WO2003006535A1 - Molded polyglycolic acid - Google Patents

Molded polyglycolic acid Download PDF

Info

Publication number
WO2003006535A1
WO2003006535A1 PCT/JP2002/007006 JP0207006W WO03006535A1 WO 2003006535 A1 WO2003006535 A1 WO 2003006535A1 JP 0207006 W JP0207006 W JP 0207006W WO 03006535 A1 WO03006535 A1 WO 03006535A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
multilayer
less
acid
Prior art date
Application number
PCT/JP2002/007006
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Nakajima
Kazuyuki Yamane
Original Assignee
Kureha Chemical Industry Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Industry Company, Limited filed Critical Kureha Chemical Industry Company, Limited
Publication of WO2003006535A1 publication Critical patent/WO2003006535A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/043PGA, i.e. polyglycolic acid or polyglycolide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to various polyglycolic acid molded articles formed from a thermoplastic resin material containing polydalicholic acid as a main component, and more particularly, to an excellent fluidity in a molten state and capable of forming a uniform thin film.
  • the present invention relates to a molded product of polyglycolic acid, which is formed using a thermoplastic resin material containing polydalicholate as a main component, which has remarkable biodegradability and can be rapidly composted.
  • the present invention also relates to a multilayer molded article including a layer containing polyglycolic acid as a main component.
  • the molded article and the multilayer molded article of the present invention can be suitably used in a wide range of fields as, for example, compression molded articles, extruded molded articles, oriented films, stretch blow containers, multilayer hollow containers, multilayer films, fibers, and the like. You. Background art
  • biodegradable polymer materials In recent years, the increase of plastic waste has become a major social problem. As one of the solutions to this problem, research and development of biodegradable polymer materials are under way.
  • polyglycolic acid has biodegradability (soil breaking property) and gas barrier properties such as oxygen gas barrier property, carbon dioxide gas barrier property, and steam barrier property. Excellent in heat resistance and mechanical strength.
  • a molded article formed using these polyglycolic acids is excellent in gas barrier properties, heat resistance, mechanical strength, and the like, and can exhibit excellent properties such as soil breaking property.
  • soil disintegration does not proceed sufficiently quickly, and composting requires a relatively long time.
  • it was difficult to form polyglycolic acid into a uniform thin film and there was a limit to weight reduction and cost reduction.
  • molded products formed using these polyglycolic acids are difficult to disintegrate in the soil in a short period of time to promote composting, and to develop applications in fields where uniform thinning is required. . Disclosure of the invention
  • An object of the present invention is to provide a thermoplastic resin material containing polydalicholic acid which has excellent fluidity in a molten state, can form a uniform thin film, has remarkable biodegradability, and can be rapidly composted.
  • An object of the present invention is to provide a single-layer or multi-layer molded article formed by using such as, for example, various molded articles such as a compression molded article, an extruded molded article, an oriented film, a stretch blow container, a multilayer hollow container, and a multilayer film.
  • melting point + 20 ° C the temperature is abbreviated as “melting point + 20 ° C”. It was said that it was necessary to use high molecular weight polydaricholic acid having a melt viscosity of 500 Pa ⁇ s or more measured at a shear rate of 100 / sec (see the above-mentioned respective publications).
  • the present inventors have formed various molded articles using polydalicholate having a relatively low melt viscosity, and have excellent fluidity in a molten state, thereby enabling uniform thinning.
  • melt viscosity of polyglycolic acid is liable to fluctuate when subjected to melt molding, but by measuring the melt viscosity of polydalicholic acid in the molded product, a molded product excellent in the above-mentioned properties can be clearly identified. can do.
  • the present invention is based on these findings. It was completed based on this.
  • an oriented film mainly composed of polyglycolic acid containing 60% by weight or more of the repeating unit represented by the above formula (1), wherein the melt viscosity of polydalicholic acid in the oriented film is
  • an oriented film is provided which is not less than 20 Pa's and less than 500 Pa's.
  • a stretch blow container mainly composed of polyglycolic acid containing a repeating unit represented by the above formula (1) in an amount of 60% by weight or more, wherein polydalicholate in the stretch blow container is contained.
  • a stretch blow container having a melt viscosity of 20 Pa's or more and less than 500 Pa * s when the melt viscosity is measured at a temperature 20 ° C. higher than the melting point and a shear rate of 100 Z seconds is provided.
  • a layer in which a thermoplastic resin layer is formed on at least one surface of a layer mainly containing polyglycolic acid containing 60% by weight or more of the repeating unit represented by the above formula (1) A multilayer molded article having a constitution, wherein the melt viscosity of polydalicholate in a layer containing the polydalicholate as a main component is higher than the melting point by 20C.
  • a multi-layer molded article having a degree and shear rate of 100 Pa / s or more and less than 500 Pa-s when measured at a shear rate of 100 / sec is provided.
  • a layer structure in which a thermoplastic resin layer is formed on at least one surface of a layer mainly containing polyglycolic acid containing the repeating unit represented by the above formula (1) in an amount of 60% by weight or more is provided.
  • the melt viscosity of polydalicholate in the layer containing polyglycolic acid as a main component is measured at a temperature 20 ° C. higher than the melting point and at a shear rate of 100 Z seconds
  • the multilayer hollow container has a pressure of 20 Pa * s.
  • a multilayer hollow container having a pressure of less than 500 Pa * s is provided.
  • a layer in which a thermoplastic resin layer is formed on at least one surface of a layer mainly containing polyglycolic acid containing 60% by weight or more of the repeating unit represented by the above formula (1) A multilayer film having a structure, wherein the melt viscosity of polydalicholate in the layer containing polyglycolic acid as a main component is 20 Pa when measured at a temperature 20 higher than the melting point and a shear rate of 100 ns.
  • a multilayer film having a thickness of at least 500 s and less than 500 Pa ⁇ s is provided.
  • the polyglycolic acid of the present invention has the following formula (1)
  • the content of the repeating unit represented by the formula (1) in the polyglycolic acid is 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, and the upper limit is 100% by weight. is there. If the content of the repeating unit represented by the formula (1) is too small, the gas barrier properties and heat resistance are impaired.
  • Polydaricholic acid includes repeating units other than the repeating unit represented by the formula (1).
  • the melting point of the homopolymer of polydalicholic acid can be lowered. If the melting point of polydalicholate is lowered, the processing temperature can be lowered, and thermal decomposition during melt processing can be reduced.
  • the crystallization rate of polyglycolic acid can be controlled by copolymerization to improve extrusion processability and stretch processability. If the content of the other repeating units in the copolymer is too large, the crystallinity inherent in polyglycolic acid is impaired, It may have an adverse effect on gasparity and the like.
  • the physical properties such as the melt viscosity and melting point of polydalicholic acid in the present invention described below are measured as the physical properties of polydalicholic acid in the molded product after the melt molding process, unless otherwise specified.
  • the polyglycolic acid of the present invention is a relatively low molecular weight polymer.
  • the melt viscosity of the polymer can be used as an index of the molecular weight.
  • Tm melting point of the polyglycolic acid of the present invention
  • Tm + 20 ° C. that is, a temperature 20 ° C. higher than the melting point and corresponding to a normal melt processing temperature
  • the melt viscosity of the polyglycolic acid is less than 500 Pa ⁇ s, the fluidity in the molten state is excellent, a uniform thin film can be formed, and the disintegration in soil is remarkably promoted.
  • the melt viscosity of polyglycolic acid is less than 500 Pas, the melt processability at high temperatures tends to decrease compared to the case of polydalicholate having a high melt viscosity.
  • the molding temperature low, it is possible to carry out molding processes such as film-forming and stretch-blow molding. Further, when the melt viscosity of polyglycolic acid is low, the melt processing temperature can be lowered, so that thermal deterioration of polydalicholic acid can be prevented.
  • the melting point Tm of the polyglycolic acid of the present invention is preferably 15 O or more, more preferably 190 C or more, and particularly preferably 210 C or more.
  • the melt enthalpy ⁇ ⁇ of the polyglycolic acid of the present invention is preferably at least 20 JZg, more preferably at least 30 J / g, particularly preferably at least 40 J / g. It is presumed that the crystallinity of polydalicholic acid, whose melting point and melting enthalpy are too low, is lowered due to disorder of the chemical structure in the molecule. Therefore, molded products such as an oriented film and a stretch blow container formed of such polyglycolic acid tend to have low barrier properties and insufficient heat resistance.
  • the polyglycolic acid of the present invention preferably has a density of its non-oriented crystallized product of 1.5. H
  • Polyglycolic acid whose density is too low, has a chemical structure in the molecule.
  • molded products such as oriented films and stretch blow containers made of such low-density polydalicholic acid may have low crystallinity and insufficient gas barrier properties, heat resistance, and strength.
  • Polyglycolic acid has the following formula (I)
  • R represents an alkyl group.
  • the alkyl group preferably has about 1 to 5 carbon atoms.
  • polyglycolic acid is represented by the following formula [I I I]
  • glycolide that is, intermolecular cyclic ester of glycolic acid.
  • Polyglycolic acid converts glycolide (ie, 1,4-dioxane-1,2,5-dione) in the presence of a small amount of a catalyst (eg, a cationic catalyst such as organic tin carboxylate, tin halide, antimony halide, etc.).
  • a catalyst eg, a cationic catalyst such as organic tin carboxylate, tin halide, antimony halide, etc.
  • the ring-opening polymerization is preferably performed by a bulk polymerization method or a solution polymerization method.
  • polyglycolic acid can be obtained by a polycondensation method in which glycolic acid or an alkyl glycolate is heated in the presence or absence of a catalyst to dehydrate or remove alcohol.
  • a polycondensation method of desalting using a glycolic acid salt can also be employed. According to these polycondensation methods, polyglycolic acid having a relatively low melt viscosity can be easily obtained.
  • ethylene oxalate that is, 1,4-dioxane-12,3-dione
  • lactide for example, jS-propiolactone, ⁇ -butyrolactone, pivalolactone, r-butyrolactone, ⁇ -valerolactone,] 3-methyl- ⁇ -valerolactone, ⁇ -force prolactone, etc.
  • trimethylene force-one-ponate and 1,3 —Cyclic monomers such as dioxane
  • hydroxycarboxylic acids such as lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, and 6-hydroxycaproic acid, or alkyl esters thereof
  • ethylene glycol 1,4 Aliphatic diols such as monobutanediol and fats such as succ
  • the polyglycolic acid copolymer can be synthesized by subjecting polydaricholic acid and another polymer having a repeating unit selected from the above formulas (2) to (5) to a transesterification reaction under heating.
  • glycolide used as a monomer a glycolide obtained by a conventional sublimation depolymerization method of oligoglycolic acid can be used.
  • those obtained by the “solution phase depolymerization method” disclosed in Japanese Patent Application Laid-Open No. Hei 9-3228481 can be obtained in large quantities with high purity and high yield. This is preferred because
  • a mixture containing a glycolic acid oligomer and at least one high-boiling-point polar organic solvent having a boiling point in the range of 230 to 450 ° C is subjected to a normal pressure or a reduced pressure.
  • high boiling polar organic solvents examples include bis (alkoxyalkyl esters) such as di (2-methoxyethyl) phthalate, alkylene glycol dibenzoates such as diethylene glycol dibenzoate, and benzyl butyl dibutyl phthalate.
  • alkylene glycol dibenzoates such as diethylene glycol dibenzoate
  • benzyl butyl dibutyl phthalate examples include aromatic phosphoric acid esters such as aromatic carboxylic acid esters and tricresyl phosphate, etc.
  • the oligomer is usually used in a ratio of 0.3 to 50 times (weight ratio) to the oligomer. If necessary, polypropylene glycol, polyethylene glycol, tetraethylene glycol, or the like can be used as a solubilizing agent for the oligomer together with the high boiling point polar organic solvent.
  • the depolymerization temperature of the glycolic acid oligomer is usually 230 ° C. or higher, preferably 230 ° C. to 320 ° C.
  • the depolymerization is carried out under normal pressure or reduced pressure, but it is preferable to carry out depolymerization by heating under reduced pressure of 0.1 to 9.0 kPa (1 to 900 mbar).
  • various molded articles for example, compression molded articles such as trays, extruded molded articles, oriented films, stretched bottles, multi-layer molded articles, are manufactured using thermoplastic resin materials containing polyglycolic acid as a main component.
  • thermoplastic resin materials containing polyglycolic acid as a main component.
  • Multi-layer hollow container, and multi-layer film Specifically, a thermoplastic resin material containing a specific polyglycolic acid is used as a raw material.
  • thermoplastic resin material polydalicholate nitresin alone can be used.
  • thermoplastic resin material a composition in which an inorganic filler, another thermoplastic resin, a plasticizer, and the like are blended with polydaricholic acid within a range not to impair the object of the present invention can be used.
  • the amount of the inorganic filler, other thermoplastic resin, plasticizer, and the like is appropriately selected from the viewpoints of gas barrier properties, biodegradability, and uniform thin film formation.
  • the proportion of polydalicholic acid in the thermoplastic resin material is usually at least 50% by weight, preferably at least 70% by weight, more preferably at least 90% by weight.
  • the amount of the inorganic filler is preferably 0 to 30 parts by weight, more preferably 0 to 10 parts by weight, and particularly preferably 0 to 5 parts by weight, based on 100 parts by weight of the polyglycolic acid.
  • the lower limit is preferably 0.01 part by weight, more preferably 0.05 part by weight.
  • the amount of the other thermoplastic resin is preferably 0 to 50 parts by weight, more preferably 0 to 30 parts by weight, based on 100 parts by weight of the polyglycolic acid.
  • the lower limit is preferably 0.05 parts by weight.
  • the blending amount of the plasticizer is preferably 0 to 50 parts by weight, more preferably 0 to 30 parts by weight, and particularly preferably 0 to 10 parts by weight with respect to 100 parts by weight of polyglycolic acid. .
  • the lower limit is preferably 0.01 part by weight, more preferably 0.05 part by weight.
  • the polyglycolic acid used in the present invention has a sufficiently low melt viscosity, it is often unnecessary to add a plasticizer.
  • Inorganic fillers include alumina, silica, silica-alumina, zirconia, titanium oxide, iron oxide, boron oxide, calcium carbonate, calcium silicate, phosphoric acid, calcium sulfate, magnesium carbonate, magnesium silicate, magnesium phosphate. , Magnesium sulfate, kaolin, talc, myriki, ferrite, carbon, silicon, gallium nitride, molybdenum disulfide, glass, inorganic substances such as potassium titanate 4. Molded object
  • thermoplastic resin material containing polyglycolic acid of the present invention trays of various shapes and deep drawn products can be formed by molding methods including compression molding (press molding), extrusion molding, blow molding, and solution casting.
  • An arbitrary molded product such as a sheet, a film, a fiber (single layer or multilayer such as yarn and composite yarn), a hollow container and the like can be formed.
  • a container such as a tray can be formed by compression molding.
  • Extrusion includes stretch film molding, inflation molding, and T-die molding in addition to extrusion molding of sheets and unstretched films.
  • Extrusion includes the case where an extruded product is subjected to secondary molding.
  • a sheet obtained by extrusion molding can be further subjected to secondary forming such as vacuum forming and pressure forming.
  • secondary forming such as vacuum forming and pressure forming.
  • these molded products compression molded products, oriented films, and stretched professional containers are preferred.
  • a multilayer molded article having a layer configuration in which a thermoplastic resin layer is formed on at least one surface of a layer formed of a thermoplastic resin material containing polyglycolic acid can be molded.
  • a multilayer molded product include a multilayer sheet, a multilayer hollow container, and a multilayer film.
  • the gas barrier property of polydalicholic acid can be sufficiently exhibited.
  • the layer (the film, the body of the container, the core layer of the multilayer hollow container or the multilayer film, etc.) made of the thermoplastic resin material containing polyglycolic acid can be uniformly thinned.
  • the ratio of the weight (X) to the initial weight (y) after being buried in the soil for 6 months exhibits excellent soil disintegration of preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less.
  • thermoplastic resins include, for example, homopolymers and copolymers of lactic acid, homopolymers and copolymers of ethylene oxalate, homopolymers and copolymers of ⁇ -force prolactone, and polysuccinate esters , Polyhydroxybutanoic acid, hydroxybutanoic acid-hydroxyvaleric acid copolymer, cellulose acetate, polyvinyl alcohol, starch, polyglutamic acid ester, natural rubber, polyethylene, polypropylene, styrene butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, Examples include polyethylene methacrylate, polystyrene, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, ABS resin, MBS resin, and ethylene-vinyl alcohol copolymer.
  • plasticizer examples include phthalic acid esters such as di (methoxyethyl) phthalate, dioctyl phthalate, getyl phthalate, and benzyl butyl phthalate; benzoic acids such as dimethyl glycol dibenzoate and ethylene glycol dibenzoate; Esters: aliphatic dibasic acid esters such as octyl adipate and octyl sebacate; aliphatic tribasic acid esters such as triptyl acetyl citrate; phosphate esters such as dioctyl phosphate and tricresyl phosphate; epoxidized soybean oil and the like Epoxy plasticizers; polyalkylene glycol esters such as polyethylene glycol sebacolate and polypropylene glycol laurate; and the like.
  • phthalic acid esters such as di (methoxyethyl) phthalate, dioctyl phthalate, getyl phthal
  • thermoplastic resin material if necessary, various additives such as a heat stabilizer, a light stabilizer, a moisture proof agent, a waterproof agent, a water repellent agent, a lubricant, a release agent, a coupling agent, a pigment, and a dye may be added to the thermoplastic resin material.
  • various additives are used in an effective amount according to the purpose of use.
  • the thermoplastic resin material is supplied to a kneading extruder in the usual manner with polyglycolic acid alone or with at least one of other components such as polyglycolic acid, an inorganic filler, a thermoplastic resin, a plasticizer, and various additives.
  • the cylinder temperature is Tm to 255 ° C (usually 150 to 255 ° C), melt-kneaded, extruded into strands, cooled and cut into pellets.
  • the oriented film of the present invention can be produced by melt-extruding the above-mentioned polyglycolic acid netoresin or a composition containing the polyglycolic acid, stretching and orienting, and, if necessary, heat setting.
  • a method such as uniaxial stretching by a flat die method, sequential biaxial stretching, and simultaneous biaxial stretching, or inflation biaxial stretching by a circular die method can be employed.
  • Preferred methods include the following methods.
  • Roll method A method of manufacturing a uniaxially oriented flat film by stretching a sheet melt-extruded using a T-die through a stretching roll in the machine direction (MD).
  • Inflation method melt extruded into a tube using a ring die for inflation, quenched to a temperature below the crystallization temperature (TCl ), pressurize gas into the tube, expand the tube. How to stretch. By stretching in the longitudinal direction between the nip rolls by this method, a biaxially stretched film can be obtained.
  • a method of cooling after melt extrusion into a tube there are a method of airing and a method of immersion in cold water. Among these methods, a particularly preferred method for producing an oriented film is as follows.
  • thermoplastic resin material is supplied to an extruder equipped with a T die, extruded into a sheet at a temperature in the range of Tm to 255 ° C (usually 150 to 255 ° C), and immediately cooled with a cooling drum or refrigerant. Quenching to a temperature below Tci, preferably below the glass transition temperature (Tg) using Through the stretching port in the temperature range (normally 30 to 120 ° C), preferably Tg to (Tg + 10 ° C) (normally 30 to 48 ° C), and 1 times the MD. Stretch at a stretch ratio of 20 times or less (preferably 2 to 10 times).
  • thermoplastic resin material is supplied to an extruder equipped with a T die, extruded into a sheet at a temperature of Tm to 255 (usually 150 to 255 ° C), and a cooling drum, refrigerant, etc.
  • Tc i or lower Quenched to Tc i or lower, preferably to Tg or lower, and then, similarly to the roll method, at a temperature of Tg to TC i (usually 30 to 120 ° C.), preferably T g to (Tg + 10 ° C.) In a temperature range of (normally 30 to 48 ° C), the film is stretched through a stretching roll into a MD at a stretching ratio of more than 1 to 10 times or less (preferably 2 to 8 times), and then Tg to Tc (normally 30 to 120 ° C).
  • Tg ⁇ Tg + 20 ° C
  • Tg ⁇ Tg + 20 ° C
  • Tg + 20 ° C usually 30-58 ° C
  • T C l a temperature of ⁇ (Tm + 10 ° C) 1 second to 3 hours (in the usual 70 to 240) (preferably 3 seconds to 30 minutes)
  • a thermoplastic resin material is fed to an extruder equipped with an inflation ring die and melt-extruded into a tube at a temperature of Tm to 255 ° C (usually 150 ° C to 255 ° C).
  • Tm to 255 ° C
  • Tg ⁇ TC i usually 30 ⁇ : L 20 ° C
  • Tg ⁇ (T g + 10 ° C ) normal 30-48
  • blow rate is blown so that the blow ratio is more than 1 time and 10 times or less (preferably 2 to 8 times), and the take-off speed is 0.5 to 100 mZ min (preferably 1 to 50 mZ).
  • the two surfaces of the oriented film of the present invention are combined, and using a sealer, at a temperature of (Tm ⁇ 20 ° C.) to (Tm + 100 ° C.), preferably at a temperature of Tm to (Tm + 50 V), usually 0
  • the bag can be manufactured by heat or melt sealing for 0.1 to 100 seconds, preferably 0.1 to 20 seconds.
  • a sealer a hot knife sealer, an impulse sealer, a high frequency sealer, an ultrasonic sealer, or the like can be used.
  • a film which has been subjected to stretching and orientation alone and has not been subjected to heat setting is a heat-shrinkable film having a high heat shrinkage.
  • the thickness of the oriented film of the present invention is usually 1 to 500/111, preferably 3 to 300 m, more preferably 5 to 200 zm. Even if the oriented film of the present invention is formed as a very thin film having a thickness of 40 m or less, the variation in thickness is small, and
  • the variation (R%) from the set thickness is less than 30%.
  • the variation (R%) from the set thickness is 30% or more and less than 70%.
  • the variation (R%) from the set thickness was less than 10%.
  • the oriented film of the present invention is a soil-disintegrable film having a low environmental load. That is, when the oriented polyglycolic acid film of the present invention is buried in soil at a depth of 10 cm, it usually breaks down within six months and loses its original shape.
  • the glass transition temperature (Tg) is too high, so that there is a problem that composting is difficult under normal conditions.
  • the oriented film of the present invention is formed from polydalicholic acid having a not so high Tg. Therefore, composting under normal conditions is possible.
  • the rate of disintegration in soil is significantly higher than that of a conventional oriented film obtained using polydalicholic acid having a high melt viscosity.
  • the one without an inorganic filler or the one with a small amount of the inorganic filler is almost colorless, has high transparency, and has an extremely low haze value.
  • a thermoplastic resin material containing a specific polyglycolic acid it is possible to obtain an oriented film having a very low oxygen permeability. More specifically, according to the present invention, the oxygen permeability (measured at a temperature of 23 ° C. and a relative humidity of 80%; converted to a thickness of 25 m; in accordance with JIS K-7126) is usually 50 cmVm 2 ⁇ day. ⁇ It is possible to obtain an oriented film having a high barrier property of not more than a tm, preferably not more than 30 cmVm 2 -day-atm, more preferably not more than 10 cmVm 2 ⁇ day ⁇ atm.
  • the oriented film of the present invention is also excellent in carbon dioxide gas barrier properties, and has a carbon dioxide gas permeability (measured at a temperature of 23 ° C and a relative humidity of 80%; converted to a thickness of 25 ⁇ m; compliant with JIS K-7126). Usually, it is 300 cm 3 / m 2 ⁇ day ⁇ atm or less, preferably 100 cmVm 2 ⁇ day ⁇ atm or less, more preferably 30 cmVm 2 ⁇ day ⁇ atm or less.
  • the oriented film of the present invention has a good water vapor barrier property and a moisture permeability (measured at a temperature of 40 and a relative humidity of 90%; converted to a thickness of 25 xm; in accordance with JIS K-0280).
  • the oriented film of the present invention can be used for various purposes by itself or after being subjected to a moisture-proof coat or a moisture-proof laminate. This oriented film can be used after being formed into a bag-like molded body.
  • the oriented film of the present invention has features such as high gas barrier properties, heat shrink resistance, and high transparency.
  • an oriented film having a low heat shrinkage of usually 30% or less, preferably 20% or less, more preferably 10% or less is obtained. be able to.
  • Such low heat shrinkage film is used for high temperature Suitable for applications such as wrap films used in microwave ovens, trays, containers for instant foods to be infused with hot water, retort food packaging materials requiring high-temperature sterilization, and medical device packaging materials. .
  • the oriented polyglycolic acid film of the present invention can be easily formed into a thin film.
  • a thin oriented film can be used for winding and rewinding operations during film production and processing, or during use and rewinding operations when used for tapes.
  • the magnitude of the friction between the metal surfaces of the film becomes a problem. If the friction is too high, the film may break or wrinkle during the winding and rewinding operations, making these operations difficult.
  • To 100 parts by weight of the specific polyglycolic acid 0.01 to 5 parts by weight, preferably 0.02 to 3 parts by weight, more preferably 0.03 to 2 parts by weight of the inorganic filler of the powdered strip is used.
  • the coefficient of dynamic friction between the film and the film / k (23) is 0.35 or less, preferably 0.33 or less, more preferably 0. It is possible to obtain a slippery film of 30 or less.
  • An unstretched film was prepared using a thermoplastic resin material containing 0.5 to 100 parts by weight of a powdery inorganic filler with respect to 100 parts by weight of polydalicholic acid.
  • a thermoplastic resin material containing 0.5 to 100 parts by weight of a powdery inorganic filler with respect to 100 parts by weight of polydalicholic acid.
  • Applications of the oriented film of the present invention include, for example, food packaging, medical equipment packaging, wrap film, western packaging, doll packaging, fresh packaging, vegetable packaging, egg pack, cushioning, multi-film, Carrier bags, garbage bags, sanitary wrapping materials, disposable diapers, adhesive tape, magnetic tape, floppy (R) disks, microwave wrap films, retort food wrapping materials, and instant food wrapping materials.
  • the unheated oriented film can be used as a heat-shrinkable film.
  • Split yarn can be used as a stringing material for loading and agricultural purposes.
  • the stretch blow container of the present invention is obtained by molding a thermoplastic resin material comprising a polydalicholate neat resin having a specific physical property or a composition containing the polydalicholate at a resin temperature of Tm to 255 ° C.
  • a preform in a substantially amorphous state is prepared, and the preform is heated to a resin temperature of (glass transition temperature of polyglycolic acid Tg + 70 ° C) or lower, and exceeds 1 times in the longitudinal direction, and 10 times.
  • the resin temperature during preform (parison) molding is in the range of melting point Tm to 255 ° C.
  • the Tm of polydalicholate is about 220 ° C in the case of a homopolymer.However, by copolymerizing with a comonomer such as ethylene oxalate, lactide, lactones, trimethylene monoponate, and 1,3-dioxane, Generally lower. Therefore, the resin temperature at the time of preform molding is usually 150 to 255 ° C, preferably 190 to 25 ° C, and more preferably 200 to 24 ° C. If the resin temperature exceeds 255 ° C, polydalicholate becomes susceptible to thermal decomposition, making it impossible to obtain a satisfactory preform.
  • the preform is formed as a substantially amorphous preform. If the preform is in a crystalline state, in the next stretching step, the tension at the time of stretching increases, and stretching becomes difficult.
  • a preform in a substantially amorphous state can be obtained by rapidly cooling the molten resin.
  • the temperature condition of the stretching pro-forming is (Tg + 70 :) or less. If the temperature of the resin at the time of stretching is higher than (Tg + 70 ° C), the mobility of the polymer molecular chains is too active, and even if stretch blowing is performed, the stretched orientation state is immediately relaxed and the orientation is reduced. It may disappear or be significantly reduced.
  • the resin temperature is Tg to (Tg + 7 Re-heat so as to be in the range of 0).
  • the hot parison method the parison obtained by injection molding or extrusion molding is cooled, but stretch blow-molded while the resin does not solidify.
  • the preform is melt-molded at a temperature of Tm to 255 ° C, then quenched to a temperature of (Tg-30 ° C) to (Tg + 70 ° C), Stretch-blow molding is performed while is not solidified. Even if the melt-formed preform is rapidly cooled and supercooled to a temperature lower than Tg, a stretch-blow container can be manufactured by immediately performing stretch-blow molding while the resin does not solidify.
  • the Tg of polyglycolic acid is about 38 ° C in the case of a homopolymer, but by copolymerizing with comonomers such as ethylene oxalate, lactide, lactones, trimethylene glycol and 1,3-dioxane, Its value fluctuates. Therefore, the resin temperature at the time of elongation forming is (Tg + 70 ° C) or less, preferably 30 to 100 ° C, and more preferably 35 to 90.
  • the preform is stretched more than 1 times and 10 times or less in the machine direction.
  • a bottomed parison it is usually stretched using a stretching rod.
  • both ends are held in a holder and stretched in the longitudinal direction (longitudinal direction).
  • the extension ratio in the longitudinal direction is preferably about 1.5 to 5 times.
  • the blow ratio is usually 1.5 to 10, preferably 1.8 to 9, and more preferably 2.0 to 8. If the blow ratio is less than 1.5, the orientation of the molecular chains is insufficient, the crystallinity is insufficient, and harmful coarse spherulites are generated, and sufficient tensile strength cannot be exhibited. Properties, heat resistance, and transparency may also be insufficient.
  • the blow ratio refers to the ratio of the diameter (maximum diameter) of the container to the diameter of the parison formed in the container in blow molding. The step of blowing by blowing air is performed simultaneously with or after the longitudinal stretching (sequentially).
  • the stretch blow molding method that can be employed in the present invention includes the following various methods.
  • thermoplastic resin material containing polydalicholic acid is supplied to an injection molding machine, and is injection-molded in a mold at a resin temperature of Tm to 255 ° C to form a bottomed parison, and then cooled and solidified.
  • thermoplastic resin material containing polyglycolic acid is supplied to an injection molding machine, injection molded in a mold at a resin temperature of Tm ⁇ 255 ° C to produce a bottomed parison, and then cooled.
  • T g + 70 ° C A preform made of unsolidified hot parisone having a resin temperature of not more than (T g + 70 ° C), and then moving the preform into a blow-molding mold, and moving the preform in a longitudinal direction with a stretching rod. At the same time or successively, air is blown at the same time or sequentially, blow-molded into a hollow container with a ratio of 1.5 to 10 and heat-fixed if necessary. In this method, the preform moves to the professional molding process while maintaining the preheating of the injection molding.
  • a hot parison temperature adjustment step may be added.
  • thermoplastic resin material containing polydalicholic acid was fitted with a parison die. It is supplied to an extruder, extruded at a resin temperature of Tm to 255 ° C to produce a hollow pipe, cooled and solidified to a temperature below Tg, and cut into a fixed length to form a cold parison preform.
  • both ends thereof are held in a holder and stretched in the length direction by more than 1 times and stretched to 10 times or less, Then, after pinching off one end to make it bottomed, it is moved into a blow molding die, blown with air, blow-molded into a hollow container with a blow ratio of 1.5 to 10, and heat-fixed if necessary. .
  • thermoplastic resin material containing polyglycolic acid is fed to an extruder equipped with a parison die, extruded at a resin temperature of Tm to 255 ° C to form a hollow pipe, and then cooled to a temperature below Tg. It is cooled and solidified, cut to a certain length to obtain a preform made of cold parison, and then the preform is reheated to a resin temperature of Tg to (Tg + 70 ° C), and one end of the preform is pinched off.
  • thermoplastic resin material containing polyglycolic acid is supplied to an extruder equipped with a parison die, and is extruded at a resin temperature of Tm to 255 ° C to produce a hollow pipe.
  • Tg + 70t After cooling to the following resin temperature and cutting into a fixed length to form a preform made of hot parison, both ends are held in a holder and stretched in the length direction by more than 1 time and 10 times or less, and then After pinching off one end to make it bottomed, it is moved into a blow molding die, blown with air, blow-molded into a hollow container having a blow ratio of 1.5 to 10, and heat-fixed if necessary.
  • a hot parison temperature adjustment step may be added.
  • thermoplastic resin material containing polydalicholic acid was fitted with a parison die. Feed to the extruder, ⁇ ! After extruding at a resin temperature of ⁇ 255 ° C to produce a hollow pipe, it is cooled to a resin temperature of (Tg + 70 ° C) or less, cut to a certain length, and cut into a plastic parison. After reforming, one end is pinched off to make it bottomed, and then moved into the blow molding die and stretched by a stretching rod to more than 1 times and 10 times or less in the longitudinal direction, and simultaneously or simultaneously Air is blown in one by one to blow-mold into a hollow container having a blow ratio of 1.5 to 10 and heat-fix if necessary. A hot parison temperature adjustment step may be added.
  • a stretch blow container having an internal volume of 25 ml or more can be obtained, but the internal volume can be appropriately determined according to the purpose of use.
  • the stretch blow container for forming the mouth and the bottom preferably has a shape having a flat portion at the bottom so that it can stand upright independently.
  • an annular band a kind of hook
  • a stretch blow container having a variation (R) from the set thickness of less than 30% can be obtained when the set body thickness at the time of molding the stretch blow container is measured as 100.
  • a stretch-blow container having a variation (R%) from the set thickness of 30% or more and less than 70% is used. Obtainable.
  • the thickness of the body portion set at the time of molding of the stretch blow container is increased to 200 m and measured, a stretch blow container having a variation (R%) from the set thickness of less than 10% can be obtained.
  • the stretch blow container of the present invention is a molded product having a low environmental load and disintegrating in soil. That is, when the stretch blow container made of polydalicholic acid of the present invention is buried in soil at a depth of 10 cm, it usually collapses within six months and loses its original shape.
  • the one in which the inorganic filler is not added or the one in which the amount of the inorganic filler is small is almost colorless, has high transparency, and has an extremely low haze value. No.
  • the stretch blow container of the present invention can exhibit gas barrier properties, heat resistance, mechanical properties, and the like by sufficiently stretching and orienting the molecular chains of the polymer on the body side wall during stretch blow molding.
  • the present invention it is possible to obtain a stretch blow container having high oxygen and carbon dioxide gas barrier properties.
  • the oxygen permeability the temperature
  • the stretchable mouthpiece of the present invention preferably has a carbon dioxide gas permeability of the body side wall (measured at a temperature of 23 ° C and a relative humidity of 80%, and converted to a thickness of 50 xm) of 300 cmVm 2 ⁇ day ⁇ atm or less.
  • the moisture permeability of the barrel sidewall is usually 100g / m 2 ⁇ d ay less, preferably 50 g / m 2 ⁇ day or less, more preferably 30 g Zm 2 ⁇ day or less.
  • the stretched professional container of the present invention may be used as it is or after having been subjected to a moisture-proof coating, moisture-proof laminating, etc., for example, as a container for carbonated drinking water, soft drink, seasoning, edible oil, liquor, fruit juice, etc. It can be replaced with a general-purpose parier hollow container such as.
  • the stretch blow container of the present invention has high elasticity on the body side wall, so even if the wall thickness is reduced to about half that of the conventional hollow container, the stretch blow container has a strong stiffness and does not easily deform even when the contents are filled. . Therefore, the economic effect of reducing the wall thickness due to this high elasticity is extremely large.
  • the heat shrinkage (130 ° C, 10 minutes) of the body side wall of the stretch blow container of the present invention is usually
  • Such a low heat shrinkage hollow container is suitable as a container for foods such as seasonings that require high-temperature sterilization.
  • hollow containers with a heat shrinkage rate of more than 30% may be problematic when used at a high temperature of 130 ° C or higher because the deformation becomes too large.
  • the stretch blow container of the present invention can be used for various applications by utilizing its features such as high barrier properties, heat resistance, transparency, and mechanical strength. Specific examples include containers for carbonated drinking water, soft drinks, edible oils, fruit juices, liquors, etc .; containers for drinking water, detergents, cosmetics; containers for seasonings requiring high-temperature sterilization, and baby bottles. . 7. Multi-layer hollow container
  • the multilayer hollow container of the present invention comprises at least one thermoplastic resin layer (hereinafter sometimes referred to as a “base resin layer”), a polydalicholate nitrate resin having specific physical properties, or a composition containing the polydalicholate. It is a multi-layer hollow container having a layer (hereinafter sometimes simply referred to as “PGA layer”) formed of a thermoplastic resin material, and has gas barrier properties. If necessary, an adhesive layer can be interposed between the respective layers.
  • base resin layer hereinafter sometimes referred to as a “base resin layer”
  • PGA layer a layer formed of a thermoplastic resin material
  • the thickness of the entire side wall of the multilayer hollow container of the present invention is usually 5 m to 5 mm, preferably 1001 to 3111111, and more preferably 20 m to 2 mm. If the thickness is too small, the mechanical strength is insufficient. If the thickness is too large, when used as a hollow container, the quality is excessive, the cost is high, and it is not preferable from the viewpoint of productivity and economy.
  • the basic layer configuration of the multilayer hollow container of the present invention is as follows. However, the adhesive layer is omitted. Further, a thermoplastic resin material containing polyglycolic acid is abbreviated as PGA.
  • the multilayer hollow container of the present invention has various requirements as long as it has the basic layer configuration described above.
  • the same or different resin layer may be additionally laminated (for example, thermoplastic resin / PGA / PGA).
  • the method for forming a multilayer of the thermoplastic resin layer and the polyglycolic acid layer is not particularly limited.
  • various processing methods such as a method of laminating by a co-extrusion method or a co-injection method can be adopted.
  • the thermoplastic resin other than PGA used for the thermoplastic resin layer includes, for example, very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), polypropylene (PP), ethylene 'propylene rubber (EPM), ethylene' vinyl acetate copolymer (EVA), ethylene acrylate copolymer (Pololefins such as EEA) and Ionoma I (I ⁇ ); Polyesters such as polyethylene terephthalate (PET) and polyethylene naphtholate (PEN); Polystyrene (PS), high impact polystyrene (HI PS), styrene butadiene ⁇ Polystyrene resins such as styrene block copolymer (SBS) and hydrogenated SBS (ie SEBS); rigid Polyvinyl chloride (PVC) based resins such as poly VLDPE), linear low density polyethylene (LL
  • thermoplastic resin layers are used as a single layer or a multilayer. It is desirable in terms of processability, economical efficiency, and the like, that the thermoplastic resin layer has a range of usually 4 to 5 mm, preferably 10 / im to 3 mm, and more preferably 20 to 2 mm.
  • an adhesive layer can be interposed between the thermoplastic resin layer (base resin layer) and the polyglycolic acid layer in order to enhance the adhesiveness between the layers.
  • the adhesive used for the adhesive layer include carboxylated polyolefin and epoxidized polyolefin. Examples include polymers such as olefin, ethylene-pinyl acetate copolymer, ionomer, polyurethane, epoxy resin, SBS, SEBS, polychloroprene, styrene / butadiene copolymer rubber (SBR), and natural rubber (NR).
  • Carboxylated polyolefin is a polyolefin obtained by modifying a polyolefin with an unsaturated acid monomer such as acrylic acid, methacrylic acid, or maleic anhydride to introduce a carboxyl group.
  • an unsaturated acid monomer such as acrylic acid, methacrylic acid, or maleic anhydride
  • the introduction of the hydroxyl group may be carried out by either a copolymerization method or a grafting method.
  • an unsaturated acid monomer may be used in combination with a vinyl monomer such as methyl acrylate, acrylate or vinyl acetate.
  • the epoxidized polyolefin is a polyolefin obtained by modifying a polyolefin with an epoxy group-containing monomer such as glycidyl methacrylate to introduce an epoxy group.
  • the epoxy group may be introduced by a copolymerization method or a grafting method.
  • the above-mentioned epoxy group-containing monomer may be used in combination with a vinyl-based monomer such as methyl acrylate, acrylate or vinyl acetate.
  • olepoxylated polyolefin and ethylene / vinyl acetate copolymer are particularly preferred from the viewpoint of adhesiveness and processability.
  • the thickness of the adhesive layer is usually 5 m to 2 mm, preferably 2 m to 1 mm, more preferably 3 ⁇ ! It is in the range of 0.5 mm. If the thickness is less than 0.5 tm, the adhesiveness may be insufficient. If the thickness exceeds 2 mm, it is costly and disadvantageous from an economical point of view.
  • a layer (PGA layer) made of a thermoplastic resin material containing polydalicholic acid is disposed to provide a multilayer hollow container having excellent gas barrier properties such as oxygen gas barrier property and carbon dioxide gas barrier property. Can be obtained.
  • the thickness of the PGA layer is usually 1 to 30 mm, preferably 3 to 20 m.
  • the PGA layer is disposed on the core layer. In this case, the PGA layer has a uniform thickness of 10 zm or less, and even a thin thickness of about 3 to 5 m. Thick layers can be formed.
  • the variation (R%) from the set thickness was 20%. It can be less than 0%. The same applies when the set thickness is 3 m.
  • the melt viscosity of the polyglycolic acid sufficiently small (for example, less than or equal to lOPOP's)
  • the variation (R%) from the set thickness can be made less than 100%. If the melt viscosity of polydalicholate is sufficiently low and the thickness of the layer mainly composed of polydalicholate during molding is 10 im, the variation (R) from the set thickness is 50%. It can also be less than.
  • the trunk side wall of the layered hollow container of the present invention has an oxygen gas permeability and a gas permeability of carbon dioxide or gaseous, which are usually 1 Z 2 or less, preferably 1 Z 5 or less, as compared with those values of the thermoplastic resin layer. It is more preferably reduced to 1/10 or less.
  • the gas barrier uniform multilayer hollow container of the present invention includes, for example, polyolefin, polyester, polystyrene, polyvinyl chloride, polycarbonate, polylactic acid, polysuccinic ester, polyprolactone, polyamide, EVOH, polyurethane, P By combining a thermoplastic resin layer made of a resin selected from VDC etc.
  • the multilayer hollow container of the present invention has a very small decrease in gas barrier properties even when subjected to a treatment under high temperature and high humidity.
  • multi-layer hollow containers The purpose of multi-layer hollow containers is to obtain the required properties that cannot be obtained with a single material by multi-layering. Specifically, it is necessary to provide gas barrier uniformity to oxygen, carbon dioxide, etc., to provide heat sealability, to improve moisture resistance, to improve mechanical strength, and to significantly reduce costs.
  • the method for producing the multilayer hollow container of the present invention can be broadly classified into a multilayer extrusion blow molding method and a multilayer injection blow molding method.
  • These blow molding methods include a stretch blow molding method in which the film is stretched uniaxially or biaxially during professional molding, and a non-stretch blow molding method in which the film is not stretched. According to the stretch blow molding method, a multilayer stretch blow container can be obtained.
  • thermoplastic resin material containing polydalicholic acid The multi-layer parison is formed from a material, at least one thermoplastic resin, and optionally an adhesive.
  • each resin material heated and melted by each extruder is allowed to flow into a multi-layer parison molding die (usually a circular die), where they are simultaneously or sequentially merged, and a tubular parison is pressed from the die. put out.
  • a multi-layer parison molding die usually a circular die
  • a tubular parison is pressed from the die. put out.
  • the melt-extruded parison Before the melt-extruded parison is solidified, it is sandwiched between split molds, one end of the parison is pinched, air is blown into the parison and blown to the mold wall, and cooled. After cooling, open the mold and remove the molded product.
  • a test tubular bottomed parison (preform) is injection-molded by injection molding, and the parison is blow-molded in a supercooled state or at a glass transition point Tg or more.
  • the hot parison method is a method of controlling the temperature at a temperature below the melting point Tm without solidifying and then performing blow molding.
  • the parison is once cooled and solidified, then reheated to a temperature of Tg or more, the temperature is adjusted, and the cold parison method is used.
  • the hot parison method includes stretch blow molding and unstretched pro-molding, whereas the cold parison method usually involves only stretch blow molding.
  • injection blow molding a preform is formed by co-injection (coin injection) of a thermoplastic resin material containing polyglycolic acid, at least one thermoplastic resin and, if necessary, an adhesive. Blow molding by hot parison method or cold parison method. At this time, stretch blow molding or non-stretch blow molding is performed.
  • the injection temperature is preferably in the range of the melting point Tm of polyglycolic acid to 255 ° C. If the injection temperature is too high, polydaricholic acid will be easily decomposed.
  • the multilayer hollow container of the present invention is used for, for example, a hollow container for beverages and foods, a container for toiletries, and a container for gasoline by utilizing its excellent oxygen gas barrier properties and / or carbon dioxide gas barrier properties. Especially in high temperature and high humidity such as retort sterilization It is preferably used for packaging containers such as articles requiring treatment, articles requiring special long-term storage, articles requiring carbon dioxide gas barrier properties, and articles requiring a reduction in environmental load. 8. Multilayer film
  • the multilayer film of the present invention comprises at least one thermoplastic resin film (hereinafter, sometimes referred to as “base film”) layer and a film layer made of a thermoplastic resin material containing polyglycolic acid (hereinafter, referred to as “PGA layer).
  • base film thermoplastic resin film
  • PGA layer a film layer made of a thermoplastic resin material containing polyglycolic acid
  • an adhesive layer can be interposed between the layers.
  • the total thickness of the multilayer film is usually 2 ⁇ m to 3 mm, preferably 5 zm to 2 mm, more preferably 10 m to 1 mm. If the thickness is too small, it is difficult to manufacture and the cost is high, which is not preferable from the viewpoint of productivity and economy. If the thickness is too large, it is difficult to perform secondary processing for use as a packaging material, and the cost is high, which is not preferable from the viewpoint of productivity and economy.
  • the basic layer constitution of the multilayer film of the present invention is as follows. However, the adhesive layer is omitted. Further, a thermoplastic resin material containing polyglycolic acid is abbreviated as PGA.
  • the multilayer film of the present invention may be a laminate in which various kinds of thermoplastic resin films of the same type or different types are additionally laminated according to various required characteristics.
  • the method of compounding the thermoplastic resin film and the PGA layer is not particularly limited. For example, (1) a method in which each film is separately manufactured and then bonded, (2) another resin is extruded on one of the films. Various laminating methods such as coating method and 3 lamination method by co-extrusion method can be adopted.
  • the thermoplastic resin film used in the present invention includes, for example, very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), and high density polyethylene.
  • Polyolefins such as (HDPE), polypropylene (PP), ethylene propylene rubber (EPM), ethylene vinyl acetate copolymer (EVA), ethylene acrylate copolymer (EEA), and ionomer (1 ⁇ ); polyethylene Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polystyrene (PS), impact-resistant polystyrene (HI PS), styrene'butadiene-styrene-block copolymer (SBS), hydrogenated SB Polystyrene resins such as S (that is, SEBS); rigid polychlorinated vinyl, soft polychlorinated vinyl Polyvinyl chloride (PVC) resins such as Polyvinyl chloride (PC), Polyamide (PA), Polyurethane (PU), Ethylene vinyl alcohol copolymer (EVOH), Polyvinylidene chloride resin (PVDC) ) Is preferred.
  • PVC polychlor
  • thermoplastic resin film having a small environmental load for example, a film formed from a biodegradable polymer such as polylactic acid, polysuccinate, and polyprolactone is preferable.
  • thermoplastic resins may be modified resins. Specifically, for example, LLDPE graft-modified with an acid such as acrylic acid can be mentioned.
  • the thermoplastic resin film is used in a single layer or a multilayer.
  • the thickness of the thermoplastic resin film is usually in the range of lzm to 2.5 mm, preferably 5 m to 2 mm, and more preferably 10 m to 1 mm. desirable.
  • an adhesive layer can be interposed between the thermoplastic resin film layer and the PGA layer in order to enhance the interlayer adhesion.
  • the adhesive used for the adhesive layer includes, for example, polyoxylated polyolefin, epoxidized polyolefin, ethylene vinyl acetate copolymer, ionomer, polyurethane, epoxy resin, Examples include polymers such as SBS, SEBS, polychloroprene, styrene'butadiene copolymer rubber (SBR), and natural rubber (NR).
  • the lipoxylated polyolefin is a polyolefin obtained by modifying a polyolefin with an unsaturated acid monomer such as acrylic acid, methacrylic acid or maleic anhydride to introduce a lipoxyl group.
  • an unsaturated acid monomer such as acrylic acid, methacrylic acid or maleic anhydride
  • the introduction of the hydroxyl group may be carried out by either a copolymerization method or a grafting method.
  • the above unsaturated acid monomer may be used in combination with a vinyl monomer such as methacrylic acid ester, acrylic acid ester, and Bier acetate.
  • Epoxidized polyolefin is a polyolefin obtained by modifying a polyolefin with an epoxy group-containing monomer such as daricidyl mesylate and introducing an epoxy group.
  • the epoxy group may be introduced by a copolymerization method or a grafting method.
  • the above-mentioned epoxy group-containing monomer may be used in combination with a vinyl-based monomer such as methacrylate, acrylate or vinyl acetate.
  • olepoxylated polyolefin and ethylene / vinyl acetate copolymer are particularly preferred from the viewpoints of adhesion and workability.
  • the thickness of the adhesive layer is usually in the range of 0.5 m to 2 mm, preferably 2 m to 1 mm, more preferably 3 ⁇ m to 0.5 mm. If the thickness is less than 0.5 zm, the adhesiveness may be insufficient, and application is difficult. If the thickness exceeds 2 mm, it is costly and disadvantageous from an economical point of view.
  • a PGA layer is disposed as a gas barrier layer-I green resin layer.
  • a general thermoplastic resin film is used, both the oxygen gas barrier property and the carbon dioxide gas barrier property are improved.
  • an oriented film of PGA can be used.
  • the oriented film of PGA can be manufactured by melt-extruding the above-mentioned polydalicholate neat resin or a thermoplastic resin material containing the polyglycolic acid, stretching and orienting, and heat-fixing as necessary.
  • the melt film forming method includes uniaxial stretching by a flat die method, sequential biaxial stretching, and simultaneous biaxial stretching, or circuit For example, a method such as inflation biaxial stretching by the ⁇ method can be adopted.
  • a multilayer stretched film By stretching in a multilayered state, a multilayer stretched film can be obtained.
  • a coextrusion multilayer stretched film can be obtained.
  • the orientation state of the multilayer stretched film can be fixed by heat setting.
  • a multilayer film having a high heat shrinkage can be obtained by performing only stretching and omitting heat setting or adjusting the heat setting conditions.
  • a heat-shrinkable film having a heat-shrinkage ratio of more than 10% at 90 ° C can be obtained.
  • the thickness of the PGA layer which is a barrier property improving material of the multilayer film of the present invention, is usually 0.5111 to 2111111, preferably 1 m to 1.5 mm. If the thickness is too small, the effect of improving the barrier uniformity may be insufficient. If the thickness is too large, the quality may be too high, which is economically disadvantageous. If necessary, a uniform thickness layer can be formed even if the PGA layer thickness is 5 ⁇ m or less, or even an extremely thin film thickness of about 1 to 3.
  • a variation (R%) from the set thickness is less than 200%. Can be obtained.
  • the dispersion (R%) from the set thickness can be made less than 100% by making the melt viscosity of polydalicholic acid sufficiently small (for example, less than lOOPa-s). If the melt viscosity of polydalicholate is sufficiently low and the thickness of the layer mainly composed of polydalicholate at the time of molding is 5 m, the variation (R%) from the set thickness is 50%. It can also be less than.
  • the multilayer film of the present invention has an oxygen gas transmission rate and / or a carbon dioxide gas transmission rate of 1 to 2 or less, preferably 1Z5 or less, compared with those of a thermoplastic resin film (base film). More preferably, it can be improved to 110 or less.
  • a thermoplastic resin film base film
  • polyolefin, polyester, polystyrene, polychlorinated vinyl, polycarbonate, polylactic acid, polysuccinate, polyprolactone, polyolefin By combining a film made of a thermoplastic resin such as lamide, EVOH, or PVDC with a PGA layer as a barrier property improving material, at least one of the oxygen gas transmission rate and the carbon dioxide gas transmission rate can be controlled by the thermoplastic resin.
  • the multilayer film of the present invention has a very small decrease in gas barrier properties even when subjected to a treatment under high temperature and high humidity.
  • the method for producing the gas-barrier composite film of the present invention is roughly classified into the following methods.
  • the surfaces of the thermoplastic resin film and the PGA film are aligned with each other, and using a hot roll, hot press, etc., the thermoplastic resin film in contact with the PGA film (for a multilayer film, The contact surface layer) can be composited by crimping at a temperature substantially above its melting point (Tm).
  • Tm melting point
  • the bonding strength of the PGA film to a thermoplastic resin film having a small polarity such as a polyolefin film may be insufficient.
  • the following method can be adopted.
  • Hot melt lamination method Apply a solution-type, latex-type, or dispersion-type adhesive to the surface of the thermoplastic resin film or the surface of the PGA film, remove the solvent by volatilization, and dry it.
  • a multilayer film is formed by press bonding while heating by a hot press or the like.
  • Hot-melt type adhesive for example, EVA adhesive
  • EVA adhesive for example, EVA adhesive
  • Hot-melt adhesive is heated and melted and applied to the surface of one of the films, then combined with the mating film and then bonded by pressing, or an adhesive film between the thermoplastic resin film and the PGA film.
  • a multi-layer film can be obtained by a method of bonding by heating and pressing under pressure.
  • the resin constituting the thermoplastic resin film is supplied to an extruder equipped with a T-die, and is extruded from the T-die, while extruding the PGA film surface or the multilayer film surface including the PGA film layer. Then, a multilayer film can be obtained by uniformly applying in a molten film state. In this case, it is possible to apply an adhesive layer to the surface of the PGA film.
  • a resin to be a thermoplastic resin film such as polyolefin, polyester, polystyrene, polyvinyl chloride, etc .; a thermoplastic resin material containing a barrier property improving agent, polydaric acid; and, if necessary, both.
  • the resin to be used as the adhesive is supplied from each extruder to one die, extruded simultaneously, and bonded in a molten state to produce a multilayer film in one step.
  • the coextrusion method can be generally classified into a T-die method and an inflation method.
  • Typical examples of the T-die method include a laminar one-flow method using a single-manifold die, an in-die lamination method using a multi-manifold die, and an out-die lamination method using a dual slot die.
  • the resin to be a thermoplastic resin film, the thermoplastic resin material containing polydalicholic acid, and the resin to be an adhesive, if necessary, are supplied from each extruder to one die, co-extruded, and cast. It is taken up in a roll, stretched to MD by a stretching roll, etc., stretched to TD by a tenter if necessary, and formed into a film, and heat-fixed as necessary to produce a multilayer film.
  • the T-die method is preferred for thin multilayer films with a thickness of 3 O ⁇ m or less. Good. ⁇
  • the inflation method include the in-die lamination method (such as the Roberto-Colombo method) and the out-die lamination method.
  • Each extruder feeds a thermoplastic resin film, a thermoplastic resin material containing polyglycolic acid, and a resin to be an adhesive, if necessary, to one die, co-extrudes and inflates to form a tube.
  • the film is formed into a film, and if necessary, pressed and pressed to form a flat film, and if necessary, heat-fixed to form a multilayer film.
  • the multilayer film of the present invention utilizes the excellent oxygen gas barrier properties and / or carbon dioxide gas barrier properties to form, for example, food packaging materials (meat, seafood, dairy products, pickles, miso, confectionery, tea).
  • food packaging materials such as coffee, men, rice, etc., toiletry packaging, and chemical packaging.
  • packaging material such as coffee, men, rice, etc., toiletry packaging, and chemical packaging.
  • it is preferably used as a packaging material for articles requiring treatment under high temperature and high humidity such as retort sterilization, articles requiring special long-term storage, and articles requiring a reduction in environmental load.
  • an amorphous sheet with a thickness of about 0.2 mm was prepared from polydalicholic acid in the molded product, and nitrogen gas was measured using a differential scanning calorimeter (DSC; TC-110A manufactured by Met's 1 er Co.). under a stream of air, at 10 / min heating at a Atsushi Nobori rate, crystallization temperature (T C l), melting point (Tm), and to measure the melt Entarupi one ( ⁇ ). Glass-transition temperature (Tg) was measured at a heating rate of 5 ° CZ.
  • DSC differential scanning calorimeter
  • an amorphous sheet with a thickness of about 0.2 mm was prepared from polydalicholic acid in the molded product, and heat-set at 150 ° C for 5 minutes, using JIS R-7222 (using n-butanol). Pycnometer method).
  • the average value was obtained by measuring the thickness of the sample at 10 locations using a micrometer (Mate, manufactured by SONY).
  • the thickness variation (R%) of the polyglycol J1 / acid layer was calculated as the variation from the set thickness, and evaluated according to the following criteria according to the type of each molded product.
  • ⁇ : R% is less than 10%
  • ⁇ : R% is 10% or more, less than 30%
  • ⁇ : R% is 30% or more, less than 70%
  • X: R% is 70% or more and / or PGA film breaks.
  • ⁇ : R% is less than 10%
  • ⁇ : R% is 10% or more, less than 30%
  • R% is 30% or more, less than 70%
  • X: R% is 70% or more.
  • ⁇ : R% is less than 50%,.
  • ⁇ : R% is 50% or more, less than 100%
  • ⁇ : R% is 100% or more, less than 200%
  • X: R% is 200% or more, and Z or molding is impossible.
  • ⁇ : R% is 50% or more, less than 100%
  • ⁇ : R% is 100% or more, less than 200%
  • X: R% is 200% or more.
  • test piece is buried in the soil of the field at a depth of about 10 cm, excavated after 6 months, washed, dried and weighed, and the weight ratio (% by weight) to the initial weight of the test piece is determined. Calculated.
  • glycolic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • the temperature is raised from 110 ° C to 200 ° C for about 2 hours while stirring, and the generated water is distilled. While condensing.
  • the pressure was reduced to 20 kPa (20 Ombar), and the mixture was kept for 2 hours to distill off the low boiling components, thereby preparing a glycolic acid oligomer.
  • the melting point Tm of the glycolic acid oligomer was 205.
  • Glycolic acid oligomer 1.2 kg is charged into a 10-liter flask, and benzyl butyl phosphate 5 kg (produced by Junsei Chemical Co., Ltd.) as a solvent and polypropylene glycol (produced by Junsei Chemical Co., Ltd., # 400 150 g, and heated to about 270 ° C under a reduced pressure of 5 kPa (5 Ombar) in a nitrogen gas atmosphere to perform ⁇ solution phase depolymerization '' of the glycolic acid oligomer, and convert the formed glycolide to benzyl butyl phthalate. Co-distilled.
  • the polyglycolic acid (PGA-a) obtained in Synthesis Example 2 was supplied under a nitrogen gas flow to a small twin-screw kneader equipped with a 3 mm ⁇ nozzle, and was in a strand state at a melting temperature of about 230 to 240 ° C. And air-cooled and cut to obtain pellets.
  • the pellets were supplied to a molding machine to form a sheet at a resin temperature of about 235 ° C.
  • the sheet was compression-molded at a pressure of 40 kgf / cm 2 and a temperature of ⁇ ⁇ ⁇ for 5 seconds to obtain a tray (depth 30 mm, bottom 100 mm ⁇ 200 mm, thickness 500 Atm).
  • a tray was prepared in the same manner as in Example 1 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a).
  • the physical properties of polydalicholic acid in this molded product were as follows: melt viscosity 300 Pa ⁇ s, crystallization temperature (Tc) 85 ° C, melting point (Tm) 222 ° C, melt enthalpy ( ⁇ m) was 75 J / g, the glass transition temperature (Tg) was 38 ° C, and the density of the non-oriented crystallized product was 1.58 gZcm 3 .
  • Tc crystallization temperature
  • Tm melting point
  • Tg glass transition temperature
  • Tg glass transition temperature
  • a tray was produced in the same manner as in Example 1 except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a).
  • the physical properties of polydalicholate in this molded product are as follows: melt viscosity is 800 Pa ⁇ s, crystallization temperature (Tc ⁇ ) is 86 ° C, melting point (Tm) is 222 ° C, and melt enthalpy ( ⁇ m) is The glass transition temperature (Tg) was 38 JZg, and the density of the non-oriented crystallized product was 1.58 gZ cm 3 .
  • Tg glass transition temperature
  • Tg was 38 JZg
  • the density of the non-oriented crystallized product was 1.58 gZ cm 3 .
  • a tray was prepared in the same manner as in Example 1, except that polyethylene glycol terephthalate (PET; manufactured by Mitsui Pet Co., Ltd., J135) was used instead of polyglycolic acid (PGA-a). A medium disintegration test was performed. Table 1 shows the results.
  • PET polyethylene glycol terephthalate
  • PGA-a polyglycolic acid
  • Example 3 Orientation: To 100 parts by weight of the polyglycolic acid (PGA-a) obtained in Synthesis Example 2, 0.1 part by weight of alumina powder was added and supplied to a small twin-screw extruder equipped with a 3 ⁇ nozzle under nitrogen gas flow Then, it was extruded into a strand at a melting temperature of about 230 to about 235, quenched, and cut to form a pellet.
  • PGA-a polyglycolic acid
  • This pellet was supplied to a small twin-screw extruder equipped with a ring die for inflation under a nitrogen gas stream, and extruded from the ring die into a tube at a resin temperature of about 230 ° C.
  • the tube was quenched by a cooling bath to a temperature of Tg or less, and blown at 40 to 45 ° C with a blow ratio of about 3 times.
  • the take-up speed was controlled so that the stretching ratio in the longitudinal direction of the tube was about three times, and the film was wound up through a nip roll to prepare a tube-like film.
  • This film was heat-set at 150 ° C. for 1 minute to obtain a biaxially oriented film (drawing ratio: 3 ⁇ 3, thickness: 15 im).
  • a biaxially oriented film having a thickness of 25 m and 40 im was produced by adjusting the blow ratio and the stretching ratio in the longitudinal direction.
  • the melt viscosity of polydalicholate in these biaxially oriented films was 55 Pa ⁇ s.
  • the variation R% from the set thickness of each biaxially oriented film was measured. Table 2 shows the measurement results.
  • Example 2 In the same manner as in Example 3 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a), the thickness was 15 m, 25 m and A biaxially oriented film of 40 im was produced. The melt viscosity of polyglycolic acid in these biaxially oriented films was 31 OPa ⁇ s. The variation R% from the set thickness of each biaxially oriented film was measured. Table 2 shows the measurement results.
  • Example 2 In the same manner as in Example 3 except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a), the thickness was 15 ⁇ 111, 2 m And a 40 m biaxially oriented film was prepared. The melt viscosity of polydaricholic acid in these biaxially oriented films was 820 Pa ⁇ s. Each biaxially oriented film The variation R% from the set thickness was measured. Table 2 shows the measurement results.
  • the polyglycolic acid (PGA-a) obtained in Synthesis Example 2 was supplied to a small twin-screw kneading extruder equipped with a 3 mm ⁇ nozzle under a nitrogen gas flow, and was made into strands at a melting temperature of about 230 to 240. It was melt-extruded, air-cooled and cut to obtain pellets.
  • the pellets are supplied to an injection molding machine, injected (injected) into a bottomed parison mold (temperature of about 10 ° C) at a resin temperature of about 230 ° C, solidified, taken out, and formed into a cold parison preform.
  • the obtained cold preform is preheated to about 42 ° C to soften it, and a stretching rod is inserted to stretch it about 225 times in the machine direction, and at the same time, the body outer diameter is about 4.5 cm, the body is Approximately 9 cm in length, approximately 1.6 cm in neck outer diameter, approximately 1 cm in neck length, sandwiched by two halves of a flat-bottom central concave bottle, blown with high-pressure gas at a blow ratio of approximately 2.8, The bottle was stretched and oriented in the circumferential direction (horizontal direction) to form a bottle, and the bottle was heat-set at 150 ° C for 10 seconds by blowing high-pressure gas, then removed from the mold to form a stretch blow container.
  • the obtained stretch blow container was transparent. By adjusting the blow ratio and the stretching ratio in the machine direction, each stretch blow container having a body thickness of 50 ⁇ , 100 m, and 200; m was prepared. The melt viscosity of polydalicholate in these stretch blow containers was 45 Pa ⁇ s. Further, the variation R% from the set thickness of the body of these stretch blow containers was measured. Table 3 shows the results.
  • Example 5 In the same manner as in Example 5 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a), the body thickness was 50 m, and m, and a stretch blow container of 200 m were produced. The melt viscosity of polydalicholic acid in one of these stretching processors was 290 Pa's. In addition, the variation R% from the set thickness of the body portion of each of the stretching mouths was measured. Table 3 shows the results.
  • Example 5 In the same manner as in Example 5 except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a), the body thickness was 50 m, and rn, and 200 m of each stretch blow container were prepared. The melt viscosity of the polyglycolic acid in these stretch blow containers was 780 Pa * s. Further, the variation R% from the set thickness of the body of these stretch blow containers was measured. Table 3 shows the results.
  • Thickness setting Thickness code Melt viscosity (Pa * s)
  • the polyglycolic acid (0PGA-a) obtained in Synthesis Example 2 was supplied to a small twin-screw kneading extruder equipped with a 3 mm ⁇ nozzle under nitrogen gas flow, and was formed into a strand at a melting temperature of about 230 to 240 ° C. It was melt-extruded, air-cooled and cut to obtain pellets.
  • the pellets, polyethylene terephthalate (PET; J 135, manufactured by Mitsui Pet Co., Ltd.), and lipoxylated polyolefin (registered trademark MOD IC E-300S) were supplied to a three-type, five-layer co-injection molding machine and injected.
  • preform mold to form a preform (outer diameter of about 2 cm, length of about 6 cm), and was cooled and solidified.
  • the preform is reheated, adjusted to a temperature of about 85 ° C., inserted into a mold, and a mouth is inserted into the preform.
  • the double stretching it was blown at a blow ratio of about 3 and then cooled and solidified to produce a multilayer hollow container having a layer structure of PET / PGA / PET.
  • each multilayer hollow container having a core layer having a PGA layer thickness of 3 m, 5 ⁇ , ⁇ , and 10 jm was produced.
  • the melt viscosity of the polyglycolic acid in the PGA layer of these multilayer containers was 50 Pa * s.
  • the variation R% from the set thickness of the body core layer of these multilayer hollow containers was measured. Table 4 shows the results.
  • Example 7 In the same manner as in Example 7, except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a), the thickness of the core layer PGA layer was changed. Produced 3 m, 5 urn, and 10 ⁇ m multilayer hollow containers. The melt viscosity of polydalicholate in the PGA layer of these multilayer containers was 800 Pa's. The variation R% from the set thickness of the body core layer of these multilayer hollow containers was measured. Table 4 shows the results.
  • the polyglycolic acid (PGA-a) obtained in Synthesis Example 2 was supplied under a nitrogen gas flow to a small twin-screw kneading extruder equipped with a 3 mm ⁇ nozzle, and was stranded at a melting temperature of 230 to 240 ° C Then, the mixture was melt-extruded, air-cooled and cut to obtain pellets.
  • pellets and acid-modified LLDPE are extruded from each extruder at a resin temperature of about 230 ° C, and are formed into three layers by a feed block (acid-modified LLDPE). / PGA / acid-modified LLDP E) Yes.
  • the die is 30 cm wide, and the acid modified LLDPE of the inner layer is 35mm ⁇ i) extruder, the acid modified LLDPE of the outer layer is 40 ⁇ extruder, and the PGA of the core layer is 25 ⁇ extruder And extruded to form a film.
  • multilayer films having a core layer thickness of 1 m, 3 3 ⁇ , and 5 m, respectively, were produced.
  • the melt viscosity of the polyglycolic acid in the PGA layer of these multilayer films was 55 Pa's.
  • the variation R% from the set thickness of the core layer of these multilayer films was measured. Table 5 shows the results.
  • the thickness of the core layer is 5 m or less, and more preferably 1 to 10 Even when the thickness is as thin as 3 m, a multilayer film with a small variation from the set thickness can be obtained.
  • thermoplastic resin material containing polydaricholic acid that has excellent fluidity in a molten state, enables uniform film formation, has remarkable biodegradability, and enables rapid composting
  • Various single-layer or multi-layer molded articles such as compression molded articles, extruded molded articles, oriented films, drawn professional containers, multilayer hollow containers, multilayer films, and fibers are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A polyglycolic acid molding comprising polyglycolic acid as the main component, in which the polyglycolic acid has a melt viscosity of 20 to 500 Pa·s, excluding 500 Pa·s, as measured at a temperature higher by 20°C than the melting point and a shear rate of 100 /sec and which is a molding formed by compression molding, extrusion molding, blow molding, or solution casting molding. Also provided is a multilayered molding having a layer constitution comprising a polyglycolic acid layer and formed on at least one side thereof a thermoplastic resin layer, wherein the polyglycolic acid contained in the layer consisting mainly of the polyglycolic acid has a melt viscosity of 20 to 500 Pa·s, excluding 500 Pa·s, as measured at a temperature higher by 20°C than the melting point and a shear rate of 100 /sec.

Description

ポリグリコール酸成形物 技術分野  Polyglycolic acid moldings Technical field
本発明は、 ポリダリコール酸を主成分として含有する熱可塑性樹脂材料から形 成された各種ポリグリコール酸成形物に関し、 さらに詳しくは、 溶融状態での流 動性に優れ、 均一な薄膜化が可能であり、 しかも生分解性が顕著に優れ、 迅速な コンポスト化が可能なポリダリコール酸を主成分とする熱可塑性樹脂材料を用い て形成したポリグリコール酸成形物に関する。 また、 本発明は、 ポリグリコール 酸を主成分とする層を含む多層成形物に関する。 本発明の成形物及び多層成形物 は、 例えば、 圧縮成形物、 押出成形物、 配向フィルム、 延伸ブロー容器、 多層中 空容器、 多層フィルム、 繊維などとして、 広範な分野で好適に用いることができ る。 背景技術  TECHNICAL FIELD The present invention relates to various polyglycolic acid molded articles formed from a thermoplastic resin material containing polydalicholic acid as a main component, and more particularly, to an excellent fluidity in a molten state and capable of forming a uniform thin film. The present invention relates to a molded product of polyglycolic acid, which is formed using a thermoplastic resin material containing polydalicholate as a main component, which has remarkable biodegradability and can be rapidly composted. The present invention also relates to a multilayer molded article including a layer containing polyglycolic acid as a main component. The molded article and the multilayer molded article of the present invention can be suitably used in a wide range of fields as, for example, compression molded articles, extruded molded articles, oriented films, stretch blow containers, multilayer hollow containers, multilayer films, fibers, and the like. You. Background art
近年、 プラスチック廃棄物の増大が大きな社会的問題となっている。 この問題 の解決手段の一つとして、 生分解性高分子材料の研究開発が進められている。 生 分解性高分子材料の中でも、 ポリグリコール酸は、 生分解性 (土中崩壌性) を示 すことに加えて、 酸素ガスバリヤ一性、 炭酸ガスパリヤー性、 水蒸気バリヤ一性 などのガスバリヤ一性に優れ、 耐熱性や機械的強度にも優れている。  In recent years, the increase of plastic waste has become a major social problem. As one of the solutions to this problem, research and development of biodegradable polymer materials are under way. Among the biodegradable polymer materials, polyglycolic acid has biodegradability (soil breaking property) and gas barrier properties such as oxygen gas barrier property, carbon dioxide gas barrier property, and steam barrier property. Excellent in heat resistance and mechanical strength.
そのため、 ポリグリコール酸を用いた各種成形物が提案されている。 その具体 例としては、 ポリグリコール酸配向フィルム (特開平 1 0— 6 0 1 3 6号公報) ゃポリグリコール酸延伸プロ一容器 (特開平 1 0— 3 3 7 7 7 2号公報) などが 挙げられる。 また、 ポリダリコール酸から形成された層を芯層などに配置した多 層中空容器 (特開平 1 0— 1 3 8 3 7 1号公報) やガスバリヤ一性複合フィルム (特開平 1 0— 8 0 9 9 0号公報) などが提案されている。 これらのポリグリコール酸を用いて形成した成形物は、 ガスバリヤ一性、 耐熱 性、 機械的強度などに優れ、 土中崩壌性を示すなどの優れた諸特性を示すことが できる。 しかし、 これらの成形物は、 土中崩壊性が充分迅速に進まず、 コンポス ト化に比較的長期間を必要とする。 また、 ポリグリコール酸を均一な薄膜に形成 することが困難であり、 軽量ィ匕ゃ低価格化に限界があった。 そのため、 これらの ポリグリコール酸を用いて形成した成形物は、 短期間で土中崩壊させてコンポス ト化を促進させたり、 均一な薄膜化が要求される分野での用途展開が困難であつ た。 発明の開示 For this reason, various molded articles using polyglycolic acid have been proposed. Specific examples thereof include a polyglycolic acid oriented film (Japanese Patent Application Laid-Open No. H10-31616) and a polyglycolic acid stretched professional container (Japanese Patent Application Laid-Open No. H10-337772). No. Further, a multi-layer hollow container in which a layer formed of polydaricholic acid is disposed on a core layer or the like (Japanese Patent Application Laid-Open No. H10-138371) and a gas barrier uniform composite film (Japanese Patent Application Laid-Open No. H10-809) 90 publication). A molded article formed using these polyglycolic acids is excellent in gas barrier properties, heat resistance, mechanical strength, and the like, and can exhibit excellent properties such as soil breaking property. However, in these molded products, soil disintegration does not proceed sufficiently quickly, and composting requires a relatively long time. In addition, it was difficult to form polyglycolic acid into a uniform thin film, and there was a limit to weight reduction and cost reduction. For this reason, molded products formed using these polyglycolic acids are difficult to disintegrate in the soil in a short period of time to promote composting, and to develop applications in fields where uniform thinning is required. . Disclosure of the invention
本発明の目的は、 溶融状態での流動性に優れ、 均一な薄膜化が可能であり、 し かも生分解性が顕著に優れ、 迅速なコンポスト化が可能なポリダリコール酸を含 有する熱可塑性樹脂材料を用いて形成した単層または多層の成形物、 例えば、 圧 縮成形物、 押出成形物、 配向フィルム、 延伸ブロー容器、 多層中空容器、 多層フ イルムなどの各種成形物を提供することにある。  An object of the present invention is to provide a thermoplastic resin material containing polydalicholic acid which has excellent fluidity in a molten state, can form a uniform thin film, has remarkable biodegradability, and can be rapidly composted. An object of the present invention is to provide a single-layer or multi-layer molded article formed by using such as, for example, various molded articles such as a compression molded article, an extruded molded article, an oriented film, a stretch blow container, a multilayer hollow container, and a multilayer film.
従来、 押出成形、 ブロー成形などにより機械的強度等の物性に優れた成形物を 得るためには、 融点より 2 0 °C高い温度 〔以下、 温度 「融点 + 2 0 °C」 と略記〕 と剪断速度 1 0 0 /秒の条件で測定した溶融粘度が 5 0 0 P a · s以上という高 分子量のポリダリコール酸を用いることが必要であるとされていた (前記各公開 公報参照) 。  Conventionally, in order to obtain molded products with excellent physical properties such as mechanical strength by extrusion molding, blow molding, etc., it is necessary to use a temperature 20 ° C higher than the melting point (hereinafter, the temperature is abbreviated as “melting point + 20 ° C”). It was said that it was necessary to use high molecular weight polydaricholic acid having a melt viscosity of 500 Pa · s or more measured at a shear rate of 100 / sec (see the above-mentioned respective publications).
本発明者らは、 この技術常識に反して、 溶融粘度が比較的低いポリダリコール 酸を用いて各種成形物を形成したところ、 溶融状態での流動性に優れ、 均一な薄 膜化が可能であり、 しかも比較的短期間で土中崩壊してコンポスト化が迅速に行 われることを見出した。  Contrary to the common knowledge of the art, the present inventors have formed various molded articles using polydalicholate having a relatively low melt viscosity, and have excellent fluidity in a molten state, thereby enabling uniform thinning. In addition, they found that the soil collapsed in a relatively short period of time and the composting was quickly performed.
また、 ポリグリコール酸は、 溶融成形加工を受けると、 溶融粘度が変動しや すいが、 成形物中のポリダリコール酸の溶融粘度を測定することにより、 前記諸 特性に優れた成形物を明瞭に特定することができる。 本発明は、 これらの知見に 基づいて完成するに至ったものである。 In addition, the melt viscosity of polyglycolic acid is liable to fluctuate when subjected to melt molding, but by measuring the melt viscosity of polydalicholic acid in the molded product, a molded product excellent in the above-mentioned properties can be clearly identified. can do. The present invention is based on these findings. It was completed based on this.
かくして、 本発明によれば、 下記式 (1)
Figure imgf000005_0001
Thus, according to the present invention, the following formula (1)
Figure imgf000005_0001
で表わされる繰り返し単位を 60重量%以上含有するポリグリコール酸を主成分 とする成形物であって、 A molded article mainly composed of polyglycolic acid containing at least 60% by weight of a repeating unit represented by the formula:
(a)該成形物中のポリダリコール酸の溶融粘度が、 融点より 20°C高い温度と剪 断速度 100Z秒の条件で測定したとき、 20 P a · s以上 500 P a · s未満 であり、 かつ、 (a) when the melt viscosity of polydalicholic acid in the molded product is measured at a temperature 20 ° C. higher than the melting point and at a shear rate of 100 Z seconds, it is not less than 20 Pas and less than 500 Pas; And,
(b)圧縮成形、 押出成形、 ブロー成形、 または溶液流延法を含む成形法により成 形されたものである '  (b) Molded by molding methods including compression molding, extrusion molding, blow molding, or solution casting.
ことを特徴とするポリダリコール酸成形物が提供される。 Thus, there is provided a molded article of polydalicholic acid.
また、 本発明によれば、 上記式 (1) で表わされる繰り返し単位を 60重量% 以上含有するポリグリコール酸を主成分とする配向フィルムであって、 該配向フ イルム中のポリダリコール酸の溶融粘度が、 融点より 20°C高い温度と剪断速度 100 Z秒の条件で測定したとき、 20P a ' s以上 500P a ' s未満である 配向フィルムが提供される。  Further, according to the present invention, there is provided an oriented film mainly composed of polyglycolic acid containing 60% by weight or more of the repeating unit represented by the above formula (1), wherein the melt viscosity of polydalicholic acid in the oriented film is However, when measured under the conditions of a temperature 20 ° C. higher than the melting point and a shear rate of 100 Z seconds, an oriented film is provided which is not less than 20 Pa's and less than 500 Pa's.
さらに、 本発明によれば、 上記式 (1) で表わされる繰り返し単位を 60重 量%以上含有するポリグリコール酸を主成分とする延伸ブロー容器であって、 該 延伸ブロー容器中のポリダリコール酸の溶融粘度が、 融点より 20°C高い温度と 剪断速度 100 Z秒の条件で測定したとき、 20 P a ' s以上 500P a * s未 満である延伸ブロー容器が提供される。  Furthermore, according to the present invention, there is provided a stretch blow container mainly composed of polyglycolic acid containing a repeating unit represented by the above formula (1) in an amount of 60% by weight or more, wherein polydalicholate in the stretch blow container is contained. A stretch blow container having a melt viscosity of 20 Pa's or more and less than 500 Pa * s when the melt viscosity is measured at a temperature 20 ° C. higher than the melting point and a shear rate of 100 Z seconds is provided.
さらにまた、 本発明によれば、 上記式 (1) で表わされる繰り返し単位を 60 重量%以上含有するポリグリコ一ル酸を主成分とする層の少なくとも片面に熱可 塑性樹脂層が形成された層構成を有する多層成形物であって、 該ポリダリコール 酸を主成分とする層中のポリダリコール酸の溶融粘度が、 融点より 20 C高い温 度と剪断速度 100/秒の条件で測定したとき、 20P a * s以上 500P a - s未満である多層成形物が提供される。 Furthermore, according to the present invention, a layer in which a thermoplastic resin layer is formed on at least one surface of a layer mainly containing polyglycolic acid containing 60% by weight or more of the repeating unit represented by the above formula (1) A multilayer molded article having a constitution, wherein the melt viscosity of polydalicholate in a layer containing the polydalicholate as a main component is higher than the melting point by 20C. A multi-layer molded article having a degree and shear rate of 100 Pa / s or more and less than 500 Pa-s when measured at a shear rate of 100 / sec is provided.
また、 本発明によれば、 上記式 (1) で表わされる繰り返し単位を 60重量% 以上含有するポリグリコール酸を主成分とする層の少なくとも片面に熱可塑性樹 脂層が形成された層構成を有する多層中空容器であって、 該ポリグリコール酸を 主成分とする層中のポリダリコール酸の溶融粘度が、 融点より 20°C高い温度と 剪断速度 100 Z秒の条件で測定したとき、 20Pa * s以上 500Pa * s未 満である多層中空容器が提供される。  Further, according to the present invention, a layer structure in which a thermoplastic resin layer is formed on at least one surface of a layer mainly containing polyglycolic acid containing the repeating unit represented by the above formula (1) in an amount of 60% by weight or more is provided. When the melt viscosity of polydalicholate in the layer containing polyglycolic acid as a main component is measured at a temperature 20 ° C. higher than the melting point and at a shear rate of 100 Z seconds, the multilayer hollow container has a pressure of 20 Pa * s. Thus, a multilayer hollow container having a pressure of less than 500 Pa * s is provided.
さらに、 本発明によれば、 上記式 (1) で表わされる繰り返し単位を 60重 量%以上含有するポリグリコ一ル酸を主成分とする層の少なくとも片面に熱可塑 性樹脂層が形成された層構成を有する多層フィルムであって、 該ポリグリコール 酸を主成分とする層中のポリダリコール酸の溶融粘度が、 融点より 20 高い温 度と剪断速度 100ノ秒の条件で測定したとき、 20 P a · s以上 500 P a · s未満である多層フィルムが提供される。 発明を実施するための最良の形態  Further, according to the present invention, a layer in which a thermoplastic resin layer is formed on at least one surface of a layer mainly containing polyglycolic acid containing 60% by weight or more of the repeating unit represented by the above formula (1) A multilayer film having a structure, wherein the melt viscosity of polydalicholate in the layer containing polyglycolic acid as a main component is 20 Pa when measured at a temperature 20 higher than the melting point and a shear rate of 100 ns. A multilayer film having a thickness of at least 500 s and less than 500 Pa · s is provided. BEST MODE FOR CARRYING OUT THE INVENTION
1. ポリグリコ一ル酸  1. Polyglycolic acid
本発明のポリグリコール酸は、 下記式 (1)
Figure imgf000006_0001
The polyglycolic acid of the present invention has the following formula (1)
Figure imgf000006_0001
で表わされる繰り返し単位を含有する単独重合体または共重合体である。 Or a homopolymer or copolymer containing a repeating unit represented by
ポリグリコ一ル酸中の式 (1) で表わされる繰り返し単位の含有割合は、 60 重量%以上、 好ましくは 70重量%以上、 より好ましくは 80重量%以上であり、 その上限は、 100重量%である。 式 (1) で表わされる繰り返し単位の含有割 合が少なすぎると、 ガスパリヤー性や耐熱性などが損われる。  The content of the repeating unit represented by the formula (1) in the polyglycolic acid is 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, and the upper limit is 100% by weight. is there. If the content of the repeating unit represented by the formula (1) is too small, the gas barrier properties and heat resistance are impaired.
ポリダリコール酸には、 式 (1) で表わされる繰り返し単位以外の繰り返し単 位として、 例えば、 下記式 (2) 乃至 (6) で表わされる少なくとも 1つの繰り 返し単位を含有させることができる。Polydaricholic acid includes repeating units other than the repeating unit represented by the formula (1). As the position, for example, at least one repeating unit represented by the following formulas (2) to (6) can be contained.
- (2) -(2)
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 η=1〜: L 0、 m=0〜10)
Figure imgf000007_0002
(Where, η = 1 ~: L 0, m = 0 ~ 10)
Figure imgf000007_0002
(式中、 j = 0)  (Where j = 0)
Figure imgf000007_0003
Figure imgf000007_0003
(式中、 !^及び尺 ま、 それぞれ独立に 水素原子または炭素数 1〜 10のァ ルキル基である。 k=2〜10)
Figure imgf000007_0004
Figure imgf000007_0005
(In the formula,! ^ And shaku are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. K = 2 to 10)
Figure imgf000007_0004
Figure imgf000007_0005
これらの式 (2) 乃至 (6) で表わされるその他の繰り返し単位を 1重量%以 上の割合で導入することにより、 ポリダリコール酸の単独重合体の融点を下げる ことができる。 ポリダリコール酸の融点を下げれば、 加工温度を下げることがで き、 溶融加工時の熱分解を低減させることができる。  By introducing other repeating units represented by the formulas (2) to (6) in a proportion of 1% by weight or more, the melting point of the homopolymer of polydalicholic acid can be lowered. If the melting point of polydalicholate is lowered, the processing temperature can be lowered, and thermal decomposition during melt processing can be reduced.
また、 共重合により、 ポリグリコール酸の結晶化速度を制御し、 押出加工性や 延伸加工性を改良することもできる。 共重合体中のその他の繰り返し単位の含有 割合が大きくなりすぎると、 ポリグリコール酸が本来有している結晶性が損われ、 ガスパリャ一性などに悪影響を及ぼすことがある。 In addition, the crystallization rate of polyglycolic acid can be controlled by copolymerization to improve extrusion processability and stretch processability. If the content of the other repeating units in the copolymer is too large, the crystallinity inherent in polyglycolic acid is impaired, It may have an adverse effect on gasparity and the like.
下記に説明する本発明におけるポリダリコール酸の溶融粘度や融点などの物性 については、 特に断りのない限り、 溶融成形加工後の成形物中のポリダリコール 酸の物性として測定したものである。  The physical properties such as the melt viscosity and melting point of polydalicholic acid in the present invention described below are measured as the physical properties of polydalicholic acid in the molded product after the melt molding process, unless otherwise specified.
本発明のポリグリコ一ル酸は、 比較的低分子量ポリマーである。 ポリマ一の溶 融粘度を分子量の指標とすることができる。 本発明のポリグリコール酸は、 その 融点を Tmで表わすと、 温度 (Tm+ 2 0 °C) (すなわち、 融点から 2 0 °C高い 温度であり、 通常の溶融加工温度に相当する温度) 及び剪断速度 1 0 0 /秒の条 件で測定した溶融粘度 7? *が 2 0 P a · s以上 5 0 0 P a · s未満であり、 好ま しくは 3 0〜4 0 0 P a ' s、 より好ましくは 4 0〜3 5 0 P a · sである。 ポリグリコール酸の溶融粘度が 5 0 0 P a · s未満であることにより、 溶融状 態での流動性に優れ、 均一な薄膜化が可能となり、 土中崩壊性が著しく促進され る。 ポリグリコ一ル酸の溶融粘度が 5 0 0 P a · s未満であることにより、 高溶 融粘度のポリダリコール酸である場合に比べて、 高温での溶融加工性が低下傾向 を示すことがあるが、 成形温度を低く設定することなどにより、 フィルム化ゃ延 伸ブロー成形などの成形加工が可能となる。 また、 ポリグリコ一ル酸の溶融粘度 が低いと、 溶融加工温度を低くすることができるので、 ポリダリコール酸の熱劣 化を防ぐことができる。  The polyglycolic acid of the present invention is a relatively low molecular weight polymer. The melt viscosity of the polymer can be used as an index of the molecular weight. When the melting point of the polyglycolic acid of the present invention is represented by Tm, the temperature (Tm + 20 ° C.) (that is, a temperature 20 ° C. higher than the melting point and corresponding to a normal melt processing temperature) and shearing Melt viscosity measured at a speed of 100 / sec 7? * Is not less than 20 Pas and less than 500 Pas, preferably 30 to 400 Pa's, More preferably, it is 40 to 350 Pas. When the melt viscosity of the polyglycolic acid is less than 500 Pa · s, the fluidity in the molten state is excellent, a uniform thin film can be formed, and the disintegration in soil is remarkably promoted. When the melt viscosity of polyglycolic acid is less than 500 Pas, the melt processability at high temperatures tends to decrease compared to the case of polydalicholate having a high melt viscosity. By setting the molding temperature low, it is possible to carry out molding processes such as film-forming and stretch-blow molding. Further, when the melt viscosity of polyglycolic acid is low, the melt processing temperature can be lowered, so that thermal deterioration of polydalicholic acid can be prevented.
本発明のポリグリコ一ル酸の融点 Tmは、 好ましくは 1 5 O 以上、 より好ま しくは 1 9 0 °C以上、 特に好ましくは 2 1 0 °C以上である。 本発明のポリグリコ —ル酸の溶融ェンタルピ一 Δ Ηπιは、 好ましくは 2 0 J Z g以上、 より好ましく は 3 0 J / g以上、 特に好ましくは 4 0 J / g以上である。 融点や溶融ェンタル ピーが低すぎるポリダリコール酸は、 分子内の化学構造の乱れにより結晶化度が 低下していると推定される。 したがって、 このようなポリグリコール酸で形成さ れた配向フィルム、 延伸ブロー容器などの成形物は、 バリヤ一性が低く、 耐熱性 も不充分なものとなりやすい。  The melting point Tm of the polyglycolic acid of the present invention is preferably 15 O or more, more preferably 190 C or more, and particularly preferably 210 C or more. The melt enthalpy Δ Δπι of the polyglycolic acid of the present invention is preferably at least 20 JZg, more preferably at least 30 J / g, particularly preferably at least 40 J / g. It is presumed that the crystallinity of polydalicholic acid, whose melting point and melting enthalpy are too low, is lowered due to disorder of the chemical structure in the molecule. Therefore, molded products such as an oriented film and a stretch blow container formed of such polyglycolic acid tend to have low barrier properties and insufficient heat resistance.
本発明のポリグリコール酸は、 その無配向結晶化物の密度が好ましくは 1 . 5 H The polyglycolic acid of the present invention preferably has a density of its non-oriented crystallized product of 1.5. H
0 g 2Zcm3以上、 好ましくは 1. 52 g_ cm3以上、 特に好ましくは 1. 50 g 2Zcm 3 or more, preferably 1. 52 g_ cm 3 or more, particularly preferably 1.5
C I C I
3 g/cm3以上である。 密度が低すぎるポリグリコール酸は、 分子内の化学構 3 g / cm 3 or more. Polyglycolic acid, whose density is too low, has a chemical structure in the molecule.
C  C
/  /
造の乱れ等により結晶化度が低下していると推定される。 したがって、 このよう な低密度のポリダリコール酸で形成された配向フィルム、 延伸ブロー容器などの 成形物は、 結晶化度が低く、 ガスバリヤ一性、 耐熱性、 強度が不充分となるおそ れがある。 It is presumed that the crystallinity has decreased due to irregularities in the structure. Therefore, molded products such as oriented films and stretch blow containers made of such low-density polydalicholic acid may have low crystallinity and insufficient gas barrier properties, heat resistance, and strength.
2. ポリダリコール酸の製造方法 2. Method for producing polydalicholate
ポリグリコール酸は、 下記式 〔I〕  Polyglycolic acid has the following formula (I)
O  O
 〇
ク II  Qu II
H2C. C H。C一 C- -0 〔I〕 H 2 C. CH. C-C--0 (I)
OH 靈合 OH n  OH Reigo OH n
OH  OH
に示されるように、 グリコール酸の脱水重縮合により合成することができる < また、 ポリグリコール酸は、 下記式 〔I I〕 Can be synthesized by the dehydration polycondensation of glycolic acid <Also, polyglycolic acid is represented by the following formula (II)
H。C一 C一 0 〔II〕 H. C-1 C-1 0 [II]
OR 脱アルコール n OR dealcoholization n
OH  OH
(式中、 Rは、 アルキル基を表わす。 アルキル基の炭素数は、 好ましくは 1〜5 程度である。 )  (In the formula, R represents an alkyl group. The alkyl group preferably has about 1 to 5 carbon atoms.)
に示されるように、 ダリコ一ル酸アルキルエステルの脱アルコール重縮合により 合成することができる。 As shown in the above, it can be synthesized by the dealcohol polycondensation of alkyl dalicolate.
さらに、 ポリグリコール酸は、 下記式 〔I I I〕  Further, polyglycolic acid is represented by the following formula [I I I]
〔III〕
Figure imgf000009_0001
(III)
Figure imgf000009_0001
に示されるように、 グリコリド (すなわち、 グリコール酸の 2分子間環状エステ ル) の開環重合により合成することができる。 ポリグリコール酸は、 グリコリド (すなわち、 1, 4—ジォキサン一 2, 5— ジオン) を、 少量の触媒 (例えば、 有機カルボン酸錫、 ハロゲン化錫、 ハロゲン 化アンチモン等のカチオン触媒) の存在下に、 約 1 2 O 〜約 2 5 0 °Cの温度に 加熱して、 開環重合する方法によって合成することが好ましい。 開環重合は、 塊 状重合法または溶液重合法によることが好ましい。 As shown in the above, it can be synthesized by ring-opening polymerization of glycolide (that is, intermolecular cyclic ester of glycolic acid). Polyglycolic acid converts glycolide (ie, 1,4-dioxane-1,2,5-dione) in the presence of a small amount of a catalyst (eg, a cationic catalyst such as organic tin carboxylate, tin halide, antimony halide, etc.). It is preferred to synthesize by a method of ring-opening polymerization by heating to a temperature of about 12O to about 250 ° C. The ring-opening polymerization is preferably performed by a bulk polymerization method or a solution polymerization method.
また、 ポリグリコール酸は、 グリコール酸またはグリコール酸アルキルエステ ルを、 触媒の存在下または不存在下に、 加熱して、 脱水または脱アルコールする 重縮合法によって得ることができる。 グリコール酸の塩を用いて、 脱塩する重縮 合法も採用することができる。 これらの重縮合法によれば、 比較的低溶融粘度の ポリグリコ一ル酸が得られやすレ ^。  In addition, polyglycolic acid can be obtained by a polycondensation method in which glycolic acid or an alkyl glycolate is heated in the presence or absence of a catalyst to dehydrate or remove alcohol. A polycondensation method of desalting using a glycolic acid salt can also be employed. According to these polycondensation methods, polyglycolic acid having a relatively low melt viscosity can be easily obtained.
ポリグリコール酸の共重合体を合成するには、 上記の各合成方法において、 コ モノマーとして、 例えば、 シユウ酸エチレン (すなわち、 1, 4一ジォキサン一 2, 3—ジオン) 、 ラクチド、 ラクトン類 (例えば、 jS—プロピオラクトン、 β —プチロラクトン、 ピバロラクトン、 rーブチロラク卜ン、 δ—バレロラクトン、 ]3—メチルー δ—バレロラクトン、 ε一力プロラクトン等) 、 トリメチレン力一 ポネート、 及び 1, 3—ジォキサンなどの環状モノマー;乳酸、 3—ヒドロキシ プロパン酸、 3—ヒドロキシブタン酸、 4ーヒドロキシブタン酸、 6—ヒドロキ シカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;ェチレ ングリコ一ル、 1, 4一ブタンジオール等の脂肪族ジオールと、 こはく酸、 アジ ピン酸等の脂肪族ジカルボン酸またはそのァルキルエステルとの実質的に等モル の混合物;またはこれらの 2種以上を、 グリコリド、 グリコール酸、 またはダリ コール酸アルキルエステルと適宜組み合わせて共重合すればよい。  In order to synthesize a copolymer of polyglycolic acid, in each of the above synthesis methods, as a comonomer, for example, ethylene oxalate (that is, 1,4-dioxane-12,3-dione), lactide, lactone ( For example, jS-propiolactone, β-butyrolactone, pivalolactone, r-butyrolactone, δ-valerolactone,] 3-methyl-δ-valerolactone, ε-force prolactone, etc.), trimethylene force-one-ponate, and 1,3 —Cyclic monomers such as dioxane; hydroxycarboxylic acids such as lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, and 6-hydroxycaproic acid, or alkyl esters thereof; ethylene glycol, 1,4 Aliphatic diols such as monobutanediol and fats such as succinic acid and adipic acid A mixture of substantially equimolar with an aromatic dicarboxylic acid or an alkyl ester thereof; or two or more of these may be appropriately combined with glycolide, glycolic acid, or an alkyl ester of dalicholate to be copolymerized.
ポリグリコール酸共重合体は、 ポリダリコール酸と前記式 (2 ) ~ ( 5 ) から 選ばれる繰り返し単位を有する他の重合体とを、 加熱下にエステル交換反応させ ることによって合成することができる。  The polyglycolic acid copolymer can be synthesized by subjecting polydaricholic acid and another polymer having a repeating unit selected from the above formulas (2) to (5) to a transesterification reaction under heating.
開環重合法において、 モノマーとして使用するグリコリドとしては、 従来のグ リコ一ル酸ォリゴマ一の昇華解重合法によって得られるものを用いることができ るが、 特開平 9一 3 2 8 4 8 1号公報に開示されている 「溶液相解重合法」 によ つて得られるものの方が、 高純度で、 かつ、 高収率で大量に得ることができるの で好ましい。 In the ring-opening polymerization method, as the glycolide used as a monomer, a glycolide obtained by a conventional sublimation depolymerization method of oligoglycolic acid can be used. However, those obtained by the “solution phase depolymerization method” disclosed in Japanese Patent Application Laid-Open No. Hei 9-3228481 can be obtained in large quantities with high purity and high yield. This is preferred because
溶液相解重合法では、 (1 ) グリコール酸オリゴマーと 2 3 0〜4 5 0 °Cの範 囲内の沸点を有する少なくとも一種の高沸点極性有機溶媒とを含む混合物を、 常 圧下または減圧下に、 該オリゴマーの解重合が起こる温度に加熱して、 (2 ) 該 オリゴマーの融液相の残存率 (容積比) が 0 . 5以下になるまで、 該オリゴマー を該溶媒に溶解させ、 (3 ) 同温度で更に加熱を継続して該オリゴマーを解重合 させ、 (4 ) 生成した 2量体環状エステル (すなわち、 グリコリド) を高沸点極 性有機溶媒と共に溜出させ、 (5 ) 溜出物からグリコリドを回収する。  In the solution phase depolymerization method, (1) a mixture containing a glycolic acid oligomer and at least one high-boiling-point polar organic solvent having a boiling point in the range of 230 to 450 ° C is subjected to a normal pressure or a reduced pressure. (2) dissolving the oligomer in the solvent until the residual ratio (volume ratio) of the melt phase of the oligomer becomes 0.5 or less; ) Further heating is continued at the same temperature to depolymerize the oligomer, (4) dimer cyclic ester (ie, glycolide) formed is distilled off together with a high boiling point polar organic solvent, and (5) distillate The glycolide is recovered from
高沸点極性有機溶媒としては、 例えば、 ジ (2—メトキシェチル) フタレート などのフタル酸ビス (アルコキシアルキルエステル) 、 ジエチレングリコールジ ベンゾエートなどのアルキレングリコールジベンゾエート、 ベンジルブチルフ夕 レ一トゃジブチルフタレートなどの芳香族カルボン酸エステル、 トリクレジルホ スフェートなどの芳香族リン酸エステル等を挙げることができ、 該オリゴマーに 対して、 通常、 0 . 3〜5 0倍量 (重量比) の割合で使用する。 高沸点極性有機 溶媒と共に、 必要に応じて、 該オリゴマーの可溶化剤として、 ポリプロピレング リコール、 ポリエチレンクリコール、 テトラエチレングリコールなどを併用する ことができる。 グリコール酸オリゴマーの解重合温度は、 通常、 2 3 0 °C以上で あり、 好ましくは 2 3 0 ~ 3 2 0 °Cである。 解重合は、 常圧下または減圧下に行 うが、 0 . 1〜9 0 . 0 k P a ( 1〜 9 0 0 mb a r ) の減圧下に加熱して解重 合させることが好ましい。  Examples of high boiling polar organic solvents include bis (alkoxyalkyl esters) such as di (2-methoxyethyl) phthalate, alkylene glycol dibenzoates such as diethylene glycol dibenzoate, and benzyl butyl dibutyl phthalate. Examples thereof include aromatic phosphoric acid esters such as aromatic carboxylic acid esters and tricresyl phosphate, etc. The oligomer is usually used in a ratio of 0.3 to 50 times (weight ratio) to the oligomer. If necessary, polypropylene glycol, polyethylene glycol, tetraethylene glycol, or the like can be used as a solubilizing agent for the oligomer together with the high boiling point polar organic solvent. The depolymerization temperature of the glycolic acid oligomer is usually 230 ° C. or higher, preferably 230 ° C. to 320 ° C. The depolymerization is carried out under normal pressure or reduced pressure, but it is preferable to carry out depolymerization by heating under reduced pressure of 0.1 to 9.0 kPa (1 to 900 mbar).
3 . 熱可塑性樹脂材料 3. Thermoplastic resin material
本発明では、 ポリグリコール酸を主成分とする熱可塑性樹脂材料を用いて、 各 種成形物、 例えば、 トレー等の圧縮成形物、 押出成形物、 配向フィルム、 延伸ブ 口一容器、 多層成形物、 多層中空容器、 及び多層フィルムを作製するが、 より具 体的には、 原料として、 特定のポリグリコール酸を含有する熱可塑性樹脂材料を 使用する。 In the present invention, various molded articles, for example, compression molded articles such as trays, extruded molded articles, oriented films, stretched bottles, multi-layer molded articles, are manufactured using thermoplastic resin materials containing polyglycolic acid as a main component. , Multi-layer hollow container, and multi-layer film Specifically, a thermoplastic resin material containing a specific polyglycolic acid is used as a raw material.
熱可塑性樹脂材料としては、 ポリダリコール酸のニートレジンを単独で使用す ることができる。 また、 熱可塑性樹脂材料としては、 ポリダリコール酸に、 本発 明の目的を阻害しない範囲内において、 無機フィラー、 他の熱可塑性樹脂、 可塑 剤などを配合した組成物を使用することができる。 無機フイラ一、 他の熱可塑性 樹脂、 可塑剤などの配合量は、 ガスパリヤー性や生分解性、 均一な薄膜形成性な どの観点から適宜選択される。 ポリダリコール酸に他の成分を配合する場合、 熱 可塑性樹脂材料中のポリダリコール酸の割合は、 通常 5 0重量%以上、 好ましく は 7 0重量%以上、 より好ましくは 9 0重量%以上とする。  As the thermoplastic resin material, polydalicholate nitresin alone can be used. Further, as the thermoplastic resin material, a composition in which an inorganic filler, another thermoplastic resin, a plasticizer, and the like are blended with polydaricholic acid within a range not to impair the object of the present invention can be used. The amount of the inorganic filler, other thermoplastic resin, plasticizer, and the like is appropriately selected from the viewpoints of gas barrier properties, biodegradability, and uniform thin film formation. When other components are blended with polydalicholic acid, the proportion of polydalicholic acid in the thermoplastic resin material is usually at least 50% by weight, preferably at least 70% by weight, more preferably at least 90% by weight.
無機フイラ一の配合量は、 ポリグリコール酸 1 0 0重量部に対して、 好ましく は 0〜3 0重量部、 より好ましくは 0〜1 0重量部、 特に好ましくは 0〜5重量 部である。 無機フイラ一を配合する場合、 その下限は、 好ましくは 0 . 0 1重量 部、 より好ましくは 0 . 0 5重量部である。  The amount of the inorganic filler is preferably 0 to 30 parts by weight, more preferably 0 to 10 parts by weight, and particularly preferably 0 to 5 parts by weight, based on 100 parts by weight of the polyglycolic acid. When the inorganic filler is blended, the lower limit is preferably 0.01 part by weight, more preferably 0.05 part by weight.
他の熱可塑性樹脂の配合量は、 ポリグリコール酸 1 0 0重量部に対して、 好ま しくは 0〜 5 0重量部、 より好ましくは 0〜 3 0重量部である。 他の熱可塑性樹 脂を配合する場合、 その下限は、 好ましくは 0 . 0 5重量部である。  The amount of the other thermoplastic resin is preferably 0 to 50 parts by weight, more preferably 0 to 30 parts by weight, based on 100 parts by weight of the polyglycolic acid. When other thermoplastic resins are blended, the lower limit is preferably 0.05 parts by weight.
可塑剤の配合量は、 ポリグリコ一ル酸 1 0 0重量部に対して、 好ましくは 0〜 5 0重量部、 より好ましくは 0〜3 0重量部、 特に好ましくは 0〜1 0重量部で ある。 可塑剤を配合する場合、 その下限は、 好ましくは 0 . 0 1重量部、 より好 ましくは 0 . 0 5重量部である。 ただし、 本発明で使用するポリグリコール酸が 充分に低溶融粘度である場合には、 可塑剤を配合する必要がないことが多い。 無機フィラーとしては、 アルミナ、 シリカ、 シリカアルミナ、 ジルコニァ、 酸 化チタン、 酸化鉄、 酸化ホウ素、 炭酸カルシウム、 ケィ酸カルシウム、 リン酸力 ルシゥム、 硫酸カルシウム、 炭酸マグネシウム、 ケィ酸マグネシウム、 リン酸マ グネシゥム、 硫酸マグネシウム、 カオリン、 タルク、 マイ力、 フェライト、 炭素、 ケィ素、 窒化ゲイ素、 二硫化モリブデン、 ガラス、 チタン酸カリウム等の無機物 4 . 成形物 The blending amount of the plasticizer is preferably 0 to 50 parts by weight, more preferably 0 to 30 parts by weight, and particularly preferably 0 to 10 parts by weight with respect to 100 parts by weight of polyglycolic acid. . When a plasticizer is added, the lower limit is preferably 0.01 part by weight, more preferably 0.05 part by weight. However, when the polyglycolic acid used in the present invention has a sufficiently low melt viscosity, it is often unnecessary to add a plasticizer. Inorganic fillers include alumina, silica, silica-alumina, zirconia, titanium oxide, iron oxide, boron oxide, calcium carbonate, calcium silicate, phosphoric acid, calcium sulfate, magnesium carbonate, magnesium silicate, magnesium phosphate. , Magnesium sulfate, kaolin, talc, myriki, ferrite, carbon, silicon, gallium nitride, molybdenum disulfide, glass, inorganic substances such as potassium titanate 4. Molded object
本発明のポリグリコール酸を含有する熱可塑性樹脂材料を用いて、 圧縮成形 (プレス成形) 、 押出成形、 ブロー成形、 溶液流延法などを含む成形法により、 各種形状のトレー、 深絞り成形物、 シート、 フィルム、 繊維 (糸、 複合糸など単 層、 多層) 、 中空容器などの任意の成形物を形成することができる。 例えば、 圧 縮成形によりトレーなどの容器を成形することができる。  Using the thermoplastic resin material containing polyglycolic acid of the present invention, trays of various shapes and deep drawn products can be formed by molding methods including compression molding (press molding), extrusion molding, blow molding, and solution casting. An arbitrary molded product such as a sheet, a film, a fiber (single layer or multilayer such as yarn and composite yarn), a hollow container and the like can be formed. For example, a container such as a tray can be formed by compression molding.
押出成形には、 シートや未延伸フィルムなどの押出成形に加えて、 延伸フィル ム成形、 インフレーション成形、 Tダイ成形などが含まれる。 また、 押出成形に は、 押出成形物を二次成形加工する場合も含まれる。 例えば、 押出成形により得 られたシートを、 さらに真空成形、 圧空成形などの二次成形加工することができ る。 これらの成形物の中でも、 圧縮成形物、 配向フィルム、 及び延伸プロ一容器 が好ましい。  Extrusion includes stretch film molding, inflation molding, and T-die molding in addition to extrusion molding of sheets and unstretched films. Extrusion includes the case where an extruded product is subjected to secondary molding. For example, a sheet obtained by extrusion molding can be further subjected to secondary forming such as vacuum forming and pressure forming. Among these molded products, compression molded products, oriented films, and stretched professional containers are preferred.
また、 本発明では、 ポリグリコール酸を含有する熱可塑性樹脂材料から形成さ れた層の少なくとも片面に、 熱可塑性樹脂層が形成された層構成を有する多層成 形物を成形することができる。 このような多層成形物としては、 多層シート、 多 層中空容器、 多層フィルムなどが挙げられる。  Further, in the present invention, a multilayer molded article having a layer configuration in which a thermoplastic resin layer is formed on at least one surface of a layer formed of a thermoplastic resin material containing polyglycolic acid can be molded. Examples of such a multilayer molded product include a multilayer sheet, a multilayer hollow container, and a multilayer film.
前記成形物の中でも、 配向フィルム、 延伸ブロー容器、 多層中空容器、 及び多 層フィルムでは、 ポリダリコール酸のガスパリヤー性を充分に発現させることが できる。 しかも、 ポリグリコール酸を含有する熱可塑性樹脂材料からなる層 (フ イルム、 容器の胴体部、 多層中空容器や多層フィルムの芯層など) を均一に薄膜 化することができる。  Among the molded products, in the oriented film, the stretch blow container, the multilayer hollow container, and the multilayer film, the gas barrier property of polydalicholic acid can be sufficiently exhibited. In addition, the layer (the film, the body of the container, the core layer of the multilayer hollow container or the multilayer film, etc.) made of the thermoplastic resin material containing polyglycolic acid can be uniformly thinned.
また、 本発明のポリグリコール酸成形物は、 土中崩壊性試験において、 土中に 6ヶ月間埋めた後の重量 (X ) の初期重量 (y) に対する割合 〔 (x Z y ) X 1 0 0 ( ) 3 が、 好ましくは 5 0 %以下、 より好ましくは 4 0 %以下、 特に好 ましくは 3 0 %以下という優れた土中崩壊性を示す。  In the soil disintegration test of the polyglycolic acid molded product of the present invention, the ratio of the weight (X) to the initial weight (y) after being buried in the soil for 6 months [(xZy) X10 0 () 3 exhibits excellent soil disintegration of preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less.
5 . 配向フィルム 11 の粉末、 ゥイスカー、 繊維等が挙げられる。 これらの無機フイラ一は、 それぞれ 単独で、 あるいは 2種以上を組み合わせて使用することができる。 5. Oriented film 11 powder, whiskers, fibers and the like. These inorganic fillers can be used alone or in combination of two or more.
他の熱可塑性樹脂としては、 例えば、 乳酸の単独重合体及び共重合体、 シユウ 酸ェチレンの単独重合体及び共重合体、 ε—力プロラクトンの単独重合体及び共 重合体、 ポリこはく酸エステル、 ポリヒドロキシブタン酸、 ヒドロキシブタン酸 —ヒドロキシ吉草酸共重合体、 酢酸セルロース、 ポリビニルアルコール、 でん粉、 ポリグルタミン酸エステル、 天然ゴム、 ポリエチレン、 ポリプロピレン、 スチレ ンーブタジエン共重合ゴム、 アクリロニトリル—ブタジエン共重合ゴム、 ポリメ チルメタクリレート、 ポリスチレン、 スチレン一ブタジエン—スチレンブロック 共重合体、 スチレン—エチレン ·ブチレン一スチレンブロック共重合体、 AB S 樹脂、 M B S樹脂、 エチレン一ビニルアルコール共重合体が挙げられる。  Other thermoplastic resins include, for example, homopolymers and copolymers of lactic acid, homopolymers and copolymers of ethylene oxalate, homopolymers and copolymers of ε-force prolactone, and polysuccinate esters , Polyhydroxybutanoic acid, hydroxybutanoic acid-hydroxyvaleric acid copolymer, cellulose acetate, polyvinyl alcohol, starch, polyglutamic acid ester, natural rubber, polyethylene, polypropylene, styrene butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, Examples include polyethylene methacrylate, polystyrene, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, ABS resin, MBS resin, and ethylene-vinyl alcohol copolymer.
可塑剤としては、 ジ (メトキシェチル) フタレート、 ジォクチルフ夕レート、 ジェチルフタレート、 ベンジルブチルフ夕レ一ト等のフタル酸エステル;ジェチ レングリコールジベンゾェ一ト、 エチレングリコールジベンゾェ一ト等の安息香 酸エステル;アジピン酸ォクチル、 セバチン酸ォクチル等の脂肪族二塩基酸エス テル;ァセチルクェン酸トリプチル等の脂肪族三塩基酸エステル; リン酸ジォク チル、 リン酸トリクレジル等のリン酸エステル;エポキシ化大豆油等のエポキシ 系可塑剤;ボリエチレングリコールセバケ一卜、 ポリプロピレングリコールラウ レー卜等のポリアルキレンダリコールエステル;等が挙げられる。  Examples of the plasticizer include phthalic acid esters such as di (methoxyethyl) phthalate, dioctyl phthalate, getyl phthalate, and benzyl butyl phthalate; benzoic acids such as dimethyl glycol dibenzoate and ethylene glycol dibenzoate; Esters: aliphatic dibasic acid esters such as octyl adipate and octyl sebacate; aliphatic tribasic acid esters such as triptyl acetyl citrate; phosphate esters such as dioctyl phosphate and tricresyl phosphate; epoxidized soybean oil and the like Epoxy plasticizers; polyalkylene glycol esters such as polyethylene glycol sebacolate and polypropylene glycol laurate; and the like.
本発明では、 必要に応じて、 熱安定剤、 光安定剤、 防湿剤、 防水剤、 撥水剤、 滑剤、 離型剤、 カップリング剤、 顔料、 染料などの各種添加剤を熱可塑性樹脂材 料中に含有させることができる。 これら各種添加剤は、 それぞれの使用目的に応 じて有効量が使用される。 熱可塑性樹脂材料は、 常法により、 ポリグリコール酸 単独、 あるいはポリグリコール酸、 無機フイラ一、 熱可塑性樹脂、 可塑剤、 各種 添加剤などの他の成分の一種以上とを混練押出機に供給し、 シリンダー温度 Tm 〜2 5 5 °Cの温度 (通常、 1 5 0〜2 5 5 °C) で溶融混練して、 ストランド状に 押出し、 冷却、 カットしてペレット状にする。 本発明の配向フィルムは、 上述のポリグリコール酸のニートレジンまたは該ポ リグリコール酸を含有する組成物を溶融押出し、 延伸 ·配向させ、 必要に応じて 熱固定することにより製造することができる。 溶融製膜法としては、 フラットダ ィ法による一軸延伸、 逐次二軸延伸、 及び同時二軸延伸、 あるいはサーキユラ一 ダイ法によるインフレーション二軸延伸などの方法を採用することができる。 好 ましい方法としては、 下記のような方法を挙げることができる。 In the present invention, if necessary, various additives such as a heat stabilizer, a light stabilizer, a moisture proof agent, a waterproof agent, a water repellent agent, a lubricant, a release agent, a coupling agent, a pigment, and a dye may be added to the thermoplastic resin material. Can be included in the ingredients. These various additives are used in an effective amount according to the purpose of use. The thermoplastic resin material is supplied to a kneading extruder in the usual manner with polyglycolic acid alone or with at least one of other components such as polyglycolic acid, an inorganic filler, a thermoplastic resin, a plasticizer, and various additives. The cylinder temperature is Tm to 255 ° C (usually 150 to 255 ° C), melt-kneaded, extruded into strands, cooled and cut into pellets. The oriented film of the present invention can be produced by melt-extruding the above-mentioned polyglycolic acid netoresin or a composition containing the polyglycolic acid, stretching and orienting, and, if necessary, heat setting. As the melt film forming method, a method such as uniaxial stretching by a flat die method, sequential biaxial stretching, and simultaneous biaxial stretching, or inflation biaxial stretching by a circular die method can be employed. Preferred methods include the following methods.
(1) ロール法: Tダイを用いて溶融押出したシートを、 延伸ロールを通して縦 方向 (MD) に延伸して一軸配向フラットフィルムを製造する方法。  (1) Roll method: A method of manufacturing a uniaxially oriented flat film by stretching a sheet melt-extruded using a T-die through a stretching roll in the machine direction (MD).
(2) テンター法: Tダイを用いて溶融押出したシートを、 延伸口一ルにより機 械方向 (MD) に配向させ、 次いで、 テン夕一を用いて横方向 (TD) に配向さ せ二軸配向フラットフイルムを製造する方法。  (2) Tenter method: The sheet extruded using a T-die is oriented in the machine direction (MD) by a drawing port, and then oriented in the transverse direction (TD) using a tenth unit. A method for producing an axially oriented flat film.
(3) インフレ一ション法:インフレ一ション用リングダイを用いてチューブ状 に溶融押出し、 結晶化温度 (TC l) 以下に急冷した後、 チューブの内部に気体 を圧入し、 チューブを膨張させて延伸する方法。 この方法で、 ニップロール間で 縦方向も延伸すれば、 二軸延伸フィルムが得られる。 チューブ状に溶融押出した 後、 冷却する方法としては、 エアリングする方法、 冷水中に浸漬する方法などが ある。 これら各方法の中でも、 特に好ましい配向フィルムの製造方法は、 以下の とおりである。 (3) Inflation method: melt extruded into a tube using a ring die for inflation, quenched to a temperature below the crystallization temperature ( TCl ), pressurize gas into the tube, expand the tube. How to stretch. By stretching in the longitudinal direction between the nip rolls by this method, a biaxially stretched film can be obtained. As a method of cooling after melt extrusion into a tube, there are a method of airing and a method of immersion in cold water. Among these methods, a particularly preferred method for producing an oriented film is as follows.
ロール法では、 熱可塑性樹脂材料を、 Tダイを装着した押出機に供給し、 Tm 〜255°Cの温度範囲 (通常 150〜255°C) でシート状に押出し、 直ちに冷 却ドラムや冷媒等を用いて Tc i以下に、 好ましくはガラス転移温度 (Tg) 以 下の温度に急冷し、 次いで、
Figure imgf000015_0001
の温度範囲 (通常 30〜120°C) 、 好ましくは T g〜 (T g + 10 °C) (通常 30〜 48 °C) の温度範囲で延伸口一 ルを通過させて、 MDに 1倍超過 20倍以下 (好ましくは 2〜 10倍) の延伸倍 率で延伸 .配向させ、 必要に応じて TC i〜 (Tm+ 1 0で) の温度範囲 (通常 70〜240°C) で 1秒〜 3時間 (好ましくは 3秒〜 0. 5時間) 、 定長下また は緊張下で熱固定することによって、 一軸配向フラットフィルムを製造すること ができる。 Tダイからのシート押出温度が 255 °Cを超過すると、 ポリマーの分 解と、 それに伴う分子量の急激な低下、 発泡等が起こり易くなり、 次の延伸加工 に適するシ一ト状物が得られなくなるおそれがある。 延伸温度が T c iを超過す ると、 シート状物が殆ど結晶化してしまい、 延伸配向が殆どできなくなるおそれ がある。 得られた一軸配向フィルムは、 さらに巾方向に開繊してやることによつ て、 容易にスプリットヤーンにすることができる。
In the roll method, a thermoplastic resin material is supplied to an extruder equipped with a T die, extruded into a sheet at a temperature in the range of Tm to 255 ° C (usually 150 to 255 ° C), and immediately cooled with a cooling drum or refrigerant. Quenching to a temperature below Tci, preferably below the glass transition temperature (Tg) using
Figure imgf000015_0001
Through the stretching port in the temperature range (normally 30 to 120 ° C), preferably Tg to (Tg + 10 ° C) (normally 30 to 48 ° C), and 1 times the MD. Stretch at a stretch ratio of 20 times or less (preferably 2 to 10 times). Orient, and if necessary, for 1 second in a temperature range of TC i ~ (at Tm + 10) (usually 70 to 240 ° C). Manufacturing a uniaxially oriented flat film by heat setting under fixed length or tension for 3 hours (preferably 3 seconds to 0.5 hour) Can be. If the sheet extrusion temperature from the T-die exceeds 255 ° C, the polymer will be decomposed, and the resulting sharp decrease in molecular weight and foaming will easily occur, and a sheet-like material suitable for the next stretching process will be obtained. It may disappear. When the stretching temperature exceeds T ci, the sheet material is almost crystallized, and there is a possibility that the stretching orientation can hardly be performed. The obtained uniaxially oriented film can be easily split into yarns by further opening in the width direction.
テン夕一法では、 熱可塑性樹脂材料を、 Tダイを装着した押出機に供給し、 T m〜255 の温度 (通常 150〜255°C) でシート状に押出し、 直ちに冷却 ドラムや冷媒等を用いて Tc i以下に、 好ましくは Tg以下に急冷し、 次いで、 ロール法と同様に、 Tg〜TC i (通常 30〜120°C) の温度、 好ましくは T g〜 (Tg+10°C) (通常 30〜48°C) の温度範囲で、 延伸ロールを通して、 MDに 1倍超過 10倍以下 (好ましくは 2〜 8倍) の延伸倍率で延伸し、 次いで、 Tg〜Tc (通常 30〜120°C) の温度、 好ましくは Tg〜 (Tg + 2 0 °C) (通常 30〜 58 °C) の温度範囲で TDに 1倍超過 10倍以下 (好ましく は 2〜8倍) の延伸倍率で延伸し、 必要に応じて定長下または緊張下で、 TC l 〜 (Tm+10°C) の温度 (通常 70〜240で) で 1秒〜 3時間 (好ましくは 3秒〜 30分間) 熱固定することによって、 二軸配向フラットフィルムを製造す ることができる。 In the Tenyuichi method, a thermoplastic resin material is supplied to an extruder equipped with a T die, extruded into a sheet at a temperature of Tm to 255 (usually 150 to 255 ° C), and a cooling drum, refrigerant, etc. Quenched to Tc i or lower, preferably to Tg or lower, and then, similarly to the roll method, at a temperature of Tg to TC i (usually 30 to 120 ° C.), preferably T g to (Tg + 10 ° C.) In a temperature range of (normally 30 to 48 ° C), the film is stretched through a stretching roll into a MD at a stretching ratio of more than 1 to 10 times or less (preferably 2 to 8 times), and then Tg to Tc (normally 30 to 120 ° C). ° C), preferably in the temperature range of Tg ~ (Tg + 20 ° C) (usually 30-58 ° C), with a draw ratio of more than 1 time to TD and 10 times or less (preferably 2-8 times) stretched, at a constant length or under tension optionally under, T C l a temperature of ~ (Tm + 10 ° C) 1 second to 3 hours (in the usual 70 to 240) (preferably 3 seconds to 30 minutes) By heat setting A biaxially oriented flat film can be manufactured.
インフレーション法では、 熱可塑性樹脂材料を、 インフレーション用リングダ ィを装着した押出機に供給し、 Tm〜 25 5°Cの温度 (通常 1 50°C〜25 5°C) でチューブ状に溶融押出し、 直ちに TC l以下に、 好ましくは Tg以下に 急冷し、 次いで、 Tg〜T C i (通常 30〜: L 20°C) 、 好ましくは Tg〜 (T g + 10 °C) (通常 30〜 48 ) の温度範囲で、 ブロー比が 1倍超過 10倍以 下 (好ましくは 2〜 8倍) になるようにインフレートし、 かつ、 引取速度を 0. 5- 100 mZ分 (好ましくは 1〜 50 mZ分) とし、 MD倍率を 1倍超過 10 倍以下 (好ましくは 2〜8倍) になるようにコントロールしながらエップロール を介して引き取り、 必要に応じて丁じェ〜 (Tm+10で) の温度 (通常 70〜 240°C) で、 1秒〜 3時間 (好ましくは 3秒〜 0. 5時間) 、 定長下または緊 張下で熱固定することによって、 チューブ状の二軸配向フィルムを製造すること ができる。 In the inflation method, a thermoplastic resin material is fed to an extruder equipped with an inflation ring die and melt-extruded into a tube at a temperature of Tm to 255 ° C (usually 150 ° C to 255 ° C). immediately T C l below, preferably rapidly cooled to below Tg, then, Tg~TC i (usually 30~: L 20 ° C), preferably Tg~ (T g + 10 ° C ) ( normal 30-48) In the above temperature range, blow rate is blown so that the blow ratio is more than 1 time and 10 times or less (preferably 2 to 8 times), and the take-off speed is 0.5 to 100 mZ min (preferably 1 to 50 mZ). Min) and take over the Ep-roll while controlling the MD magnification to be more than 1x and 10x or less (preferably 2-8x), and if necessary, the temperature of the temperature (Tm + 10) (Usually 70 ~ By heating and fixing at 240 ° C) for 1 second to 3 hours (preferably 3 seconds to 0.5 hour) at a fixed length or under tension, a tubular biaxially oriented film can be produced. .
本発明の配向フィルムの 2面を合せ、 シーラーを用いて、 (Tm— 20°C) 〜 (Tm+ 1 0 0°C) の温度、 好ましくは Tm~ (Tm+ 5 0V) の温度で、 通常 0. 0 1〜1 0 0秒間、 好ましくは 0. 1〜20秒間、 ヒートシールまたは融断 シールすることによって、 袋を製造することができる。 シーラーとしては、 ホッ トナイフシ一ラー、 インパルスシーラー、 高周波シーラ一、 超音波シーラー等が 使用できる。  The two surfaces of the oriented film of the present invention are combined, and using a sealer, at a temperature of (Tm−20 ° C.) to (Tm + 100 ° C.), preferably at a temperature of Tm to (Tm + 50 V), usually 0 The bag can be manufactured by heat or melt sealing for 0.1 to 100 seconds, preferably 0.1 to 20 seconds. As a sealer, a hot knife sealer, an impulse sealer, a high frequency sealer, an ultrasonic sealer, or the like can be used.
本発明の配向フィルムの各製造方法において、 延伸'配向のみを行い、 熱固定 を省略したフィルムは、 高熱収縮率の熱収縮性フィルムになる。  In each of the methods for producing an oriented film of the present invention, a film which has been subjected to stretching and orientation alone and has not been subjected to heat setting is a heat-shrinkable film having a high heat shrinkage.
本発明の配向フィルムの厚みは、 通常1〜5 00 /111、 好ましくは 3〜300 m、 より好ましくは 5〜200 zmである。 本発明の配向フィルムは、 その厚 みを 40 m以下の極めて薄膜に形成しても、 厚みのばらつきが小さく、 薄膜成 The thickness of the oriented film of the present invention is usually 1 to 500/111, preferably 3 to 300 m, more preferably 5 to 200 zm. Even if the oriented film of the present invention is formed as a very thin film having a thickness of 40 m or less, the variation in thickness is small, and
! 形が可能である。 ! Shapes are possible.
具体的に、 配向フィルムの成形時の設定厚みを 2 5 mとして測定したとき、 設定厚みからのばらつき (R%) が 30 %未満となる。 また、 配向フィルムの成 形時の設定厚みを 1 5 mとして測定したとき、 設定厚みからのばらつき (R%) が 3 0 %以上、 70%未満となる。 配向フィルムの成形時の設定厚みを 40 / mと厚くして測定したとき、 設定厚みからのばらつき (R%) が 1 0 %未 満となる。  Specifically, when the set thickness at the time of forming the oriented film is measured as 25 m, the variation (R%) from the set thickness is less than 30%. In addition, when the measured thickness of the oriented film at the time of molding is 15 m, the variation (R%) from the set thickness is 30% or more and less than 70%. When the thickness of the oriented film during molding was set to be 40 / m and measured, the variation (R%) from the set thickness was less than 10%.
本発明の配向フィルムは、 環境負荷の少ない土中崩壊性のフィルムである。 す なわち、 本発明のポリグリコール酸配向フィルムは、 土壌中に深さ 1 0 cmで埋 設した場合、 通常 6力月以内に崩壌して、 原形を失ってしまう。 例えば、 従来の ポリ乳酸のフィルムの場合は、 ガラス転移温度 (Tg) が高過ぎるために、 通常 の条件でコンポスト化が難しいという問題点があった。 これに対して、 本発明の 配向フィルムは、 T gがそれほど高くないポリダリコール酸から形成されている ため、 通常の条件によるコンポスト化が可能である。 また、 従来の高溶融粘度の ポリダリコール酸を用いて得られる配向フィルムに比べて、 土中崩壊性の速度が 著しく速くなつている。 The oriented film of the present invention is a soil-disintegrable film having a low environmental load. That is, when the oriented polyglycolic acid film of the present invention is buried in soil at a depth of 10 cm, it usually breaks down within six months and loses its original shape. For example, in the case of a conventional polylactic acid film, the glass transition temperature (Tg) is too high, so that there is a problem that composting is difficult under normal conditions. In contrast, the oriented film of the present invention is formed from polydalicholic acid having a not so high Tg. Therefore, composting under normal conditions is possible. In addition, the rate of disintegration in soil is significantly higher than that of a conventional oriented film obtained using polydalicholic acid having a high melt viscosity.
本発明の配向フィルムで、 無機フィラー無添加のもの、 あるいは無機フィラー の添加量の少ないものは、 殆ど無色で透明性が高く、 ヘーズ値も極めて低い。 特定のポリグリコ一ル酸を含有する熱可塑性樹脂材料を用いることにより、 酸 素透過度が非常に小さい配向フィルムを得ることが可能である。 より具体的に、 本発明によれば、 酸素透過度 (温度 23°C、 相対湿度 80%で測定;厚み 25 mに換算; J I S K-7126に準拠) が、 通常、 50 cmVm2 · d ay · a tm以下、 好ましくは 30 cmVm2 - day - a t m以下、 より好ましく は 10 c cmVm2 · d ay · a t m以下のハイバリヤ一性の配向フィルムを 得ることができる。 In the oriented film of the present invention, the one without an inorganic filler or the one with a small amount of the inorganic filler is almost colorless, has high transparency, and has an extremely low haze value. By using a thermoplastic resin material containing a specific polyglycolic acid, it is possible to obtain an oriented film having a very low oxygen permeability. More specifically, according to the present invention, the oxygen permeability (measured at a temperature of 23 ° C. and a relative humidity of 80%; converted to a thickness of 25 m; in accordance with JIS K-7126) is usually 50 cmVm 2 · day. · It is possible to obtain an oriented film having a high barrier property of not more than a tm, preferably not more than 30 cmVm 2 -day-atm, more preferably not more than 10 cmVm 2 · day · atm.
本発明の配向フィルムは、 炭酸ガスバリヤ一性にも優れており、 炭酸ガス透過 度 (温度 23°C、 相対湿度 80 %で測定;厚み 25 ^mに換算; J I S K-7 126に準拠) が、 通常、 300 cm3/m2 · d ay · a tm以下、 好ましく は 100 cmVm2 · d ay · a t m以下、 より好ましくは 30 cmVm2 · d ay · a tm以下である。 本発明の配向フィルムは、 水蒸気バリヤ一性が良好 であり、 透湿度 (温度 40で、 相対湿度 90%で測定;厚み 25 xmに換算; J I S K- 0280に準拠) が、 通常、 100 g/m2 · d ay以下、 好ましく は 50 g/m2 · d ay以下、 より好ましくは 30 g/m2 · d ay以下である。 本発明の配向フィルムは、 それ単独で、 あるいは防湿コートや防湿ラミネート を施して、 各種用途に使用することができる。 この配向フィルムは、 袋状成形体 などに成形して使用することができる。 本発明の配向フィルムは、 高度のガスバ リヤー性、 耐熱収縮性、 高透明性等の特徴を有している。 The oriented film of the present invention is also excellent in carbon dioxide gas barrier properties, and has a carbon dioxide gas permeability (measured at a temperature of 23 ° C and a relative humidity of 80%; converted to a thickness of 25 ^ m; compliant with JIS K-7126). Usually, it is 300 cm 3 / m 2 · day · atm or less, preferably 100 cmVm 2 · day · atm or less, more preferably 30 cmVm 2 · day · atm or less. The oriented film of the present invention has a good water vapor barrier property and a moisture permeability (measured at a temperature of 40 and a relative humidity of 90%; converted to a thickness of 25 xm; in accordance with JIS K-0280). m 2 · day or less, preferably 50 g / m 2 · day or less, more preferably 30 g / m 2 · day or less. The oriented film of the present invention can be used for various purposes by itself or after being subjected to a moisture-proof coat or a moisture-proof laminate. This oriented film can be used after being formed into a bag-like molded body. The oriented film of the present invention has features such as high gas barrier properties, heat shrink resistance, and high transparency.
本発明によれば、 熱収縮率 (130°C、 10分間で測定) が、 通常、 30%以 下、 好ましくは 20%以下、 より好ましくは 10%以下と低熱収縮率の配向フィ ルムを得ることができる。 このような低熱収縮率フィルムは、 高温で使用する用 途、 例えば、 電子レンジで使用するラップフィルム、 トレー類、 熱湯を注入して 食べるィンスタン卜食品用容器類、 高温殺菌を要するレトルト食品包材ゃ医用器 具包材類などの用途に好適である。 According to the present invention, an oriented film having a low heat shrinkage of usually 30% or less, preferably 20% or less, more preferably 10% or less is obtained. be able to. Such low heat shrinkage film is used for high temperature Suitable for applications such as wrap films used in microwave ovens, trays, containers for instant foods to be infused with hot water, retort food packaging materials requiring high-temperature sterilization, and medical device packaging materials. .
本発明のポリグリコール酸配向フィルムは、 薄膜にすることが容易である。 し かし、 薄膜の配向フィルムは、 フィルムの製造時や加工時における巻き取り、 巻 き戻し操作、 あるいは、 テープに用いた場合の使用時における巻き取り、 巻き戻 し操作において、 フィルム フィルム間、 もしくはフィルムノ金属面間の摩擦の 大きさが問題となってくる。 摩擦が大きすぎると、 巻き取り、 巻き戻し操作途中 に、 フィルムが破断したり、 しわになったりして、 これらの操作が困難になる。 前記特定のポリグリコール酸 1 0 0重量部に、 粉末条の無機フイラ一を 0 . 0 1 〜 5重量部、 好ましくは 0 . 0 2〜3重量部、 より好ましくは 0 . 0 3〜2重量 部の割合で含有させた熱可塑性樹脂材料を用いることにより、 フィルム/フィル ム間の動摩擦係数/ k ( 2 3 ) が 0 . 3 5以下、 好ましくは 0 . 3 3以下、 よ り好ましくは 0 . 3 0以下の易滑性フィルムを得ることができる。  The oriented polyglycolic acid film of the present invention can be easily formed into a thin film. However, a thin oriented film can be used for winding and rewinding operations during film production and processing, or during use and rewinding operations when used for tapes. Alternatively, the magnitude of the friction between the metal surfaces of the film becomes a problem. If the friction is too high, the film may break or wrinkle during the winding and rewinding operations, making these operations difficult. To 100 parts by weight of the specific polyglycolic acid, 0.01 to 5 parts by weight, preferably 0.02 to 3 parts by weight, more preferably 0.03 to 2 parts by weight of the inorganic filler of the powdered strip is used. By using a thermoplastic resin material contained in a proportion of 0.3 parts by mass, the coefficient of dynamic friction between the film and the film / k (23) is 0.35 or less, preferably 0.33 or less, more preferably 0. It is possible to obtain a slippery film of 30 or less.
ポリダリコール酸 1 0 0重量部に対し、 粉末状の無機フィラーを 0 . 5〜1 0 0重量部の割合で含有させた熱可塑性樹脂材料を用いて、 未延伸フィルムを作製 し、 これを面積倍率が 3倍以上、 好ましくは 4倍以上になるように、 1軸または 2軸方向に延伸すると、 印刷インクがのり易く、 印刷適性に優れた配向フィルム を得ることができる。  An unstretched film was prepared using a thermoplastic resin material containing 0.5 to 100 parts by weight of a powdery inorganic filler with respect to 100 parts by weight of polydalicholic acid. When the film is stretched in a uniaxial or biaxial direction so as to be 3 times or more, preferably 4 times or more, an oriented film excellent in printability and easily printing ink can be obtained.
本発明の配向フィルムの用途としては、 例えば、 食品包材、 医用器材包材、 ラ ップフィルム、 洋品包材、 人形包材、 生鮮包材、 野菜包材、 卵パック、 クッショ ン材、 マルチフィルム、 キヤリャバッグ、 ゴミ袋、 生理用品包材、 紙おむつ、 粘 着テープ、 磁気テープ、 フロッピー (R) ディスク、 電子レンジ用ラップフィル ム、 レトルト食品包材、 インスタント食品包材が挙げられる。 未熱固定の配向フ イルム.は、 熱収縮性フィルムとして使用することができる。 スプリットヤーンは、 荷作用や農業用の紐材として使用することができる。 , Applications of the oriented film of the present invention include, for example, food packaging, medical equipment packaging, wrap film, western packaging, doll packaging, fresh packaging, vegetable packaging, egg pack, cushioning, multi-film, Carrier bags, garbage bags, sanitary wrapping materials, disposable diapers, adhesive tape, magnetic tape, floppy (R) disks, microwave wrap films, retort food wrapping materials, and instant food wrapping materials. The unheated oriented film can be used as a heat-shrinkable film. Split yarn can be used as a stringing material for loading and agricultural purposes. ,
18  18
6 . 延伸ブロー容器 6. Stretch blow container
本発明の延伸ブロー容器は、 特定の物性を有するポリダリコール酸のニートレ ジンまたは該ポリダリコール酸を含有する組成物からなる熱可塑性樹脂材料を、 Tm〜2 5 5 °Cの樹脂温度で成形して、 実質的に非晶状態のプリフォームを作製 し、 該プリフォームを (ポリグリコ一ル酸のガラス転移温度 T g + 7 0 °C) 以下 の樹脂温度で、 縦方向に 1倍超過、 1 0倍以下に延伸するとともに、 同時または 逐次に、 空気を吹き込んで、 ブロー比 1 . 5〜1 0の中空容器にブロー成形し、 さらに必要に応じて、 ポリダリコール酸の結晶化温度 T c 〜 (Tm+ 1 0 °C) の温度で、 1秒間〜 3 0分間熱固定することにより得ることができる。  The stretch blow container of the present invention is obtained by molding a thermoplastic resin material comprising a polydalicholate neat resin having a specific physical property or a composition containing the polydalicholate at a resin temperature of Tm to 255 ° C. A preform in a substantially amorphous state is prepared, and the preform is heated to a resin temperature of (glass transition temperature of polyglycolic acid Tg + 70 ° C) or lower, and exceeds 1 times in the longitudinal direction, and 10 times. At the same time or successively, air is blown into the container to blow-mold it into a hollow container having a blow ratio of 1.5 to 10 and, if necessary, furthermore, the crystallization temperature of polydaricholic acid Tc to (Tm + 1 (0 ° C.) for 1 second to 30 minutes.
プリフォーム (パリソン) 成形時の樹脂温度は、 融点 Tm〜2 5 5 °Cの範囲で ある。 ポリダリコール酸の Tmは、 ホモポリマーの場合は約 2 2 0 °Cであるが、 シユウ酸エチレン、 ラクチド、 ラクトン類、 トリメチレン力一ポネート、 1 , 3 一ジォキサンなどのコモノマーと共重合することにより、 一般に、 それよりも低 下する。 そこで、 プリフォーム成形時の樹脂温度は、 通常、 1 5 0〜2 5 5 °C, 好ましくは 1 9 0〜2 5 Ο より好ましくは 2 0 0〜2 4 5でである。 樹脂温 度が 2 5 5 °Cを超過すると、 ポリダリコール酸が熱分解を受けやすくなり、 満足 なプリフォームを得ることができない。  The resin temperature during preform (parison) molding is in the range of melting point Tm to 255 ° C. The Tm of polydalicholate is about 220 ° C in the case of a homopolymer.However, by copolymerizing with a comonomer such as ethylene oxalate, lactide, lactones, trimethylene monoponate, and 1,3-dioxane, Generally lower. Therefore, the resin temperature at the time of preform molding is usually 150 to 255 ° C, preferably 190 to 25 ° C, and more preferably 200 to 24 ° C. If the resin temperature exceeds 255 ° C, polydalicholate becomes susceptible to thermal decomposition, making it impossible to obtain a satisfactory preform.
プリフォームは、 実質的に非晶状態のプリフォームとして成形される。 プリフ オームが結晶状態であると、 次の延伸工程において、 延伸時の張力が大きくなり、 延伸が困難となる。 実質的に非晶状態のプリフォームは、 溶融樹脂を急冷するこ とにより得ることができる。  The preform is formed as a substantially amorphous preform. If the preform is in a crystalline state, in the next stretching step, the tension at the time of stretching increases, and stretching becomes difficult. A preform in a substantially amorphous state can be obtained by rapidly cooling the molten resin.
延伸プロ一成形の温度条件は、 (T g + 7 0 :) 以下である。 延伸プロ一時の 樹脂温度が (T g + 7 0 °C) を越える温度では、 ポリマーの分子鎖の運度が活発 すぎて、 延伸ブローしても、 直ちに延伸配向状態が緩和して、 配向が消滅ないし は大幅に減少してしまうおそれがある。  The temperature condition of the stretching pro-forming is (Tg + 70 :) or less. If the temperature of the resin at the time of stretching is higher than (Tg + 70 ° C), the mobility of the polymer molecular chains is too active, and even if stretch blowing is performed, the stretched orientation state is immediately relaxed and the orientation is reduced. It may disappear or be significantly reduced.
コールドパリソン法の場合は、 射出成形または押出成形により得られたパリソ ンを一旦冷却固化した後、 延伸プロ一成形時に、 樹脂温度が T g〜 (T g + 7 0 ) の範囲になるように再加熱する。 ホットパリソン法の場合には、 射出成形 または押出成形により得られたパリソンを冷却するが、 樹脂が固化しない状態の 間に延伸ブロー成形する。 すなわち、 プリフォームがホットパリソンの場合、 T m〜255°Cの温度でプリフォームを溶融成形した後、 (Tg— 30°C) 〜 (T g + 70°C) の温度に急冷し、 樹脂が固化しない間に延伸ブロー成形する。 溶融 成形したプリフォームを急冷して T g未満の温度に過冷却しても、 樹脂が固化し ない間に直ちに延伸ブロー成形すれば、 延伸ブロー容器を製造することが可能で ある。 In the case of the cold parison method, after the parison obtained by injection molding or extrusion molding is once cooled and solidified, the resin temperature is Tg to (Tg + 7 Re-heat so as to be in the range of 0). In the case of the hot parison method, the parison obtained by injection molding or extrusion molding is cooled, but stretch blow-molded while the resin does not solidify. In other words, when the preform is a hot parison, the preform is melt-molded at a temperature of Tm to 255 ° C, then quenched to a temperature of (Tg-30 ° C) to (Tg + 70 ° C), Stretch-blow molding is performed while is not solidified. Even if the melt-formed preform is rapidly cooled and supercooled to a temperature lower than Tg, a stretch-blow container can be manufactured by immediately performing stretch-blow molding while the resin does not solidify.
ポリグリコ一ル酸の Tgは、 ホモポリマーの場合は約 38 °Cであるが、 シユウ 酸エチレン、 ラクチド、 ラクトン類、 トリメチレングリコール、 1, 3 -ジォキ サンなどのコモノマーと共重合することにより、 その値が変動する。 そこで、 延 伸プロ一成形時の樹脂温度は、 (Tg + 70°C) 以下であるが、 好ましくは 30 〜100°C、 より好ましくは 35〜90 である。  The Tg of polyglycolic acid is about 38 ° C in the case of a homopolymer, but by copolymerizing with comonomers such as ethylene oxalate, lactide, lactones, trimethylene glycol and 1,3-dioxane, Its value fluctuates. Therefore, the resin temperature at the time of elongation forming is (Tg + 70 ° C) or less, preferably 30 to 100 ° C, and more preferably 35 to 90.
プリフォームは、 縦方向に 1倍超過、 10倍以下に延伸するが、 有底パリソン の場合には、 通常、 延伸ロッドを用いて延伸する。 中空パイプ状パリソンの場合 には、 両端をホールダ一で保持して長さ方向 (縦方向) に延伸する。 縦方向の延 伸倍率は、 好ましくは 1. 5〜5倍程度である。 ブロー比は、 通常 1. 5〜10、 好ましくは 1. 8〜9、 より好ましくは 2. 0〜8である。 ブロー比が 1. 5未 満では、 分子鎖の配向が不充分となり、 結晶化度が不足し、 有害な粗大球晶の生 成を招来して、 充分な引張強度を発現できなくなり、 バリヤ一性、 耐熱性、 透明 性も不充分となるおそれがある。 ブロー比とは、 ブロー成形において、 容器に成 形されるパリソンの直径に対する容器の直径 (最大直径) の比をいう。 空気を吹 き込んでブローする工程は、 縦方向への延伸と同時に、 あるいは縦方向への延伸 の後に (逐次に) 行う。  The preform is stretched more than 1 times and 10 times or less in the machine direction. In the case of a bottomed parison, it is usually stretched using a stretching rod. In the case of a hollow pipe-shaped parison, both ends are held in a holder and stretched in the longitudinal direction (longitudinal direction). The extension ratio in the longitudinal direction is preferably about 1.5 to 5 times. The blow ratio is usually 1.5 to 10, preferably 1.8 to 9, and more preferably 2.0 to 8. If the blow ratio is less than 1.5, the orientation of the molecular chains is insufficient, the crystallinity is insufficient, and harmful coarse spherulites are generated, and sufficient tensile strength cannot be exhibited. Properties, heat resistance, and transparency may also be insufficient. The blow ratio refers to the ratio of the diameter (maximum diameter) of the container to the diameter of the parison formed in the container in blow molding. The step of blowing by blowing air is performed simultaneously with or after the longitudinal stretching (sequentially).
延伸ブロー成形の最終工程で、 必要に応じて、 TC i〜 (Tm+ l O ) の温 度 (通常、 70〜240°C) で、 1秒間〜 30分間 (通常、 2秒間〜 10分間) 熱固定する。 延伸プロ一成形により、 胴部側壁が充分に延伸配向されたハイバリ ヤー 'ί生、 高弾性 ·高強度、 耐熱性の延伸ブロー容器を得ることができる。 これに 対して、 従来の延伸配向を伴わない通常の押出ブロー成形法 (例えば、 特開平 6 - 2 7 8 7 8 5号公報) や射出ブロー成形法では、 中空容器の成形時に胴部側壁 の延伸配向が殆ど起こらないか、 不充分にしか起こらないので、 得られる中空容 器は、 バリヤ一性、 機械的特性、 耐熱性が不満足なものとなる。 In the final step of stretch blow molding, if necessary, at a temperature of TC i ~ (Tm + lO) (usually 70 to 240 ° C) for 1 second to 30 minutes (usually 2 seconds to 10 minutes) Heat Fix it. High burr whose body side wall is fully oriented by stretching Yield, high elasticity, high strength, heat resistant stretch blow container can be obtained. In contrast, in the conventional extrusion blow molding method that does not involve stretching orientation (for example, Japanese Patent Application Laid-Open No. Hei 6-2878785) or the injection blow molding method, the side wall of the body is not formed when the hollow container is molded. Since little or no stretching orientation occurs, the resulting hollow container has unsatisfactory barrier properties, mechanical properties, and heat resistance.
本発明で採用できる延伸ブロー成形法には、 より詳細には、 以下のような各種 の方法がある。  More specifically, the stretch blow molding method that can be employed in the present invention includes the following various methods.
( 1 ) 射出 ·延伸ブロー 2段法  (1) Injection / stretch blow two-stage method
前記ポリダリコール酸を含有する熱可塑性樹脂材料を、 射出成形機に供給し、 Tm〜2 5 5 °Cの樹脂温度で金型内に射出成形して有底パリソンを作製した後、 冷却固化して T g未満の樹脂温度を有するコールドパリソンからなるプリフォー ムとし、 次いで、 プリフォームを T g〜 (T g + 7 0 °C) の樹脂温度に再加熱し た後、 ブロー成形用金型内に移動し、 延伸ロッドにより縦方向に 1倍超過、 1 0 倍以下に延伸するとともに、 同時または逐次に空気を吹き込んで、 ブロー比 1 . 5〜1 0の中空容器にブロー成形し、 必要に応じて熱固定する。  The thermoplastic resin material containing polydalicholic acid is supplied to an injection molding machine, and is injection-molded in a mold at a resin temperature of Tm to 255 ° C to form a bottomed parison, and then cooled and solidified. A preform made of a cold parison having a resin temperature of less than Tg, and then the preform was reheated to a resin temperature of Tg ~ (Tg + 70 ° C) and then placed in a blow mold. It is moved and stretched by a stretching rod in the longitudinal direction by more than 1 times and 10 times or less, and simultaneously or sequentially blows air to blow-mold into a hollow container with a blow ratio of 1.5 to 10 and, if necessary And heat-fix.
( 2 ) 射出 ·延伸ブロー 1段法  (2) Injection / stretch blow 1-stage method
ポリグリコール酸を含有する熱可塑性樹脂材料を、 射出成形機に供給し、 Tm 〜2 5 5 °Cの樹脂温度で金型内に射出成形して有底パリソンを作製した後、 冷却 するが、 (T g + 7 0 °C) 以下の樹脂温度を有する固化していないホットパリゾ ンからなるプリフォームとし、 次いで、 プリフォームをブロー成形用金型内に移 動し、 延伸ロッドにより縦方向に 1倍超過、 1 0倍以下に延伸するとともに、 同 時または逐次に、 空気を吹き込んで、 プロ一比 1 . 5〜1 0の中空容器にブロー 成形し、 必要に応じて熱固定する。 この方法では、 プリフォームが射出成形の余 熱を維持した状態で、 プロ一成型工程に移る。 ホットパリソンの温度調整工程を 付加してもよい。  The thermoplastic resin material containing polyglycolic acid is supplied to an injection molding machine, injection molded in a mold at a resin temperature of Tm ~ 255 ° C to produce a bottomed parison, and then cooled. (T g + 70 ° C) A preform made of unsolidified hot parisone having a resin temperature of not more than (T g + 70 ° C), and then moving the preform into a blow-molding mold, and moving the preform in a longitudinal direction with a stretching rod. At the same time or successively, air is blown at the same time or sequentially, blow-molded into a hollow container with a ratio of 1.5 to 10 and heat-fixed if necessary. In this method, the preform moves to the professional molding process while maintaining the preheating of the injection molding. A hot parison temperature adjustment step may be added.
( 3 ) 押出 ·延伸ブロー 2段法 (その 1 )  (3) Extrusion and stretch blow two-stage method (Part 1)
ポリダリコール酸を含有する熱可塑性樹脂材料を、 パリソン用ダイを装着した 押出機に供給し、 Tm〜255 °Cの樹脂温度で押出成形して中空パイプを作製し た後、 Tg未満の温度に冷却固化し、 一定長に切断してコールドパリソンからな るプリフォームとし、 次いで、 該プリフォームを Tg〜 (Tg+70°C) の樹脂 温度に再加熱した後、 その両端をホールダ一で保持して長さ方向に 1倍超過、 1 0倍以下に延伸し、 次いで、 片端をピンチオフして有底とした後、 ブロー成形用 金型内に移動し、 空気を吹き込んで、 ブロー比 1. 5〜10の中空容器にブロー 成形し、 必要に応じて熱固定する。 A thermoplastic resin material containing polydalicholic acid was fitted with a parison die. It is supplied to an extruder, extruded at a resin temperature of Tm to 255 ° C to produce a hollow pipe, cooled and solidified to a temperature below Tg, and cut into a fixed length to form a cold parison preform. Then, after reheating the preform to a resin temperature of Tg ~ (Tg + 70 ° C), both ends thereof are held in a holder and stretched in the length direction by more than 1 times and stretched to 10 times or less, Then, after pinching off one end to make it bottomed, it is moved into a blow molding die, blown with air, blow-molded into a hollow container with a blow ratio of 1.5 to 10, and heat-fixed if necessary. .
(4) 押出 ·延伸プロ一 2段法 (その 2)  (4) Extrusion and stretching professional two-step method (Part 2)
ポリグリコール酸を含有する熱可塑性樹脂材料を、 パリソン用ダイを装着した 押出機に供給し、 Tm〜255°Cの樹脂温度で押出成形して中空パイプを作製し た後、 Tg未満の温度に冷却固化し、 一定長に切断してコールドパリソンからな るプリフォームとし、 次いで、 該プリフォームを Tg〜 (Tg+70°C) の樹脂 温度に再加熱した後、 その片端をピンチオフして有底とし、 次いで、 プロ一成形 用金型内に移動し、 延伸ロッドにより縦方向に 1倍超過、 10倍以下に延伸する とともに、 同時または逐次に空気を吹き込んで、 ブロー比 1. 5~10の中空容 器にブロー成形し、 必要に応じて熱固定する。  A thermoplastic resin material containing polyglycolic acid is fed to an extruder equipped with a parison die, extruded at a resin temperature of Tm to 255 ° C to form a hollow pipe, and then cooled to a temperature below Tg. It is cooled and solidified, cut to a certain length to obtain a preform made of cold parison, and then the preform is reheated to a resin temperature of Tg to (Tg + 70 ° C), and one end of the preform is pinched off. It is moved to the bottom, then it is moved into the mold for professional molding, and it is stretched to more than 1 times and 10 times or less in the longitudinal direction by the stretching rod, and air is blown simultaneously or sequentially, and the blow ratio is 1.5 to 10 Blow molding into hollow containers and heat-fixing as necessary.
(5) 押出 ·延伸ブロー 1段法 (その 1)  (5) Extrusion and stretch blow one-step method (Part 1)
ポリグリコール酸を含有する熱可塑性樹脂材料を、 パリソン用ダイを装着した 押出機に供給し、 Tm〜255 °Cの樹脂温度で押出成形して中空パイプを作製し た後、 (Tg+70t ) 以下の樹脂温度に冷却し、 一定長に切断してホットパリ ソンからなるプリフォームとした後、 その両端をホールダ一で保持して長さ方向 に 1倍超過、 10倍以下に延伸し、 次いで、 片端をピンチオフして有底とした後、 ブロー成形用金型内に移動し、 空気を吹き込んで、 ブロー比 1. 5~10の中空 容器にブロー成形し、 必要に応じて熱固定する。 ホットパリソンの温度調整工程 を付加してもよい。  A thermoplastic resin material containing polyglycolic acid is supplied to an extruder equipped with a parison die, and is extruded at a resin temperature of Tm to 255 ° C to produce a hollow pipe. (Tg + 70t) After cooling to the following resin temperature and cutting into a fixed length to form a preform made of hot parison, both ends are held in a holder and stretched in the length direction by more than 1 time and 10 times or less, and then After pinching off one end to make it bottomed, it is moved into a blow molding die, blown with air, blow-molded into a hollow container having a blow ratio of 1.5 to 10, and heat-fixed if necessary. A hot parison temperature adjustment step may be added.
(6) 押出 ·延伸ブロー 1段法 (その 2)  (6) Extrusion and stretch blow one-stage method (Part 2)
ポリダリコール酸を含有する熱可塑性樹脂材料を、 パリソン用ダイを装着した 押出機に供給し、 Τπ!〜 2 5 5 °Cの樹脂温度で押出成形して中空パイプを作製し た後、 (T g + 7 0 °C) 以下の樹脂温度に冷却し、 一定長に切断してホットパリ ソンからなるプリフォームとした後、 その片端をピンチオフして有底とし、 次い で、 ブロー成形用金型内に移動し、 延伸ロッドにより縦方向に 1倍超過、 1 0倍 以下に延伸するとともに、 同時または逐次に空気を吹き込んで、 ブロー比 1 . 5 〜1 0の中空容器にブロー成形し、 必要に応じて熱固定する。 ホットパリソンの 温度調整工程を付加してもよい。 A thermoplastic resin material containing polydalicholic acid was fitted with a parison die. Feed to the extruder, Τπ! After extruding at a resin temperature of ~ 255 ° C to produce a hollow pipe, it is cooled to a resin temperature of (Tg + 70 ° C) or less, cut to a certain length, and cut into a plastic parison. After reforming, one end is pinched off to make it bottomed, and then moved into the blow molding die and stretched by a stretching rod to more than 1 times and 10 times or less in the longitudinal direction, and simultaneously or simultaneously Air is blown in one by one to blow-mold into a hollow container having a blow ratio of 1.5 to 10 and heat-fix if necessary. A hot parison temperature adjustment step may be added.
本発明によれば、 内容積が 2 5 m l以上の延伸ブロー容器を得ることができる が、 内容積は、 使用目的に応じて適宜決定することができる。 延伸ブロー成形時 に、 通常、 口部及び底部の成形を行う延伸ブロー容器は、 独立して直立できるよ うに、 底部にフラット部を有する形状とすることが好ましい。 しかし、 丸底のよ うな底部にフラット部を有しないものでも、 環状帯 (一種のはかま) を付設する ことにより、 直立させることができる。  According to the present invention, a stretch blow container having an internal volume of 25 ml or more can be obtained, but the internal volume can be appropriately determined according to the purpose of use. Usually, at the time of stretch blow molding, the stretch blow container for forming the mouth and the bottom preferably has a shape having a flat portion at the bottom so that it can stand upright independently. However, even those that do not have a flat part at the bottom, such as a round bottom, can be erected by providing an annular band (a kind of hook).
本発明の延伸ブロー容器は、 胴体部の厚みを薄く形成しても、 胴体部の厚みの ばらつきを小さく抑制することができる。 具体的に、 延伸ブロー容器の成形時の 設定胴体部厚みを 1 0 0 として測定したとき、 設定厚みからのばらつき (R ) が 3 0 %未満である延伸ブロー容器を得ることができる。 また、 延伸ブ 口一容器の成形時の設定胴体部厚みを 5 0 zmとして測定したとき、 設定厚みか らのばらつき (R %) が 3 0 %以上、 7 0 %未満である延伸ブロー容器を得るこ とができる。 延伸ブロー容器の成形時の設定胴体部厚みを 2 0 0 mと厚くして 測定したときには、 設定厚みからのばらつき (R %) が 1 0 %未満である延伸プ ロー容器を得ることができる。  In the stretch blow container of the present invention, even when the thickness of the body is formed to be thin, variation in the thickness of the body can be suppressed to a small value. Specifically, a stretch blow container having a variation (R) from the set thickness of less than 30% can be obtained when the set body thickness at the time of molding the stretch blow container is measured as 100. In addition, when the set body thickness at the time of forming the stretch-blow-out container is measured at 50 zm, a stretch-blow container having a variation (R%) from the set thickness of 30% or more and less than 70% is used. Obtainable. When the thickness of the body portion set at the time of molding of the stretch blow container is increased to 200 m and measured, a stretch blow container having a variation (R%) from the set thickness of less than 10% can be obtained.
本発明の延伸ブロー容器は、 環境負荷の少ない土中崩壊性の成形物である。 す なわち、 本発明のポリダリコール酸からなる延伸ブロー容器は、 土壌中に、 深さ 1 0 c mに埋設した場合、 通常、 6力月以内に崩壊して原形を失ってしまう。 本発明の延伸プロ一容器で、 無機フィラーが無添加のもの、 あるいは無機フィ ラーの添加量の少ないものは、 殆ど無色で、 透明性が高く、 ヘーズ値も極めて低 い。 The stretch blow container of the present invention is a molded product having a low environmental load and disintegrating in soil. That is, when the stretch blow container made of polydalicholic acid of the present invention is buried in soil at a depth of 10 cm, it usually collapses within six months and loses its original shape. In the stretching container of the present invention, the one in which the inorganic filler is not added or the one in which the amount of the inorganic filler is small is almost colorless, has high transparency, and has an extremely low haze value. No.
本発明の延伸ブロー容器は、 延伸ブロー成形時に、 胴部側壁のポリマーの分子 鎖を充分に延伸配向させることにより、 ガスパリヤー性、 耐熱性、 機械的特性な どを発現させることができる。  The stretch blow container of the present invention can exhibit gas barrier properties, heat resistance, mechanical properties, and the like by sufficiently stretching and orienting the molecular chains of the polymer on the body side wall during stretch blow molding.
本発明によれば、 高度の酸素及び炭酸ガスバリヤ一性を有する延伸ブロー容器 を得ることができる。 本発明の延伸ブロー容器は、 胴部側壁の酸素透過度 (温度 According to the present invention, it is possible to obtain a stretch blow container having high oxygen and carbon dioxide gas barrier properties. In the stretch blow container of the present invention, the oxygen permeability (the temperature
23°C, 相対湿度 80%で測定し、 厚み 50 mに換算) が、 通常 150 cm3 /m2 · d ay · a t m以下、 好ましくは 50 c mVm2 · d ay · a t m以下、 より好ましくは 20 cmVm2■ d ay · a tm以下である。 本発明の延伸ブ 口一容器は、 胴部側壁の炭酸ガス透過度 (温度 23°C, 相対湿度 80%で測定し、 厚み 50 xmに換算) が 300 cmVm2 · d ay · a t m以下、 好ましくは 100 cmVm2 · d ay · a t m以下、 より好ましくは 30 cmVm2 · d ay · a tm以下である。 本発明の延伸プロ一容器は、 胴部側壁の透湿度 (温度 40DC、 相対湿度 90%で測定し、 厚み 50;timに換算) が、 通常 100g/m 2 · d ay以下、 好ましくは 50 g/m2 · d ay以下、 より好ましくは 30 g Zm2 · d ay以下である。 (Measured at 23 ° C and relative humidity of 80%, converted to a thickness of 50 m) is usually 150 cm 3 / m 2 · day · atm or less, preferably 50 cmVm 2 · day · atm or less, more preferably 20 cmVm 2 ■ d ay · a tm or less. The stretchable mouthpiece of the present invention preferably has a carbon dioxide gas permeability of the body side wall (measured at a temperature of 23 ° C and a relative humidity of 80%, and converted to a thickness of 50 xm) of 300 cmVm 2 · day · atm or less. Is at most 100 cmVm 2 · day · atm, more preferably at most 30 cmVm 2 · day · atm. Stretching Pro first container of the present invention, the moisture permeability of the barrel sidewall (temperature 40 D C, measured at a relative humidity of 90%, the thickness 50; terms of tim) is usually 100g / m 2 · d ay less, preferably 50 g / m 2 · day or less, more preferably 30 g Zm 2 · day or less.
本発明の延伸プロ一容器は、 そのままで、 あるいは防湿コート、 防湿ラミネー トなどを施して、 例えば、 炭酸飲料水、 清涼飲料水、 調味料、 食用油、 酒類、 果 汁の容器として、 P E Tポトルなどの汎用のパリヤー性中空容器に代替すること ができる。  The stretched professional container of the present invention may be used as it is or after having been subjected to a moisture-proof coating, moisture-proof laminating, etc., for example, as a container for carbonated drinking water, soft drink, seasoning, edible oil, liquor, fruit juice, etc. It can be replaced with a general-purpose parier hollow container such as.
本発明の延伸ブロー容器は、 胴部側壁が高弾性であるため、 その肉厚を従来の 中空容器の半分程度に低減しても、 腰が強く、 内容物を充填した場合にも変形し 難い。 したがって、 この高弾性による肉厚低減による経済的効果は、 極めて大き い。  The stretch blow container of the present invention has high elasticity on the body side wall, so even if the wall thickness is reduced to about half that of the conventional hollow container, the stretch blow container has a strong stiffness and does not easily deform even when the contents are filled. . Therefore, the economic effect of reducing the wall thickness due to this high elasticity is extremely large.
本発明によれば、 耐熱性に優れた延伸ブロー容器を得ることが可能である。 本 発明の延伸ブロー容器の胴部側壁の熱収縮率 (130°C、 10分間) は、 通常、 According to the present invention, it is possible to obtain a stretch blow container having excellent heat resistance. The heat shrinkage (130 ° C, 10 minutes) of the body side wall of the stretch blow container of the present invention is usually
30%以下、 好ましくは 20%以下、 より好ましくは 10%以下と低いものであ る。 このように低熱収縮率の中空容器は、 例えば、 高温殺菌を要する調味料等の 食品類の容器として好適である。 なお、 熱収縮率が 30%を超える中空容器は、 130°C以上での高温での使用は、 変形が大きくなりすぎて、 問題を生ずる場合 がある。 30% or less, preferably 20% or less, more preferably 10% or less You. Such a low heat shrinkage hollow container is suitable as a container for foods such as seasonings that require high-temperature sterilization. In addition, hollow containers with a heat shrinkage rate of more than 30% may be problematic when used at a high temperature of 130 ° C or higher because the deformation becomes too large.
本発明の延伸ブロー容器は、 ハイバリヤ一性、 耐熱性、 透明性、 機械的強度な どの特徴を活かして、 各種の用途に使用することができる。 具体的には、 炭酸飲 料水、 清涼飲料水、 食用油、 果汁、 酒類などの容器;飲料水、 洗剤、 化粧品の容 器;高温滅菌を要する調味料容器、 哺乳びんなどを挙げることができる。 7. 多層中空容器  The stretch blow container of the present invention can be used for various applications by utilizing its features such as high barrier properties, heat resistance, transparency, and mechanical strength. Specific examples include containers for carbonated drinking water, soft drinks, edible oils, fruit juices, liquors, etc .; containers for drinking water, detergents, cosmetics; containers for seasonings requiring high-temperature sterilization, and baby bottles. . 7. Multi-layer hollow container
本発明の多層中空容器は、 少なくとも 1層の熱可塑性樹脂層 (以下、 ベース樹 脂層ということがある) と、 特定の物性を有するポリダリコール酸のニートレジ ンまたは該ポリダリコール酸を含有する組成物からなる熱可塑性樹脂材料から形 成された層 (以下、 単に 「PGA層」 ということがある) を有する多層中空容器 であり、 ガスバリヤ一性を有している。 必要に応じて、 各層間に接着剤層を介在 させることができる。  The multilayer hollow container of the present invention comprises at least one thermoplastic resin layer (hereinafter sometimes referred to as a “base resin layer”), a polydalicholate nitrate resin having specific physical properties, or a composition containing the polydalicholate. It is a multi-layer hollow container having a layer (hereinafter sometimes simply referred to as “PGA layer”) formed of a thermoplastic resin material, and has gas barrier properties. If necessary, an adhesive layer can be interposed between the respective layers.
本発明の多層中空容器の胴部側壁全体の厚みは、 通常 5 m〜5mm、 好まし くは10 01〜3111111、 より好ましくは 20 m〜2mmである。 この厚みが薄 すぎると機械的強度が不足し、 厚すぎると中空容器として使用する場合は超過品 質となり、 コスト高でもあり、 生産性、 経済性の観点から好ましくない。  The thickness of the entire side wall of the multilayer hollow container of the present invention is usually 5 m to 5 mm, preferably 1001 to 3111111, and more preferably 20 m to 2 mm. If the thickness is too small, the mechanical strength is insufficient. If the thickness is too large, when used as a hollow container, the quality is excessive, the cost is high, and it is not preferable from the viewpoint of productivity and economy.
本発明の多層中空容器の基本的な層構成は、 次のとおりである。 ただし、 接着 剤層を省略して表記する。 また、 ポリグリコール酸を含有する熱可塑性樹脂材料 を PGAと略記する。  The basic layer configuration of the multilayer hollow container of the present invention is as follows. However, the adhesive layer is omitted. Further, a thermoplastic resin material containing polyglycolic acid is abbreviated as PGA.
(1) 熱可塑性樹脂/ PG A  (1) Thermoplastic resin / PG A
(2) 熱可塑性樹脂 1ZPGAZ熱可塑性樹脂 1  (2) Thermoplastic resin 1 ZPGAZ thermoplastic resin 1
(3) 熱可塑性樹脂 1ZPGA/熱可塑性樹脂 2  (3) Thermoplastic resin 1 ZPGA / thermoplastic resin 2
本発明の多層中空容器は、 前記の基本的な層構成を備えておれば、 各種の要求 特性に応じて、 同種または異種の樹脂層が付加的に積層されたものであってもよ レ (例えば、 熱可塑性樹脂/PGA/PGA) 。 熱可塑性樹脂層とポリグリコー ル酸層の多層化法は、 特に限定されず、 例えば、 共押出法や共射出法により積層 する方法など、 各種の加工法を採用することができる。 The multilayer hollow container of the present invention has various requirements as long as it has the basic layer configuration described above. Depending on the characteristics, the same or different resin layer may be additionally laminated (for example, thermoplastic resin / PGA / PGA). The method for forming a multilayer of the thermoplastic resin layer and the polyglycolic acid layer is not particularly limited. For example, various processing methods such as a method of laminating by a co-extrusion method or a co-injection method can be adopted.
本発明の多層中空容器において、 熱可塑性樹脂層に用いられる PG A以外の他 の熱可塑性樹脂としては、 例えば、 超低密度ポリエチレン (VLDPE) 、 線状 低密度ポリエチレン (LLDPE) 、 低密度ポリエチレン (LDPE) 、 中密度 ポリエチレン (MDPE) 、 高密度ポリエチレン (HDPE) 、 ポリプロピレン (PP) 、 エチレン 'プロピレンゴム (EPM) 、 エチレン '酢酸ビニル共重合 体 (EVA) 、 エチレン ·アクリル酸エステル共重合体 (EEA) 、 アイオノマ 一 ( I〇) などのポリオレフィン;ポリエチレンテレフタレー卜 (PET) 、 ポ リエチレンナフ夕レート (PEN) などのポリエステル;ポリスチレン (PS) 、 耐衝撃性ポリスチレン (HI PS) 、 スチレン ·ブタジエン ·スチレンブロック 共重合体 (SBS) 、 水素添加 SB S (すなわち、 SEBS) などのポリスチレ ン系樹脂;硬質ポリ塩化ビニル、 軟質ポリ塩化ビニルなどのポリ塩化ビニル (P VC) 系樹脂、 ポリカーボネート (PC) 、 ポリアミド (PA) 、 ポリウレタン (PU) 、 エチレン'ビニルアルコール共重合体 (EVOH) 、 ポリ塩化ビニリ デン系樹脂 (PVDC) などを挙げることができる。 環境負荷の小さい他の熱可 塑性樹脂としては、 例えば、 ポリ乳酸、 ポリこはく酸エステル、 ポリ力プロラク 卜ンなどが好ましい。  In the multilayer hollow container of the present invention, the thermoplastic resin other than PGA used for the thermoplastic resin layer includes, for example, very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene ( LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), polypropylene (PP), ethylene 'propylene rubber (EPM), ethylene' vinyl acetate copolymer (EVA), ethylene acrylate copolymer ( Polyolefins such as EEA) and Ionoma I (I〇); Polyesters such as polyethylene terephthalate (PET) and polyethylene naphtholate (PEN); Polystyrene (PS), high impact polystyrene (HI PS), styrene butadiene · Polystyrene resins such as styrene block copolymer (SBS) and hydrogenated SBS (ie SEBS); rigid Polyvinyl chloride (PVC) based resins such as polyvinyl chloride and soft polyvinyl chloride, polycarbonate (PC), polyamide (PA), polyurethane (PU), ethylene vinyl alcohol copolymer (EVOH), polyvinylidene chloride Resin (PVDC). As other thermoplastic resins having a small environmental load, for example, polylactic acid, polysuccinate, polyprolactone and the like are preferable.
本発明の多層中空容器では、 これらの熱可塑性樹脂層は、 単層または多層で用 いられる。 熱可塑性樹脂層の虐みは、 通常 4^m〜5mm、 好ましくは 10/im 〜3mm、 より好ましくは 20 m〜 2mmの範囲であることが、 加工性、 経済 性等の面から望ましい。  In the multilayer hollow container of the present invention, these thermoplastic resin layers are used as a single layer or a multilayer. It is desirable in terms of processability, economical efficiency, and the like, that the thermoplastic resin layer has a range of usually 4 to 5 mm, preferably 10 / im to 3 mm, and more preferably 20 to 2 mm.
本発明では、 熱可塑性樹脂層 (ベ一ス樹脂層) とポリグリコール酸層との接着 性を高めるために、 層間に接着剤層を介在させることができる。 接着剤層に用い られる接着剤としては、 例えば、 カルボキシル化ポリオレフイン、 エポキシ化ポ リオレフイン、 エチレン '酢酸ピニル共重合体、 アイオノマー、 ポリウレタン、 エポキシ樹脂、 SBS、 SEBS、 ポリクロ口プレン、 スチレン .ブタジエン共 重合ゴム (SBR) 、 天然ゴム (NR) 等のポリマ一が挙げられる。 カルボキシ ル化ポリオレフインとは、 ポリオレフインをアクリル酸、 メタクリル酸、 無水マ レイン酸等の不飽和酸単量体で変性して、 カルボキシル基を導入したポリオレフ インである。 力ルポキシル基の導入は、 共重合法及びグラフト法のいずれでもよ い。 また、 不飽和酸単量体と、 .メ夕クリル酸エステル、 アクリル酸エステル、 酢 酸ビニル等のビニル系単量体とを併用してもよい。 In the present invention, an adhesive layer can be interposed between the thermoplastic resin layer (base resin layer) and the polyglycolic acid layer in order to enhance the adhesiveness between the layers. Examples of the adhesive used for the adhesive layer include carboxylated polyolefin and epoxidized polyolefin. Examples include polymers such as olefin, ethylene-pinyl acetate copolymer, ionomer, polyurethane, epoxy resin, SBS, SEBS, polychloroprene, styrene / butadiene copolymer rubber (SBR), and natural rubber (NR). Carboxylated polyolefin is a polyolefin obtained by modifying a polyolefin with an unsaturated acid monomer such as acrylic acid, methacrylic acid, or maleic anhydride to introduce a carboxyl group. The introduction of the hydroxyl group may be carried out by either a copolymerization method or a grafting method. Further, an unsaturated acid monomer may be used in combination with a vinyl monomer such as methyl acrylate, acrylate or vinyl acetate.
エポキシ化ポリオレフィンとは、 ポリオレフィンをメタクリル酸グリシジル等 のエポキシ基含有単量体で変性して、 エポキシ基を導入したポリオレフインであ る。 エポキシ基の導入は、 共重合法及びグラフト法のいずれでもよい。 また、 上 記エポキシ基含有単量体と、 メ夕クリル酸エステル、 アクリル酸エステル、 酢酸 ビニル等のビニル系単量体を併用してもよい。 これらの中でも、 力ルポキシル化 ポリオレフィン及びエチレン ·酢酸ビニル共重合体は、 接着性と加工性の観点か ら特に好ましい。 接着剤層の厚みは、 通常 5^m~2mm、 好ましくは 2 m〜lmm、 より好ましくは 3 π!〜 0. 5mmの範囲である。 この厚みが 0. 5 tm未満では、 接着性が不十分となるおそれがある。 この厚みが 2mm超過で は、 コスト高であり経済的面から不利である。  The epoxidized polyolefin is a polyolefin obtained by modifying a polyolefin with an epoxy group-containing monomer such as glycidyl methacrylate to introduce an epoxy group. The epoxy group may be introduced by a copolymerization method or a grafting method. Further, the above-mentioned epoxy group-containing monomer may be used in combination with a vinyl-based monomer such as methyl acrylate, acrylate or vinyl acetate. Of these, olepoxylated polyolefin and ethylene / vinyl acetate copolymer are particularly preferred from the viewpoint of adhesiveness and processability. The thickness of the adhesive layer is usually 5 m to 2 mm, preferably 2 m to 1 mm, more preferably 3π! It is in the range of 0.5 mm. If the thickness is less than 0.5 tm, the adhesiveness may be insufficient. If the thickness exceeds 2 mm, it is costly and disadvantageous from an economical point of view.
本発明の多層中空容器では、 ポリダリコール酸を含有する熱可塑性樹脂材料か らなる層 (PGA層) を配置することにより、 酸素ガスバリヤ一性、 炭酸ガスバ リヤー性などのガスパリヤー性に優れた多層中空容器を得ることができる。 PG A層の厚みは、 通常、 1〜30 ΠΙ、 好ましくは 3〜20 mである。 本発明の 多層中空容器においては、 PGA層を芯層に配置することが好ましく、 その場合 には、 PG A層を 10 zm以下、 さらには 3 ~ 5 m程度の薄い厚みにしても、 均一な厚みの層を形成することができる。  In the multilayer hollow container of the present invention, a layer (PGA layer) made of a thermoplastic resin material containing polydalicholic acid is disposed to provide a multilayer hollow container having excellent gas barrier properties such as oxygen gas barrier property and carbon dioxide gas barrier property. Can be obtained. The thickness of the PGA layer is usually 1 to 30 mm, preferably 3 to 20 m. In the multilayer hollow container of the present invention, it is preferable that the PGA layer is disposed on the core layer. In this case, the PGA layer has a uniform thickness of 10 zm or less, and even a thin thickness of about 3 to 5 m. Thick layers can be formed.
具体的には、 多層中空容器の成形時のポリダリコール酸を主成分とする層の設 定厚みを 5 mとして測定したとき、 設定厚みからのばらつき (R%) を 20 0 %未満とすることができる。 設定厚みを 3 mとした場合も同様である。 ポリ グリコール酸の溶融粘度を十分に小さく (例えば、 l O O P a ' s以下) するこ とにより、 設定厚みからのばらつき (R %) を 1 0 0 %未満とすることができる。 ポリダリコール酸の溶融粘度を十分に小さくし、 かつ、 成形時のポリダリコール 酸を主成分とする層の設定厚みを 1 0 imとした場合には、 設定厚みからのばら つき (R ) を 5 0 %未満とすることもできる。 Specifically, when the set thickness of the layer containing polydalicholate as a main component at the time of molding a multilayer hollow container was measured at 5 m, the variation (R%) from the set thickness was 20%. It can be less than 0%. The same applies when the set thickness is 3 m. By making the melt viscosity of the polyglycolic acid sufficiently small (for example, less than or equal to lOPOP's), the variation (R%) from the set thickness can be made less than 100%. If the melt viscosity of polydalicholate is sufficiently low and the thickness of the layer mainly composed of polydalicholate during molding is 10 im, the variation (R) from the set thickness is 50%. It can also be less than.
本発明の層中空容器の胴部側壁は、 酸素ガス透過率及びノまたは炭酸ガス透過 率が、 熱可塑性樹脂層のそれらの値に比較して、 通常 1 Z 2以下、 好ましくは 1 Z 5以下、 より好ましくは 1 / 1 0以下に改善されている。 すなわち、 本発明の ガスバリヤ一性多層中空容器は、 例えば、 ポリオレフイン、 ポリエステル、 ポリ スチレン、 ポリ塩化ビニル、 ポリカーボネート、 ポリ乳酸、 ポリこはく酸エステ ル、 ポリ力プロラクトン、 ポリアミド、 E V OH、 ポリウレタン、 P VD Cなど から選ばれた樹脂からなる熱可塑性樹脂層に、 ガスバリヤ一性改良材として、 P G A層を組み合わせることによって、 酸素ガスパリヤー性及び炭酸ガスバリヤー 性の少なくとも一方を、 該熱可塑性樹脂層に比較して驚異的に改善した中空容器 を得ることができる。 しかも、 本発明の多層中空容器は、 高温 ·高湿下での処理 を受けても、 そのガスバリヤー性の低下が極めて少ない。  The trunk side wall of the layered hollow container of the present invention has an oxygen gas permeability and a gas permeability of carbon dioxide or gaseous, which are usually 1 Z 2 or less, preferably 1 Z 5 or less, as compared with those values of the thermoplastic resin layer. It is more preferably reduced to 1/10 or less. That is, the gas barrier uniform multilayer hollow container of the present invention includes, for example, polyolefin, polyester, polystyrene, polyvinyl chloride, polycarbonate, polylactic acid, polysuccinic ester, polyprolactone, polyamide, EVOH, polyurethane, P By combining a thermoplastic resin layer made of a resin selected from VDC etc. with a PGA layer as a gas barrier uniformity improving material, at least one of oxygen gas barrier property and carbon dioxide gas barrier property is compared with the thermoplastic resin layer As a result, a surprisingly improved hollow container can be obtained. Moreover, the multilayer hollow container of the present invention has a very small decrease in gas barrier properties even when subjected to a treatment under high temperature and high humidity.
中空容器の多層化の目的は、 単一材料では得られない要求特性を多層化するこ とによって得ることにある。 具体的には、 酸素、 炭酸ガス等に対するガスバリヤ 一性の付与、 ヒートシール性の付与、 耐湿性の改善、 機械的強度の改善、 コスト の大幅低減などである。  The purpose of multi-layer hollow containers is to obtain the required properties that cannot be obtained with a single material by multi-layering. Specifically, it is necessary to provide gas barrier uniformity to oxygen, carbon dioxide, etc., to provide heat sealability, to improve moisture resistance, to improve mechanical strength, and to significantly reduce costs.
本発明の多層中空容器の製造方法は、 多層押出ブロー成形法と多層ィンジェク シヨンブロー成形法に大別することができる。 これらのブロー成形法には、 プロ 一成形時に 1軸または 2軸方向に延伸させる延伸ブロー成形法と、 延伸させない 無延伸ブロー成形法とがある。 延伸ブロー成形法によれば、 多層延伸ブロー容器 を得ることができる。  The method for producing the multilayer hollow container of the present invention can be broadly classified into a multilayer extrusion blow molding method and a multilayer injection blow molding method. These blow molding methods include a stretch blow molding method in which the film is stretched uniaxially or biaxially during professional molding, and a non-stretch blow molding method in which the film is not stretched. According to the stretch blow molding method, a multilayer stretch blow container can be obtained.
多層押出ブロー成形では、 先ず、 ポリダリコール酸を含有する熱可塑性樹脂材 料、 少なくとも一種の熱可塑性樹脂、 及び必要に応じて接着剤から構成される多 層のパリソンを成形する。 このために、 各々の押出機で加熱溶融した各樹脂材料 を多層パリソン成形用ダイ (通常サーキユラ一ダイ) に流入させ、 ダイ内部で、 同時または逐次に合流させ、 当該ダイからチューブ状パリソンを押出す。 溶融押 出したパリソンを固化しないうちに割り金型で挟んで、 パリソンの一端をピンチ し、 内部に空気を吹き込んで金型壁までブローし、 冷却する。 冷却後、 金型を開 いて成形品を取出する。 ブローをする際に、 パリソンを、 過冷却状態若しくは結 晶化温度 (T C l) 以下で、 かつ、 ガラス転移温度 T gより若干高い温度範囲で、 1軸または 2軸方向に延伸すれば、 1軸若しくは 2軸方向に配向した成形品を得 ることができる。 In multi-layer extrusion blow molding, first, a thermoplastic resin material containing polydalicholic acid The multi-layer parison is formed from a material, at least one thermoplastic resin, and optionally an adhesive. For this purpose, each resin material heated and melted by each extruder is allowed to flow into a multi-layer parison molding die (usually a circular die), where they are simultaneously or sequentially merged, and a tubular parison is pressed from the die. put out. Before the melt-extruded parison is solidified, it is sandwiched between split molds, one end of the parison is pinched, air is blown into the parison and blown to the mold wall, and cooled. After cooling, open the mold and remove the molded product. When the parison is stretched uniaxially or biaxially in the supercooled state or at a temperature lower than the crystallization temperature (T C1 ) and slightly higher than the glass transition temperature T g during blowing, A molded product oriented in a uniaxial or biaxial direction can be obtained.
インジェクションプロ一成形では、 射出成形によつて試験管状の有底パリソン (プリフォーム) を射出成形し、 このパリソンを過冷却状態またはガラス転移点 T g以上でブロー成形する。 パリソン射出成形後、 固化しない状態で、 融点 Tm 以下の温度で調温し、 ブロー成形するのが、 ホットパリソン法である。 一方、 パ リソン射出成形後、 パリソンを一旦冷却固化した後、 T g以上に再加熱し、 調温 し、 プロ一成形するのがコールドパリソン法である。  In injection pro-molding, a test tubular bottomed parison (preform) is injection-molded by injection molding, and the parison is blow-molded in a supercooled state or at a glass transition point Tg or more. After parison injection molding, the hot parison method is a method of controlling the temperature at a temperature below the melting point Tm without solidifying and then performing blow molding. On the other hand, after parison injection molding, the parison is once cooled and solidified, then reheated to a temperature of Tg or more, the temperature is adjusted, and the cold parison method is used.
ホットパリソン法には、 延伸ブロー成形と未延伸プロ一成形があるが、 コール ドパリソン法は、 通常、 延伸ブロー成形のみである。 インジェクションブロー成 形では、 ポリグリコール酸を含有する熱可塑性樹脂材料、 少なくとも一種の熱可 塑性樹脂、 及び必要に応じて接着剤を共射出 (コインジェクション) 法によって、 プリフォームを成形し、 これをホットパリゾン法またはコールドパリソン法によ りブロー成形する。 この際に、 延伸ブロー成形または無延伸ブロー成形が行われ る。 射出温度は、 ポリグリコール酸の融点 Tm〜2 5 5 °Cの範囲とすることが好 ましい。 射出温度が高すぎると、 ポリダリコール酸が分解しやすくなる。  The hot parison method includes stretch blow molding and unstretched pro-molding, whereas the cold parison method usually involves only stretch blow molding. In injection blow molding, a preform is formed by co-injection (coin injection) of a thermoplastic resin material containing polyglycolic acid, at least one thermoplastic resin and, if necessary, an adhesive. Blow molding by hot parison method or cold parison method. At this time, stretch blow molding or non-stretch blow molding is performed. The injection temperature is preferably in the range of the melting point Tm of polyglycolic acid to 255 ° C. If the injection temperature is too high, polydaricholic acid will be easily decomposed.
本発明の多層中空容器は、 その優れた酸素ガスバリヤ一性及び/または炭酸ガ スバリヤ一性を活かして、 例えば、 飲料用 .食品用の中空容器、 トイレタリー用 容器、 ガソリン用容器に用いられる。 特に、 レトルト滅菌等の高温'高湿下での 処理を要する物品、 特別に長期保存を要する物品、 炭酸ガスバリヤ一性を要求す る物品、 環境負荷の低減が要求される物品等の包装容器の用途に好ましく用いら れる。 8. 多層フィルム The multilayer hollow container of the present invention is used for, for example, a hollow container for beverages and foods, a container for toiletries, and a container for gasoline by utilizing its excellent oxygen gas barrier properties and / or carbon dioxide gas barrier properties. Especially in high temperature and high humidity such as retort sterilization It is preferably used for packaging containers such as articles requiring treatment, articles requiring special long-term storage, articles requiring carbon dioxide gas barrier properties, and articles requiring a reduction in environmental load. 8. Multilayer film
本発明の多層フィルムは、 少なくとも 1層の熱可塑性樹脂フィルム (以下、 「ベ一スフイルム」 ということがある) 層と、 ポリグリコール酸を含有する熱可 塑性樹脂材料からなるフィルム層 (以下、 「PGA層」 ということがある) とを 有する多層フィルムである。 PGA層があることにより、 ガスバリヤ一性に優れ た多層フィルムを得ることができる。 必要に応じて、 各層間に接着剤層を介在さ せることができる。 多層フィルム全体の厚みは、 通常 2^m〜3mm、 好ましく は 5 zm〜2mm、 より好ましくは 10 m〜 1 mmである。 この厚みが薄すぎ ると、 製造することが困難で、 しかもコスト高でもあり、 生産性、 経済性の観点 から好ましくない。 この厚みが厚すぎると、 包材として使用するための 2次加工 が難しく、 コスト高でもあり、 生産性、 経済性の観点から好ましくない。  The multilayer film of the present invention comprises at least one thermoplastic resin film (hereinafter, sometimes referred to as “base film”) layer and a film layer made of a thermoplastic resin material containing polyglycolic acid (hereinafter, referred to as “ PGA layer). With the PGA layer, a multilayer film having excellent gas barrier properties can be obtained. If necessary, an adhesive layer can be interposed between the layers. The total thickness of the multilayer film is usually 2 ^ m to 3 mm, preferably 5 zm to 2 mm, more preferably 10 m to 1 mm. If the thickness is too small, it is difficult to manufacture and the cost is high, which is not preferable from the viewpoint of productivity and economy. If the thickness is too large, it is difficult to perform secondary processing for use as a packaging material, and the cost is high, which is not preferable from the viewpoint of productivity and economy.
本発明の多層フィルムの基本的な層構成は、 次のとおりである。 ただし、 接着 剤層を省略して表記する。 また、 ポリグリコール酸を含有する熱可塑'性樹脂材料 を PG Aと略記する。  The basic layer constitution of the multilayer film of the present invention is as follows. However, the adhesive layer is omitted. Further, a thermoplastic resin material containing polyglycolic acid is abbreviated as PGA.
(1) 熱可塑性樹脂 ZPGA  (1) Thermoplastic resin ZPGA
(2) 熱可塑性樹脂 1ZPGAZ熱可塑性樹脂 1  (2) Thermoplastic resin 1 ZPGAZ thermoplastic resin 1
(3) 熱可塑性樹脂 1ZPGA/熱可塑性樹脂 2  (3) Thermoplastic resin 1 ZPGA / thermoplastic resin 2
本発明の多層フィルムは、 前記の基本的な層構成を備えておれば、 各種の要求 特性に応じて、 同種または異種の各種熱可塑性樹脂フィルムが付加的に積層され たものであってもよい。 熱可塑性樹脂フィルムと PG A層の複合化法は、 特に限 定されず、 例えば、 ①各フィルムを別個に作製した後、 貼り合わせる方法、 ②ー 方のフィルムの上に、 他の樹脂を押出コーティングする方法、 ③共押出法により 積層する方法などの各種ラミネート加工法を採用することができる。 本発明で用いられる熱可塑性樹脂フィルムとしては、 例えば、 超低密度ポリエ チレン (VLDPE) 、 線状低密度ポリエチレン (LLDPE) 、 低密度ポリエ チレン (LDPE) 、 中密度ポリエチレン (MDPE) 、 高密度ポリエチレン (HDPE) 、 ポリプロピレン (PP) 、 エチレン ·プロピレンゴム (EPM) 、 エチレン ·酢酸ビニル共重合体 (EVA) 、 エチレン ·アクリル酸エステル共重 合体 (EEA) 、 アイオノマー (1〇) などのポリオレフイン;ポリエチレンテ レフ夕レート (PET) 、 ポリエチレンナフタレート (PEN) などのポリエス テル;ポリスチレン (PS) 、 耐衝擊性ポリスチレン (H I PS) 、 スチレン ' ブタジエン ·スチレン ·ブロック共重合体 (SBS) 、 水素添加 SB S (すなわ ち、 SEBS) などのポリスチレン系樹脂;硬質ポリ塩化ビュル、 軟質ポリ塩ィ匕 ビニルなどのポリ塩ィ匕ビニル (PVC) 系樹脂;ポリ力一ポネート (PC) 、 ポ リアミド (PA) 、 ポリウレタン (PU) 、 エチレン ·ビニルアルコール共重合 体 (EVOH) 、 ポリ塩化ビニリデン系樹脂 (PVDC) などの熱可塑性樹脂か ら形成されたフィルムが好ましい。 As long as the multilayer film of the present invention has the above-described basic layer configuration, it may be a laminate in which various kinds of thermoplastic resin films of the same type or different types are additionally laminated according to various required characteristics. . The method of compounding the thermoplastic resin film and the PGA layer is not particularly limited. For example, (1) a method in which each film is separately manufactured and then bonded, (2) another resin is extruded on one of the films. Various laminating methods such as coating method and ③ lamination method by co-extrusion method can be adopted. The thermoplastic resin film used in the present invention includes, for example, very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), and high density polyethylene. Polyolefins such as (HDPE), polypropylene (PP), ethylene propylene rubber (EPM), ethylene vinyl acetate copolymer (EVA), ethylene acrylate copolymer (EEA), and ionomer (1〇); polyethylene Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polystyrene (PS), impact-resistant polystyrene (HI PS), styrene'butadiene-styrene-block copolymer (SBS), hydrogenated SB Polystyrene resins such as S (that is, SEBS); rigid polychlorinated vinyl, soft polychlorinated vinyl Polyvinyl chloride (PVC) resins such as Polyvinyl chloride (PC), Polyamide (PA), Polyurethane (PU), Ethylene vinyl alcohol copolymer (EVOH), Polyvinylidene chloride resin (PVDC) ) Is preferred.
環境負荷の小さい熱可塑性樹脂フィルムとしては、 例えば、 ポリ乳酸、 ポリこ はく酸エステル、 ポリ力プロラクトンなどの生分解性ポリマ一から形成されたフ イルムが好ましい。 これらの熱可塑性樹脂は、 変性樹脂であってもよい。 具体的 には、 例えば、 アクリル酸などの酸でグラフト変性した LLDPEなどを挙げる ことができる。  As a thermoplastic resin film having a small environmental load, for example, a film formed from a biodegradable polymer such as polylactic acid, polysuccinate, and polyprolactone is preferable. These thermoplastic resins may be modified resins. Specifically, for example, LLDPE graft-modified with an acid such as acrylic acid can be mentioned.
本発明の多層フィルムにおいて、 熱可塑性樹脂フィルムは、 単層または多層で 用いられる。 熱可塑性樹脂フィルムの厚みは、 通常 l zm〜2. 5mm、 好まし くは 5 m〜2mm、 より好ましくは 10 m〜 1 mmの範囲であることが、 カロ ェ性、 経済性等の面から望ましい。  In the multilayer film of the present invention, the thermoplastic resin film is used in a single layer or a multilayer. The thickness of the thermoplastic resin film is usually in the range of lzm to 2.5 mm, preferably 5 m to 2 mm, and more preferably 10 m to 1 mm. desirable.
本発明では、 熱可塑性樹脂フィルム層と P GA層との層間接着性を高めるため に、 層間に接着剤層を介在させることができる。 接着剤層に用いられる接着剤と しては、 例えば、 力ルポキシル化ポリオレフイン、 エポキシ化ポリオレフィン、 エチレン '酢酸ビニル共重合体、 アイオノマー、 ポリウレタン、 エポキシ樹脂、 S B S、 S E B S、 ポリクロ口プレン、 スチレン'ブタジエン共重合ゴム (S B R) 、 天然ゴム (N R) 等のポリマーが挙げられる。 力ルポキシル化ポリオレフ インとは、 ポリオレフインをアクリル酸、 メタクリル酸、 無水マレイン酸等の不 飽和酸単量体で変性して、 力ルポキシル基を導入したポリオレフインである。 力 ルポキシル基の導入は、 共重合法及びグラフト法のいずれでもよい。 また、 上記 不飽和酸単量体と、 メタクリル酸エステル、 アクリル酸エステル、 酢酸ビエル等 のビニル系単量体とを併用してもよい。 In the present invention, an adhesive layer can be interposed between the thermoplastic resin film layer and the PGA layer in order to enhance the interlayer adhesion. The adhesive used for the adhesive layer includes, for example, polyoxylated polyolefin, epoxidized polyolefin, ethylene vinyl acetate copolymer, ionomer, polyurethane, epoxy resin, Examples include polymers such as SBS, SEBS, polychloroprene, styrene'butadiene copolymer rubber (SBR), and natural rubber (NR). The lipoxylated polyolefin is a polyolefin obtained by modifying a polyolefin with an unsaturated acid monomer such as acrylic acid, methacrylic acid or maleic anhydride to introduce a lipoxyl group. The introduction of the hydroxyl group may be carried out by either a copolymerization method or a grafting method. Further, the above unsaturated acid monomer may be used in combination with a vinyl monomer such as methacrylic acid ester, acrylic acid ester, and Bier acetate.
エポキシ化ポリオレフインとは、 ポリオレフィンをメ夕クリフレ酸ダリシジル等 のエポキシ基含有単量体で変性して、 エポキシ基を導入したポリオレフィンであ る。 エポキシ基の導入は、 共重合法及びグラフト法のいずれでもよい。 また、 上 記エポキシ基含有単量体と、 メタクリル酸エステル、 アクリル酸エステル、 酢酸 ビニル等のビニル系単量体とを併用してもよい。 これらの中でも、 力ルポキシル 化ポリオレフィン及びエチレン ·酢酸ビニル共重合体は、 接着 ¾ ^と加工性の観点 から特に好ましい。 接着剤層の厚みは、 通常 0 . 5 m〜2 mm、 好ましくは 2 m〜l mm、 より好ましくは 3 ^ m〜 0 . 5 mmの範囲である。 この厚みが 0 . 5 z m未満では、 接着性が不充分となるおそれがあり、 塗布も困難である。 この 厚みが 2 mm超過では、 コスト高であり経済的面から不利である。  Epoxidized polyolefin is a polyolefin obtained by modifying a polyolefin with an epoxy group-containing monomer such as daricidyl mesylate and introducing an epoxy group. The epoxy group may be introduced by a copolymerization method or a grafting method. Further, the above-mentioned epoxy group-containing monomer may be used in combination with a vinyl-based monomer such as methacrylate, acrylate or vinyl acetate. Of these, olepoxylated polyolefin and ethylene / vinyl acetate copolymer are particularly preferred from the viewpoints of adhesion and workability. The thickness of the adhesive layer is usually in the range of 0.5 m to 2 mm, preferably 2 m to 1 mm, more preferably 3 ^ m to 0.5 mm. If the thickness is less than 0.5 zm, the adhesiveness may be insufficient, and application is difficult. If the thickness exceeds 2 mm, it is costly and disadvantageous from an economical point of view.
本発明の多層フィルムでは、 熱可塑性樹脂フィルムの酸素ガスパリヤー性及び Zまたは炭酸ガスパリヤー性を改善するために、 ガスバリヤ一 'I生樹脂層として、 P GA層を配置する。 一般の熱可塑性樹脂フィルムを用いた場合には、 酸素ガス バリャ一性及び炭酸ガスバリヤー性の両方が改善される。  In the multilayer film of the present invention, in order to improve the oxygen gas barrier property and the Z or carbon dioxide gas barrier property of the thermoplastic resin film, a PGA layer is disposed as a gas barrier layer-I green resin layer. When a general thermoplastic resin film is used, both the oxygen gas barrier property and the carbon dioxide gas barrier property are improved.
本発明の多層フィルムをラミネーション法または押出コーティング法によって 製造する場合には、 P G Aの配向フィルムを使用することができる。 P GAの配 向フィルムは、 上述のポリダリコール酸のニートレジンまたは該ポリグリコール 酸を含有する熱可塑性樹脂材料を溶融押出し、 延伸 ·配向させ、 必要に応じて熱 固定することにより製造することができる。 溶融製膜法としては、 フラットダイ 法による一軸延伸、 逐次二軸延伸、 及び同時二軸延伸、 あるいはサーキユラーダ ィ法によるインフレーションニ軸延伸などの方法を採用することができる。 When the multilayer film of the present invention is produced by a lamination method or an extrusion coating method, an oriented film of PGA can be used. The oriented film of PGA can be manufactured by melt-extruding the above-mentioned polydalicholate neat resin or a thermoplastic resin material containing the polyglycolic acid, stretching and orienting, and heat-fixing as necessary. . The melt film forming method includes uniaxial stretching by a flat die method, sequential biaxial stretching, and simultaneous biaxial stretching, or circuit For example, a method such as inflation biaxial stretching by the ィ method can be adopted.
多層化した状態で延伸することにより、 多層延伸フィルムを得ることができる。 また、 多層化を共押出により行うと、 共押出多層延伸フィルムを得ることができ る。 多層延伸フィルムは、 熱固定により配向状態を固定することができる。  By stretching in a multilayered state, a multilayer stretched film can be obtained. In addition, when multilayering is performed by coextrusion, a coextrusion multilayer stretched film can be obtained. The orientation state of the multilayer stretched film can be fixed by heat setting.
本発明の多層フィルムの製造方法において、 延伸のみを行い、 熱固定を省略す るか、 熱固定条件を調整することにより、 高熱収縮率の多層フィルムを得ること ができる。 例えば、 90°Cで 1 0 %を超える熱収縮率を有する熱収縮性フィルム を得ることができる。  In the method for producing a multilayer film of the present invention, a multilayer film having a high heat shrinkage can be obtained by performing only stretching and omitting heat setting or adjusting the heat setting conditions. For example, a heat-shrinkable film having a heat-shrinkage ratio of more than 10% at 90 ° C can be obtained.
本発明の多層フィルムのバリヤー性改良材である P G A層の厚みは、 通常 0. 5 111〜2111111、 好ましくは 1 m〜 1. 5 mmの範囲である。 厚みが薄すぎる と、 バリヤ一性の改善効果が不充分となるおそれがあり、 厚すぎると、 オーバ一 クオリティとなり経済的に不利である。 必要に応じて、 PGA層 厚みは、 5 β m以下、 さらには 1〜 3 程度の極めて薄い膜厚にしても、 均一な厚みの層を 形成することができる。  The thickness of the PGA layer, which is a barrier property improving material of the multilayer film of the present invention, is usually 0.5111 to 2111111, preferably 1 m to 1.5 mm. If the thickness is too small, the effect of improving the barrier uniformity may be insufficient. If the thickness is too large, the quality may be too high, which is economically disadvantageous. If necessary, a uniform thickness layer can be formed even if the PGA layer thickness is 5 βm or less, or even an extremely thin film thickness of about 1 to 3.
具体的に、 多層フィルム成形時のポリグリコール酸を主成分とする層の設定厚 みを 3 mとして測定したとき、 設定厚みからのばらつき (R%) が 2 0 0%未 満である多層フィルムを得ることができる。 設定厚みを 1 imにした場合も同様 である。 ポリダリコール酸の溶融粘度を十分に小さく (例えば、 l O O P a - s 以下) することにより、 設定厚みからのばらつき (R%) を 1 0 0%未満とする ことができる。 ポリダリコール酸の溶融粘度を十分に小さくし、 かつ、 成形時の ポリダリコール酸を主成分とする層の設定厚みを 5 mとした場合には、 設定厚 みからのばらつき (R%) を 5 0 %未満とすることもできる。  Specifically, when a set thickness of a layer mainly composed of polyglycolic acid at the time of forming a multilayer film is measured at 3 m, a variation (R%) from the set thickness is less than 200%. Can be obtained. The same applies when the set thickness is 1 im. The dispersion (R%) from the set thickness can be made less than 100% by making the melt viscosity of polydalicholic acid sufficiently small (for example, less than lOOPa-s). If the melt viscosity of polydalicholate is sufficiently low and the thickness of the layer mainly composed of polydalicholate at the time of molding is 5 m, the variation (R%) from the set thickness is 50%. It can also be less than.
本発明の多層フィルムは、 酸素ガス透過率及び/または炭酸ガス透過率を、 熱 可塑性樹脂フィルム (ベ一スフイルム) のそれらの値に比較して、 通常 1ノ2以 下、 好ましくは 1Z5以下、 より好ましくは、 1 1 0以下に改善することがで きる。 例えば、 ポリオレフイン、 ポリエステル、 ポリスチレン、 ポリ塩化ビュル、 ポリカーポネ一ト、 ポリ乳酸、 ポリこはく酸エステル、 ポリ力プロラクトン、 ポ リアミド、 E V OH、 P VD Cなどの熱可塑性樹脂からなるフィルムに、 バリヤ ー性改良材として、 P GA層を組み合わせることによって、 酸素ガス透過率及び 炭酸ガス透過率の少なくとも一方を、 当該熱可塑性樹脂フィルムに比較して驚異 的に改善された多層フィルムを得ることができる。 しかも、 本発明の多層フィル ムは、 高温 ·高湿下での処理を受けても、 そのガスパリヤー性の低下が極めて少 ない。 The multilayer film of the present invention has an oxygen gas transmission rate and / or a carbon dioxide gas transmission rate of 1 to 2 or less, preferably 1Z5 or less, compared with those of a thermoplastic resin film (base film). More preferably, it can be improved to 110 or less. For example, polyolefin, polyester, polystyrene, polychlorinated vinyl, polycarbonate, polylactic acid, polysuccinate, polyprolactone, polyolefin By combining a film made of a thermoplastic resin such as lamide, EVOH, or PVDC with a PGA layer as a barrier property improving material, at least one of the oxygen gas transmission rate and the carbon dioxide gas transmission rate can be controlled by the thermoplastic resin. As a result, it is possible to obtain a multilayer film which is surprisingly improved as compared with a resin film. In addition, the multilayer film of the present invention has a very small decrease in gas barrier properties even when subjected to a treatment under high temperature and high humidity.
本発明のガスパリヤー性複合フィルムの製造方法としては、 大別して次のよう な方法がある。  The method for producing the gas-barrier composite film of the present invention is roughly classified into the following methods.
①融着法、 ① fusion method,
②ラミネ一ション法 (ドライラミネ一シヨン、 ホットメルトラミネーシヨン、 ゥ エツトラミネーシヨン、 ノンソルベントラミネーシヨン等)'、. ② Lamination method (dry lamination, hot melt lamination, ゥ et lamination, non-solvent lamination etc.) ',.
③押出コーティング法、  ③ Extrusion coating method,
④共押出法 (インフレーション法、 Tダイ法等) 。  ④Co-extrusion method (inflation method, T-die method, etc.).
融着法では、 熱可塑性樹脂フィルムと P G Aフィルムの各面を互いに合わせて、 熱ロール、 熱プレス等を用いて、 P GAフィルムに接触している熱可塑性樹脂フ イルム (多層フィルムの場合は、 その接触表面層) を、 その概ね融点 (Tm) 以 上の温度で圧着することによって、 複合化することができる。 この際、 P GAフ イルム表面を機械的粗面化処理、 コロナ処理法による活性化処理、 化学薬品によ る活性化処理等をしておくことが望ましい。 この融着法では、 ポリオレフインフ イルム等の極性の小さい熱可塑性樹脂フィルムに対しては、 P G Aフィルムの接 着力が不充分となるおそれがある。  In the fusing method, the surfaces of the thermoplastic resin film and the PGA film are aligned with each other, and using a hot roll, hot press, etc., the thermoplastic resin film in contact with the PGA film (for a multilayer film, The contact surface layer) can be composited by crimping at a temperature substantially above its melting point (Tm). At this time, it is desirable that the surface of the PGA film be mechanically roughened, activated by a corona treatment, activated by a chemical, or the like. In this fusion method, the bonding strength of the PGA film to a thermoplastic resin film having a small polarity such as a polyolefin film may be insufficient.
ラミネーション法では、 下記の方法を採用することができる。  In the lamination method, the following method can be adopted.
( 1 ) ドライラミネ一シヨン法:  (1) Dry lamination method:
熱可塑性樹脂フィルム表面または P GAフィルム表面に、 溶液タイプ、 ラテツ クスタイプ、 またはディスパ一ジョンタイプの接着剤を塗布し、 溶媒を揮発除去 して乾燥させた後、 相手フィルムを合わせて、 ホットロール、 ホットプレス等に より加熱しながら圧着することにより多層フィルムとする。 ( 2 ) ホットメルトラミネ一シヨン法: Apply a solution-type, latex-type, or dispersion-type adhesive to the surface of the thermoplastic resin film or the surface of the PGA film, remove the solvent by volatilization, and dry it. A multilayer film is formed by press bonding while heating by a hot press or the like. (2) Hot melt lamination method:
ホットメルトタイプ接着剤 (例えば、 E VA系接着剤) を熱可塑性樹脂フィル ムまたは P GAフィルムの表面に、 粉末状またはフィルム状で塗布し、 相手フィ ルム面と合わせて加熱圧着して、 貼り合わせる。 ホットメルトタイプ接着剤を加 熱溶融させて一方のフィルム表面に塗布してから相手フィルムと合わせて、 圧着 して貼り合わせる方法、 あるいは熱可塑性樹脂フィルムと P GAフィルムとの間 に接着剤のフィルムを揷入して、 加熱'圧着して貼り合わせる方法によって、 多 層フィルムを得ることができる。  Apply a hot-melt type adhesive (for example, EVA adhesive) to the surface of thermoplastic resin film or PGA film in the form of powder or film, and heat and press it together with the mating film surface to attach. Match. Hot-melt adhesive is heated and melted and applied to the surface of one of the films, then combined with the mating film and then bonded by pressing, or an adhesive film between the thermoplastic resin film and the PGA film Then, a multi-layer film can be obtained by a method of bonding by heating and pressing under pressure.
押出コーティング法では、 熱可塑性樹脂フィルムを構成する樹脂を、 Tダイを 装着した押出機に供給し、 Tダイから溶融押出しな.がら、 P GAフィルム表面ま たは P G Aフィルム層を含む多層フィルム表面に、 溶融フィルム状態で均一塗布 することによって、 多層フィルムを得ることができる。 この場合、 P GAフィル ム表面に接着剤層を塗布しておくことも可能である。  In the extrusion coating method, the resin constituting the thermoplastic resin film is supplied to an extruder equipped with a T-die, and is extruded from the T-die, while extruding the PGA film surface or the multilayer film surface including the PGA film layer. Then, a multilayer film can be obtained by uniformly applying in a molten film state. In this case, it is possible to apply an adhesive layer to the surface of the PGA film.
共押出法では、 ポリオレフイン、 ポリエステル、 ポリスチレン、 ポリ塩化ビニ ルなどの熱可塑性樹脂フィルムとなるべき樹脂、 バリヤ一性改良材のポリダリコ —ル酸を含有する熱可塑性樹脂材料、 及び必要に応じて両者の接着剤となるべき 樹脂を、 それぞれの押出機から一つのダイに供給して同時に押出して、 溶融状態 で貼り合わせることにより、 多層フィルムを一段で製造する。 共押出法は、 一般 に、 Tダイ法とインフレ一ション法とに大別することができる。  In the co-extrusion method, a resin to be a thermoplastic resin film such as polyolefin, polyester, polystyrene, polyvinyl chloride, etc .; a thermoplastic resin material containing a barrier property improving agent, polydaric acid; and, if necessary, both. The resin to be used as the adhesive is supplied from each extruder to one die, extruded simultaneously, and bonded in a molten state to produce a multilayer film in one step. The coextrusion method can be generally classified into a T-die method and an inflation method.
Tダイ法では、 シングルマ二ホールドダイを使用するラミナ一フロー方式、 マ ルチマ二ホールドダイを用いるダイ内積層方式、 デュアルスロットダイを用いる ダイ外積層方式などが代表的な方法である。 熱可塑性樹脂フィルムとなるべき樹 脂とポリダリコール酸を含有する熱可塑性樹脂材料、 並びに必要に応じて接着剤 となるべき樹脂とを、 各押出機から一つのダイに供給して共押出して、 キャスト ロールに引き取り、 延伸ロール等によって MDに延伸し、 必要に応じてテンター 等により TDに延伸して製膜し、 必要に応じて熱固定して、 多層フィルムを製造 する。 一般に、 肉厚が 3 O ^ m以下の薄膜多層フィルムの場合は、 Tダイ法が好 ましい。 · Typical examples of the T-die method include a laminar one-flow method using a single-manifold die, an in-die lamination method using a multi-manifold die, and an out-die lamination method using a dual slot die. The resin to be a thermoplastic resin film, the thermoplastic resin material containing polydalicholic acid, and the resin to be an adhesive, if necessary, are supplied from each extruder to one die, co-extruded, and cast. It is taken up in a roll, stretched to MD by a stretching roll, etc., stretched to TD by a tenter if necessary, and formed into a film, and heat-fixed as necessary to produce a multilayer film. In general, the T-die method is preferred for thin multilayer films with a thickness of 3 O ^ m or less. Good. ·
インフレーション法では、 ダイ内積層法 (ロベルト ·コロンポ法等) とダイ外 積層法が代表的である。 それぞれ熱可塑性樹脂フィルム、 ポリグリコール酸を含 有する熱可塑性樹脂材料、 及び必要に応じて接着剤となるべき樹脂を、 各押出機 から一つのダイに供給し、 共押出してインフレーションすることによりチューブ 状フィルムに製膜し、 必要に応じて加圧して押したたんでフラットフイルムとな し、 更に必要に応じて熱固定して、 多層フィルムとする。  Representative examples of the inflation method include the in-die lamination method (such as the Roberto-Colombo method) and the out-die lamination method. Each extruder feeds a thermoplastic resin film, a thermoplastic resin material containing polyglycolic acid, and a resin to be an adhesive, if necessary, to one die, co-extrudes and inflates to form a tube. The film is formed into a film, and if necessary, pressed and pressed to form a flat film, and if necessary, heat-fixed to form a multilayer film.
本発明の多層フィルムは、 その優れた酸素ガスバリヤ一性及び/または炭酸ガ スバリヤ一性を活かして、 例えば、 食品用包材 (肉類、 魚介類、 乳製品、 漬物、 みそ類、 菓子類、 茶 ·コーヒー類、 メン類、 米飯類等の包材) 、 トイレタリー用 包材、 薬品包材等に用いられる。 特に、 レトルト滅菌等の高温 ·高湿下での処理 を要する物品、 特別に長期保存を要する物品、 環境負荷の低減が要求される物品 等の包材として好ましく用いられる。 実施例  The multilayer film of the present invention utilizes the excellent oxygen gas barrier properties and / or carbon dioxide gas barrier properties to form, for example, food packaging materials (meat, seafood, dairy products, pickles, miso, confectionery, tea). · Used for packaging materials such as coffee, men, rice, etc., toiletry packaging, and chemical packaging. In particular, it is preferably used as a packaging material for articles requiring treatment under high temperature and high humidity such as retort sterilization, articles requiring special long-term storage, and articles requiring a reduction in environmental load. Example
以下に、 合成例、 実施例、 及び比較例を挙げて、 本発明についてより具体的に 説明する。 物性の測定法は、 以下のとおりである。  Hereinafter, the present invention will be described more specifically with reference to Synthesis Examples, Examples, and Comparative Examples. The methods for measuring physical properties are as follows.
(1) 溶融粘度 7 *:  (1) Melt viscosity 7 *:
試料として、 成形物中のポリダリコール酸から厚み約 0. 2mmの非晶シート を作製し、 約 150°Cで 5分間加熱して結晶化させたものを用い、 D=0. 5m m、 L= 5mmのノズル装着キヤピログラフ 〔東洋精機 (株) 製〕 を用いて、 ポ リマーの融点 Tm+20°Cの温度、 剪断速度 100/秒で溶融粘度を測定した。 As a sample, an amorphous sheet with a thickness of about 0.2 mm was prepared from polydalicholic acid in the molded product, and heated at about 150 ° C for 5 minutes to crystallize.D = 0.5 mm, L = The melt viscosity was measured using a 5 mm nozzle equipped capillary graph [manufactured by Toyo Seiki Co., Ltd.] at a polymer melting point Tm + 20 ° C and a shear rate of 100 / sec.
(2) ポリマーの熱的性質: (2) Thermal properties of polymer:
試料として、 成形物中のポリダリコール酸から厚み約 0. 2mmの非晶シート を作製し、 示差走査熱量計 (D S C; M e t' t 1 e r社製 T C一 10 A型) を用 いて、 窒素ガス気流下、 10で/分の昇温速度で加熱し、 結晶化温度 (TC l) 、 融点 (Tm) 、 及び溶融ェンタルピ一 (ΔΗπι) を測定した。 ガラス転移温度 (Tg) は、 5 °CZ分の昇温速度で測定した。 As a sample, an amorphous sheet with a thickness of about 0.2 mm was prepared from polydalicholic acid in the molded product, and nitrogen gas was measured using a differential scanning calorimeter (DSC; TC-110A manufactured by Met's 1 er Co.). under a stream of air, at 10 / min heating at a Atsushi Nobori rate, crystallization temperature (T C l), melting point (Tm), and to measure the melt Entarupi one (ΔΗπι). Glass-transition temperature (Tg) was measured at a heating rate of 5 ° CZ.
(3) 無配向結晶化物の密度:  (3) Density of non-oriented crystallized product:
試料として、 成形物中のポリダリコール酸から厚み約 0. 2mmの非晶シート を作製し、 1 50°Cで 5分間熱固定したものを用いて、 J I S R- 7222 (n—ブ夕ノールを用いたピクノメーター法) に準拠して測定した。  As a sample, an amorphous sheet with a thickness of about 0.2 mm was prepared from polydalicholic acid in the molded product, and heat-set at 150 ° C for 5 minutes, using JIS R-7222 (using n-butanol). Pycnometer method).
(4) 厚み:  (4) Thickness:
ポリグリコール酸層などの厚みは、 マイクロメ一夕一 ( — ma t e、 SON Y社製) を用い、 試料の 10力所の厚みを測定し、 平均値を求めた。  For the thickness of the polyglycolic acid layer, etc., the average value was obtained by measuring the thickness of the sample at 10 locations using a micrometer (Mate, manufactured by SONY).
(5) 厚みばらつき (R%)  (5) Thickness variation (R%)
ポリグリコー J1/酸層の厚みばらつき (R%) は、 設定厚みからのばらつきとし て算出し、 各成形物の種類に応じて、 以下の基準で評価した。  The thickness variation (R%) of the polyglycol J1 / acid layer was calculated as the variation from the set thickness, and evaluated according to the following criteria according to the type of each molded product.
①配向フィルム  ① Oriented film
◎: R%が 10 %未満、  ◎: R% is less than 10%,
〇: R%が 10%以上、 30%未満、  〇: R% is 10% or more, less than 30%,
△: R%が 30 %以上、 70%未満、 △: R% is 30% or more, less than 70%,
X: R%が 70%以上、 及び/または PG Aフィルムの破断。  X: R% is 70% or more and / or PGA film breaks.
②延伸ブロー容器  ② Stretch blow container
◎: R%が 10 %未満、  ◎: R% is less than 10%,
〇: R%が 10%以上、 30%未満、  〇: R% is 10% or more, less than 30%,
A : R%が 30%以上、 70%未満、 A: R% is 30% or more, less than 70%,
X: R%が 70 %以上。 X: R% is 70% or more.
③多層中空容器  ③Multilayer hollow container
◎: R%が 50 %未満、 .  ◎: R% is less than 50%,.
〇: R%が 50%以上、 100%未満、 〇: R% is 50% or more, less than 100%,
△: R%が 100 %以上、 200 %未満、 △: R% is 100% or more, less than 200%,
X: R%が 200 %以上、 及び Zまたは成型不可。  X: R% is 200% or more, and Z or molding is impossible.
④多層フィルム ◎: 1 %カ 50 %未満、 ④Multilayer film ◎: 1% less than 50%,
〇: R%が 50%以上、 100%未満、 〇: R% is 50% or more, less than 100%,
△: R%が 100 %以上、 200 %未満、 △: R% is 100% or more, less than 200%,
X: R%が 200 %以上。 X: R% is 200% or more.
(6) 土中崩壊性  (6) Soil disintegration
テストピースを畑地の土壌中に深さ約 10 cmのところに埋め、 6力月後に掘 り出し、 洗浄後、 乾燥して重量を測定し、 テストピースの初期重量に対する重量 割合 (重量%) を算出した。  The test piece is buried in the soil of the field at a depth of about 10 cm, excavated after 6 months, washed, dried and weighed, and the weight ratio (% by weight) to the initial weight of the test piece is determined. Calculated.
[合成例 1] グリコリドの合成  [Synthesis Example 1] Synthesis of glycolide
10リットルオートクレープに、 グリコール酸 〔和光純薬 (株) 製〕 5 kgを 仕込み、 撹拌しながら、 110°Cから 200°Cまで約 2時間かけて昇温加熱し、 生成水を溜出させながら、 縮合させた。 次いで、 20 kPa (20 Omb a r) に減圧し 2時間保持して、 低沸分を溜出させ、 グリコール酸オリゴマーを調製し た。 グリコール酸オリゴマーの融点 Tmは、 205 であった。  5 kg of glycolic acid (manufactured by Wako Pure Chemical Industries, Ltd.) is charged into a 10-liter autoclave, and the temperature is raised from 110 ° C to 200 ° C for about 2 hours while stirring, and the generated water is distilled. While condensing. Then, the pressure was reduced to 20 kPa (20 Ombar), and the mixture was kept for 2 hours to distill off the low boiling components, thereby preparing a glycolic acid oligomer. The melting point Tm of the glycolic acid oligomer was 205.
グリコール酸オリゴマー 1. 2 kgを 10リットルのフラスコに仕込み、 溶媒 としてベンジルブチルフ夕レート 5 kg 〔純正化学 (株) 製〕 及び可溶化剤とし てポリプロピレングリコール 〔純正化学 (株) 製、 #400〕 150gを加え、 窒素ガス雰囲気中、 5kPa (5 Omb a r) の減圧下、 約 270°Cに加熱し、 グリコール酸オリゴマーの 「溶液相解重合」 を行い、 生成したグリコリドをベン ジルブチルフタレートと共溜出させた。 得られた共溜出物に約 2倍容のシクロへ キサンを加えて、 ダリコリドをべンジルブチルフタレートから析出させ、 濾別し た。 これを、 酢酸ェチルを用いて再結晶し、 減圧乾燥し精製グリコリドを得た。  Glycolic acid oligomer 1.2 kg is charged into a 10-liter flask, and benzyl butyl phosphate 5 kg (produced by Junsei Chemical Co., Ltd.) as a solvent and polypropylene glycol (produced by Junsei Chemical Co., Ltd., # 400 150 g, and heated to about 270 ° C under a reduced pressure of 5 kPa (5 Ombar) in a nitrogen gas atmosphere to perform `` solution phase depolymerization '' of the glycolic acid oligomer, and convert the formed glycolide to benzyl butyl phthalate. Co-distilled. Approximately twice the volume of cyclohexane was added to the obtained co-distillate to precipitate dalicollide from benzyl butyl phthalate, which was separated by filtration. This was recrystallized using ethyl acetate and dried under reduced pressure to obtain purified glycolide.
[合成例 2] ポリグリコール酸 (PGA-a) の合成  [Synthesis Example 2] Synthesis of polyglycolic acid (PGA-a)
グリコリド 100 g、 オクタン酸スズ 6mg、 及びラウリルアルコ一ル 5 Om gをガラス製試験管に投入し、 220Tで 3時間重合した。 重合後、 冷却してか ら生成ポリマーを取り出し、 粉砕し、 アセトンで洗浄した。 しかる後、 30°Cで 真空乾燥して、 ポリマーを回収した。 同様の操作を繰り返して、 必要量のポリグ リコール酸を合成した。 100 g of glycolide, 6 mg of tin octoate, and 5 Omg of lauryl alcohol were charged into a glass test tube, and polymerized at 220 T for 3 hours. After the polymerization, the resulting polymer was taken out after cooling, pulverized, and washed with acetone. Thereafter, the polymer was vacuum-dried at 30 ° C. to recover the polymer. Repeat the same operation until the required amount of polyg Licholic acid was synthesized.
[合成例 ·3] ポリグリコール酸 (PGA- b) の合成  [Synthesis example · 3] Synthesis of polyglycolic acid (PGA-b)
5 mm穴のダイス付きの東洋精機株式会社製 LT一 20を用いて、 回転数 15 r pm、 200— 240°Cの温度設定 (樹脂温度 240で) で、 グリコリドに 3 00 p pmの四塩化スズ 5水和物を加えてホッパーから投入し重合を行った。  Glycolide with 300 ppm of tetrachloride at a rotational speed of 15 rpm and a temperature setting of 200-240 ° C (with a resin temperature of 240) using a LT-20 made by Toyo Seiki Co., Ltd. with a 5 mm hole die. Tin pentahydrate was added and charged from a hopper to carry out polymerization.
[合成例 4] ポリグリコ一ル酸 (PGA- c) の合成  [Synthesis Example 4] Synthesis of polyglycolic acid (PGA-c)
グリコリド 100 gと 4mgの二塩化スズ 2水和塩を、 ガラス製試験管にて 1 80 で 2時間重合した。 反応終了時重合物は固化していた。 冷却後、 重合物を 取り出し粉砕し、 アセトンで洗浄、 30°Cで真空乾燥してポリマーを得た。 同様 の操作を繰り返して、 必要量のポリグリコール酸を合成した。  100 g of glycolide and 4 mg of tin dichloride dihydrate were polymerized in a glass test tube at 180 for 2 hours. At the end of the reaction, the polymer had solidified. After cooling, the polymer was taken out, pulverized, washed with acetone, and vacuum-dried at 30 ° C to obtain a polymer. The same operation was repeated to synthesize the required amount of polyglycolic acid.
[実施例 1] 圧縮成形物  [Example 1] Compression molded product
合成例 2で得られたポリグリコ一ル酸 (PGA- a )を 3 mm φのノズルを装着した 小型二軸混練機に窒素ガス流下で供給し、 溶融温度約 230〜 240 °Cでストラ ンド状に押し出し、 空冷してカットし、 ペレットを得た。 このペレットを成形機 に供給し樹脂温度約 235°Cでシートを作成した。 そのシートを圧力 40 kg f /cm2, 温度 Ι Ο ΟΤλ 時間 5秒にて圧縮成形し、 トレー (深さ 30mm、 底 面 100 mmX 200 mm、 厚み 500 Atm) を得た。 The polyglycolic acid (PGA-a) obtained in Synthesis Example 2 was supplied under a nitrogen gas flow to a small twin-screw kneader equipped with a 3 mm φ nozzle, and was in a strand state at a melting temperature of about 230 to 240 ° C. And air-cooled and cut to obtain pellets. The pellets were supplied to a molding machine to form a sheet at a resin temperature of about 235 ° C. The sheet was compression-molded at a pressure of 40 kgf / cm 2 and a temperature of Ι ΟΤ ΟΤλ for 5 seconds to obtain a tray (depth 30 mm, bottom 100 mm × 200 mm, thickness 500 Atm).
この成形物中のポリダリコール酸の物性は、 溶融粘度が 5 OP a · s、 結晶化 温度 (TC l) が 84° (:、 融点 (Tm) が 222°C、 溶融ェンタルピー (ΔΗ m) が 74 JZg、 ガラス転移温度 (Tg) が 38 、 無配向結晶化物の密度が 1. 58 g/cm3であった。' この成形物をテストピースとして用いて、 土中崩 壌性試験を行った。 結果を表 1に示す。 Properties of Poridarikoru acid of the molded product in the melt viscosity of 5 OP a · s, the crystallization temperature (T C l) is 84 ° (:, melting point (Tm) is 222 ° C, melt Entarupi (.DELTA..eta m) is 74 JZg, glass transition temperature (Tg) was 38, and the density of the non-oriented crystallized product was 1.58 g / cm 3. 'Using this molded product as a test piece, a soil breaking test was performed. The results are shown in Table 1.
[実施例 2] 圧縮成形物  [Example 2] Compression molded product
ポリグリコール酸 (PGA- a )に代えて、 合成例 3で得られたポリグリコール酸 (PGA-b)を用いたこと以外は、 実施例 1と同様にしてトレ一を作製した。  A tray was prepared in the same manner as in Example 1 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a).
この成形物中のポリダリコール酸の物性は、 溶融粘度が 300 P a · s、 結晶 化温度 (Tc ) が 85°C、 融点 (Tm) が 222°C、 溶融ェンタルピー (ΔΗ m) が 75 J/g、 ガラス転移温度 (Tg) が 38°C、 無配向結晶化物の密度が 1. 58 gZcm3であった。 この成形物をテストピースとして用いて、 土中崩 壊性試験を行った。 結果を表 1に示す。 The physical properties of polydalicholic acid in this molded product were as follows: melt viscosity 300 Pa · s, crystallization temperature (Tc) 85 ° C, melting point (Tm) 222 ° C, melt enthalpy (ΔΗ m) was 75 J / g, the glass transition temperature (Tg) was 38 ° C, and the density of the non-oriented crystallized product was 1.58 gZcm 3 . Using this molded product as a test piece, a soil collapse test was performed. Table 1 shows the results.
[比較例 1 ] 圧縮成形物  [Comparative Example 1] Compression molded product
ポリグリコ一ル酸(PGA- a )に代えて、 合成例 4で得られたポリグリコール酸 (PGA- c)を用いたこと以外は、 実施例 1と同様にしてトレーを作製した。 ' この成形物中のポリダリコール酸の物性は、 溶融粘度が 800 P a · s、 '結晶 化温度 (Tc^) が 86°C、 融点 (Tm) が 222°C、 溶融ェンタルピー (ΔΗ m) が 75 JZg、 ガラス転移温度 (Tg) が 38で、 無配向結晶化物の密度が 1. 58 gZ cm3であった。 この成形物をテストピースとして用いて、 土中崩 壊性試験を行った。 結果を表 1に示す。 A tray was produced in the same manner as in Example 1 except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a). '' The physical properties of polydalicholate in this molded product are as follows: melt viscosity is 800 Pa · s, crystallization temperature (Tc ^) is 86 ° C, melting point (Tm) is 222 ° C, and melt enthalpy (ΔΗm) is The glass transition temperature (Tg) was 38 JZg, and the density of the non-oriented crystallized product was 1.58 gZ cm 3 . Using this molded product as a test piece, a soil collapse test was performed. Table 1 shows the results.
[比較例 2] 圧縮成形物  [Comparative Example 2] Compression molded product
ポリグリコール酸 (PGA- a )に代えて、 熱可塑性ポリエステルであるポリエチレ ンテレフ夕レート (PET;三井ペット社製 J 135) 用いたこと以外は、 実施 例 1と同様にしてトレーを作製し、 土中崩壊性試験を行った。 結果を表 1に示す。  A tray was prepared in the same manner as in Example 1, except that polyethylene glycol terephthalate (PET; manufactured by Mitsui Pet Co., Ltd., J135) was used instead of polyglycolic acid (PGA-a). A medium disintegration test was performed. Table 1 shows the results.
表 1  table 1
Figure imgf000041_0001
表 1の結果から明らかなように、 ポリグリコール酸の溶融粘度が 500 P a · s未満と低い場合 (実施例 1〜2) には、 土中崩壊が極めて速やかに進行し、 短 期間でコンポスト化が可能であることが分かる。
Figure imgf000041_0001
As is clear from the results in Table 1, when the melt viscosity of polyglycolic acid is as low as less than 500 Pa · s (Examples 1 and 2), collapse in soil proceeds very quickly, and composting occurs in a short period of time. It can be seen that conversion is possible.
[実施例 3] 配向: 合成例 2で得られたポリグリコール酸 (PGA-a) 100重量部に対して、 0. 1重量部のアルミナ粉末を添加し、 3ππηφノズルを装着した小型二軸押出機に 窒素ガス流下で供給して、 溶融温度約 230〜約 235 でストランド状に押出 し、 急冷し、 カットして、 ペレツトを作成した。 [Example 3] Orientation: To 100 parts by weight of the polyglycolic acid (PGA-a) obtained in Synthesis Example 2, 0.1 part by weight of alumina powder was added and supplied to a small twin-screw extruder equipped with a 3ππηφ nozzle under nitrogen gas flow Then, it was extruded into a strand at a melting temperature of about 230 to about 235, quenched, and cut to form a pellet.
このペレツトを、 インフレーション用リングダイを装着した小型二軸押出機に 窒素ガス気流下で供給し、 リングダイから樹脂温度約 230°Cでチューブ状に押 出した。 次いで、 チューブを冷浴により Tg以下に急冷し、 ブロー比を約 3倍と して 40〜45 °Cでインフレーションした。 引取速度をチューブの縦方向の延伸 倍率が約 3倍になるようにコントロールし、 ニップロールを介して巻き取り、 チ ユーブ状のフィルムを調製した。 このフィルムを 150°Cで 1分間熱固定し、 二 軸配向フィルム (延伸倍率 3 X 3、 厚み 15 im) を得た。 さらに、 ブロー比 と縦方向の延伸倍率を調整して、 厚みが 25 mと 40 imの二軸配向フィルム を作製した。  This pellet was supplied to a small twin-screw extruder equipped with a ring die for inflation under a nitrogen gas stream, and extruded from the ring die into a tube at a resin temperature of about 230 ° C. Next, the tube was quenched by a cooling bath to a temperature of Tg or less, and blown at 40 to 45 ° C with a blow ratio of about 3 times. The take-up speed was controlled so that the stretching ratio in the longitudinal direction of the tube was about three times, and the film was wound up through a nip roll to prepare a tube-like film. This film was heat-set at 150 ° C. for 1 minute to obtain a biaxially oriented film (drawing ratio: 3 × 3, thickness: 15 im). Furthermore, a biaxially oriented film having a thickness of 25 m and 40 im was produced by adjusting the blow ratio and the stretching ratio in the longitudinal direction.
これらの二軸配向フィルム中のポリダリコール酸の溶融粘度は、 55P a · s であった。 各二軸配向フィルムの設定厚みからのばらつき R%を測定した。 測定 結果を表 2に示す。  The melt viscosity of polydalicholate in these biaxially oriented films was 55 Pa · s. The variation R% from the set thickness of each biaxially oriented film was measured. Table 2 shows the measurement results.
[実施例 4] 配向:  [Example 4] Orientation:
ポリグリコール酸 (PGA- a ) に代えて、 合成例 3で得られたポリグリコール酸 (PGA- b)を用いたこと以外は、 実施例 3と同様にして、 厚みが 15 m、 25 m及び 40 imの二軸配向フィルムを作製した。 これらの二軸配向フィルム中の ポリグリコ一ル酸の溶融粘度は、 31 OPa · sであった。 各二軸配向フィルム の設定厚みからのばらつき R %を測定した。 測定結果を表 2に示す。  In the same manner as in Example 3 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a), the thickness was 15 m, 25 m and A biaxially oriented film of 40 im was produced. The melt viscosity of polyglycolic acid in these biaxially oriented films was 31 OPa · s. The variation R% from the set thickness of each biaxially oriented film was measured. Table 2 shows the measurement results.
[比較例 3] 配向:  [Comparative Example 3] Orientation:
ポリグリコール酸 (PGA- a) に代えて、 合成例 4で得られたポリグリコール酸 (PGA-c)を用いたこと以外は、 実施例 3と同様にして、 厚みが 15 ^111、 2 m及び 40 mの二軸配向フィルムを作製した。 これらの二軸配向フィルム中の ポリダリコール酸の溶融粘度は、 820 P a · sであった。 各二軸配向フィルム の設定厚みからのばらつき R%を測定した。 測定結果を表 2に示す。 In the same manner as in Example 3 except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a), the thickness was 15 ^ 111, 2 m And a 40 m biaxially oriented film was prepared. The melt viscosity of polydaricholic acid in these biaxially oriented films was 820 Pa · s. Each biaxially oriented film The variation R% from the set thickness was measured. Table 2 shows the measurement results.
表 2  Table 2
Figure imgf000043_0001
表 2の結果から明らかなように、 ポリダリコール酸の溶融粘度が 50 O P a · s未満と低い場合 (実施例 3〜4) には、 40 m以下、 さらには 15〜25 i mと薄い場合であつても、 設定厚みからのばらつきが小さい配向フィルムを得る ことができる。
Figure imgf000043_0001
As is clear from the results in Table 2, when the melt viscosity of polydalicholic acid is as low as less than 50 OPa · s (Examples 3 and 4), the viscosity is as low as 40 m or less, and even as low as 15 to 25 im. However, it is possible to obtain an oriented film having small variation from the set thickness.
[実施例 5] 延伸ブロー容器  [Example 5] Stretch blow container
合成例 2で得られたポリグリコ一ル酸 (PGA - a) を 3 mm Φのノズルを装着し た小型二軸混練押出機に窒素ガス流下で供給し、 溶融温度約 230〜 240 で ストランド状に溶融押出し、 空冷してカットし、 ペレットを得た。 このペレット を射出成形機に供給して、 樹脂温度約 230°Cで有底パリソン金型 (温度約 1 0°C) 内に射出 (注入) し、 固化させて取り出し、 コールドパリソンからなるプ リフォーム (厚み約 1. 6mm、 外径約 1. 6 cm, 長さ約 5 cm、 底部球面 状) を予備成形した。 得られたコールドプリフォームを約 42°Cに予熱して軟化 させ、 延伸ロッドを揷入して縦方向に約 2. 25倍延伸配向させ、 同時に、 胴部 外径約 4. 5 cm, 胴部長さ約 9 cm、 首部外径約 1. 6 cm、 首部長さ約 l c m、 平底中央凹型のボトルの 2つ割り金型ではさみ、 高圧ガスによりブロー比約 2. 8でブローして、 円周方向 (横方向) に延伸配向させてボトルを成形し、 さ らに高圧ガスを吹き込んでボトルを 150°C、 10秒間熱固定させ、 金型から取 り出して、 延伸ブロー容器を成形した。 得られた延伸ブロー容器は、 透明であった。 ブロー比と縦方向延伸倍率を調整 して、 胴体部厚みが 50 τ , 100 m、 及び 200; mの各延伸ブロー容器 を作成した。 これらの延伸ブロー容器中のポリダリコール酸の溶融粘度は、 45 P a · sであった。 また、 これらの延伸ブロー容器の胴体部の設定厚みからのば らつき R%を測定した。 結果を表 3に示す。 The polyglycolic acid (PGA-a) obtained in Synthesis Example 2 was supplied to a small twin-screw kneading extruder equipped with a 3 mm Φ nozzle under a nitrogen gas flow, and was made into strands at a melting temperature of about 230 to 240. It was melt-extruded, air-cooled and cut to obtain pellets. The pellets are supplied to an injection molding machine, injected (injected) into a bottomed parison mold (temperature of about 10 ° C) at a resin temperature of about 230 ° C, solidified, taken out, and formed into a cold parison preform. (Thickness: about 1.6 mm, outer diameter: about 1.6 cm, length: about 5 cm, spherical shape at bottom). The obtained cold preform is preheated to about 42 ° C to soften it, and a stretching rod is inserted to stretch it about 225 times in the machine direction, and at the same time, the body outer diameter is about 4.5 cm, the body is Approximately 9 cm in length, approximately 1.6 cm in neck outer diameter, approximately 1 cm in neck length, sandwiched by two halves of a flat-bottom central concave bottle, blown with high-pressure gas at a blow ratio of approximately 2.8, The bottle was stretched and oriented in the circumferential direction (horizontal direction) to form a bottle, and the bottle was heat-set at 150 ° C for 10 seconds by blowing high-pressure gas, then removed from the mold to form a stretch blow container. . The obtained stretch blow container was transparent. By adjusting the blow ratio and the stretching ratio in the machine direction, each stretch blow container having a body thickness of 50 τ, 100 m, and 200; m was prepared. The melt viscosity of polydalicholate in these stretch blow containers was 45 Pa · s. Further, the variation R% from the set thickness of the body of these stretch blow containers was measured. Table 3 shows the results.
[実施例 6] 延伸ブロー容器  [Example 6] Stretch blow container
ポリグリコール酸 (PGA- a) に代えて、 合成例 3で得られたポリグリコール酸 (PGA - b)を用いたこと以外は、 実施例 5と同様にして、 胴体部厚みが 50 m、 100 m、 及び 200 mの各延伸ブロー容器を作製した。 これらの延伸プロ 一容器中のポリダリコール酸の溶融粘度は、 290 P a ' sであった。 また、 こ れらの延伸ブ口一容器の胴体部の設定厚みからのばらつき R %を測定した。 結果 を表 3に示す。  In the same manner as in Example 5 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a), the body thickness was 50 m, and m, and a stretch blow container of 200 m were produced. The melt viscosity of polydalicholic acid in one of these stretching processors was 290 Pa's. In addition, the variation R% from the set thickness of the body portion of each of the stretching mouths was measured. Table 3 shows the results.
[比較例 4] 延伸ブロー容器  [Comparative Example 4] Stretch blow container
ポリグリコール酸 (PGA- a) に代えて、 合成例 4で得られたポリグリコール酸 (PGA- c )を用いたこと以外は、 実施例 5と同様にして、 胴体部厚みが 50 m、 100 rn, 及び 200 mの各延伸ブロ一容器を作製した。 これらの延伸ブロ —容器中のポリグリコ一ル酸の溶融粘度は、 780P a * sであった。 また、 こ れらの延伸ブロー容器の胴体部の設定厚みからのばらつき R%を測定した。 結果 を表 3に示す。  In the same manner as in Example 5 except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a), the body thickness was 50 m, and rn, and 200 m of each stretch blow container were prepared. The melt viscosity of the polyglycolic acid in these stretch blow containers was 780 Pa * s. Further, the variation R% from the set thickness of the body of these stretch blow containers was measured. Table 3 shows the results.
表 3  Table 3
ポリグリコール酸 延伸ブロー容器 (厚みばらつき)  Polyglycolic acid stretch blow container (thickness variation)
¾¾疋厚み 設定厚み ΗΧΛ£ み コード 溶融粘度 (Pa* s)  Web thickness Thickness setting Thickness code Melt viscosity (Pa * s)
50 ITL lOO^m 200 m 実施例 5 PGA-a 45 〇 ◎ ◎ 実施例 6 PGA-b 290 Δ 〇 ◎ 比較例 4 PGA- c 780 X △ 〇 表 3の結果から明らかなように、 ポリグリコ一ル酸の溶融粘度が 500 P a · s未満と低い場合 (実施例 5〜6) には、 胴体部の厚みが 200 以下、 さら には 50〜: L 00; mと薄い場合であっても、 設定厚みからのばらつきが小さい 延伸ブロー容器を得ることができる。 50 ITL lOO ^ m 200 m Example 5 PGA-a 45 ◎ ◎ ◎ Example 6 PGA-b 290 Δ 〇 ◎ Comparative Example 4 PGA- c 780 X △ 〇 As is evident from the results in Table 3, when the melt viscosity of polyglycolic acid was as low as less than 500 Pa · s (Examples 5 to 6), the thickness of the body was 200 or less, and more preferably 50 to 50%. : Even if it is as thin as L00; m, it is possible to obtain a stretch blow container having a small variation from the set thickness.
[実施例 7] 多層中空容器  [Example 7] Multi-layer hollow container
合成例 2で得られたポリグリコール酸 0PGA- a ) を 3 mm Φのノズルを装着し た小型二軸混練押出機に窒素ガス流下で供給し、 溶融温度約 230〜240°Cで ストランド状に溶融押出し、 空冷してカットし、 ペレットを得た。 このペレット、 ポリエチレンテレフ夕レート (PET;三井ペット社製 J 135) 、 及び力ルポ キシル化ポリオレフィン (登録商標名 MOD I C E- 300 S) を 3種 5層用 共射出成形機に供給し、 射出してプリフォーム金型に注入し、 プリフォーム (外 径約 2 c m、 長さ約 6 cm) を形成して、 冷却固化させた。 次いで、 該プリフォ —ムを再加熱し、 約 85°Cに調温し、 金型内に挿入し、 当該プリフォーム内に口 ッドを揷入して、 プリフォームを長さ方向に約 2倍延伸すると同時にブロー比約 3でブローし、 次いで、 冷却固化して、 PET〃PGA〃PETの層構成を有す る多層中空容器を作製した。  The polyglycolic acid (0PGA-a) obtained in Synthesis Example 2 was supplied to a small twin-screw kneading extruder equipped with a 3 mm Φ nozzle under nitrogen gas flow, and was formed into a strand at a melting temperature of about 230 to 240 ° C. It was melt-extruded, air-cooled and cut to obtain pellets. The pellets, polyethylene terephthalate (PET; J 135, manufactured by Mitsui Pet Co., Ltd.), and lipoxylated polyolefin (registered trademark MOD IC E-300S) were supplied to a three-type, five-layer co-injection molding machine and injected. Then, it was poured into a preform mold to form a preform (outer diameter of about 2 cm, length of about 6 cm), and was cooled and solidified. Next, the preform is reheated, adjusted to a temperature of about 85 ° C., inserted into a mold, and a mouth is inserted into the preform. At the same time as the double stretching, it was blown at a blow ratio of about 3 and then cooled and solidified to produce a multilayer hollow container having a layer structure of PET / PGA / PET.
延伸倍率とブロー比を調整して、 芯層の PGA層の厚みが 3 m、 5 μ,πι, 及 び 10 j mの各多層中空容器を作製した。 これらの多層容器の PGA層中のポリ グリコ一ル酸の溶融粘度は、 50P a * sであった。 これらの多層中空容器の胴 体部芯層の設定厚みからのばらつき R%を測定した。 結果を表 4に示す。  By adjusting the stretching ratio and the blow ratio, each multilayer hollow container having a core layer having a PGA layer thickness of 3 m, 5 μ, πι, and 10 jm was produced. The melt viscosity of the polyglycolic acid in the PGA layer of these multilayer containers was 50 Pa * s. The variation R% from the set thickness of the body core layer of these multilayer hollow containers was measured. Table 4 shows the results.
[実施例 8] 多層中空容器  [Example 8] Multi-layer hollow container
ポリグリコール酸 (PGA- a) に代えて、 合成例 3で得られたポリグリコール酸 (PGA- b)を用いたこと以外は、 実施例 7と同様にして、 芯層の PGA層の厚みが 3 ΐΐΐ, 5 urn, 及び 10 imの各多層中空容器を作製した。 これらの多層容器 の PGA層中のポリグリコール酸の溶融粘度は、 300 P a * sであった。 これ らの多層中空容器の胴体部芯層の設定厚みからのばらつき R %を測定した。 結果 を表 4に示す。 [比較例 5] 多層中空容器 In the same manner as in Example 7 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a), the thickness of the core layer PGA layer was changed. Multilayer hollow containers of 3 mm, 5 urn, and 10 im were prepared. The melt viscosity of the polyglycolic acid in the PGA layers of these multilayer containers was 300 Pa * s. The variation R% from the set thickness of the body core layer of these multilayer hollow containers was measured. Table 4 shows the results. [Comparative Example 5] Multi-layer hollow container
ポリグリコ一ル酸 (PGA- a) に代えて、 合成例 4で得られたポリグリコール酸 (PGA- c)を用いたこと以外は、 実施例 7と同様にして、 芯層の PGA層の厚みが 3 m, 5 urn, 及び 10 ^mの各多層中空容器を作製した。 これらの多層容器 の PGA層中のポリダリコール酸の溶融粘度は、 800 P a ' sであった。 これ らの多層中空容器の胴体部芯層の設定厚みからのばらつき R %を測定した。 結果 を表 4に示す。  In the same manner as in Example 7, except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a), the thickness of the core layer PGA layer was changed. Produced 3 m, 5 urn, and 10 ^ m multilayer hollow containers. The melt viscosity of polydalicholate in the PGA layer of these multilayer containers was 800 Pa's. The variation R% from the set thickness of the body core layer of these multilayer hollow containers was measured. Table 4 shows the results.
表 4  Table 4
Figure imgf000046_0001
表 4の結果から明らかなように、 ポリグリコール酸の溶融粘度が 500 P a · s未満と低い場合 (実施例?〜 8) には、 胴体部芯層の厚みが 10 m以下、 さ らには 3〜 5 zmと極めて薄い場合であっても、 設定厚みからのばらつきが小さ い多層中空容器を得ることができる。
Figure imgf000046_0001
As is clear from the results in Table 4, when the melt viscosity of the polyglycolic acid was as low as less than 500 Pa · s (Examples? To 8), the thickness of the body core layer was 10 m or less, and It is possible to obtain a multilayer hollow container with a small variation from the set thickness even when the thickness is extremely thin, such as 3 to 5 zm.
[実施例 9] 多層'  [Example 9] Multi-layer '
合成例 2で得られたポリグリコール酸 (PGA- a ) を 3 mm φのノズルを装着し た小型二軸混練押出機に窒素ガス流下で供給し、 溶融温度約 230~240°Cで ストランド状に溶融押出し、 空冷してカットし、 ペレットを得た。  The polyglycolic acid (PGA-a) obtained in Synthesis Example 2 was supplied under a nitrogen gas flow to a small twin-screw kneading extruder equipped with a 3 mm φ nozzle, and was stranded at a melting temperature of 230 to 240 ° C Then, the mixture was melt-extruded, air-cooled and cut to obtain pellets.
このペレットと、 酸変性 LLDPE (三井化学社製アドマー NF 550 ;酸グ ラフト LLDPE) とを、 それぞれ各押出機から樹脂温度約 230°Cで押し出し て、 フィードブロックにて 3層化 (酸変性LLDPE/PGA/酸変性LLDP E) した。 ダイスは、 30 cm幅であり、 そして、 内層の酸変性 LLDPEは、 35mm<i)押出機で、 外層の酸変性 L LD P Eは、 40πιπιφ押出機で、 芯層の PGAは、 25 πιπιφ押出機でそれぞれ押し出して成膜した。 These pellets and acid-modified LLDPE (Admer NF 550; Mitsui Chemicals, Inc., acid graph LLDPE) are extruded from each extruder at a resin temperature of about 230 ° C, and are formed into three layers by a feed block (acid-modified LLDPE). / PGA / acid-modified LLDP E) Yes. The die is 30 cm wide, and the acid modified LLDPE of the inner layer is 35mm <i) extruder, the acid modified LLDPE of the outer layer is 40πιπιφ extruder, and the PGA of the core layer is 25πιπιφ extruder And extruded to form a film.
芯層の押出量を調整して、 芯層の厚みがそれぞれ 1 m、 3 ΐτι, 及び 5 m の各多層フィルムを作製した。 これらの多層フィルムの PGA層中のポリグリコ ール酸の溶融粘度は、 55P a ' sであった。 これらの多層フィルムの芯層の設 定厚みからのばらつき R %を測定した。 結果を表 5に示す。  By adjusting the extrusion amount of the core layer, multilayer films having a core layer thickness of 1 m, 3 3τι, and 5 m, respectively, were produced. The melt viscosity of the polyglycolic acid in the PGA layer of these multilayer films was 55 Pa's. The variation R% from the set thickness of the core layer of these multilayer films was measured. Table 5 shows the results.
[実施例 10] 多層フィルム  [Example 10] Multilayer film
ポリグリコール酸 (PGA- a) に代えて、 合成例 3で得られたポリグリコール酸 (PGA-b)を用いたこと以外は、 実施例 9と同様にして、 芯層の厚みがそれぞれ 1 urn, 3 urn, 及び 5 の各多層フィルムを作製した。 これらの多層フィルム の PGA層中のポリダリコール酸の溶融粘度は、 31 OP a · sであった。 これ らの多層フィルムの芯層の設定厚みからのばらつき R %を測定した。 結果を表 5 に示す。 ' [比較例 6] 多層フィルム  In the same manner as in Example 9 except that the polyglycolic acid (PGA-b) obtained in Synthesis Example 3 was used instead of the polyglycolic acid (PGA-a), the thickness of the core layer was 1 urn. , 3 urn, and 5 were prepared. The melt viscosity of polydalicholate in the PGA layer of these multilayer films was 31 OPas. The variation R% from the set thickness of the core layer of these multilayer films was measured. Table 5 shows the results. '' [Comparative Example 6] Multilayer film
ポリグリコ一ル酸 (PGA- a ) に代えて、 合成例 4で得られたポリグリコ一ル酸 (PGA- c)を用いたこと以外は、 実施例 9と同様にして、 芯層の厚みがそれぞれ 1 urn, 3 m, 及び 5 mの各多層フィルムを作製した。 これらの多層フィルム の PGA層中のポリダリコール酸の溶融粘度は、 82 O P a ' sであった。 これ らの多層フィルムの芯層の設定厚みからのばらつき R%を測定した。 結果を表 5 に示す。 表 5 In the same manner as in Example 9, except that the polyglycolic acid (PGA-c) obtained in Synthesis Example 4 was used instead of the polyglycolic acid (PGA-a), Multilayer films of 1 urn, 3 m, and 5 m were prepared. The melt viscosity of polydalicholate in the PGA layer of these multilayer films was 82 OPa's. The variation R% from the set thickness of the core layer of these multilayer films was measured. Table 5 shows the results. Table 5
Figure imgf000048_0001
表 5の結果から明らかなように、 ポリダリコール酸の溶融粘度が 5 0 O P a · s未満と低い場合 (実施例 9〜1 0 ) には、 芯層の厚みが 5 m以下、 さらには 1〜 3 mと極めて薄い場合であっても、 設定厚みからのばらつきが小さい多層 フィルムを得ることができる。 産業上の利用可能性
Figure imgf000048_0001
As is evident from the results in Table 5, when the melt viscosity of polydaricholic acid is as low as less than 50 OPa · s (Examples 9 to 10), the thickness of the core layer is 5 m or less, and more preferably 1 to 10 Even when the thickness is as thin as 3 m, a multilayer film with a small variation from the set thickness can be obtained. Industrial applicability
本発明によれば、 溶融状態での流動性に優れ、 均一な薄膜化が可能であり、 し かも生分解性が顕著に優れ、 迅速なコンポスト化が可能なポリダリコール酸を含 有する熱可塑性樹脂材料を用いて形成した圧縮成形物、 押出成形物、 配向フィル ム、 延伸プロ一容器、 多層中空容器、 多層フィルム、 繊維などの単層または多層 の各種成形物が提供される。  ADVANTAGE OF THE INVENTION According to the present invention, a thermoplastic resin material containing polydaricholic acid that has excellent fluidity in a molten state, enables uniform film formation, has remarkable biodegradability, and enables rapid composting Various single-layer or multi-layer molded articles such as compression molded articles, extruded molded articles, oriented films, drawn professional containers, multilayer hollow containers, multilayer films, and fibers are provided.

Claims

請求の範囲 The scope of the claims
1. 下記式 (1)
Figure imgf000049_0001
1. The following equation (1)
Figure imgf000049_0001
で表わされる繰り返し単位を 60重量%以上含有するポリグリコール酸を主成分 とするポリグリコール酸成形物であつて、  A polyglycolic acid molded product containing as a main component a polyglycolic acid containing at least 60% by weight of a repeating unit represented by the formula:
(a)該成形物中のポリダリコール酸の溶融粘度が、 融点より 20°C高い温度と剪 断速度 100 /秒の条件で測定したとき、 20Pa ' s以上 500Pa ' s未満 であり、 かつ、  (a) the melt viscosity of polydalicholic acid in the molded product is 20 Pa's or more and less than 500 Pa's when measured at a temperature 20 ° C. higher than the melting point and a shear rate of 100 / sec, and
(b)圧縮成形、 押出成形、 ブロー成形、 または溶液流延法を含む成形法により成· 形されたものである  (b) Molded by molding methods including compression molding, extrusion molding, blow molding, or solution casting
ことを特徴とするポリダリコール酸成形物。  A molded article of polydalicholic acid, characterized in that:
2. 土中崩壌性試験において、 土中に 6ヶ月間埋めた後の重量 (X) の初期重 量 (y) に対する割合 〔 (x/y) X 100 (%;) 〕 が 50 %以下の土中崩壊 性を示す請求項 1記載のポリダリコール酸成形物。 2. In the soil decay test, the ratio of weight (X) to initial weight (y) after burying in soil for 6 months [(x / y) X 100 (%;)] is 50% or less. The molded article of polydalicholic acid according to claim 1, which exhibits disintegration property in soil.
3. 圧縮成形により成形された成形物が、 トレーである請求項 1記載のポリグ リコ一ル酸成形物。 3. The molded article of polyglycolic acid according to claim 1, wherein the molded article formed by compression molding is a tray.
4. 押出成形により成形された成形物が、 シート、 未延伸フィルム、 延伸フィ ルム、 延伸配向フィルム、 繊維、 またはこれらの二次成形物である請求項 1記載 のポリグリコール酸成形物。 4. The polyglycolic acid molded product according to claim 1, wherein the molded product formed by extrusion is a sheet, an unstretched film, a stretched film, a stretched oriented film, a fiber, or a secondary molded product thereof.
5. 下記式 (1)
Figure imgf000050_0001
5. The following equation (1)
Figure imgf000050_0001
で表わされる繰り返し単位を 60重量%以上含有するポリダリコール酸を主成分 とする配向フィルムo =であって、 該配向フィルム中のポリダリコール酸の溶融粘度 が、 融点より 20°C高い温度と剪断速度 100/秒の条件で測定したとき、 20 P a · s以上 500 P a · s未満である配向フィルム。 Is an oriented film mainly composed of polydaricholic acid containing 60% by weight or more of a repeating unit represented by the formula: wherein the melt viscosity of polydalicholic acid in the oriented film is 20 ° C. higher than the melting point and the shear rate is 100. Oriented film that is not less than 20 Pa · s and less than 500 Pa · s when measured under the condition of / sec.
6. 成形時の設定厚みを 25 ^ mとして測定したとき、 設定厚みからのばらつ き (R%) が 30%未満である請求項 5記載の配向フィルム。 6. The oriented film according to claim 5, wherein a variation (R%) from the set thickness is less than 30% when the set thickness at the time of molding is measured as 25 m.
7. 下記式 (1) 7. The following formula (1)
0-CH.-C 0-CH.-C
2 II (1)  2 II (1)
o で表わされる繰り返し単位を 60重量%以上含有するポリグリコール酸を主成分 とする延伸ブロー容器であって、 該延伸ブロー容器中のポリダリコール酸の溶融 粘度が、 融点より 20°C高い温度と剪断速度 100/秒の条件で測定したとき、 20 P a · s以上 500P a ' s未満である延伸ブロー容器。  A stretch-blow container mainly composed of polyglycolic acid containing at least 60% by weight of a repeating unit represented by o, wherein the melt viscosity of polydalicholic acid in the stretch-blow container is 20 ° C higher than the melting point and a shearing temperature. A stretch blow container having a speed of 20 Pa · s or more and less than 500 Pa's when measured at a speed of 100 / sec.
8. 成形時の設定胴体部厚みを 100 zmとして測定したとき、 設定厚みから のばらつき (R%) が 30%未満である請求項 7記載の延伸ブロー容器。 8. The stretch blow container according to claim 7, wherein a variation (R%) from the set thickness is less than 30% when the set body thickness at the time of molding is measured as 100 zm.
9. 下記式 (1) 9. The following formula (1)
0-CH2-C 0-CH 2 -C
(1) で表わされる繰り返し単位を 60重量%以上含有するポリグリコール酸を主成分 とする層の少なくとも片面に熱可塑性樹脂層が形成された層構成を有する多層成 形物であって、 該ポリダリコール酸を主成分とする層中のポリダリコール酸の溶 融粘度が、 融点より 20 高い温度と剪断速度 100Z秒の条件で測定したとき、Polyglycolic acid containing 60% by weight or more of the repeating unit represented by (1) as the main component A multilayer molded article having a layer structure in which a thermoplastic resin layer is formed on at least one surface of a layer to be formed, wherein the melt viscosity of polydalicholate in the layer containing polydalicholate as a main component is higher than the melting point by 20. When measured under conditions of temperature and shear rate 100Z seconds,
20 P a · s以上 500 P a · s未満である多層成形物。 Multi-layer molded product of 20 Pa · s or more and less than 500 Pa · s.
10. 多層シートである請求項 9記載の多層成形物。 下記式 (1)
Figure imgf000051_0001
10. The multilayer molded article according to claim 9, which is a multilayer sheet. The following formula (1)
Figure imgf000051_0001
で表わされる繰り返し単位を 60重量%以上含有するポリグリコ一ル酸を主成分 とする層の少なくとも片面に熱可塑性樹脂層が形成された層構成を有する多層中 空容器であって、 該ポリグリコール酸を主成分とする層中のポリダリコール酸の 溶融粘度が、 融点より 20°C高い温度と剪断速度 100Z秒の条件で測定したと き、 20Pa ' s以上 500P a * s未満である多層中空容器。 12. 多層延伸ブロー容器である請求項 1 1記載の多層中空容器。 A multilayer hollow container having a layer structure in which a thermoplastic resin layer is formed on at least one surface of a layer containing polyglycolic acid as a main component containing a repeating unit represented by the formula: A multilayer hollow container having a melt viscosity of polydalicholate in a layer mainly composed of 20 Pa's or more and less than 500 Pa * s when measured at a temperature 20 ° C higher than the melting point and a shear rate of 100 Z seconds. 12. The multilayer hollow container according to claim 11, which is a multilayer stretch blow container.
13. ポリダリコール酸を主成分とする層の両面に熱可塑性樹脂層が形成され た層構成を有する請求項 11記載の多層中空容器。 14. 成形時のポリダリコール酸を主成分とする層の設定厚みを 5 mとして 測定したとき、 設定厚みからのばらつき (R%) が 200%未満である請求項 1 1記載の多層中空容器。 13. The multilayer hollow container according to claim 11, wherein the multilayer hollow container has a layer configuration in which a thermoplastic resin layer is formed on both sides of a layer containing polydalicholate as a main component. 14. The multilayer hollow container according to claim 11, wherein a variation (R%) from the set thickness is less than 200% when the set thickness of the layer mainly containing polydalicholate during molding is measured as 5 m.
15. 下記式 ( 1 )
Figure imgf000052_0001
15. The following equation (1)
Figure imgf000052_0001
で表わされる繰り返し単位を 60重量%以上含有するポリダリコール酸を主成分 とする層の少なくとも片面に熱可塑性樹脂層が形成された層構成を有する多層フ イルムであって、 該ポリグリコール酸を主成分とする層中のポリダリコール酸の 溶融粘度が、 融点より 20°C高い温度と剪断速度 100/秒の条件で測定したと き、 20 P a · s以上 500 P a · s未満である多層フィルム。 A multilayer film having a layer structure in which a thermoplastic resin layer is formed on at least one surface of a layer mainly composed of polydalicholic acid containing a repeating unit represented by the following formula in an amount of 60% by weight or more. A multilayer film having a melt viscosity of polydaricholic acid in a layer of not less than 20 Pa · s and less than 500 Pa · s when measured at a temperature 20 ° C. higher than the melting point and a shear rate of 100 / sec.
16. ポリダリコール酸を主成分とする層の両面に熱可塑性樹脂層が形成され た層構成を有する請求項 15記載の多層フィルム。 17. 成形時のポリグリコール酸を主成分とする層の設定厚みを 3 として 測定したとき、 設定厚みからのばらつき (R%) が 200 %未満である請求項 1 5記載の多層フィルム。 16. The multilayer film according to claim 15, wherein the multilayer film has a layer configuration in which a thermoplastic resin layer is formed on both surfaces of a layer containing polydalicholate as a main component. 17. The multilayer film according to claim 15, wherein a variation (R%) from the set thickness is less than 200% when the set thickness of the layer mainly containing polyglycolic acid at the time of molding is measured as 3.
8. 多層延伸フィルムである請求項 17記載の多層フィルム 8. The multilayer film according to claim 17, which is a multilayer stretched film.
9. 共押出による多層延伸フィルムである請求項 18記載の多層フィルム 9. The multilayer film according to claim 18, which is a multilayer stretched film obtained by co-extrusion.
20. 熱収縮性フィルムである請求項 18記載の多層フィルム。 20. The multilayer film according to claim 18, which is a heat-shrinkable film.
PCT/JP2002/007006 2001-07-10 2002-07-10 Molded polyglycolic acid WO2003006535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-209709 2001-07-10
JP2001209709A JP2003020344A (en) 2001-07-10 2001-07-10 Polyglycolic acid molded article

Publications (1)

Publication Number Publication Date
WO2003006535A1 true WO2003006535A1 (en) 2003-01-23

Family

ID=19045328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007006 WO2003006535A1 (en) 2001-07-10 2002-07-10 Molded polyglycolic acid

Country Status (2)

Country Link
JP (1) JP2003020344A (en)
WO (1) WO2003006535A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450752C (en) * 2003-10-01 2009-01-14 株式会社吴羽 Method for producing multilayer stretch-molded article
JPWO2006107099A1 (en) 2005-04-01 2008-10-02 株式会社クレハ Multilayer blow molded container and method for producing the same
JP4728113B2 (en) * 2005-12-09 2011-07-20 株式会社クレハ Heat-shrinkable multilayer film for deep drawing and method for producing the same
JP4794365B2 (en) * 2006-06-08 2011-10-19 株式会社クレハ Method for producing polyglycolic acid resin blown film
EP2189486A4 (en) 2007-09-12 2012-11-21 Kureha Corp Low-melt-viscosity polyglycolic acid, process for producing the same, and use of the low-melt-viscosity polyglycolic acid
CN101910287A (en) * 2007-12-27 2010-12-08 株式会社吴羽 Polypropylene resin composition, molded article produced from the resin composition, and method for production of the molded article
WO2011033964A1 (en) * 2009-09-16 2011-03-24 株式会社クレハ Laminate production method
JP2011084060A (en) 2009-09-17 2011-04-28 Fujifilm Corp Master model of lens array and method of manufacturing the same
JP6785165B2 (en) * 2017-01-27 2020-11-18 株式会社クレハ Manufacturing method of molded product
JP2020044717A (en) * 2018-09-19 2020-03-26 株式会社平和化学工業所 Resin molding and method for producing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991766A (en) * 1973-05-31 1976-11-16 American Cyanamid Company Controlled release of medicaments using polymers from glycolic acid
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film
JPH09227666A (en) * 1996-02-20 1997-09-02 Mitsubishi Chem Corp Polyester film
EP0805175A1 (en) * 1996-04-30 1997-11-05 Kureha Kagaku Kogyo Kabushiki Kaisha Oriented polyglycolic acid film and production process thereof
EP0805176A1 (en) * 1996-04-30 1997-11-05 Kureha Kagaku Kogyo Kabushiki Kaisha Polyglycolic acid sheet and production process thereof
EP0805182A1 (en) * 1996-04-30 1997-11-05 Kureha Kagaku Kogyo Kabushiki Kaisha Injection-molded product of polyglycolic acid and production process thereof
EP0806283A2 (en) * 1996-05-09 1997-11-12 Kureha Kagaku Kogyo Kabushiki Kaisha Stretch blow molded container and production process thereof
EP0925915A1 (en) * 1996-09-13 1999-06-30 Kureha Kagaku Kogyo Kabushiki Kaisha Gas-barrier, multi-layer hollow container
JP2000271988A (en) * 1999-03-26 2000-10-03 Toyobo Co Ltd Manufacture of aliphatic polyester film
JP2001106805A (en) * 1999-10-04 2001-04-17 Asahi Kasei Corp Adhesive heat resistant wrap film
JP2002226689A (en) * 2001-01-31 2002-08-14 Asahi Kasei Corp Glycolic acid type resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676945A (en) * 1950-10-18 1954-04-27 Du Pont Condensation polymers of hydroxyacetic acid
JPH06278785A (en) * 1993-03-24 1994-10-04 Chuo Kagaku Kk Biodegradable sauce bottle
JP3809850B2 (en) * 1996-05-09 2006-08-16 株式会社クレハ Stretch blow container and manufacturing method thereof
JP3838757B2 (en) * 1996-09-13 2006-10-25 株式会社クレハ Gas barrier multilayer hollow container

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991766A (en) * 1973-05-31 1976-11-16 American Cyanamid Company Controlled release of medicaments using polymers from glycolic acid
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film
JPH09227666A (en) * 1996-02-20 1997-09-02 Mitsubishi Chem Corp Polyester film
EP0805175A1 (en) * 1996-04-30 1997-11-05 Kureha Kagaku Kogyo Kabushiki Kaisha Oriented polyglycolic acid film and production process thereof
EP0805176A1 (en) * 1996-04-30 1997-11-05 Kureha Kagaku Kogyo Kabushiki Kaisha Polyglycolic acid sheet and production process thereof
EP0805182A1 (en) * 1996-04-30 1997-11-05 Kureha Kagaku Kogyo Kabushiki Kaisha Injection-molded product of polyglycolic acid and production process thereof
EP0806283A2 (en) * 1996-05-09 1997-11-12 Kureha Kagaku Kogyo Kabushiki Kaisha Stretch blow molded container and production process thereof
EP0925915A1 (en) * 1996-09-13 1999-06-30 Kureha Kagaku Kogyo Kabushiki Kaisha Gas-barrier, multi-layer hollow container
JP2000271988A (en) * 1999-03-26 2000-10-03 Toyobo Co Ltd Manufacture of aliphatic polyester film
JP2001106805A (en) * 1999-10-04 2001-04-17 Asahi Kasei Corp Adhesive heat resistant wrap film
JP2002226689A (en) * 2001-01-31 2002-08-14 Asahi Kasei Corp Glycolic acid type resin composition

Also Published As

Publication number Publication date
JP2003020344A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
EP0925915B1 (en) Gas-barrier, multi-layer hollow container
US6245437B1 (en) Gas-barrier composite film
JP3838757B2 (en) Gas barrier multilayer hollow container
US6312772B1 (en) Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-polyester thermoplastic polymer
US6268026B1 (en) Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-liquid crystalline polyester and method for forming same
JP3913847B2 (en) Gas barrier composite film
JPS63134240A (en) Multilayer biaxial oriented heat-set article and manufacture
JP2006045317A (en) Heat-shrinkable polyester film and formed piece and vessel produced by using the same
JP4243926B2 (en) Biodegradable heat shrinkable film and shrink package using the same
US6773735B1 (en) Multi-layered thermoplastic container
WO2003006535A1 (en) Molded polyglycolic acid
JPWO2003099558A1 (en) Biodegradable heat-resistant hard resin molded container
WO2005032800A1 (en) Method for producing multilayer stretch-molded article
CN105778452A (en) Biodegradable heat shrinking film
JP4758097B2 (en) Multilayer stretch molding
JPH10337772A (en) Stretching blown container and its manufacture
JP3997102B2 (en) Multilayer blow molded container
JP2005007610A (en) Biodegradable multilayered heat-shrinkable film and package
JP3726682B2 (en) Stretch molded container
JP3773440B2 (en) Biodegradable resin products
JP4285016B2 (en) Flat polyester stretch molding
WO2014161652A1 (en) Container for a food product, beverage or pharmaceutical product
Proffit Packaging of heat preserved foods in plastic containers
JPS61255857A (en) Multilayer oriented polyester bottle
MXPA99002736A (en) Transparent oxygen-scavenging article including biaxially-oriented polyester

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase