WO2003027172A1 - Bauteile, halbzeuge und profile, ganz oder teilweise aus kunststoff - Google Patents

Bauteile, halbzeuge und profile, ganz oder teilweise aus kunststoff Download PDF

Info

Publication number
WO2003027172A1
WO2003027172A1 PCT/DE2002/003333 DE0203333W WO03027172A1 WO 2003027172 A1 WO2003027172 A1 WO 2003027172A1 DE 0203333 W DE0203333 W DE 0203333W WO 03027172 A1 WO03027172 A1 WO 03027172A1
Authority
WO
WIPO (PCT)
Prior art keywords
components
semi
polyamide
finished products
compound
Prior art date
Application number
PCT/DE2002/003333
Other languages
English (en)
French (fr)
Inventor
Dieter Lehmann
Bernd Hupfer
Original Assignee
Institut Für Polymerforschung Dresden E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Für Polymerforschung Dresden E.V. filed Critical Institut Für Polymerforschung Dresden E.V.
Priority to EP02799389A priority Critical patent/EP1430091A1/de
Publication of WO2003027172A1 publication Critical patent/WO2003027172A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1657Making multilayered or multicoloured articles using means for adhering or bonding the layers or parts to each other
    • B29C2045/1664Chemical bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1657Making multilayered or multicoloured articles using means for adhering or bonding the layers or parts to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the invention relates to the field of plastics processing and relates to components, semi-finished products and profiles which can be used, for example, in tribological applications as plain bearings, sliding blocks.
  • plastic parts or semi-finished products are manufactured using multi-component injection molding. If different materials are manufactured using the two-stroke (rotary table / rotary plate tool) or core pulling process, the problems with the use of such components usually result in insufficient bond adhesion. Since the second component is sprayed onto the first, cooled and solidified component surface as a melt, interface weaknesses are often the weak point in the composite system due to insufficient melt contact and freezing of stresses.
  • Sandwich injection molding is an established process in which one component is introduced as a melt in a melt storage and is injected as a melt with the second component in the mold filling process into the mold with the formation of the skin component, or both components simultaneously or offset into the mold via a special nozzle system be injected.
  • a detailed overview of the state of the art is given in T. Zipp's dissertations "Flow behavior in 2-component injection molding” (RWTH Aachen, publisher of Augustinus Buch Kunststoff Aachen, volume 3, 1992; ISBN, 3-86073-071-1) and C. Jaroschek “Injection molding of molded parts from several components” (RWTH Aachen, Verlag der Augustinus Buchmaschine Aachen, Volume 22, 1994; ISBN, 3- 86073-195-5). In addition to the procedural aspects, material systems are also discussed.
  • the goal was to use and process recycled plastic material as the core component using sandwich injection molding. In this way, uniformly colored and continuous molded parts could be produced, in which the unsightly gray recycled core component is covered by a colored skin component.
  • the invention has for its object to provide components, semi-finished products and profiles, made entirely or partially of plastic, in one process step, which combine the mechanical properties of a construction material in the core and the specific properties of a functional material for the respective application and have improved bond strength ,
  • a compound (A) in which polyamide and perfluoroalkyl substance (s) are coupled via chemical bonds are connected to one another with a polyamide construction material (B), the polyamide construction material ( B) is completely or partially covered with the compound (A) and, in addition to the adhesion and interdiffusion coupling mechanisms known per se, chemical bonds between the compound (A) and polyamide construction material (B) are present in the composite interface.
  • the components, semi-finished products and profiles can partially consist of metal, ceramic, wood or glass, in compact or foamed form, as a component (s) of the polyamide construction material (B).
  • the components, semi-finished products and profiles are also advantageously produced by sandwich injection molding, semi-finished product extrusion, film extrusion or profile extrusion.
  • the compound (A) composed of perfluoroalkyl substance (s) modified with functional groups and polyamide compound (s) is homogenized in the melt via a reactive reaction.
  • the compound (A) is a PTFE-polyamide compound coupled via chemical bonds.
  • the PTFE in the compound (A) can advantageously be present in the quantity range from 1 to 70% by mass and preferably from 5 to 50% by mass.
  • the compound (A) is a local surface component and the polyamide construction material (B) is the main component.
  • the compound (A) is a closed skin component and the construction material (B) is the core component.
  • polyamide in the compound (A) and / or in the polyamide construction material (B) polyamide 6 and / or polyamide 6.6 and / or partially aromatic polyamide 6.6 and / or polyamide 4.6 and / or partially aromatic, are thermoplastically processable polyamide and / or copolycondensates of these polyamides, it being possible for the polyamide to form the matrix.
  • the compound (A) and / or the polyamide construction material (B) advantageously contain additives and / or fillers and / or reinforcing materials.
  • the compound (A) is also advantageously present in fractions of less than 50% by mass, preferably less than 25% by mass, on or in the components, semi-finished products and profiles.
  • the compound (A) is advantageously present in proportions of less than 10% by mass.
  • the chemical bonds between the compound (A) and the polyamide construction material (B) in the composite interface are advantageously amide bonds formed by transamidation.
  • plastic components are manufactured by sandwich injection molding or semi-finished products by semi-finished product extrusion or profiles by profile extrusion in one process step in the melt.
  • a compound (A) in which are linked via chemical bonds to polyamide and perfluoroalkyl substance (s), combined as a functional material with a polyamide construction material (B).
  • the perfluoroalkyl substance (s), preferably PTFE is coupled to the polyamide matrix via chemical bonds.
  • This combines the very good sliding properties of PTFE with the very good material and processing properties of the polyamide.
  • This chemical coupling increases the functionality of the polyamide, which has an advantageous effect on the formation of additional chemical bonds in the composite interface between the compound (A) and the polyamide construction material (B) and consequently on the bond strength of the components, semi-finished products and profiles.
  • the coefficient of sliding friction of the compound (A) is in the range of the PTFE, but because of the chemical bonds, extremely low wear rates are obtained compared to the PTFE and to physical mixtures of PTFE and polyamide.
  • the compound (A) is used alone, especially in thick-walled or compact components, semi-finished products and profiles, a core-shell or a
  • Core-shell or core-skin structure occur in tribological
  • the compound (A) can cover the surface of the polyamide construction material
  • Polyamide construction material (B) forms the core component of the components, semi-finished products and profiles.
  • good to very good adhesion is formed in the bonded interface, which is caused by the additional chemical bonds based on the additional functionalities introduced. It also refers to the improved adhesion based on these chemical bonds.
  • the known adhesion and interdiffusion coupling mechanisms between two interconnected components also occur.
  • the compound (A) with fractions of less than 50% by mass, preferably less than 25% by mass, and in the case of larger-volume components (with a weight of more than 100 g) or profiles or semi-finished products preferably less than 10% by mass to improve the anti-adhesive surface behavior and / or to improve the sliding behavior in tribological areas of application.
  • the bond between the compound (A) and the polyamide construction material (B), which is caused by other mechanisms, is, as already mentioned above, reinforced by reactive compatibilization in the bond interface via transamidation processes through the formation of chemical bonds, in particular amide bonds.
  • Compound (A) is preferably used as a pure compound, but may also contain additives and / or fillers and / or reinforcing materials.
  • a PTFE-polyamide compound (A) contains PTFE in the range of 1 to 70% by mass, preferably 5 to 50% by mass.
  • Polyamides in the form of filled and / or reinforced plastics are used as the polyamide construction material (B) to ensure the mechanical properties of the components, semi-finished products and profiles.
  • the polyamides of (A) and / or (B) can consist of pure polyamides or of polyamide block and / or polyamide graft copolymers.
  • the compounds (A) and polyamide construction materials (B) used to manufacture the components, semi-finished products and profiles according to the invention preferably consist of polyamide 6 and / or polyamide 6.6 and / or partially aromatic polyamide 6.6 and / or polyamide 4.6 and / or partially aromatic, thermoplastically processable polyamides and / or from copolycondensates of these polyamides, which may be used as a matrix.
  • Such copolycondensates can be formed from different types of polyamide or can be produced as copolyetherester polyamides or as copolyester polyamides.
  • the melt viscosity of the compound (A) under processing conditions is advantageously equal to or less than the melt viscosity of the polyamide construction material (B) in order to be able to form a corresponding local or closed layer on the construction material.
  • the desired viscosity or the corresponding viscosity ratio of (A) can be increased by increasing the melt temperature of the compound (A) (B) can be set for processing in the sandwich injection molding process and for the formation of corresponding structures.
  • Compound (A) should preferably be processed with a melt temperature at least 10 K higher than that of polyamide construction material (B) if (A) and (B) have comparable melt viscosities at the same processing temperatures.
  • the viscosity ratio for processing (A) and (B) can be optimized by specifically setting the melt temperatures of the individual materials.
  • a sliding block with the dimensions 40 x 10 x 1000 mm made of pure, chemically coupled PTFE-polyamide-6 compound is manufactured by injection molding.
  • the compound composition is 30% by mass of PTFE (Zonyl MP 1100) and 70% by mass of polyamide-6 (Miramid SH3).
  • Sections show that due to the shrinkage / shrinkage properties of the compound material, a core-shell system is formed with this composition.
  • the shell forms a closed skin with very good mechanical and sliding properties - sliding friction coefficients similar to those of pure PTFE.
  • the core on the other hand, has a different morphology without the continuous good mechanical properties.
  • Tribological investigations of such plain bearings show that, under load, skin peeling, i.e. H. the component surface and thus the component fail.
  • Polyamide-6 with 30% by mass of glass fiber is injection molded into sliding blocks under conditions comparable to those in Comparative Example 1. Tribological studies show that this material has very poor sliding properties and is unsuitable as a sliding block due to the very strong stick-slip tendency.
  • Slide blocks are used to produce sliding blocks with the dimensions according to Comparative Example 1, in which the compound (A): chemically coupled PTFE-polyamide-6 compound [compound composition of 20% by weight of PTFE (Zonyl MP 1100) and 80% by weight of polyamide-6 (Miramid SH3)] as the skin component and the polyamide construction material (B) glass fiber-reinforced polyamide 6 with 30% by mass of glass fiber as the core material are processed into a sliding block in which the continuous skin component is evenly formed over the surface with a thickness of 1 mm.
  • the very good sliding properties of the skin component comparable to the sliding properties of PTFE, combined with the good mechanical properties of the Core component can be demonstrated.
  • the bond between the two components is so good that the wedge test does not separate the bond interface.
  • the chemical coupling of the PTFE with the polyamide-6 demonstrably generates higher carboxylic acid group concentrations in the polyamide matrix of the compound (A), which, at the moment of sandwich injection molding in the bonded interface, contribute to increasing the bond formation through transamidation via chemical coupling through the formation of amide bonds.
  • the sliding block as a functional polymer with PTFE-polyamide as a functional polymer has very low sliding friction coefficients and extremely low wear.
  • AB profiles with the dimensions 10 x 50 mm for sliding blocks are produced by profile extrusion.
  • Semi-finished products with A-B-A layer structure with the dimensions 20 x 200 mm for sliding blocks are manufactured by means of semi-finished extrusion.

Abstract

Die Erfindung bezieht sich auf das Gebiet der Kunststoffverarbeitung und betrifft Bauteile, Halbzeuge und Profile, die beispielsweise in tribologische Anwendungen als Gleitlager, Gleitblöcke zur Anwendung kommen können.Der Erfindung liegt die Aufgabe zugrunde, Bauteile, Halbzeuge und Profile, ganz oder teilweise aus Kunststoff, in einem Verfahrensschritt hergestellt, anzugeben, die die mechanischen Eigenschaften eines Konstruktionswerkstoffes im Kern und die spezifischen Eigenschaften eines Funktionswerkstoffes für die jeweilige Anwendung kombinieren und eine verbesserte Verbundfestigkeit aufweisen.Die Aufgabe wird gelöst durch Bauteile, Halbzeuge und Profile, ganz oder teilweise aus Kunststoff, die eine Kombination eines Compounds (A), in dem über chemische Bindungen Polyamid- und Perfluoralkylsubstanz(en) gekoppelt sind, mit einem Polyamidkonstruktionswerkstoff (B) sind, wobei der Polyamidkonstruktionswerkstoff (B) vollständig oder teilweise mit dem Compound (A) bedeckt ist und wobei in der Verbundgrenzfläche neben den an sich bekannten Adhäsions- und Interdiffusionskopplungsmechanismen chemische Bindungen zwischen (A) und (B) vorhanden sind.

Description

Bauteile, Halbzeuge und Profile, ganz oder teilweise aus Kunststoff
Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der Kunststoffverarbeitung und betrifft Bauteile, Halbzeuge und Profile, die beispielsweise in tribologische Anwendungen als Gleitlager, Gleitblöcke zur Anwendung kommen können.
Stand der Technik
Die Kombination von Funktions- und Konstruktionswerkstoffen gewinnt nicht nur aus Kostengründen zunehmend an Bedeutung. Durch die gezielte Herstellung von funktionalen Bauteilen, Profilen und Halbzeugen durch Kombinieren und Fügen von Werkstoffen im Mehrkomponentenspritzgießen, in der Profilextrusion und in der Halbzeugextrusion werden die Besonderheiten der eingesetzten Werkstoffe am jeweiligen Wirkort genutzt. Hier wurden vielfach unterschiedliche Materialien kombiniert, die jedoch in der Verbundhaftung Probleme aufweisen und sich bei mechanischer Beanspruchung relativ leicht trennen lassen.
Für eine Reihe von industriellen Anwendungen werden Kunststoffteile oder Halbzeuge über das Mehrkomponentenspritzgießen hergestellt. Werden verschiedene Werkstoffe im Zweitakt- (Drehtisch-/Drehtellerwerkzeug-) oder Kernzugverfahren hergestellt, so äußern sich die Probleme bei der Anwendung solcher Bauteile zumeist in einer ungenügenden Verbundhaftung. Da die zweite Komponente als Schmelze auf die erste, abgekühlte und verfestigte Komponentenoberfläche aufgespritzt wird, sind die Grenzflächenhaftungen vielfach durch ungenügenden Schmelzekontakt und Einfrieren von Spannungen die Schwachstelle im Verbundsystem.
Das Sandwichspritzgießen ist ein etabliertes Verfahren, in dem eine Komponente als Schmelze in einem Schmelzespeicher vorgelegt wird und als Schmelze mit der zweiten Komponente im Formfüllprozess in das Werkzeug unter Ausbildung der Hautkomponente eingespritzt wird, oder beide Komponenten über ein spezielles Düsensystem gleichzeitig oder versetzt in das Werkzeug eingespritzt werden. Ein ausführlicher Überblick zum Stand der Technik wird in den Dissertationen von T. Zipp „Fliessverhalten beim 2-Komponenten-Spritzgiessen" (RWTH Aachen, Verlag der Augustinus Buchhandlung Aachen, Band 3, 1992; ISBN, 3-86073-071-1) und C. Jaroschek „Spritzgießen von Formteilen aus mehreren Komponenten" (RWTH Aachen, Verlag der Augustinus Buchhandlung Aachen, Band 22, 1994; ISBN, 3- 86073-195-5) gegeben. Neben den verfahrenstechnischen Aspekten werden auch Materialsysteme diskutiert.
Anfangs war die Zielstellung, über das Sandwichspritzgießen als Kernkomponente Kunststoff-Rezyklatmaterial einzusetzen und zu verarbeiten. So konnten farblich einheitliche und durchgehende Formteile hergestellt werden, bei denen die unansehnliche graue Rezyklatkernkomponente durch eine eingefärbte Hautkomponente abgedeckt wird.
Die Herstellung von Hart-Weich-Verbindungen ist sowohl in der 2K-Verarbeitung [Ar- burg today, Ausgabe 16, 2001; eine Publikation der Arburg Gruppe, S. 13] sowie in untergeordnetem Maß auch im Sandwich-Verfahren der Haupttrend bzw. für optische und haptische Anwendungsbereiche das vorrangige Einsatzgebiet. So werden industriell für die Autoindustrie schon Bauteile mit einer TPE-Hautkomponente und einem geschäumten oder massiven Thermoplastkern oder auch mit einer harten/kompakten Hautkomponente und einer geschäumten oder kompakten Thermoplastkernkomponente hergestellt [J. Ehritt, K. Schröder, Gasinnendruck- und Zwei- komponenten-Spritzgießverfahren, PRAXIS Kunststoffverarbeitung, 6, Dr. Alfred Hüthig Verlag Heidelberg]. Das verfahrenstechnische Ziel besteht zumeist darin, „das Formteil so zu füllen, dass bei einwandfreier Oberflächenqualität eine möglichst gleichmäßige Verteilung des Kernmaterials bis zum Fließwegende erreicht wird."
G. W. Ehrenstein und K. Kuhmann berichten von antielektrostatisch ausgerüsteten Sandwich-Trägerbauelementen (Mehrkomponentenspritzgießen, Ingenieurwerkstoffe/Sonderpublikation, S. 127 ff.; Springer VDI Verlag, ISBN 3-18-990027-2). In diesem Sonderfall wurde als Hautkomponente ein leitfähig ausgerüsteter Kunststoff eingesetzt. Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, Bauteile, Halbzeuge und Profile, ganz oder teilweise aus Kunststoff, in einem Verfahrensschritt hergestellt, anzugeben, die die mechanischen Eigenschaften eines Konstruktionswerkstoffes im Kern und die spezifischen Eigenschaften eines Funktionswerkstoffes für die jeweilige Anwendung kombinieren und eine verbesserte Verbundfestigkeit aufweisen.
Bei den erfindungsgemäßen Bauteilen, Halbzeugen und Profilen, ganz oder teilweise aus Kunststoff, sind ein Compound (A), in dem über chemische Bindungen Polyamid- und Perfluoralkylsubstanz(en) gekoppelt sind, mit einem Polyamidkonstruktionswerkstoff (B) miteinander verbunden, wobei der Polyamidkonstruktionswerkstoff (B) vollständig oder teilweise mit dem Compound (A) bedeckt ist und wobei in der Verbundgrenzfläche neben den an sich bekannten Adhäsions- und Interdiffusionskopplungsmechanismen chemische Bindungen zwischen dem Compound (A) und Polyamidkonstruktionswerkstoff (B) vorhanden sind.
Vorteilhafterweise können die Bauteile, Halbzeuge und Profile teilweise aus Metall, Keramik, Holz oder Glas, in kompakter oder geschäumter Form, als Bestandteil(e) des Polyamidkonstruktionswerkstoffes (B) bestehen.
Ebenfalls vorteilhafterweise sind die Bauteile, Halbzeuge und Profile durch Sandwichspritzgießen, Halbzeugextrusion, Folienextrusion oder Profilextrusion hergestellt.
Weiterhin ist es vorteilhaft, dass der Compound (A) aus mit funktioneilen Gruppen' modifizierten Perfluoralkylsubstanz(en) mit Polyamidverbindung(en) in Schmelze über eine reaktive Umsetzung homogenisiert ist.
Besonders vorteilhaft ist es, wenn der Compound (A) ein über chemische Bindungen gekoppelter PTFE-Polyamid-Compound ist. Dabei kann vorteilhafterweise das PTFE im Compound (A) im Mengenbereich von 1 bis 70 Masse-% und vorzugsweise von 5 bis 50 Masse-% enthalten sein.
Es ist weiterhin vorteilhaft, wenn der Compound (A) eine lokale Oberflächenkomponente und der Polyamidkonstruktionswerkstoff (B) die Hauptkomponente sind.
Auch ist es vorteilhaft, wenn der Compound (A) eine geschlossene Hautkomponente und der Konstruktionswerkstoff (B) die Kernkomponente sind.
Vorteilhaft ist es auch, wenn das Polyamid in dem Compound (A) und/oder in dem Polyamidkonstruktionswerkstoff (B) Polyamid-6 und/oder Polyamid-6.6 und/oder teilaromatisches Polyamid-6.6 und/oder Polyamid-4.6 und/oder teilaromatisches, thermoplastisch verarbeitbares Polyamid und/oder Copolykondensate dieser Polyamide sind, wobei das Polyamid die Matrix bilden kann.
Vorteilhafterweise enthalten der Compound (A) und/oder der Polyamidkonstruktionswerkstoff (B) Additive und/oder Füllstoffe und/oder Verstärkungsstoffe.
Auch vorteilhafterweise ist der Compound (A) mit Anteilen kleiner 50 Masse-%, vorzugsweise kleiner 25 Masse-% an oder in den Bauteilen, Halbzeugen und Profilen vorhanden.
Bei größervolumigen Bauteilen mit einem Gewicht von größer 100 g ist der Compound (A) vorteilhafterweise mit Anteilen kleiner 10 Masse-% vorhanden.
Die chemischen Bindungen zwischen dem Compound (A) und dem Polyamidkonstruktionswerkstoff (B) in der Verbundgrenzfläche sind vorteilhafterweise durch Umamidierung ausgebildete Amidbindungen.
In der vorliegenden Erfindung werden Kunststoffbauteile durch Sandwichspritzgießen oder Halbzeuge durch Halbzeugextrusion oder Profile durch Profilextrusion in einem Verfahrensschritt in Schmelze hergestellt. Dabei wird ein Compound (A), in dem über chemische Bindungen Polyamid- und Perfluoralkylsubstanz(en) gekoppelt sind, als Funktionswerkstoff mit einem Polyamidkonstruktionswerkstoff (B) kombiniert.
In dem Compound (A) als Funktionswerkstoff ist die Perfluoralkylsubstanz(en), vorzugsweise PTFE, über chemische Bindungen mit der Polyamidmatrix gekoppelt. Dadurch sind die sehr guten Gleiteigenschaften des PTFE mit den sehr guten Material- und Verarbeitungseigenschaften des Polyamids kombiniert. Durch diese chemische Kopplung wird die Funktionalität des Polyamids erhöht, was sich vorteilhaft auf die Ausbildung zusätzlicher chemischer Bindungen in der Verbundgrenzfläche zwischen dem Compound (A) und dem Polyamidkonstruktionswerkstoff (B) und folglich auf die Verbundfestigkeit der Bauteile, Halbzeuge und Profile auswirkt. Beispielsweise liegen die Gleitreibungskoeffizienten des Compounds (A) im Bereich des PTFE, wobei aber auf Grund der chemischen Bindungen extrem niedrige Verschleißraten im Vergleich zum PTFE und zu physikalischen Mischungen aus PTFE und Polyamid erhalten werden.
Bei alleinigem Einsatz des Compounds (A), insbesondere in dickerwandigeren oder kompakten Bauteilen, Halbzeugen und Profilen kann eine Kern-Schale- bzw. ein
Kern-Mantel- bzw. eine Kern-Haut-Struktur auftreten, die in tribologischen
Anwendungsgebieten auf Grund von lokalen oder flächigen
Delaminationserscheinungen in der Verbundgrenzfläche nur bedingt oder nicht eingesetzt werden können.
Dieses Problem wird erfindungsgemäß dadurch gelöst, dass der Compound (A) mit einem Polyamidkonstruktionswerkstoff (B) verarbeitet werden.
Dabei kann der Compound (A) die Oberfläche des Polyamidkonstruktionswerkstoffes
(B) nur lokal bedecken, wodurch der Polyamidkonstruktionswerkstoff (B) die
Hauptkomponente des Bauteiles, Halbzeuges und Profils bildet.
Es ist aber auch möglich, dass der Compound (A) eine ganz oder teilweise geschlossene Haut um den Polyamidkonstruktionswerkstoff (B) bildet, wodurch der
Polyamidkonstruktionswerkstoff (B) die Kernkomponente der Bauteile, Halbzeuge und Profile bildet. Bei den erfindungsgemäßen Bauteilen, Halbzeugen und Profilen ist eine gute bis sehr gute Haftung in der Verbundgrenzfläche ausgebildet, die durch die zusätzlichen chemischen Bindungen, basierend auf den zusätzlich eingebrachten Funktionalitäten, hervorgerufen ist. Zusätzlich bezieht sich dabei auf die verbesserte Haftung auf der Basis dieser chemischen Bindungen. Die an sich bekannten Adhäsions- und Interdiffusionskopplungsmechanismen zwischen zwei miteinander verbundenen Komponenten treten ebenfalls auf.
Durch die erfindungsgemäße Lösung lassen sich unterschiedliche und auch solche Polyamid-Typen, die in dem Compound (A) und/oder in dem Polyamidkonstruktionswerkstoff (B) eingesetzt sind und als Matrixmaterial dienen können, zu Bauteilen, Halbzeugen und Profilen mit einer ausreichenden Verbundhaftung verarbeiten, die sonst keine ausreichende Verbundhaftung realisieren können, insbesondere, wo sich die Haut- und die Kernkomponente im Keiltest trennen lassen.
Erfindungsgemäß kann der Compound (A) mit Anteilen kleiner 50 Masse-%, vorzugsweise kleiner 25 Masse-% und bei größervolumigen Bauteilen (mit einem Gewicht von größer 100 g) oder Profilen oder Halbzeugen vorzugsweise kleiner 10 Masse-% zur Verbesserung des antiadhäsiven Oberflächenverhaltens und/oder zur Verbesserung des Gleitverhaltens bei tribologischen Anwendungsgebieten eingesetzt werden. Die durch andere Mechanismen hervorgerufene Verbundhaftung zwischen dem Compound (A) und dem Polyamidkonstruktionswerkstoff (B) wird, wie schon oben angeführt, durch reaktive Kompatibilisierung in der Verbundgrenzfläche über Umamidierungsvorgänge durch Ausbildung chemischer Bindungen, insbesondere Amidbindungen, verstärkt. Der Compound (A) wird dabei vorzugsweise als reiner Compound eingesetzt, kann aber auch Additive und/oder Füllstoffe und/oder Verstärkungsstoffe enthalten. In einem PTFE-Polyamid- Compound (A) ist PTFE möglichst im Mengenbereich von 1 bis 70 Masse-% und vorzugsweise von 5 bis 50 Masse-% enthalten.
Als Polyamidkonstruktionswerkstoff (B) werden Polyamide in Form von gefülltem und/oder verstärktem Kunststoff zur Gewährleistung der mechanischen Eigenschaften der Bauteile, Halbzeuge und Profile eingesetzt. Die Polyamide von (A) und/oder (B) können aus reinen Polyamiden oder aus Polyamid-Block- und/oder Polyamid-Pfropfcopolymeren bestehen. Die zur Herstellung der erfindungsgemäßen Bauteile, Halbzeuge und Profile eingesetzten Compounds (A) und Polyamidkonstruktionswerkstoffe (B) bestehen vorzugsweise aus Polyamid-6 und/oder Polyamid-6.6 und/oder teilaromatischem Polyamid-6.6 und/oder Polyamid-4.6 und/oder teilaromatischen, thermoplastisch verarbeitbaren Polyamiden und/oder aus Copolykondensaten dieser Polyamide, wobei diese als Matrix eingesetzt sein können. Solche Copolykondensate können aus verschiedenen Polyamidtypen gebildet werden oder als Copolyetherester- polyamide oder als Copolyester-polyamide hergestellt sein.
Für die Herstellung der erfindungsgemäßen Bauteile, Halbzeuge und Profile ist vorteilhafterweise die Schmelzeviskosität des Compounds (A) unter Verarbeitungsbedingungen gleich oder kleiner der Schmelzeviskosität des Polyamidkonstruktionswerkstoffes (B), um eine entsprechende lokale oder geschlossene Schicht auf dem Konstruktionswerkstoff ausbilden zu können. Dabei kann bei dem Compound (A) mit einer höheren Ausgangsschmelzeviskosität gegenüber dem Polyamidkonstruktionswerkstoff (B) bei der Verarbeitung zu Bauteilen, Halbzeugen und Profilen über die Erhöhung der Schmelzetemperatur des Compounds (A) die gewünschte Viskosität bzw. das entsprechende Viskositätsverhältnis von (A) zu (B) zur Verarbeitung im Sandwichspritzgießverfahren und zur Ausbildung entsprechender Strukturen eingestellt werden. Vorzugsweise sollte der Compound (A) mit einer mindestens 10 K höheren Schmelzetemperatur gegenüber dem Polyamidkonstruktionswerkstoff (B) verarbeitet werden, wenn (A) und (B) bei gleichen Verarbeitungstemperaturen vergleichbare Schmelzeviskositäten besitzen. Das Viskositätsverhältnis für die Verarbeitung von (A) und (B) lässt sich über die gezielte Einstellung der Schmelzetemperaturen der Einzelwerkstoffe optimieren.
Wege zur Ausführung der Erfindung
Im weiteren wird die Erfindung an mehreren Beispielen näher erläutert. Dabei sind eingangs zwei Vergleichsbeispiele angegeben. Vergleichsbeispiel 1
Ein Gleitblock mit den Maßen 40 x 10 x 1000 mm aus reinem, chemisch gekoppeltem PTFE-Polyamid-6-Compound wird über Spritzgießen hergestellt. Die Compoundzusammensetzung ist 30 Masse-% PTFE (Zonyl MP 1100) und 70 Masse-% Polyamid-6 (Miramid SH3).
Schnitte belegen, dass auf Grund der Schrumpfung/Schwindungseigenschaft des Compoundmaterials bei dieser Zusammensetzung ein Kern-Schale-System ausgebildet wird. Die Schale bildet eine geschlossene Haut mit sehr guten mechanischen und Gleiteigenschaften - Gleitreibungskoeffizienten ähnlich denen des reinen PTFE. Der Kern dagegen besitzt eine andere Morphologie ohne die durchgehenden guten mechanischen Eigenschaften. Tribologische Untersuchungen solcher Gleitlager zeigen, dass es unter Belastung zum Teil zu Hautablösungen, d. h. zum Versagen der Bauteiloberfläche und so des Bauteiles kommt.
Vergleichsbeispiel 2
Polyamid-6 mit 30 Masse-% Glasfaser wird unter vergleichbaren Bedingungen wie im Vergleichsbeispiel 1 zu Gleitblöcken verspritzt. Tribologische Untersuchungen belegen, dass dieses Material sehr schlechte Gleiteigenschaften besitzt und als Gleitblock auf Grund der sehr starken Stick-Slip-Neigung ungeeignet ist.
Beispiel 1
Über Sandwichspritzgießen werden Gleitblöcke mit den Abmessungen nach Vergleichsbeispiel 1 hergestellt, in denen der Compound (A): chemisch gekoppeltes PTFE-Polyamid-6-Compound [Compoundzusammensetzung von 20 Masse-% PTFE (Zonyl MP 1100) und 80 Masse-% Polyamid-6 (Miramid SH3)] als Hautkomponente und der Polyamidkonstruktionswerkstoff (B) glasfaserverstärktes Polyamid-6 mit 30 Masse-% Glasfaser als Kernmaterial zu einem Gleitblock verarbeitet werden, in denen die durchgehende Hautkomponente gleichmäßig über die Oberfläche mit einer Dicke von 1 mm ausgebildet ist. In tribologischen Untersuchungen konnten die sehr guten Gleiteigenschaften der Hautkomponente, vergleichbar mit den Gleiteigenschaften von PTFE, verbunden mit den guten mechanischen Eigenschaften der Kernkomponente nachgewiesen werden. Die Verbundhaftung zwischen den beiden Komponenten ist so gut, dass im Keiltest keine Trennung in der Verbundgrenzfläche erreicht wird. Über die chemische Kopplung des PTFE mit dem Polyamid-6 werden in der Polyamidmatrix des Compounds (A) nachweisbar höhere Carbonsäuregruppenkonzentrationen generiert, die im Moment des Sandwichspritzgießens in der Verbundgrenzfläche durch Umamidierung über chemische Kopplung durch Ausbildung von Amidbindungen zur Erhöhung der Verbundbildung beitragen. Der Gleitblock als Funktionspolymer mit PTFE-Polyamid als Funktionspolymer weist sehr niedrige Gleitreibungskoeffizienten und einen extrem niedrigen Verschleiß auf.
Beispiel 2
Über Profilextrusion werden A-B-Profile mit den Maßen 10 x 50 mm für Gleitblöcke hergestellt. Die Schichten aus dem Compound (A): chemisch gekoppeltes PTFE- Polyamid-6.6-Compound [Compoundzusammensetzung von 30 Masse-% PTFE (Zonyl MP 1100) und 70 Masse-% Polyamid-6.6 (Ultramid A3)] mit einer Dicke von 1 mm und dem Polyamidkonstruktionswerkstoff (B): glasfaserverstärktes Polyamid-6.6 mit 30 Masse-% Glasfaser mit einer Dicke von 9 mm weisen eine in der jeweiligen Werkstoffkomponente homogene Morphologie und eine sehr gute Verbundhaftung auf. Die Verbundhaftung zwischen den beiden Komponenten ist so gut, dass im Keiltest keine Trennung in der Verbundgrenzfläche erreicht wird. In tribologischen Untersuchungen werden neben den sehr guten mechanischen Eigenschaften, basierend auf den Eigenschaften des Polyamidkonstruktionswerkstoffes (B) vor allem die exzellenten tribologischen Eigenschaften des chemisch gekoppelten PTFE-Polyamid-6.6-Compoundmaterials, vergleichbar mit den Gleiteigenschaften von PTFE, im Bauteil wirksam. Der Verschleißtest ergab extrem niedrige Verschleißraten, d. h. die Verschleißrate des chemisch gekoppelten PTFE-PA-6.6- Compoundwerkstoffes gegenüber einem kommerziellen, physikalisch gemischten PTFE-PA-6.6-Material (Verschleißrate gleich 100 % gesetzt) unter vergleichbaren Prüfbedingungen sank auf 20 % [Compound (A)] ab. Beispiel 3
Über Halbzeugextrusion werden Halbzeuge mit A-B-A Schichtstruktur mit den Maßen 20 x 200 mm für Gleitblöcke hergestellt. Die Schichten aus dem Compound (A): chemisch gekoppeltes PTFE-Polyamid-6.6-Compound [Compoundzusammensetzung von 20 Masse-% PTFE (Zonyl MP 1100) und 80 Masse-% Polyamid-6.6 (Ultramid A3)] mit einer Dicke von 2 mm und dem Polyamidkonstruktionswerkstoff (B): glasfaserverstärktes Polyamid-6 mit 15 Masse-% Glasfaser als Zwischenschicht mit einer Dicke von 16 mm weisen eine in der jeweiligen Werkstoffkomponente homogene Morphologie und in den Grenzflächen eine sehr gute Verbundhaftung auf. Die Verbundhaftung zwischen den beiden Komponenten ist so gut, dass im Keiltest keine Trennung in der Verbundgrenzfläche erreicht wird. In tribologischen Untersuchungen werden neben den sehr guten mechanischen Eigenschaften, basierend auf den Eigenschaften des Polyamidkonstruktionswerkstoffes (B) vor allem die exzellenten tribologischen Eigenschaften des chemisch gekoppelten PTFE-Polyamid-6.6-Compoundmaterials, vergleichbar mit den Gleiteigenschaften von PTFE, im Bauteil wirksam. Der Verschleißtest ergab extrem niedrige Verschleißraten, d. h. die Verschleißrate des chemisch gekoppelten PTFE-PA-6.6- Compoundwerkstoffes gegenüber einem kommerziellen, physikalisch gemischten PTFE-PA-6.6-Material (Verschleißrate gleich 100 % gesetzt) unter vergleichbaren Prüfbedingungen sank auf 30 % [Compound (A)] ab.

Claims

Patentansprüche
1. Bauteile, Halbzeuge und Profile, ganz oder teilweise aus Kunststoff, dadurch gekennzeichnet, dass sie eine Kombination eines Compounds (A), in dem über chemische Bindungen Polyamid- und Perfluoralkylsubstanz(en) gekoppelt sind, mit einem Polyamidkonstruktionswerkstoff (B) sind, wobei der Polyamidkonstruktionswerkstoff (B) vollständig oder teilweise mit dem Compound (A) bedeckt ist und wobei in der Verbundgrenzfläche neben den an sich bekannten Adhäsions- und Interdiffusionskopplungsmechanismen chemische Bindungen zwischen (A) und (B) vorhanden sind.
2. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass die Bauteile, Halbzeuge und Profile teilweise aus Metallen, Keramik, Holz oder Glas, in kompakter oder geschäumter Form, als Bestandteile des Polyamidkonstruktionswerkstoffes (B) bestehen.
3. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass die Bauteile, Halbzeuge und Profile durch Sandwichspritzgießen, Halbzeugextrusion, Folienextrusion oder Profilextrusion hergestellt sind.
4. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass der Compound (A) aus mit funktionellen Gruppen modifizierten Perfluoralkylsubstanz(en) mit Polyamidverbindungen in Schmelze über eine reaktive Umsetzung homogenisiert ist.
5. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass der Compound (A) ein über chemische Bindungen gekoppelter PTFE-Polyamid- Compound ist.
6. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass PTFE im Compound (A) im Mengenbereich von 1 bis 70 Masse-% und vorzugsweise von 5 bis 50 Masse-% enthalten ist.
n
7. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass der Compound (A) eine lokale Oberflächenkomponente und der Polyamidkonstruktionswerkstoff (B) die Hauptkomponente sind.
8. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass der Compound (A) eine geschlossene Hautkomponente und der Polyamidkonstruktionswerkstoff (B) die Kernkomponente sind.
9. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass das Polyamid in (A) und/oder (B) Polyamid-6 und/oder Polyamid-6.6 und/oder teilaromatisches Polyamid-6.6 und/oder Polyamid-4.6 und/oder teilaromatisches, thermoplastisch verarbeitbares Polyamid und/oder Copolykondensate dieser Polyamide sind und die Matrix bilden kann.
10. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass
(A) und/oder (B) Additive und/oder Füllstoffe und/oder Verstärkungsstoffe enthalten.
11. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass der Compound (A) mit Anteilen kleiner 50 Masse-%, vorzugsweise kleiner 25 Masse- % vorhanden ist.
12. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass der Compound (A) mit Anteilen kleiner 10 Masse-% bei größervolumigen Bauteilen mit einem Gewicht von größer 100 g vorhanden ist.
13. Bauteile, Halbzeuge und Profile nach Anspruch 1 , dadurch gekennzeichnet, dass durch Umamidierung Amidbindungen in der Verbundgrenzfläche zwischen (A) und
(B) ausgebildet sind.
PCT/DE2002/003333 2001-09-26 2002-09-06 Bauteile, halbzeuge und profile, ganz oder teilweise aus kunststoff WO2003027172A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02799389A EP1430091A1 (de) 2001-09-26 2002-09-06 Bauteile, halbzeuge und profile, ganz oder teilweise aus kunststoff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10148909.9 2001-09-26
DE2001148909 DE10148909A1 (de) 2001-09-26 2001-09-26 Bauteile, Halbzeuge und Profile, ganz oder teilweise aus Kunststoff

Publications (1)

Publication Number Publication Date
WO2003027172A1 true WO2003027172A1 (de) 2003-04-03

Family

ID=7701339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003333 WO2003027172A1 (de) 2001-09-26 2002-09-06 Bauteile, halbzeuge und profile, ganz oder teilweise aus kunststoff

Country Status (3)

Country Link
EP (1) EP1430091A1 (de)
DE (1) DE10148909A1 (de)
WO (1) WO2003027172A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055421A1 (de) * 2004-11-17 2006-05-18 Schaeffler Kg Gleit- oder Reibelement, insbesondere Zugmittelführung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006030836B4 (de) * 2006-07-04 2012-03-01 Gebrüder Reinfurt GmbH & Co. KG Wälzlagerkäfig

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1130587A (en) * 1964-10-10 1968-10-16 Bayer Ag Coated polyamide articles
US5132368A (en) * 1989-10-06 1992-07-21 E. I. Du Pont De Nemours And Company Fluoropolymer process aids containing functional groups
US5576106A (en) * 1994-07-28 1996-11-19 E. I. Du Pont De Nemours And Company Grafted fluoropolymer powders
WO1998008906A1 (en) * 1996-08-26 1998-03-05 Minnesota Mining And Manufacturing Company Fluoropolymer-epoxy resin semi-interpenetrating network composition
EP0893478A2 (de) * 1997-07-25 1999-01-27 E.I. Du Pont De Nemours And Company Zusammensetzungen aus gepfropftem Fluorpolymer und Polyamid oder Polyester
WO1999061527A1 (de) * 1998-05-27 1999-12-02 Institut Für Polymerforschung E.V. Dresden Compounds aus polyamid- und perfluoralkylsubstanz(en) und mischungen dieser compounds mit weiteren polymersubstanzen, verfahren zu ihrer herstellung und verwendung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018000A (en) * 1997-08-12 2000-01-25 Elfatochem North America, Inc Powder coatings from mixtures of thermoplastic vinylidene fluoride based resins and polyamide resins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1130587A (en) * 1964-10-10 1968-10-16 Bayer Ag Coated polyamide articles
US5132368A (en) * 1989-10-06 1992-07-21 E. I. Du Pont De Nemours And Company Fluoropolymer process aids containing functional groups
US5576106A (en) * 1994-07-28 1996-11-19 E. I. Du Pont De Nemours And Company Grafted fluoropolymer powders
WO1998008906A1 (en) * 1996-08-26 1998-03-05 Minnesota Mining And Manufacturing Company Fluoropolymer-epoxy resin semi-interpenetrating network composition
EP0893478A2 (de) * 1997-07-25 1999-01-27 E.I. Du Pont De Nemours And Company Zusammensetzungen aus gepfropftem Fluorpolymer und Polyamid oder Polyester
WO1999061527A1 (de) * 1998-05-27 1999-12-02 Institut Für Polymerforschung E.V. Dresden Compounds aus polyamid- und perfluoralkylsubstanz(en) und mischungen dieser compounds mit weiteren polymersubstanzen, verfahren zu ihrer herstellung und verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055421A1 (de) * 2004-11-17 2006-05-18 Schaeffler Kg Gleit- oder Reibelement, insbesondere Zugmittelführung

Also Published As

Publication number Publication date
DE10148909A1 (de) 2003-04-30
EP1430091A1 (de) 2004-06-23

Similar Documents

Publication Publication Date Title
EP1361261B1 (de) Dichtung
DE3238987A1 (de) Kunststoffzusammensetzungen
DE2707041A1 (de) Schichtwerkstoff, insbesondere fuer reib- und gleitelemente mit metallischem stuetzkoerper und einer mit dem stuetzkoerper verbundenen reib- bzw. gleitschicht aus thermisch hochbelastbaren kunststoffen, sowie verfahren zur herstellung solcher schichtwerkstoffe
DE3343309A1 (de) Schichtverbundwerkstoff und seine verwendung zur herstellung von gleitlagern
EP1511625B1 (de) Gleitlagerverbundwerkstoff
DE60018080T2 (de) Copolyester-elastomerzusammensetzungen und schmelzverbundene gegenstände
EP1385904B1 (de) Dichtmasse niedriger dichte, grundmasse und verfahren zu ihrer herstellung sowie ihre verwendung
DE102007031467A1 (de) Verfahren zur Herstellung eines faserverstärkten Verbundstoffs und Verbundstoff
WO2011018343A1 (de) Verfahren zur herstellung einer gleitschicht auf einem gleitlagerbauteil und zugehöriges gleitlagerbauteil
DE69502178T3 (de) Polyamidharz-zusammensetzung und formmassen daraus
WO2003027172A1 (de) Bauteile, halbzeuge und profile, ganz oder teilweise aus kunststoff
DE102005031606A1 (de) Verfahren zur Herstellung eines beschichteten Bauteils
DE102005051914B4 (de) Käfig für ein Wälzlager
DE3236447C2 (de) Verfahren zur Herstellung von mit Endlosfasern verstärkten Formkörpern
EP2134796A2 (de) Verwendung von die viskosität steuernden carbonnanotubes in bindemittelsystemen und lösungsmittelfreier beschichtungsstoff mit carbonnanotubes auf der basis funktioneller reaktionspartner für in-mould-coating (imc) und top-coating sowie verfahren zur herstellung desselben
DE102005023378B3 (de) Beschichtungsstoff für In-Mould-Coating (IMC) auf der Basis eines aminofunktionellen Reaktionspartners für Isocyanate
DE102007028076A1 (de) Verfahren zur Herstellung stabiler und mediendichter Metall-Kunststoff-Spritzgussverbunde
WO2001077038A1 (de) Maschinenelemente aus einem glas/kunststoff-compound
DE102004045844A1 (de) Verfahren zur Herstellung eines faserverstärkten Produktes
DE102006038330A1 (de) Verfahren zum Verbinden von Kunststoffteilen elektrischer oder elektronischer Bauteile, insbesondere von Steckverbindern, und auf diese Weise erhaltene Produkte
DE102013223679A1 (de) Verfahren zur Herstellung eines Gleitbelags
EP0888403A1 (de) Schichtstoff
EP1570970A1 (de) Mehrschicht-Hohlkörper und Verfahren für dessen Herstellung
EP3789450A1 (de) Mischung umfassend einen klebstoff und einen füllstoff auf basis von wachs
DE2820180B1 (de) Polyamidschichtformkoerper

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002799389

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002799389

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP