JP4563429B2 - Brake control device - Google Patents

Brake control device Download PDF

Info

Publication number
JP4563429B2
JP4563429B2 JP2007206763A JP2007206763A JP4563429B2 JP 4563429 B2 JP4563429 B2 JP 4563429B2 JP 2007206763 A JP2007206763 A JP 2007206763A JP 2007206763 A JP2007206763 A JP 2007206763A JP 4563429 B2 JP4563429 B2 JP 4563429B2
Authority
JP
Japan
Prior art keywords
brake
braking
current
release
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007206763A
Other languages
Japanese (ja)
Other versions
JP2009041654A (en
Inventor
正信 伊藤
哲志 小野
秀樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Mito Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2007206763A priority Critical patent/JP4563429B2/en
Priority to CN2008101300328A priority patent/CN101363489B/en
Publication of JP2009041654A publication Critical patent/JP2009041654A/en
Application granted granted Critical
Publication of JP4563429B2 publication Critical patent/JP4563429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Arrangements (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Description

本発明は、被制動体に対してばね力で制動片を押圧して制動力を付加し、電磁コイルと永久磁石及び継鉄で構成される磁気駆動手段の電磁コイルで制動力の解除動作及び付加動作をするブレーキの制御に関するものである。   The present invention applies a braking force by pressing a braking piece against a braked body with a spring force, and releases the braking force with an electromagnetic coil of a magnetic driving means composed of an electromagnetic coil, a permanent magnet, and a yoke. The present invention relates to the control of a brake that performs an additional operation.

従来、ブレーキ装置として、継鉄、電磁コイル及び永久磁石からなる前記磁気吸引手段が提案されており、いずれも永久磁石で可動体を吸着して制動付加状態とし、電磁コイルによって永久磁石の磁束とは逆方向に励磁して永久磁石の吸引力を打ち消すようにして制動を解除するものである(例えば特許文献1乃至5参照)。   Conventionally, the magnetic attraction means comprising a yoke, an electromagnetic coil, and a permanent magnet has been proposed as a brake device, all of which attract a movable body with a permanent magnet and put it in a braking state. Is to release the braking by exciting in the opposite direction to cancel the attractive force of the permanent magnet (see, for example, Patent Documents 1 to 5).

また、前記磁気吸引手段の電磁コイルの励磁回路が提案されている(例えば特許文献2、3)。
実公昭52−6779号公報 実公昭62−3329号公報 特公昭62−4264号公報 実公平2−4258号公報 特開2000−186724号公報
Further, an excitation circuit for an electromagnetic coil of the magnetic attraction means has been proposed (for example, Patent Documents 2 and 3).
Japanese Utility Model Publication No. 52-6679 Japanese Utility Model Publication No. 62-3329 Japanese Examined Patent Publication No. 62-4264 No.2-4258 JP 2000-186724 A

エレベーター用ブレーキ装置などによく見られるように、一般にブレーキ装置として負動作の電磁ブレーキが用いられている。すなわち、直流電流の通電、遮断でブレーキの解除、付加が比較的簡単に行われるためである。励磁電源を通電時、電磁石の磁気力で被制動体への押圧を解除して制動解除し、励磁電流遮断時、被制動体にばね力で押圧して制動付加するものであり、ばね力に十分対抗できる磁気力の電磁石が必要である。   As is often seen in elevator brake devices and the like, in general, a negative operation electromagnetic brake is used as a brake device. That is, the release and addition of the brake can be performed relatively easily by energizing and interrupting the direct current. When the excitation power supply is energized, the brake force is released by releasing the pressure applied to the braked body by the magnetic force of the electromagnet. When the excitation current is cut off, the braked body is pressed by the spring force to apply braking. An electromagnet with sufficient magnetic force is required.

近年、エレベーターでは昇降路頂部の機械室を不要とする機械室レスエレベーターが主流となってきた。この場合、昇降路内の限られた空間に巻上機を設置する必要がある。すなわち、巻上機の小型化、とくにブレーキ装置の小型化が重要となってきた。そこで、電磁石に永久磁石を併用して小型化することが考えられている。   In recent years, machine room-less elevators that do not require a machine room at the top of the hoistway have become mainstream. In this case, it is necessary to install the hoisting machine in a limited space in the hoistway. That is, downsizing of the hoisting machine, particularly downsizing of the brake device has become important. Therefore, it is considered to reduce the size by using a permanent magnet together with the electromagnet.

電磁石と永久磁石を併用したブレーキ装置は、上記特許文献1乃至5に提案され、電磁石の継鉄内に永久磁石を埋設し、永久磁石の磁気力で被制動体を圧接して制動を付加し、電磁石の磁気力で永久磁石の磁気力を反発させて被制動体の圧接を解除して制動解除するものである。しかし、ばね力で制動付加し、永久磁石と電磁石の併用で制動解除動作するものは提案されていなかった。   Brake devices using both electromagnets and permanent magnets are proposed in Patent Documents 1 to 5, in which permanent magnets are embedded in the yokes of the electromagnets, and the braked body is pressed by the magnetic force of the permanent magnets to apply braking. The magnetic force of the permanent magnet is repelled by the magnetic force of the electromagnet to release the pressure contact of the braked body and release the brake. However, there has been no proposal for applying braking by spring force and releasing the braking by using a combination of a permanent magnet and an electromagnet.

本発明の目的は、ばね力で制動付加し、永久磁石と電磁石の併用で制動解除動作するものにおいて小型化できるブレーキの制御装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a brake control device that can be reduced in size when a brake is applied by a spring force and a brake is released by a combination of a permanent magnet and an electromagnet.

上記目的を達成するため、本発明の請求項1では、被制動体に制動片を押圧し制動を付加するための制動ばねと、この制動ばねの付勢力に抗して作動し制動を解除する磁気駆動手段とで構成し、この磁気駆動手段は第1継鉄と第2継鉄と電磁コイル及び永久磁石とからなり、この第1継鉄又は第2継鉄を固定体とし他方を可動体として構成し、前記電磁コイルを励磁付勢して制動解除動作、励磁消勢して制動付加動作を行うコイル電流励磁回路を備えたブレーキ装置において、 前記コイル電流励磁回路は、前記電磁コイルを直流電源で前記制動解除動作時には一方向の極性励磁とし、前記制動付加動作時には制動解除動作時と逆方向の極性励磁とすると共に、前記コイル電流励磁回路は、二組の直流電源と電流制限抵抗及び接点からなり、前記接点で、前記制動解除動作時には電磁コイルを一方の直流電源で一方向に励磁し、前記制動付加動作時には電磁コイルを他方の直流電源で制動解除動作時と逆方向に励磁するようにしたことを特徴とする。 In order to achieve the above object, according to a first aspect of the present invention, a braking spring for pressing a braking piece against a braked body to apply braking, and an operation against the urging force of the braking spring to release the braking. The magnetic drive means comprises a first yoke, a second yoke, an electromagnetic coil, and a permanent magnet. The first or second yoke is used as a fixed body, and the other is a movable body. And a coil current excitation circuit including a coil current excitation circuit that performs excitation release by energizing the electromagnetic coil and performs brake addition operation by deenergizing the electromagnetic coil, wherein the coil current excitation circuit directs the electromagnetic coil to DC At the time of the brake release operation with the power source, the polarity excitation in one direction is performed, and at the time of the brake addition operation, the polarity excitation in the opposite direction to that at the time of the brake release operation is performed, and the coil current excitation circuit includes two sets of DC power sources, current limiting resistors and Consisting of contacts, front At the point of contact, the electromagnetic coil is excited in one direction by one DC power source during the braking release operation, and the electromagnetic coil is excited in the opposite direction by the other DC power source during the braking addition operation. It is characterized by.

この構成により、制動解除保持時に永久磁石の磁気力により、電磁コイルの磁気力を低減、すなわち電磁コイルの励磁電流を低減できると共に、電磁コイルの励磁回路を簡単化できるので電磁コイルを小型化でき、全体として磁気吸引手段、ブレーキ装置を小型化できる。 With this configuration, the magnetic force of the permanent magnet when the brake release retention, reduce the size of the electromagnetic coil reduces the magnetic force of the electromagnetic coil, i.e. Rutotomoni reduces the excitation current of the electromagnetic coil, it is possible to simplify the exciting circuit of the electromagnetic coil As a whole, the magnetic attraction means and the brake device can be reduced in size.

また、請求項では、請求項において、前記コイル電流励磁回路は、直流電源と、この直流電源からの出力の直流電流に対して一定電流にする定電流ダイオードと、この定電流ダイオードの出力の直流電流を制御する電流制限抵抗と、接点とで構成したことを特徴とする。 According to a second aspect of the present invention, in the first aspect , the coil current excitation circuit includes a direct current power source, a constant current diode that makes a constant current with respect to a direct current output from the direct current power source, and an output of the constant current diode. It is characterized by comprising a current limiting resistor for controlling the direct current and a contact.

この構成により、コイル電流の保持電流一定制御できるとともに、請求項1と同様な効果が得られる。   With this configuration, the coil current holding current can be controlled at a constant level, and the same effect as in the first aspect can be obtained.

また、請求項では、請求項1乃至において、前記磁気駆動手段の磁気吸引力は、永久磁石だけでは制動解除保持ができない設定としたことを特徴とする。 According to a third aspect of the present invention , in the first or second aspect , the magnetic attraction force of the magnetic drive means is set so that the brake cannot be released and held only by a permanent magnet.

この構成により、コイル電流が遮断された時、制動付加状態に復帰できる効果が得られる。   With this configuration, when the coil current is interrupted, an effect of returning to the braking applied state can be obtained.

また、請求項では、請求項1乃至において、前記磁気駆動手段は、制動解除の保持状態で前記電磁コイルを消勢すると制動付加状態になるようにしたことを特徴とする。 According to a fourth aspect of the present invention , in the first or second aspect of the present invention, the magnetic driving unit is configured to be in a braking applied state when the electromagnetic coil is de-energized in a braking released holding state.

この構成により、請求項と同様な効果が得られる。 With this configuration, the same effect as in the third aspect can be obtained.

また、請求項では、請求項1乃至において、前記磁気駆動手段の磁気吸引力は、制動付加動作時、前記可動体を制動解除保持ができないコイル電流に設定したことを特徴とする。 Moreover, in claim 5, in claim 1 or 2, the magnetic attraction force of the magnetic drive means, braking addition operation, it is characterized in that setting the movable member in the coil current can not brake release retention.

この構成により、請求項と同様な効果が得られる。 With this configuration, the same effect as in the third aspect can be obtained.

また、請求項では、請求項1乃至において、前記磁気駆動手段は、制動付加状態で可動体の動きを制限し開放状態を保持する開放保持手段を設けたことを特徴とする記載のブレーキ制御装置。 According to a sixth aspect of the present invention, the brake according to any one of the first to fifth aspects, wherein the magnetic driving means is provided with an open holding means for restricting the movement of the movable body in a brake applied state and holding the open state. Control device.

この構成により、制動付加動作時で制動付加状態に復帰した際、再度、可動体を吸引し制動解除状態となるのを防止できる効果が得られる。   With this configuration, it is possible to prevent the movable body from being sucked again and brought into the brake release state when returning to the brake addition state during the braking addition operation.

また、請求項では、請求項において、前記開放保持手段は係合子と押ばねとで構成し、この係合子をばね力で可動側体に押圧するようにしたことを特徴とする。 According to a seventh aspect of the present invention, in the fifth aspect of the present invention, the open holding means includes an engaging element and a pressing spring, and the engaging element is pressed against the movable side body by a spring force.

この構成により、請求項と同様な効果が得られる。 With this configuration, the same effect as in the fifth aspect can be obtained.

また、請求項では、請求項において、前記開放保持手段は係合子と、押圧ばねと、アクチュエータで構成し、ばね力で前記係合子を可動側体に押圧し、前記アクチュエータでばねの押圧力を解除して前記可動側体の開放保持を解除するようにしたことを特徴とする。 According to an eighth aspect of the present invention, in the fifth aspect of the present invention, the open holding means comprises an engaging element, a pressing spring, and an actuator. The spring is pressed against the movable body by a spring force, and the spring is pressed by the actuator. It is characterized by releasing the pressure and releasing the holding of the movable side body.

この構成により、請求項と同様な効果が得られる。 With this configuration, the same effect as in the fifth aspect can be obtained.

また、請求項では、請求項において、前記開放保持手段は永久磁石と継鉄とからなる磁気吸着手段で可動側体の開放を保持するようにしたことを特徴とする。 According to a ninth aspect of the present invention, in the fifth aspect of the present invention, the opening holding means holds the opening of the movable side body by a magnetic attraction means comprising a permanent magnet and a yoke.

この構成により、請求項と同様な効果が得られる。 With this configuration, the same effect as in the fifth aspect can be obtained.

本発明によれば、ばね力で制動付加し、永久磁石と電磁石の併用で制動解除動作するものにおいて小型化できるブレーキ制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the brake control apparatus which can add a brake with spring force and can reduce in size in what performs a brake release operation | movement by the combined use of a permanent magnet and an electromagnet can be provided.

以下、本発明のブレーキ制御装置の実施形態を図面に基き説明する。
図1乃至図9は、本発明のブレーキ制御装置の一実施形態で、図1はブレーキ装置の一例としてドラムブレーキの全体構成図、図2は可動体である第2継鉄の非吸着で開放状態を示す図1の磁気駆動手段の拡大図、図3は図2の永久磁石の形状の一例を示す図、図4は図1の電磁コイルの励磁回路、図5は図2の磁気駆動手段の可動体である第2継鉄の吸着状態を示す図、図6は図2の磁気駆動手段の制動解除動作から制動付加動作までの動作タイミング図、図7は磁気駆動手段の磁束と空隙の関係及び制動解除保持時の永久磁石磁束の設定を示す図、図8A、図8Bは可動体である第2継鉄の作動検知方法の一例を示す図で、図8Aは第2継鉄が非吸着状態、図8Bは第2継鉄が吸着状態を示す図、図9A、図9Bは図8A、図8Bの可動体である第2継鉄の作動検知結果による正常、異常判断を示す図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a brake control device of the present invention will be described with reference to the drawings.
1 to 9 show an embodiment of a brake control device according to the present invention. FIG. 1 is an overall configuration diagram of a drum brake as an example of the brake device. FIG. 2 is a non-adsorbed release of a second yoke as a movable body. FIG. 3 is a diagram showing an example of the shape of the permanent magnet shown in FIG. 2, FIG. 4 is an excitation circuit for the electromagnetic coil shown in FIG. 1, and FIG. 5 is a magnetic drive means shown in FIG. FIG. 6 is an operation timing diagram from the brake release operation to the brake addition operation of the magnetic drive means of FIG. 2, and FIG. 7 is a diagram of the magnetic flux and gap of the magnetic drive means. FIG. 8A and FIG. 8B are diagrams showing an example of a method for detecting the operation of the second yoke, which is a movable body, and FIG. Adsorption state, FIG. 8B is a diagram showing the second yoke in the adsorption state, and FIGS. 9A and 9B are movable of FIGS. 8A and 8B. Normal by the operation detection result of the second yoke is a diagram illustrating an abnormality determination.

図1において、1は被制動体としてのブレーキドラムで、このブレーキドラム1の外周制動面1aに一対の制動片2が当接するようになっている。3は一対の制動腕で、前記制動片2を中間部3cに備え一端部3aを可回転的に支持されている。4は一対の制動ばねで制動腕3の他端部3bに配置され、矢印4a、4b方向にばね力が作用し、前記制動片2が制動面1aに矢印2a、2b方向に押圧力を作用するようになっている。   In FIG. 1, reference numeral 1 denotes a brake drum as a body to be braked, and a pair of braking pieces 2 abut on an outer peripheral braking surface 1 a of the brake drum 1. Reference numeral 3 denotes a pair of braking arms. The braking piece 2 is provided in the intermediate portion 3c, and the one end portion 3a is rotatably supported. Reference numeral 4 denotes a pair of braking springs disposed on the other end portion 3b of the braking arm 3. A spring force acts in the directions of arrows 4a and 4b, and the braking piece 2 exerts a pressing force on the braking surface 1a in the directions of arrows 2a and 2b. It is supposed to be.

5a、5bは磁気駆動手段で、前記制動ばね4に対抗してブレーキドラム1への押圧力を解除するように、前記制動腕3の他端部3b近辺に設けられる。前記磁気駆動手段5a、5bは磁石部10a、10bと第2継鉄9a、9bからなり、この磁石部10a、10bは永久磁石6a、6bと、電磁コイル7a、7bと、第1継鉄8a、8bとで構成される。前記第1継鉄8a、8bには電磁コイル7a、7b及び永久磁石6a、6bが配置され、磁石部10a、10bは第1継鉄8a、8bの磁極面11a、11bを有し、この磁極面11a、11bに対向して第2継鉄9a、9bが配置される。すなわち、磁気駆動手段5a、5bとして同様形状、構成のものを2組有し、前記ブレーキドラム1の中心線1bに対してほぼ左右対称に配置される。また、可動側の第2継鉄9a、9bの動き(矢印9c、9d)が第1継鉄8a、8bを貫通して反対側に出るようになっており、前記制動腕3の他端部3bを駆動し、制動片2まで一体的に駆動するようになっている。   5a and 5b are magnetic drive means provided near the other end 3b of the brake arm 3 so as to release the pressing force to the brake drum 1 against the brake spring 4. The magnetic drive means 5a and 5b are composed of magnet portions 10a and 10b and second yokes 9a and 9b. The magnet portions 10a and 10b are permanent magnets 6a and 6b, electromagnetic coils 7a and 7b, and a first yoke 8a. , 8b. The first yokes 8a and 8b are provided with electromagnetic coils 7a and 7b and permanent magnets 6a and 6b. The magnet portions 10a and 10b have magnetic pole surfaces 11a and 11b of the first yokes 8a and 8b. The second yokes 9a and 9b are arranged to face the surfaces 11a and 11b. That is, the magnetic drive means 5a and 5b have two sets having the same shape and configuration, and are arranged substantially symmetrically with respect to the center line 1b of the brake drum 1. The movement of the second yokes 9a, 9b on the movable side (arrows 9c, 9d) passes through the first yokes 8a, 8b and exits to the opposite side, and the other end of the braking arm 3 3b is driven, and the brake piece 2 is integrally driven.

この実施例では第1継鉄8a、8b側が固定で第2継鉄9a、9b側が可動であるが、逆に第1継鉄8a、8b側が可動で第2継鉄9a、9b側が固定であっても良い。そして、前記電磁コイル7a、7bに通電すると第2継鉄9a、9bが吸引され、前記制動腕3を押し拡げる方向に作動する。12は前記電磁コイル7a、7bに通電するコイル電流励磁回路であり、電磁コイル7a、7bの励磁電流を制御する。13はこのコイル電流励磁回路12に供給する交流電源、14はこの交流電源13を接続又は遮断する電磁接触器の接点であり、この接点14を介して前記コイル電流励磁回路12に接続される。   In this embodiment, the first yokes 8a and 8b are fixed and the second yokes 9a and 9b are movable. Conversely, the first yokes 8a and 8b are movable and the second yokes 9a and 9b are fixed. May be. When the electromagnetic coils 7a and 7b are energized, the second yokes 9a and 9b are attracted and actuated in the direction of expanding the braking arm 3. A coil current excitation circuit 12 energizes the electromagnetic coils 7a and 7b, and controls the excitation current of the electromagnetic coils 7a and 7b. Reference numeral 13 denotes an AC power supply to be supplied to the coil current excitation circuit 12, and reference numeral 14 denotes a contact of an electromagnetic contactor for connecting or disconnecting the AC power supply 13, which is connected to the coil current excitation circuit 12 through the contact 14.

図2において、第1継鉄8a、8bはE字状断面で、このE字状断面の凹部に永久磁石6a、6bと電磁コイル7a、7bとが第2継鉄9a、9bの可動方向(矢印9c、9d)に対して直列状に配置されて磁石部10a、10bが形成される。永久磁石6a、6bの磁極面11c、11d及び第1継鉄8a、8bの磁極面11a、11bが並行して、一定の空隙で第2継鉄9a、9bに対向するようになっている。   In FIG. 2, the first yokes 8a and 8b have an E-shaped cross section, and permanent magnets 6a and 6b and electromagnetic coils 7a and 7b are moved in the movable direction of the second yokes 9a and 9b in the recesses of the E-shaped cross section ( Magnet portions 10a and 10b are formed in series with respect to arrows 9c and 9d). The magnetic pole surfaces 11c, 11d of the permanent magnets 6a, 6b and the magnetic pole surfaces 11a, 11b of the first yokes 8a, 8b are arranged in parallel to face the second yokes 9a, 9b with a certain gap.

この実施例では永久磁石6a、6bの磁極面11c、11dが第1継鉄8a、8bの磁極面11a、11bより突出ているが、同一面であっても良いし窪んでいても良い。第2継鉄9a、9bはそれぞれ軸16a、16bに支持され、この軸16a、16bは第1継鉄8a、8bの中心部で軸受17に可動支持される。   In this embodiment, the magnetic pole surfaces 11c and 11d of the permanent magnets 6a and 6b protrude from the magnetic pole surfaces 11a and 11b of the first yokes 8a and 8b, but they may be the same surface or may be recessed. The second yokes 9a and 9b are supported by shafts 16a and 16b, respectively. The shafts 16a and 16b are movably supported by the bearing 17 at the center of the first yokes 8a and 8b.

この図は電磁コイル7a、7bに非通電時で第2継鉄9a、9bが非吸着、開放状態を示しており、永久磁石6a、6bによる磁束6cが発生しているが第2継鉄9a、9bとの空隙が大きいのでほとんど吸引力として作用しない。そして、電磁コイル7a、7bに通電すると第2継鉄9a、9bが吸引され、矢印9c、9dの方向に移動する。18は空隙保持片で第2継鉄9a、9bが磁石部10a、10bに吸引、吸着される時、一定空隙を保持する。15は第1継鉄9a、9bの開放保持手段で電磁コイル7a、7b非通電時に可動体である第1継鉄9a、9bの開放を保持し、押ばね15aと係合子15bからなり、第1継鉄9a、9bの外周面に形成した窪み9eに係合子15bが係合されて拘束されるようになっている。   This figure shows that the second yokes 9a, 9b are not attracted and opened when the electromagnetic coils 7a, 7b are not energized, and the magnetic flux 6c is generated by the permanent magnets 6a, 6b, but the second yoke 9a. , 9b does not act as a suction force because of the large gap with 9b. When the electromagnetic coils 7a and 7b are energized, the second yokes 9a and 9b are attracted and moved in the directions of arrows 9c and 9d. Reference numeral 18 denotes a gap holding piece which holds a fixed gap when the second yokes 9a and 9b are attracted and attracted to the magnet portions 10a and 10b. 15 is an opening holding means for the first yokes 9a, 9b, and holds the opening of the first yokes 9a, 9b, which are movable bodies when the electromagnetic coils 7a, 7b are not energized. An engagement element 15b is engaged and restrained in a recess 9e formed on the outer peripheral surface of the first yoke 9a, 9b.

図3は図1の永久磁石6a、6bで、断面が横凹状の環状永久磁石6a、6bであり、凹状の突出部にN極、S極が形成され、この例では外周側がN極、内周側がS極であるが、逆に形成されても良い。   FIG. 3 shows the permanent magnets 6a and 6b of FIG. 1, which are annular permanent magnets 6a and 6b having a transversely concave cross section. N-poles and S-poles are formed on the concave protrusions. Although the circumferential side is the S pole, it may be formed in reverse.

図4において、12はコイル電流励磁回路、19a、19bは交流を直流に変換する直流変換素子で二組の直流電源19を構成する。20a、20bはトランジスタ等のスイッチング素子で周知のコンプリメンタル型を構成している。21は前記電磁コイル7a、7bに流す電流を指令するためのコイル電流指令手段、22は前記電磁コイル7a、7bの電流を検出するための電流検出手段、23はコイル電流制御手段であり、前記コイル電流指令手段21の指令値と前記電流検出手段22の検出値を入力して、前記コイル電流指令手段21の指令値と前記電流検出手段22の検出値とが一致するようにスイッチング素子20a、20bへ駆動信号を出力し、前記電磁コイル7a、7bの電流を制御する。   In FIG. 4, reference numeral 12 denotes a coil current excitation circuit, and 19a and 19b denote two sets of DC power sources 19 which are DC conversion elements for converting AC to DC. Reference numerals 20a and 20b are switching elements such as transistors and constitute a known complementary type. 21 is a coil current command means for commanding a current to flow through the electromagnetic coils 7a and 7b, 22 is a current detection means for detecting the current of the electromagnetic coils 7a and 7b, and 23 is a coil current control means, The switching element 20a, the command value of the coil current command means 21 and the detection value of the current detection means 22 are input, and the command value of the coil current command means 21 and the detection value of the current detection means 22 are matched. A drive signal is output to 20b, and the currents of the electromagnetic coils 7a and 7b are controlled.

なお、24a、24bはダイオード、25a、25bは抵抗で前記スイッチング素子20a、20bのベース、エミッタ間の電圧降下補償を行う。前記コイル電流励磁回路12は前記直流電源19と、前記スイッチング素子20a、20bと、前記コイル電流指令手段21と、前記電流検出手段22と、コイル電流制御手段23とで構成される。   Reference numerals 24a and 24b denote diodes, and reference numerals 25a and 25b denote resistors, which perform voltage drop compensation between the base and emitter of the switching elements 20a and 20b. The coil current excitation circuit 12 includes the DC power source 19, the switching elements 20 a and 20 b, the coil current command means 21, the current detection means 22, and a coil current control means 23.

すなわち、この実施例はスイッチング素子20a、20bでコンプリメンタル型を形成しているので、コイル電流制御手段の出力がプラスの時はスイッチング素子20aが導通して実線で示すP方向のコイル電流が流れ、コイル電流制御手段の出力がマイナスの時はスイッチング素子20bが導通して点線で示すN方向のコイル電流が流れる。26は前記電磁コイル7a、7bと並列に接続される放電抵抗で、電源が遮断された時に電磁コイル7a、7bに蓄えられたエネルギを放出消費するもので電磁コイル7a、7b自体の合成抵抗の約10倍程度に設定される。   That is, in this embodiment, since the switching elements 20a and 20b form a complementary type, when the output of the coil current control means is positive, the switching element 20a becomes conductive and the coil current in the P direction indicated by the solid line flows. When the output of the coil current control means is negative, the switching element 20b is turned on and the coil current in the N direction indicated by the dotted line flows. A discharge resistor 26 is connected in parallel with the electromagnetic coils 7a and 7b, and discharges and consumes the energy stored in the electromagnetic coils 7a and 7b when the power is shut off. It is set to about 10 times.

図5において、前述したように磁気駆動手段5a、5bはほぼ同じものが左右対称に配置されるので一方側の磁気駆動手段5aに符号を付し、他方側は省略する。この図は前記図2に対して、永久磁石6a、6bの磁束6c方向と同方向の磁束7cとなるように電磁コイル7a、7bに通電し第1継鉄9a、9bを吸引した状態を示し、空隙保持片18により一定空隙を保っている状態である。   In FIG. 5, as described above, the magnetic drive means 5a and 5b are substantially the same in the left-right symmetry. Therefore, the magnetic drive means 5a on one side is given a reference numeral and the other side is omitted. This figure shows a state in which the first yokes 9a and 9b are attracted by energizing the electromagnetic coils 7a and 7b so that the magnetic flux 7c is in the same direction as the direction of the magnetic flux 6c of the permanent magnets 6a and 6b. In this state, a constant gap is maintained by the gap holding piece 18.

この場合、永久磁石6a、6bの磁束6cと電磁コイル7a、7bの磁束7cが加算されて第1継鉄9a、9bに作用し吸引される。また、開放保持手段15は第1継鉄9a、9bの吸引移動により係合子15bは窪み9eからはずれて拘束が解除されるようになっている。   In this case, the magnetic flux 6c of the permanent magnets 6a and 6b and the magnetic flux 7c of the electromagnetic coils 7a and 7b are added and act on the first yokes 9a and 9b to be attracted. Further, in the open holding means 15, the engaging member 15b is released from the recess 9e by the suction movement of the first yokes 9a, 9b, and the restraint is released.

図6に基づいて、この実施例の制動解除から制動付加まで、すなわち、T1時点からT7時点までの動作を説明する。   Based on FIG. 6, the operation from the release of braking to the addition of braking, that is, the operation from time T1 to time T7 will be described.

T1時点で電源供給の接点14が接続、T6時点で遮断となり、T7でコイル電流が消滅する。磁気駆動手段5a、5bとしてはT1からT5の期間が制動ばね4の力に対抗しての制動解除動作であり、このうちT1からT4が解除動作促進期間で制動解除を速める期間であり、T4からT5が解除保持期間である。T5からT7の期間が制動付加動作で制動ばね4の力を回復させて制動を付加する期間である。この図では誇張して示すが、T1からT7までの一連の動作期間で、制動解除促進期間及び制動付加動作期間は非常に短く、ほとんどが制動解除保持期間である。   At time T1, the power supply contact 14 is connected, and at time T6, the contact is cut off. At T7, the coil current disappears. In the magnetic driving means 5a and 5b, the period from T1 to T5 is a brake releasing operation against the force of the braking spring 4, and T1 to T4 is a period for speeding up the brake releasing in the releasing operation promoting period, and T4 To T5 is the release holding period. The period from T5 to T7 is a period in which braking is applied by restoring the force of the braking spring 4 in the braking application operation. Although exaggerated in this figure, in a series of operation periods from T1 to T7, the braking release promotion period and the braking additional operation period are very short, and most are the braking release holding period.

すなわち、T1時点で制動解除指令を受けると、 (g)の接点動作で接点14が接続し、(a)のコイル電流指令で正極性方向パルス状の指令を発生し、電磁コイル7a、7bに電流が流れ始め、(b)のコイル電流のように回路の時定数に従って増加し目標電流値iの一定値となる。一方、永久磁石6a、6bによる空隙部通過の磁束は、T1時点までは空隙部の磁気抵抗が大きく、ほとんど零である。T1時点でコイル電流が流れると、主に電磁コイル7a、7bによる磁束で第2継鉄9a、9bを磁気吸引し、(f)の磁石空隙が小さくなる。この磁石空隙が小さくなるとともに永久磁石6a、6bによる空隙通過磁束も増大し、(e)合計磁束に示す通り、永久磁石6a、6bの磁束と電磁コイル7a、7bの磁束が合計されて流れる。第2継鉄9a、9bの吸着状態で永久磁石6a、6b及び電磁コイル7a、7bによる空隙通過磁束は一定となる。 That is, when a braking release command is received at time T1, the contact 14 is connected by the contact operation of (g), a positive direction pulse command is generated by the coil current command of (a), and the electromagnetic coils 7a and 7b are given. current starts to flow, an increase constant value of the target current value i 1 according to the time constant of the circuit so that the coil current of (b). On the other hand, the magnetic flux passing through the gap by the permanent magnets 6a and 6b has a large magnetoresistance in the gap until time T1, and is almost zero. When the coil current flows at time T1, the second yokes 9a and 9b are magnetically attracted mainly by the magnetic flux generated by the electromagnetic coils 7a and 7b, and the magnet gap in (f) is reduced. As the magnet gap becomes smaller, the gap passing magnetic flux by the permanent magnets 6a and 6b also increases. As shown in (e) total magnetic flux, the magnetic flux of the permanent magnets 6a and 6b and the magnetic flux of the electromagnetic coils 7a and 7b flow together. The gap passing magnetic flux by the permanent magnets 6a and 6b and the electromagnetic coils 7a and 7b is constant in the attracted state of the second yokes 9a and 9b.

第1継鉄8a、8bと第2継鉄9a、9bとの間の磁石空隙は、(f)に示すようにT1時点からゆっくりと狭くなるが、途中のT2から急激に狭くなり、T3時点で完全に第2継鉄9a、9b側に吸引し、T4時点では吸着保持状態となる。   The magnet gap between the first yokes 8a and 8b and the second yokes 9a and 9b is gradually narrowed from the time T1 as shown in (f), but it is sharply narrowed from the middle T2 and time T3. Then, it is completely sucked to the second yoke 9a, 9b side, and is in an adsorption holding state at the time T4.

このT1時点からT4時点までの制動解除時初期動作では、通電初期のコイル電流が大きくなるようなパルス状の指令を与えて制動解除動作を速くしている。そして、第2継鉄9a、9bが完全に吸引された後は、磁石空隙が小さくなるので磁気回路の磁気抵抗が減少し、電磁コイル7a、7bに流れる励磁電流は少なくても、ばね力に打ち勝つ吸引力が発生するので、T4時点で(a)コイル電流指令を下げて、すなわちコイル電流を下げて、T4からT5までの期間は目標電流値iの一定の保持電流にする。この期間、永久磁石6a、6bの磁束が加わっているので、電磁コイル7a、7bの磁束分は(b)のコイル電流を零近くまで低減することができる。永久磁石6a、6bが無い場合は(b)のコイル電流に点線で示すように、従来どおりの大きい電流が必要である。この点線と実線の差が永久磁石6a、6bの効果である。 In the initial operation at the time of braking release from the time T1 to the time T4, a pulse-like command is given to increase the coil current at the initial energization to speed up the braking release operation. After the second yokes 9a and 9b are completely attracted, the magnet gap is reduced, so that the magnetic resistance of the magnetic circuit is reduced and the spring force is reduced even if the exciting current flowing through the electromagnetic coils 7a and 7b is small. since the suction force is generated to overcome, lower the (a) coil current command at time T4, i.e. by lowering the coil current, the period from T4 to T5 is a constant holding current of the target current value i 2. During this period, since the magnetic flux of the permanent magnets 6a and 6b is applied, the magnetic flux component of the electromagnetic coils 7a and 7b can reduce the coil current of (b) to near zero. In the absence of the permanent magnets 6a and 6b, as shown by the dotted line in the coil current of (b), a large current as in the prior art is required. The difference between the dotted line and the solid line is the effect of the permanent magnets 6a and 6b.

そして、T5時点で制動付加指令により、(a)のコイル電流指令で負極性方向パルス状の指令を発生し、電磁コイル7a、7bの電流が(b)コイル電流のように回路の時定数に従って減少し零を通過して、目標電流値iの負方向に流れる。T6時点でコイル電流指令が遮断しコイル電流は回路の時定数に従って零となり、磁石空隙部の合計磁束も(d)の磁束のように零に近づく。第2継鉄9a、9bは制動ばね4の力で押し戻され、磁石空隙も(f)のように戻って大きくなる。永久磁石6a、6bの磁束も磁石空隙が大きくなるので、空隙部通過磁束がほとんど零になる。 Then, at time T5, in response to a braking addition command, a negative pulse direction command is generated by the coil current command (a), and the currents of the electromagnetic coils 7a and 7b are in accordance with the time constant of the circuit as in (b) coil current. reduced through zero, it flows in the negative direction of the target current value i 3. The coil current command is cut off at time T6, the coil current becomes zero according to the time constant of the circuit, and the total magnetic flux in the magnet gap approaches zero as shown in (d). The second yokes 9a and 9b are pushed back by the force of the brake spring 4, and the magnet gap is also returned and enlarged as shown in (f). Since the magnetic gaps of the permanent magnets 6a and 6b are also large, the gap passing magnetic flux becomes almost zero.

上記のように、T5からT6の期間は、永久磁石6a、6bの磁束方向と逆極性方向に電磁コイル7a、7bの磁束を発生させている。これは制動付加動作を速くするためである。すなわち、電磁コイル7a、7bを小型化するのに、制動解除保持をできるだけ永久磁石6a、6bの磁気力で行い、電磁コイル7a、7bの磁気力を低減、つまりコイル電流を小さくする。したがって、永久磁石6a、6bの磁気力が強いと、コイル電流を遮断しても制動付加状態への復帰が遅くなるので、永久磁石6a、6bの磁束を打ち消すように電磁コイル7a、7bの磁束を逆方向に加える。逆方向磁束を加える時間と大きさは、再び第1継鉄9a、9bを吸引して制動解除状態とならないように設定される。   As described above, during the period from T5 to T6, the magnetic flux of the electromagnetic coils 7a and 7b is generated in the direction opposite to the magnetic flux direction of the permanent magnets 6a and 6b. This is to speed up the braking operation. That is, in order to reduce the size of the electromagnetic coils 7a and 7b, the brake release is held with the magnetic force of the permanent magnets 6a and 6b as much as possible to reduce the magnetic force of the electromagnetic coils 7a and 7b, that is, to reduce the coil current. Therefore, if the magnetic force of the permanent magnets 6a and 6b is strong, the return to the braking applied state is delayed even if the coil current is interrupted. In the opposite direction. The time and magnitude of applying the reverse magnetic flux are set so that the first yokes 9a and 9b are attracted again and the brake is not released.

図7において、第2継鉄9a、9bが完全に吸引されるまでの磁石空隙部の合計磁束と磁石空隙の関係は制動解除時(磁束増加時)と制動付加時(磁束減少時)とではヒステリシスがあり、制動付加時に第2継鉄9a、9bが動作する磁束は制動解除時よりも小さい。すなわち、図6の(f)磁石空隙の特性と対応させると、制動解除時は、制動解除開始点a→磁石空隙の狭くなる変化開始点b(第2継鉄9a、9bの吸引変位開始点)→完全吸引、吸着点c→最大磁束d点へと経過し、制動解除保持の磁束g点となる。制動付加時は、制動解除保持点g→磁石空隙の広くなる変化開始点e(第2継鉄9a、9bが復帰変位開始点)→ブレーキドラム1への制動片2が接触する点fへと経過する。   In FIG. 7, the relationship between the total magnetic flux of the magnet gap until the second yokes 9a and 9b are completely attracted and the magnet gap are as follows when braking is released (when the magnetic flux is increased) and when braking is applied (when the magnetic flux is reduced). There is hysteresis, and the magnetic flux with which the second yokes 9a and 9b operate when braking is applied is smaller than when braking is released. That is, in correspondence with the characteristics of the magnet gap (f) in FIG. 6, at the time of brake release, the brake release start point a → the change start point b where the magnet gap becomes narrower (the suction displacement start point of the second yokes 9a and 9b). ) → Complete suction, adsorption point c → maximum magnetic flux d point, and it becomes the magnetic flux g point of braking release holding. When braking is applied, the braking release holding point g → the change starting point e where the magnet gap becomes wider (the second yokes 9a and 9b start returning) → the point f where the brake piece 2 contacts the brake drum 1 Elapse.

なお、第2継鉄9a、9bと制動片2は制動腕3を介して一体的な動きをするので、本説明では第2継鉄9a、9bの動きは制動片2の動きとすることができる。この際、上記制動解除保持の磁束g点では、永久磁石6a、6bの磁束分がe点以降の例えばh点に設定され、電磁コイル7a、7bの磁束分がg点−h点である。このh点は電磁コイル7a、7bの磁束が遮断される時、制動ばね4のばね力で制動付加状態となるようになっている。   Since the second yokes 9a and 9b and the braking piece 2 move integrally through the braking arm 3, the movement of the second yokes 9a and 9b may be the movement of the braking piece 2 in this description. it can. In this case, at the magnetic flux g for holding the brake release, the magnetic flux components of the permanent magnets 6a and 6b are set to, for example, the h point after the e point, and the magnetic flux components of the electromagnetic coils 7a and 7b are the g point-h point. This point h is adapted to be in a braking applied state by the spring force of the braking spring 4 when the magnetic flux of the electromagnetic coils 7a and 7b is interrupted.

すなわち、h点がe点を超えg点に近いほど永久磁石6a、6bの磁束分が大きくなり、電磁コイル7a、7bの磁束分が小さくできるので一層電磁コイル7a、7bの小型化が可能となるが、電磁コイル7a、7bの磁束が遮断される時、制動ばね4のばね力で制動付加状態とならないからである。制動付加動作の確実性を考慮すると、上記のように電磁コイル7a、7bの通電を遮断した時に、永久磁石6a、6bの磁気吸引力は制動ばね4のばね力未満に設定することが良好である。   That is, as the h point exceeds the e point and is closer to the g point, the magnetic flux components of the permanent magnets 6a and 6b increase, and the magnetic flux components of the electromagnetic coils 7a and 7b can be reduced. Therefore, the electromagnetic coils 7a and 7b can be further downsized. However, when the magnetic flux of the electromagnetic coils 7a and 7b is interrupted, the braking force is not applied by the spring force of the braking spring 4. Considering the certainty of the braking additional operation, it is preferable to set the magnetic attractive force of the permanent magnets 6a and 6b to be less than the spring force of the braking spring 4 when the energization of the electromagnetic coils 7a and 7b is cut off as described above. is there.

したがって、上記のように、図6のT1からT6までの制動解除及び付加動作時間で制動解除保持時間が圧倒的に長いので、図6の(b)コイル電流で示す点線から実線の電流低減分の効果は大きく、結果として電磁コイル7a、7bの温度上昇低減になるので電磁コイル7a、7bの小型化、磁石部10a、10bの小型化、そして磁気駆動手段5a、5bの小型化、すなわち、ブレーキ装置の小型化となる効果が得られる。   Therefore, as described above, since the brake release holding time is overwhelmingly long in the brake release and additional operation time from T1 to T6 in FIG. 6, the amount of current reduction from the dotted line to the solid line shown in (b) coil current in FIG. As a result, the temperature rise of the electromagnetic coils 7a and 7b is reduced, so that the electromagnetic coils 7a and 7b are reduced in size, the magnet portions 10a and 10b are reduced in size, and the magnetic drive means 5a and 5b are reduced in size. The effect of reducing the size of the brake device can be obtained.

図8A、図8Bにおいて、図8Aは電磁コイル7a、7b非通電、可動体である第1継鉄9a、9bが非吸着状態を示し、図8Bは電磁コイル7a、7b通電、第1継鉄9a、9bを吸着状態を示す。27は第1継鉄9a、9bに結合されるブラケット、28はこのブラケット27すなわち第1継鉄9a、9bの非吸着状態を検知する検知手段であり、29は第1継鉄9a、9bの吸着状態を検知する検知手段ある。この検知手段28、29は例えばマイクロスイッチからなり、第1継鉄9a、9bの非吸着状態では検知手段28がON、検知手段29がOFF、第1継鉄9a、9bの吸着状態では検知手段28がOFF、検知手段29がONとなるように構成される。   8A and 8B, FIG. 8A shows that the electromagnetic coils 7a and 7b are not energized and the first yokes 9a and 9b, which are movable bodies, are not attracted, and FIG. 8B is that the electromagnetic coils 7a and 7b are energized and the first yoke. 9a and 9b indicate adsorption states. 27 is a bracket coupled to the first yokes 9a and 9b, 28 is a detecting means for detecting the non-adsorption state of the bracket 27, that is, the first yokes 9a and 9b, and 29 is a detection means of the first yokes 9a and 9b. There is a detecting means for detecting the suction state. The detection means 28 and 29 are, for example, microswitches. The detection means 28 is ON, the detection means 29 is OFF in the non-adsorption state of the first yokes 9a and 9b, and the detection means is in the adsorption state of the first yokes 9a and 9b. 28 is OFF, and the detection means 29 is ON.

図9A、図9Bにおいて、前記図8A 、図8Bでの可動体である第1継鉄9a、9bの状態検知結果の判断を示す。すなわち、図9Aの通り、第1継鉄9a、9bが非吸着時は、30で検知手段28がON、31で検知手段29がOFFで正常状態と判断し運転を継続し、30で検知手段28がOFF、31で検知手段29がONの場合は異常状態と判断し運転を停止する。また、図9Bの通り、第1継鉄9a、9bが吸着時は、32で検知手段28がOFF、33で検知手段29がONで正常状態と判断し運転を継続し、32で検知手段28がON、33で検知手段29がOFFの場合は異常状態と判断し運転を停止する。   9A and 9B show determination of the state detection results of the first yokes 9a and 9b, which are movable bodies in FIGS. 8A and 8B. That is, as shown in FIG. 9A, when the first yokes 9a and 9b are not adsorbed, the detection means 28 is ON at 31, the detection means 29 is OFF at 31, and the operation is continued and the operation is continued. If 28 is OFF, 31 and the detection means 29 is ON, it is determined that the state is abnormal and the operation is stopped. As shown in FIG. 9B, when the first yokes 9a and 9b are attracted, the detection means 28 is OFF at 32, the detection means 29 is ON at 33, and the operation is continued. Is ON, 33 and the detection means 29 is OFF, it is determined that the state is abnormal and the operation is stopped.

なお、上記図8A、図8Bでは、検知手段として2個のスイッチ構成で説明したが、可動体である第1継鉄9a、9bの状態を連続的に検知できる検知手段1個で構成し、検知出力の大きさで状態を検知、判断するようにしても良い。   In FIGS. 8A and 8B, two switch configurations are described as the detection unit. However, the detection unit includes one detection unit that can continuously detect the state of the first yokes 9a and 9b, which are movable bodies. You may make it detect and judge a state with the magnitude | size of a detection output.

次に、コイル電流励磁回路12の他の実施形態を図10、図11に基づいて説明する。   Next, another embodiment of the coil current excitation circuit 12 will be described with reference to FIGS.

図10は前記図4相当の電磁コイルの励磁回路図で、図4と同様なパターンで電磁コイル7a、7bに電流を流すが、異なる点は接点と電流制限抵抗でコイル電流をP、N方向に制御させていることである。図4と同一部については同一符号を付して説明を省略する。   FIG. 10 is an excitation circuit diagram of the electromagnetic coil corresponding to FIG. 4, and a current is passed through the electromagnetic coils 7a and 7b in the same pattern as in FIG. To control. The same parts as those in FIG.

14a、14bはこの交流電源13を接続又は遮断する電磁接触器の接点、19a、19bは交流を直流に変換する直流変換素子で二組の直流電源19を構成する。34a、34bは電磁コイル7a、7bに通電、遮断する接点、36a、36bはそれぞれ直流変換素子19a、19bの出力電圧に対し一定の直流電流にする定電流ダイオード、R0、R1はP方向の電流を制限する電流制限抵抗、R2はN方向の電流を制限する電流制限抵抗でそれぞれ直列に接続される。35は定電流ダイオードと抵抗R0との直列接続部に並列接続される常閉接点である。この実施形態でのコイル電流励磁回路12は直流電源19、接点34a、34b、35、定電流ダイオード36a、36b及び抵抗R0、R1、R2とで構成される。   Reference numerals 14a and 14b are contacts of an electromagnetic contactor for connecting or disconnecting the AC power supply 13, and 19a and 19b are DC conversion elements for converting AC to DC to form two sets of DC power supplies 19. 34a and 34b are contacts for energizing and interrupting the electromagnetic coils 7a and 7b, 36a and 36b are constant current diodes for making the DC voltage constant with respect to the output voltages of the DC conversion elements 19a and 19b, and R0 and R1 are currents in the P direction. R2 is a current limiting resistor that limits current in the N direction, and is connected in series. Reference numeral 35 denotes a normally closed contact connected in parallel to the series connection portion of the constant current diode and the resistor R0. The coil current excitation circuit 12 in this embodiment includes a DC power source 19, contacts 34a, 34b, 35, constant current diodes 36a, 36b, and resistors R0, R1, R2.

次に、図11に基づいて、図10の実施形態の制動解除から制動付加までの動作、すなわち、T1時点からT7時点までの動作を説明する。この図11は磁気駆動手段の制動解除動作から制動付加動作までの動作タイミング図で、前記図6相当図であり同一部については同一符号を付して説明を省略する。   Next, based on FIG. 11, the operation from the release of braking to the addition of braking in the embodiment of FIG. 10, that is, the operation from time T1 to time T7 will be described. FIG. 11 is an operation timing chart from the brake releasing operation to the brake applying operation of the magnetic drive means. FIG. 11 is a diagram corresponding to FIG. 6, and the same parts are denoted by the same reference numerals and description thereof is omitted.

制動解除動作時のT1からT5まで交流電源13供給の接点14a及び接点34aが接続、制動解除促進動作時のT1からT4まで接点35が接続し、抵抗R1により目標電流値iが流れる。制動解除保持動作時にT4からT5までは抵抗R0とR1により目標電流値iが流れる。制動付加動作時のT5からT6まで接点14b及び接点34bが接続し、抵抗R2により目標電流値iが流れる。前記図6で示したコイル電流指令と同じパターンのコイル励磁電圧となっている。 Brake release operation when the AC power source 13 contacts 14a and contacts 34a of the supply connection from T1 to T5, the contact 35 connecting from T1 at brake release promoting operation to T4, the target current value i 1 flows through the resistor R1. During brake release holding operation from T4 to T5 is a target current value i 2 flows through resistors R0 and R1. Contacts 14b and the contact 34b from T5 during braking additional operation until T6 is connected, the target current value i 3 flowing through the resistor R2. The coil excitation voltage has the same pattern as the coil current command shown in FIG.

これにより、電磁コイル7a、7bには、前記図6で示したコイル電流と同様に、(b)のコイル電流が流れる。なお、定電流ダイオード36a、36bは制動解除保持動作時にP方向のコイル電流を一定に保つこと、また、制動付加動作時にN方向のコイル電流を一定に保つためにある。   Thereby, the coil current of (b) flows through the electromagnetic coils 7a and 7b in the same manner as the coil current shown in FIG. The constant current diodes 36a and 36b are provided to keep the coil current in the P direction constant during the braking release holding operation and to keep the coil current in the N direction constant during the braking addition operation.

これにより、前記図6の実施例と同様な効果が得られるとともに、コイル励磁回路が簡単にできる効果が得られる。   As a result, the same effect as in the embodiment of FIG. 6 can be obtained, and the effect that the coil excitation circuit can be simplified can be obtained.

次に、コイル電流励磁回路12の他の実施形態を図12、図13に基づいて説明する。   Next, another embodiment of the coil current excitation circuit 12 will be described with reference to FIGS.

図12は前記図4相当の電磁コイルの励磁回路図で、図4と同様なパターンで電磁コイル7a、7bに電流を流すが、異なる点は一組の直流電源を用い、切替スイッチと電流制限抵抗でコイル電流を正負方向に制御させていることである。 図4と同一部については同一符号を付して説明を省略する。   FIG. 12 is an excitation circuit diagram of the electromagnetic coil corresponding to FIG. 4, and a current is passed through the electromagnetic coils 7a and 7b in the same pattern as in FIG. 4, except that a pair of DC power supplies are used, and a changeover switch and a current limiter are used. The coil current is controlled in the positive and negative directions by resistance. The same parts as those in FIG.

19は直流電源としての交流を直流に変換する直流変換素子、36a、36bは直流変換素子19の出力電圧に対し一定の直流電流にする定電流ダイオード、R0、R1はP方向の電流を制限する電流制限抵抗、R2はN方向の電流を制限する電流制限抵抗でそれぞれ直列に接続される。35は定電流ダイオード36aと抵抗R0との直列接続部に並列接続される常閉接点である。37は切替スイッチで接点37a、37bを有し、この接点37a、37bでコイル電流をP、N方向に切替えて励磁する。電磁コイル7a、7bと放電抵抗26の並列接続に対して前記直流変換素子19の直流出力が常閉接点38を介して接続される。   Reference numeral 19 denotes a direct current conversion element that converts alternating current as direct current power into direct current, 36a and 36b denote constant current diodes that make a constant direct current with respect to the output voltage of the direct current conversion element 19, and R0 and R1 limit current in the P direction. The current limiting resistor R2 is connected in series with a current limiting resistor that limits the current in the N direction. Reference numeral 35 denotes a normally closed contact connected in parallel to the series connection portion of the constant current diode 36a and the resistor R0. Reference numeral 37 denotes a change-over switch having contact points 37a and 37b. The contact points 37a and 37b excite the coil current by switching in the P and N directions. The DC output of the DC conversion element 19 is connected through a normally closed contact 38 to the parallel connection of the electromagnetic coils 7 a and 7 b and the discharge resistor 26.

この常閉接点38は電源が遮断される時、電磁コイル7a、7b放電電流を速く消滅させるとき開放される。この実施形態でのコイル電流励磁回路12は直流電源としての直流変換素子19、定電流ダイオード36a、36b、抵抗R0、R1、R2及び切替スイッチ37とで構成される。   This normally closed contact 38 is opened when the power is shut off and when the electromagnetic coil 7a, 7b discharge current is quickly extinguished. The coil current excitation circuit 12 in this embodiment includes a DC conversion element 19 as a DC power source, constant current diodes 36a and 36b, resistors R0, R1, and R2, and a changeover switch 37.

次に、図13に基づいて、この実施形態の制動解除から制動付加までの動作、すなわち、T1時点からT7時点までの動作を説明する。この図13は磁気駆動手段の制動解除動作から制動付加動作までの動作タイミング図で、前記図6相当図であり、同一部については同一符号を付して説明を省略する。   Next, based on FIG. 13, the operation from the release of braking to the addition of braking in this embodiment, that is, the operation from time T1 to time T7 will be described. FIG. 13 is an operation timing diagram from the brake release operation to the brake addition operation of the magnetic drive means, corresponding to FIG. 6. The same parts are denoted by the same reference numerals, and description thereof is omitted.

制動解除動作時のT1からT5まで交流電源13供給の接点14が接続、制動解除動作時のT1からT5まで切替スイッチの接点37aが接続するとともに制動解除促進動作時のT1からT4まで抵抗R0の短絡接点35が接続、抵抗R1により目標電流値iが流れる。制動解除保持動作時にT4からT5までは抵抗R0とR1により目標電流値iが流れる。制動付加動作時のT5からT6まで切替スイッチの接点37aが接続し抵抗R2により目標電流値iが流れる。前記図6で示したコイル電流指令と同じパターンのコイル励磁電圧となっている。 The contact 14 of the AC power supply 13 is connected from T1 to T5 during the brake release operation, the contact 37a of the changeover switch is connected from T1 to T5 during the brake release operation, and the resistor R0 is connected from T1 to T4 during the brake release promotion operation. short contact 35 is connected, the target current value i 1 flows through the resistor R1. During brake release holding operation from T4 to T5 is a target current value i 2 flows through resistors R0 and R1. Contact 37a of the switch from T5 during braking additional operation until T6 connects the target current value i 3 flowing through the resistor R2. The coil excitation voltage has the same pattern as the coil current command shown in FIG.

これにより、電磁コイル7a、7bには、前記図6で示したコイル電流と同様に、(b)のコイル電流が流れる。なお、定電流ダイオード36a、36bは制動解除保持動作時にP方向のコイル電流を一定に保つこと、また、制動付加動作時にN方向のコイル電流を一定に保つためにある。   Thereby, the coil current of (b) flows through the electromagnetic coils 7a and 7b in the same manner as the coil current shown in FIG. The constant current diodes 36a and 36b are provided to keep the coil current in the P direction constant during the braking release holding operation and to keep the coil current in the N direction constant during the braking addition operation.

これにより、前記図6の実施例と同様な効果が得られるとともに、コイル励磁回路が簡単にできる効果が得られる。   As a result, the same effect as in the embodiment of FIG. 6 can be obtained, and the effect that the coil excitation circuit can be simplified can be obtained.

次に、第1継鉄9a、9bの開放保持手段15の他の実施形態を図14A、図14Bに基づいて説明する。   Next, another embodiment of the opening holding means 15 for the first yokes 9a and 9b will be described with reference to FIGS. 14A and 14B.

図14Aは前記図2相当図で可動体である第1継鉄9a、9bの非吸着で開放状態を示し、図14Bは前記図5相当図で可動体である第1継鉄9a、9bの吸着状態を示す。図2、図5と異なるのは、非吸着時にの係合子15bと窪み9eとの係合解除をアクチュエータで行うことである。なお、図2、図5と同一部については同一符号を付して説明を省略する。   FIG. 14A shows the open state of the first yokes 9a and 9b which are movable bodies in the non-adsorbed state in FIG. 2 and FIG. 14B shows the first yokes 9a and 9b which are movable bodies in the FIG. The adsorption state is shown. The difference from FIGS. 2 and 5 is that the engaging member 15b and the recess 9e are disengaged by an actuator during non-adsorption. The same parts as those in FIGS. 2 and 5 are denoted by the same reference numerals and description thereof is omitted.

すなわち、図14Aにおいて、開放保持手段15は押しばね15a、係合子15b及びアクチュエータ15cとで構成され、係合子15bが押しばね15aで第1継鉄9a、9bの窪み9eに係合されて第1継鉄9a、9bの動きが拘束されている。   That is, in FIG. 14A, the open holding means 15 includes a push spring 15a, an engagement element 15b, and an actuator 15c. The engagement element 15b is engaged with the depression 9e of the first yokes 9a, 9b by the push spring 15a. The movement of the first yokes 9a and 9b is restricted.

また、図14Bにおいて、電磁コイル7a、7bに通電されると同時に前記アクチュエータ15cが係合子15bを駆動し、窪み9eから係合子15bの係合解除する。そして、電磁コイル7a、7bが通電遮断されると同時に前記アクチュエータ15cが駆動解除され、第1継鉄9a、9bが元の位置に復帰し、係合子15bが窪み9eに係合して動きを拘束する。   In FIG. 14B, at the same time as the electromagnetic coils 7a and 7b are energized, the actuator 15c drives the engagement element 15b and disengages the engagement element 15b from the recess 9e. Then, at the same time as the electromagnetic coils 7a and 7b are deenergized, the actuator 15c is released from driving, the first yokes 9a and 9b return to their original positions, and the engaging element 15b engages with the recess 9e and moves. to bound.

これにより、前記図2、図5の実施例と同様な効果が得られるとともに、第1継鉄9a、9bの溝9eとの係合解除時の抵抗を減少させる効果が得られる。   As a result, the same effects as those of the embodiment of FIGS. 2 and 5 can be obtained, and the effect of reducing the resistance when the first yokes 9a and 9b are disengaged from the grooves 9e can be obtained.

次に、第1継鉄9a、9bの開放保持手段15の他の実施形態を図15A、図15Bに基づいて説明する。   Next, another embodiment of the opening holding means 15 for the first yokes 9a and 9b will be described with reference to FIGS. 15A and 15B.

図15Aは前記図2相当図で可動体である第1継鉄9a、9bの非吸着で開放状態を示し、図15Bは前記図5相当図で可動体である第1継鉄9a、9bの吸着状態を示し、図15Cはこの実施例の磁気吸着手段を示す。図2、図5と異なるのは、第1継鉄9a、9bの動きの拘束を永久磁石等の磁気力で行ったことである。なお、図2、図5と同一部については同一符号を付して説明を省略する。   FIG. 15A shows the open state of the first yokes 9a and 9b, which are movable bodies, in the non-adsorbed state in FIG. 2 and FIG. 15B shows the first yokes 9a and 9b which are movable bodies in the FIG. FIG. 15C shows the magnetic attraction means of this embodiment. 2 and 5 is that the movement of the first yokes 9a and 9b is restrained by a magnetic force such as a permanent magnet. The same parts as those in FIGS. 2 and 5 are denoted by the same reference numerals and description thereof is omitted.

すなわち、図15Aにおいて、開放保持手段15は基台39と磁気吸着手段40とで構成され、磁気吸着手段40が第1継鉄9a、9bと対向して磁気吸引するように基台39に設けられ、この第1継鉄9a、9bが基台側に吸引されて動きが拘束される。第1継鉄9a、9bが吸引される際、基台との衝突衝撃を緩和するためにゴム等の緩衝体41が基台に設けられる。   That is, in FIG. 15A, the open holding means 15 is composed of a base 39 and a magnetic attracting means 40, and is provided on the base 39 so that the magnetic attracting means 40 magnetically attracts the first yokes 9a and 9b. The first yokes 9a and 9b are sucked to the base side and the movement is restricted. When the first yokes 9a and 9b are sucked, a buffer 41 such as rubber is provided on the base in order to alleviate the collision impact with the base.

また、図15Bにおいて、電磁コイル7a、7bに通電されると、磁石部10a、10bの吸引力により第1継鉄9a、9bが吸引され第1継鉄9a、9bの拘束が解除状態となる。そして、電磁コイル7a、7bが通電遮断されると、第1継鉄9a、9bが元の位置に復帰し、基台39の磁気吸着手段40の磁気吸引で第1継鉄9a、9bの動きを拘束する。なお、前記磁気吸着手段40は、例えば図15Cに示すように、ボタン状の永久磁石40aと継鉄40bとで構成される。   Further, in FIG. 15B, when the electromagnetic coils 7a and 7b are energized, the first yokes 9a and 9b are attracted by the attraction force of the magnet portions 10a and 10b, and the restraints of the first yokes 9a and 9b are released. . When the energization of the electromagnetic coils 7a and 7b is interrupted, the first yokes 9a and 9b return to their original positions, and the movement of the first yokes 9a and 9b is caused by the magnetic attraction of the magnetic attracting means 40 of the base 39. Is restrained. The magnetic attraction means 40 is composed of a button-like permanent magnet 40a and a yoke 40b, for example, as shown in FIG. 15C.

これにより、前記図2、図5の実施例と同様な効果が得られるとともに、第1継鉄9a、9bの係合構造が簡単になる効果が得られる。   As a result, the same effects as those of the embodiment of FIGS. 2 and 5 can be obtained, and the effect of simplifying the engagement structure of the first yokes 9a and 9b can be obtained.

本発明の一実施形態になるブレーキ制御装置の全体構成図である。1 is an overall configuration diagram of a brake control device according to an embodiment of the present invention. 可動体である第2継鉄の非吸着で開放状態を示す図1の磁気駆動手段の拡大図である。It is an enlarged view of the magnetic drive means of FIG. 1 which shows the open state in the non-adsorption | suction of the 2nd yoke which is a movable body. 図2の永久磁石の形状の一例を示す図である。It is a figure which shows an example of the shape of the permanent magnet of FIG. 図1の電磁コイルの励磁回路である。It is an excitation circuit of the electromagnetic coil of FIG. 図2の磁気駆動手段の可動体である第2継鉄の吸着状態を示す図である。It is a figure which shows the adsorption | suction state of the 2nd yoke which is a movable body of the magnetic drive means of FIG. 図2の磁気駆動手段の制動解除動作から制動付加動作までの動作タイミング図である。FIG. 3 is an operation timing chart from a brake release operation to a brake addition operation of the magnetic drive means of FIG. 2. 磁気駆動手段の磁束と空隙の関係及び制動解除保持時の永久磁石磁束の設定を示す図である。It is a figure which shows the setting of the permanent magnet magnetic flux at the time of brake release holding | maintenance, and the relationship between the magnetic flux of a magnetic drive means, and a space | gap. 可動体である第2継鉄の作動検知方法の一例を示す図で第2継鉄が非吸着状態を示す図である。It is a figure which shows an example of the operation | movement detection method of the 2nd yoke which is a movable body, and is a figure which shows a 2nd yoke in a non-adsorption state. 可動体である第2継鉄の作動検知方法の一例を示す図で、第2継鉄が吸着状態を示す図である。It is a figure which shows an example of the operation | movement detection method of the 2nd yoke which is a movable body, and is a figure where a 2nd yoke shows an adsorption state. 図8Aの可動体である第2継鉄の作動検知結果による正常、異常判断を示す図である。It is a figure which shows the normality / abnormality judgment by the action | operation detection result of the 2nd yoke which is the movable body of FIG. 8A. 図8Bの可動体である第2継鉄の作動検知結果による正常、異常判断を示す図である。It is a figure which shows the normality and abnormality judgment by the action | operation detection result of the 2nd yoke which is the movable body of FIG. 8B. 本発明の他の実施形態になる電磁コイルの励磁回路図で図4相当図である。FIG. 5 is an equivalent circuit diagram of an electromagnetic coil according to another embodiment of the present invention, corresponding to FIG. 図10の制動解除動作から制動付加動作までの動作タイミング図で図6相当図である。FIG. 7 is an operation timing chart from the brake release operation to the brake addition operation in FIG. 本発明のさらに他の実施形態になる電磁コイルの励磁回路図で図4相当図である。FIG. 5 is an excitation circuit diagram of an electromagnetic coil according to still another embodiment of the present invention, corresponding to FIG. 4. 図12の制動解除動作から制動付加動作までの動作タイミング図で図6相当図である。FIG. 7 is an operation timing chart from the braking release operation to the braking addition operation in FIG. 本発明の他の実施形態になる開放保持手段を示す図で図2相当図である。It is a figure which shows the open holding | maintenance means which becomes other embodiment of this invention, and is a figure equivalent to FIG. 本発明の他の実施形態になる開放保持手段を示す図で、図5相当図である。It is a figure which shows the open holding | maintenance means which becomes other embodiment of this invention, and is a figure equivalent to FIG. 本発明のさらに他の実施形態になる開放保持手段を示す図で、図2相当図である。It is a figure which shows the open holding | maintenance means which becomes further another embodiment of this invention, and is a figure equivalent to FIG. 本発明のさらに他の実施形態になる開放保持手段を示す図で、図5相当図である。It is a figure which shows the open holding | maintenance means which becomes further another embodiment of this invention, and is a figure equivalent to FIG. 図15A,図15Bの磁気吸着手段を示す斜視図である。It is a perspective view which shows the magnetic attraction | suction means of FIG. 15A and FIG. 15B.

符号の説明Explanation of symbols

1 非制動体
2 制動片
4 制動ばね
5a、5b 磁気駆動手段
6a、6b 永久磁石
7a、7b 電磁コイル
8a、8b 第1継鉄
9a、9b 第2継鉄
12 コイル電流励磁回路
15a 押ばね
15b 係合子
15c アクチュエータ
19、19a、19b 直流電源
R0、R1、R2 電流制限抵抗
24 コイル電流供給手段
25 コイル電流指令手段
26 電流検出手段
27 コイル電流制御手段
34a、34b、35、37a、37b 接点
28 定電流ダイオード
40 磁気吸着手段
40a 永久磁石
40b 継鉄
DESCRIPTION OF SYMBOLS 1 Non-braking body 2 Brake piece 4 Brake spring 5a, 5b Magnetic drive means 6a, 6b Permanent magnet 7a, 7b Electromagnetic coil 8a, 8b First yoke 9a, 9b Second yoke 12 Coil current excitation circuit 15a Pusher 15b Engagement Coupling 15c Actuator 19, 19a, 19b DC power supply R0, R1, R2 Current limiting resistor 24 Coil current supply means 25 Coil current command means 26 Current detection means 27 Coil current control means 34a, 34b, 35, 37a, 37b Contact 28 Constant current Diode 40 Magnetic adsorption means 40a Permanent magnet 40b yoke

Claims (9)

被制動体に制動片を押圧し制動を付加するための制動ばねと、この制動ばねの付勢力に抗して作動し制動を解除する磁気駆動手段とで構成し、この磁気駆動手段は第1継鉄と第2継鉄と電磁コイル及び永久磁石とからなり、この第1継鉄又は第2継鉄を固定体とし他方を可動体として構成し、前記電磁コイルを励磁付勢して制動解除動作、励磁消勢して制動付加動作を行うコイル電流励磁回路を備えたブレーキ装置において、
前記コイル電流励磁回路は、前記電磁コイルを直流電源で前記制動解除動作時には一方向の極性励磁とし、前記制動付加動作時には制動解除動作時と逆方向の極性励磁とすると共に、前記コイル電流励磁回路は、二組の直流電源と電流制限抵抗及び接点からなり、前記接点で、前記制動解除動作時には電磁コイルを一方の直流電源で一方向に励磁し、前記制動付加動作時には電磁コイルを他方の直流電源で制動解除動作時と逆方向に励磁するようにしたことを特徴とするブレーキ制御装置。
The brake spring is configured to press a brake piece against the body to be braked to apply the brake, and a magnetic drive unit that operates against the urging force of the brake spring to release the brake. It consists of a yoke, a second yoke, an electromagnetic coil, and a permanent magnet. The first or second yoke is configured as a fixed body and the other as a movable body, and the electromagnetic coil is energized and energized to release braking. In a brake device equipped with a coil current excitation circuit that performs braking addition operation by deactivating the operation,
The coil current excitation circuit, said a unidirectional polarity excitation to the electromagnetic coil when the brake release operation with a DC power supply, with said during braking additional operation and polarity excitation of the brake releasing operation and reverse, the coil current excitation circuit Consists of two sets of DC power supplies, current limiting resistors and contacts, at which the electromagnetic coil is excited in one direction by one DC power supply during the braking release operation, and the electromagnetic coil is connected to the other DC A brake control device, wherein the power source is excited in the opposite direction to that during the brake release operation .
前記コイル電流励磁回路は、直流電源と、この直流電源からの出力の直流電流に対して一定電流にする定電流ダイオードと、この定電流ダイオードの出力の直流電流を制御する電流制限抵抗と、接点とで構成したことを特徴とする請求項1記載のブレーキ制御装置。 The coil current excitation circuit includes a DC power supply , a constant current diode that makes a constant current with respect to a DC current output from the DC power supply, a current limiting resistor that controls the DC current output from the constant current diode, and a contact it is constituted by a brake control device according to claim 1, wherein. 前記磁気駆動手段の磁気吸引力は、永久磁石だけでは制動解除保持ができない設定としたことを特徴とする請求項1乃至2記載のブレーキ制御装置。 3. The brake control device according to claim 1, wherein the magnetic attraction force of the magnetic drive means is set so that braking release cannot be held only by a permanent magnet . 前記磁気駆動手段は、制動解除の保持状態で前記電磁コイルを消勢すると制動付加状態になるようにしたことを特徴とする請求項1乃至2記載のブレーキ制御装置。 3. The brake control device according to claim 1 , wherein the magnetic drive means is set to a braking applied state when the electromagnetic coil is deenergized in a brake released holding state . 前記磁気駆動手段の磁気吸引力は、制動付加動作時、前記可動体を制動解除保持ができないコイル電流に設定したことを特徴とする請求項1乃至2記載のブレーキ制御装置。 3. The brake control device according to claim 1 , wherein the magnetic attraction force of the magnetic drive means is set to a coil current that cannot hold the movable body in a brake-released state during a braking operation . 前記磁気駆動手段は、制動付加状態で可動体の動きを制限し開放状態を保持する開放保持手段を設けたことを特徴とする請求項1乃至5記載のブレーキ制御装置。 6. The brake control device according to claim 1 , wherein the magnetic drive means is provided with an open holding means for restricting the movement of the movable body in a brake applied state and holding the open state . 前記開放保持手段は、係合子と押ばねとで構成し、この係合子をばね力で可動側体に押圧するようにしたことを特徴とする請求項6記載のブレーキ制御装置。 The open holding means, constituted by the engaging member and the pressing spring, the brake control apparatus according to claim 6, characterized in that so as to press the movable member the engaging element by the spring force. 前記開放保持手段は、係合子と押圧ばねとアクチュエータで構成し、ばね力で前記係合子を可動側体に押圧し、前記アクチュエータでばねの押圧力を解除して前記可動側体の開放保持を解除するようにしたことを特徴とする請求項6記載のブレーキ制御装置。 The release holding means includes an engagement element, a pressing spring, and an actuator, presses the engagement element against the movable side body by a spring force, and releases the pressing force of the spring by the actuator to release and hold the movable side body. The brake control device according to claim 6 , wherein the brake control device is released . 前記開放保持手段は、永久磁石と継鉄とからなる磁気吸着手段で可動側体の開放を保持するようにしたことを特徴とする請求項6記載のブレーキ制御装置。 7. The brake control device according to claim 6 , wherein the opening holding means holds the movable side body open by a magnetic attraction means comprising a permanent magnet and a yoke .
JP2007206763A 2007-08-08 2007-08-08 Brake control device Expired - Fee Related JP4563429B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007206763A JP4563429B2 (en) 2007-08-08 2007-08-08 Brake control device
CN2008101300328A CN101363489B (en) 2007-08-08 2008-07-24 Brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206763A JP4563429B2 (en) 2007-08-08 2007-08-08 Brake control device

Publications (2)

Publication Number Publication Date
JP2009041654A JP2009041654A (en) 2009-02-26
JP4563429B2 true JP4563429B2 (en) 2010-10-13

Family

ID=40390031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206763A Expired - Fee Related JP4563429B2 (en) 2007-08-08 2007-08-08 Brake control device

Country Status (2)

Country Link
JP (1) JP4563429B2 (en)
CN (1) CN101363489B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232127B2 (en) * 2009-11-18 2013-07-10 株式会社日立製作所 Electromagnetic brake device
DE102011011857A1 (en) * 2011-02-21 2012-08-23 Wittenstein Ag Holding brake for shaft, particularly for shaft of electrical machine, has friction element, which is connected with shaft in torque-proof manner, where friction element lies in position on firmly mounted friction surface
JP5522187B2 (en) * 2011-02-24 2014-06-18 日本精工株式会社 NEGATIVE ELECTRIC BRAKE DEVICE, ITS CONTROL METHOD, CONTROL DEVICE, AND DRIVE DEVICE
JP5676310B2 (en) * 2011-03-01 2015-02-25 東芝エレベータ株式会社 Elevator control device
CN102336143A (en) * 2011-08-12 2012-02-01 哈尔滨工程大学 Vehicle braking energy storage device based on magnetic circuit control
JP2013076467A (en) * 2012-11-14 2013-04-25 Hitachi Ltd Electromagnetic brake device
WO2014077813A1 (en) 2012-11-15 2014-05-22 Otis Elevator Company Elevator brake
EP4089299A1 (en) 2012-11-15 2022-11-16 Otis Elevator Company Brake
GB201515171D0 (en) * 2015-08-26 2015-10-07 Renishaw Plc Braking system
CN109505893B (en) * 2019-01-02 2020-03-13 安徽理工大学 Electromechanical brake inlay with parking function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840810U (en) * 1981-09-14 1983-03-17 神鋼電機株式会社 electromagnet
JPS62114228U (en) * 1986-01-09 1987-07-21
JPS62119542U (en) * 1986-01-23 1987-07-29
JP2003083372A (en) * 2001-09-11 2003-03-19 Mitsubishi Electric Corp Braking system and braking device
JP2007051694A (en) * 2005-08-18 2007-03-01 Yaskawa Electric Corp Self-retaining brake and its driving method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607631B2 (en) * 2005-03-16 2011-01-05 株式会社日立製作所 Brake control device for elevator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840810U (en) * 1981-09-14 1983-03-17 神鋼電機株式会社 electromagnet
JPS62114228U (en) * 1986-01-09 1987-07-21
JPS62119542U (en) * 1986-01-23 1987-07-29
JP2003083372A (en) * 2001-09-11 2003-03-19 Mitsubishi Electric Corp Braking system and braking device
JP2007051694A (en) * 2005-08-18 2007-03-01 Yaskawa Electric Corp Self-retaining brake and its driving method

Also Published As

Publication number Publication date
CN101363489B (en) 2011-05-11
CN101363489A (en) 2009-02-11
JP2009041654A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4563429B2 (en) Brake control device
JP4410248B2 (en) Elevator braking device
JP5049672B2 (en) Brake device
JP4607631B2 (en) Brake control device for elevator
EP2920100B1 (en) Elevator brake
JP2008128305A (en) Brake and clutch equipped with wear detecting means for friction plate
JP5188699B2 (en) Brake control device for elevator
ATE547371T1 (en) GUIDE RAIL BRAKE WITH ELECTRO-MAGNETIC ACTIVATION
JP4247258B2 (en) Brake control device for elevator
WO2004039717A1 (en) Brake device of elevator
WO2008114754A1 (en) Electromagnetic brake
JP2008144853A (en) Electromagnetic brake and electromagnetic clutch equipped with wear detection means for friction plate
CN114321234A (en) Pulse current trigger type electromagnetic brake
JP5232127B2 (en) Electromagnetic brake device
JP2009143641A (en) Hydraulic brake device and elevator device having the same
JPH10321433A (en) Self-holding type solenoid
JP2013076467A (en) Electromagnetic brake device
JP5164875B2 (en) Electromagnetic brake control device for elevator
JP2008162774A (en) Brake device of hoisting machine for elevator
JP6036131B2 (en) Negative operating electromagnetic brake device, control method and control device, and drive device
TWI825399B (en) Inductive load drive circuit and electromagnetic braking system
JP5522187B2 (en) NEGATIVE ELECTRIC BRAKE DEVICE, ITS CONTROL METHOD, CONTROL DEVICE, AND DRIVE DEVICE
JP2010276060A (en) Linear motor device with brake
JP2004316716A (en) Electromagnetic brake device
JP4550602B2 (en) Electromagnet device, drive device using electromagnet device, and elevator safety device using drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees