet shown in FIGS. 8 and 9 is the same as the magnetic pole surface of the first yoke. 図8、図9に示された永久磁石の磁極面を第一継鉄の磁極面の凹む位置とした磁束の流れ図である。FIG. 10 is a magnetic flux flow diagram in which the magnetic pole surface of the permanent magnet shown in FIGS. 8 and 9 is positioned at a position where the magnetic pole surface of the first yoke is recessed. 図5(a)、図5(b)で示した永久磁石を電磁コイルの反第2継鉄側に配置した磁束の流れ図である。It is the flowchart of the magnetic flux which has arrange | positioned the permanent magnet shown to Fig.5 (a) and FIG.5 (b) to the anti-second yoke side of an electromagnetic coil. 永久磁石を凹状断面とし、この凹部内に電磁コイルを収納した磁束の流れ図で、図13(a)は電磁コイル非通電、開放時の図13(b)は電磁コイル通電、吸引時の磁束の流れ図である。FIG. 13 (a) shows a non-energized state of the electromagnetic coil, and FIG. 13 (b) shows a state of the magnetic flux when the electromagnetic coil is energized and attracted when the permanent magnet is opened. It is a flowchart. 図5の永久磁石を大径と小径の二つの筒状永久磁石としたもので、図14(a)は電磁コイル非通電、開放時の図14(b)は電磁コイル通電、吸引時の磁束の流れ図である。The permanent magnet shown in FIG. 5 is a cylindrical permanent magnet having a large diameter and a small diameter. FIG. 14 (a) is a non-energized electromagnetic coil, and FIG. 14 (b) is a magnetic flux when an electromagnetic coil is energized and attracted when opened. It is a flowchart. 永久磁石を大径と小径の二つの筒状永久磁石とした図3相当図である。FIG. 4 is a view corresponding to FIG. 3 in which the permanent magnets are two cylindrical permanent magnets having a large diameter and a small diameter. 永久磁石を第1継鉄底部の電磁コイルを挟むように並行に配置した図5相当図で、図16(a)は電磁コイル非通電、開放時の図16bは電磁コイル通電、吸引時の磁束の流れ図である。FIG. 16A is a view corresponding to FIG. 5 in which the permanent magnets are arranged in parallel so as to sandwich the electromagnetic coil at the bottom of the first yoke. FIG. 16A is a non-energized state, FIG. It is a flowchart. 電磁コイルの外周側及び内周側に図15の永久磁石を並行に配置した図9相当図で、図17(a)は電磁コイル非通電、開放時の図17(b)は電磁コイル通電、吸引時の磁束の流れ図である。15 is a diagram corresponding to FIG. 9 in which the permanent magnets of FIG. 15 are arranged in parallel on the outer peripheral side and the inner peripheral side of the electromagnetic coil. FIG. 17 (a) is a non-energized electromagnetic coil, and FIG. It is a flowchart of the magnetic flux at the time of attraction | suction. 永久磁石と電磁コイルが第2継鉄の可動方向に対して直列状に配置した図5相当図で、図18(a)は電磁コイル非通電、開放時の図18(b)は電磁コイル通電、吸引時の磁束の流れ図である。FIG. 18A is a view corresponding to FIG. 5 in which the permanent magnet and the electromagnetic coil are arranged in series with respect to the moving direction of the second yoke. FIG. 18A is a non-energized state, and FIG. It is a flowchart of the magnetic flux at the time of attraction | suction. 永久磁石を環状円板とした図3相当図である。FIG. 4 is a view corresponding to FIG. 3 in which a permanent magnet is an annular disk. 図19に示された永久磁石の磁極面を第一継鉄の磁極面と同一にした磁束の流れ図である。FIG. 20 is a magnetic flux flow diagram in which the magnetic pole surface of the permanent magnet shown in FIG. 19 is the same as the magnetic pole surface of the first yoke. 図19に示された永久磁石の磁極面を第一継鉄の磁極面の凹む位置とした磁束の流れ図である。FIG. 20 is a flow chart of magnetic flux in which the magnetic pole surface of the permanent magnet shown in FIG. 19 is located at a position where the magnetic pole surface of the first yoke is recessed. 図19で示した永久磁石を電磁コイルの反第2継鉄側に配置した磁束の流れ図である。FIG. 20 is a flow chart of magnetic flux in which the permanent magnet shown in FIG. 19 is disposed on the side opposite to the second yoke of the electromagnetic coil. 永久磁石が第2継鉄側に配置され、電磁コイルが第1継鉄側に配置された図5相当図で、図23(a)は電磁コイル非通電、開放時の図23(b)は電磁コイル通電、吸引時の磁束の流れ図である。FIG. 23A is a view corresponding to FIG. 5 in which the permanent magnet is disposed on the second yoke side and the electromagnetic coil is disposed on the first yoke side. FIG. It is a flowchart of the magnetic flux at the time of electromagnetic coil energization and attraction. 永久磁石が第2継鉄側に配置され、電磁コイルが第1継鉄側に配置された図14相当図で、図24a電磁コイル非通電、開放時の図24bは電磁コイル通電、吸引時の磁気回路図である。FIG. 24a is a view corresponding to FIG. 14 in which the permanent magnet is disposed on the second yoke side and the electromagnetic coil is disposed on the first yoke side. FIG. It is a magnetic circuit diagram. 永久磁石が第2継鉄側に配置され、電磁コイルが第1継鉄側に配置された図18相当図で、図25(a)は電磁コイル非通電、開放時の図25(b)は電磁コイル通電、吸引時の磁束の流れ図である。FIG. 25A is a view corresponding to FIG. 18 in which the permanent magnet is disposed on the second yoke side and the electromagnetic coil is disposed on the first yoke side. FIG. It is a flowchart of the magnetic flux at the time of electromagnetic coil energization and attraction. 図23(a)、図23(b)相当の磁気回路図で、図26(a)は電磁コイル非通電、開放時の、図26(b)は電磁コイル通電、吸引時の磁気回路図である。FIG. 26A is a magnetic circuit diagram corresponding to FIG. 23A and FIG. 23B, FIG. 26A is a magnetic circuit diagram when the electromagnetic coil is not energized and opened, and FIG. is there. 他のコイル電流励磁回路を示す図4相当図である。FIG. 5 is a view corresponding to FIG. 4 showing another coil current excitation circuit. 更に他のコイル電流励磁回路を示す図4相当図である。FIG. 5 is a view corresponding to FIG. 4 showing still another coil current excitation circuit. 図27、図28の動作タイミングを示す図7相当図である。FIG. 29 is a diagram corresponding to FIG. 7 illustrating the operation timings of FIGS. 27 and 28. 別なコイル電流励磁回路を示す図4相当図である。FIG. 5 is a view corresponding to FIG. 4 showing another coil current excitation circuit. ブレーキドラムの外周面を制動する図1相当図である。FIG. 2 is a view corresponding to FIG. 1 for braking the outer peripheral surface of the brake drum. 図31の磁気駆動手段を示す図2相当図である。FIG. 32 is a view corresponding to FIG. 2 and showing the magnetic drive means of FIG. 31. 図31の別な磁気駆動手段を示す図32相当図である。FIG. 33 is a view corresponding to FIG. 32 showing another magnetic drive means of FIG. 31. 制動円板の側面を挟圧制動するディスク型ブレーキを示す図1相当図である。FIG. 2 is a view corresponding to FIG. 1 showing a disc-type brake that clamps and brakes a side surface of a brake disc. 本実施形態のブレーキ装置をエレベーターに用いた例を示す図である。It is a figure which shows the example which used the brake device of this embodiment for the elevator.

符号の説明Explanation of symbols

2 制動片
4 制動ばね
5a、5b 磁気駆動手段
6a、6b 永久磁石
7a、7b 電磁コイル
8a、8b 第1継鉄
9a、9b 第2継鉄
12 コイル電流励磁回路
19 直流変換素子
20 抵抗
24 コイル電流供給手段
25 コイル電流指令手段
26 電流検出手段
27 コイル電流制御手段
28 定電流ダイオード
41 乗かご
42 モータ
DESCRIPTION OF SYMBOLS 2 Brake piece 4 Brake spring 5a, 5b Magnetic drive means 6a, 6b Permanent magnet 7a, 7b Electromagnetic coil 8a, 8b 1st yoke 9a, 9b 2nd yoke 12 Coil current excitation circuit 19 DC conversion element 20 Resistance 24 Coil current Supply means 25 Coil current command means 26 Current detection means 27 Coil current control means 28 Constant current diode 41 Car 42 Motor

Claims (2)

被制動体に制動片を押圧し制動を付加するための制動ばねと、この制動ばねの付勢力に抗して作動し制動を解除する磁気駆動手段とで構成したブレーキ装置において、
前記磁気駆動手段は第1継鉄と第2継鉄と電磁コイル及び永久磁石とで構成し、この第1継鉄と第2継鉄の構成で少なくとも一つの電磁コイルと永久磁石とを配置し、永久磁石の磁極面をこの磁気駆動手段の動作方向に配置して、この両者で発生する磁束を吸引時では加算するとともに、前記第1継鉄と第2継鉄の一方を固定体、他方を可動体にし、かつ、前記電磁コイルと前記永久磁石の吸引力を前記可動体を吸引する方向と同一方向とし、一方、前記電磁コイルを付勢して、制動解保持中には一定の保持電流とし、且つ、この保持電流を消勢して制動付加動作を行うコイル電流励磁回路を備えたことを特徴とするブレーキ装置。
In a brake device composed of a braking spring for pressing a braking piece against a braked body and applying braking, and a magnetic driving means that operates against the urging force of the braking spring and releases braking,
The magnetic drive means includes a first yoke, a second yoke, an electromagnetic coil, and a permanent magnet, and at least one electromagnetic coil and a permanent magnet are arranged in the configuration of the first yoke and the second yoke. The magnetic pole surface of the permanent magnet is arranged in the direction of operation of the magnetic drive means, and the magnetic flux generated by both is added at the time of attraction, and one of the first and second yokes is fixed to the fixed body, the other It was to the movable body, and wherein the suction force of the electromagnetic coil and the permanent magnet and the same direction for attracting the movable member while said energized electromagnetic coil, holding constant during braking solution holding current and then, and the brake device characterized by comprising a coil current excitation circuit for performing braking additional action by de-energizing the holding current.
前記磁気駆動手段は、前記永久磁石と電磁コイルとをこの磁気駆動手段の動作方向に直列に配置したことを特徴とする請求項1記載のブレーキ装置。   2. The brake device according to claim 1, wherein the magnetic driving means has the permanent magnet and an electromagnetic coil arranged in series in the operating direction of the magnetic driving means.
JP2007169382A 2007-06-27 2007-06-27 Brake device Expired - Fee Related JP5049672B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007169382A JP5049672B2 (en) 2007-06-27 2007-06-27 Brake device
CN200810098698XA CN101332966B (en) 2007-06-27 2008-06-06 Brake gear
HK09103747.1A HK1125616A1 (en) 2007-06-27 2009-04-23 Brake gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169382A JP5049672B2 (en) 2007-06-27 2007-06-27 Brake device

Publications (2)

Publication Number Publication Date
JP2009007104A JP2009007104A (en) 2009-01-15
JP5049672B2 true JP5049672B2 (en) 2012-10-17

Family

ID=40195892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169382A Expired - Fee Related JP5049672B2 (en) 2007-06-27 2007-06-27 Brake device

Country Status (3)

Country Link
JP (1) JP5049672B2 (en)
CN (1) CN101332966B (en)
HK (1) HK1125616A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164875B2 (en) * 2009-02-04 2013-03-21 株式会社日立製作所 Electromagnetic brake control device for elevator
JP5147753B2 (en) * 2009-02-18 2013-02-20 株式会社日立製作所 Electromagnetic brake
JP5997585B2 (en) * 2012-10-31 2016-09-28 株式会社日立製作所 Elevator electromagnetic brake device
CN103089867B (en) * 2013-01-25 2016-01-20 徐園植 Magnetic pressure servo brake master cylinder
JP6724752B2 (en) * 2016-12-05 2020-07-15 日本精工株式会社 Electromagnetic brake
CN107686069B (en) * 2017-08-31 2018-12-04 长乐晶尚设计有限公司 A kind of electromagnetic brake elevator machine equipment of water conservancy construction
US20210147177A1 (en) * 2019-11-14 2021-05-20 Otis Elevator Company Electromagnetic brake configured to slow deceleration rate of passenger conveyer during braking
CN111807187B (en) * 2020-06-24 2022-03-22 深圳供电局有限公司 Elevator braking device and elevator system
CN113685465B (en) * 2021-09-18 2022-03-01 奥创动力传动(深圳)有限公司 Brake
CN116771823A (en) * 2023-08-28 2023-09-19 成都瑞迪智驱科技股份有限公司 Small-size large-torque permanent magnet brake

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526779Y1 (en) * 1969-03-31 1977-02-12
JPS5840810U (en) * 1981-09-14 1983-03-17 神鋼電機株式会社 electromagnet
JPS5967631U (en) * 1982-10-28 1984-05-08 三菱電機株式会社 Electromagnetic coupling device
DE19801334C2 (en) * 1998-01-16 2000-05-25 Saurer Allma Gmbh Electromagnetic hysteresis brake, especially as a thread brake for textile machines
JP4607631B2 (en) * 2005-03-16 2011-01-05 株式会社日立製作所 Brake control device for elevator
CN1891613A (en) * 2005-07-08 2007-01-10 永大机电工业股份有限公司 Dual electromagnetic brake structure for elevator

Also Published As

Publication number Publication date
CN101332966B (en) 2012-05-30
HK1125616A1 (en) 2009-08-14
JP2009007104A (en) 2009-01-15
CN101332966A (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5049672B2 (en) Brake device
JP4563429B2 (en) Brake control device
JP4607631B2 (en) Brake control device for elevator
JP5422566B2 (en) Elevator brake device having permanent magnet bias for applying braking force
JP5188699B2 (en) Brake control device for elevator
JP4359187B2 (en) Electromagnetic brake device and electromagnetic brake device for elevator hoisting machine
JP2010189138A (en) Electromagnetic brake
JP2006324399A (en) Actuator and actuator driving device
JP4774282B2 (en) Brake control device for elevator
JP6704533B1 (en) Electromagnetic braking device and hoisting machine
JP4812544B2 (en) Elevator hoisting machine
JP2008081226A (en) Brake controller for elevator
JP2014159319A (en) Elevator device and brake gear of the same
CN105905828A (en) Electromagnetic brake device and elevator
JP2006199408A (en) Hoist machine for elevator
JP4878089B2 (en) Elevator hoist brakes
JP2002130342A (en) Non-excitation actuated type electromagnetic brake
JP4550602B2 (en) Electromagnet device, drive device using electromagnet device, and elevator safety device using drive device
JP6293069B2 (en) Electromagnetic brake device and elevator device using the same
JP5164875B2 (en) Electromagnetic brake control device for elevator
JP2004316716A (en) Electromagnetic brake device
JPH07172734A (en) Balancing weight of elevator
JP4958931B2 (en) Electromagnetic brake
JP4451033B2 (en) Braking device
JP4779767B2 (en) Braking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees