JP3726682B2 - Stretch molded container - Google Patents

Stretch molded container Download PDF

Info

Publication number
JP3726682B2
JP3726682B2 JP2000403280A JP2000403280A JP3726682B2 JP 3726682 B2 JP3726682 B2 JP 3726682B2 JP 2000403280 A JP2000403280 A JP 2000403280A JP 2000403280 A JP2000403280 A JP 2000403280A JP 3726682 B2 JP3726682 B2 JP 3726682B2
Authority
JP
Japan
Prior art keywords
polylactic acid
stretch
ratio
resin
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000403280A
Other languages
Japanese (ja)
Other versions
JP2002201293A (en
Inventor
卓郎 伊藤
祐登 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2000403280A priority Critical patent/JP3726682B2/en
Publication of JP2002201293A publication Critical patent/JP2002201293A/en
Application granted granted Critical
Publication of JP3726682B2 publication Critical patent/JP3726682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、ポリ乳酸を主体とする樹脂から形成された延伸成形容器に関し、より詳細には、延伸成形性に優れ、容器の耐熱性、透明性が向上されたポリ乳酸を主体とする樹脂から形成された延伸成形容器に関する。
【0002】
プラスチック廃棄物の理想的解決法として、自然環境で消滅する分解性プラスチックが注目されており、中でもバクテリヤや真菌類が体外に放出する酵素の作用で崩壊する生分解性プラスチックが従来より使用されている。
【0003】
しかしながら、この生分解性プラスチックは、生分解性など環境との調和の点では優れているものの、成形性や延伸成形物の機械的強度等の点で未だ充分満足し得るものではなかった。
例えば、生分解性プラスチックの中でも脂肪族ポリエステルは、樹脂の溶融物性が劣り、ダイレクトブロー、射出延伸成形、シートのサーモフォーム成形などの成形が困難であるという問題を有している。このため、無機フィラーの添加による溶融張力の向上(特開平5−289623号公報)やジイソシアネートやエポキシ化合物、酸無水物を用いた鎖長延伸による高分子量化(特開平7−205278号公報)が提案されている。
【0004】
脂肪族ポリエステルとしては従来より、例えばポリヒドロキシブチレート(PHB)、3−ヒドロキシブチレート(3HB)と3−ヒドロキシバリレート(3HV)とのランダムコポリマー、ポリ(ε−カプロラクトン)(PCL)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネート・アジペート(PBAS)、ポリ乳酸(PLLA)等が知られている。
【0005】
これらの脂肪族ポリエステルの中で、工業的に量産され入手が容易であり、環境にも優しい脂肪族ポリエステルとして、特にポリ乳酸が挙げられる。ポリ乳酸(PLLA)は、トウモロコシなどの穀物でんぷんを原料とする樹脂であり、でんぷんの乳酸発酵物、L−乳酸発酵物、L−乳酸をモノマーとする重合体である。一般にそのダイマーであるラクタイドの開環重合法、及び直接重縮合法により製造される。この重合体は、自然界に存在する微生物により、水と炭酸ガスにより分解され、完全リサイクルシステム型の樹脂としても着目されている。またそのガラス転移点(Tg)も約60℃とポリエチレンテレフタレートのTgに近いという利点を有している。
【0006】
【発明が解決しようとする課題】
しかしながら、一般に包装容器の分野で使用されているポリ乳酸は、他の脂肪族ポリエステルと同様に、成形性等の点で未だ解決しなければならない問題点を有している。
すなわち、ポリ乳酸には、後述するように、D−乳酸、L−乳酸、及びDL−乳酸から成るものがあり、この中でもL−乳酸から成るポリ(L−乳酸)は、延伸により配向結晶を形成し、降伏点強度や弾性率、熱的寸法安定性などの機械的強度が向上するため、包装容器の分野で使用可能であるが、一方、L−乳酸からのみからなるポリ乳酸は光学純度が高く、高結晶性であり、プリフォームの加熱並びにその後の延伸成形にて結晶形成や過延伸に由来する白化が生じてしまい、配向結晶性の付与と透明性を兼ね備える事が困難であり、実用上の問題を有している。
【0007】
従って本発明の目的は、ポリ乳酸を主体とする樹脂から形成された延伸成形容器において、透明性、延伸成形性、熱的寸法安定性を兼ね備えた延伸成形容器を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、光学活性異性体(d)の比率が4乃至10%のポリ乳酸と光学活性異性体(d)の比率が0.5乃至1.5%のポリ乳酸をブレンドして成るポリ乳酸から形成された延伸成形容器であって、結晶化開始温度が75℃以上で、示差走査熱量計で測定した温度75乃至160℃の範囲の結晶化発熱温度域に実質上二山のピークを有すると共に、側壁部における波長465nmの光線透過率が60%以上であることを特徴とする延伸成形容器が提供される。
本発明の延伸成形容器においては、温度55℃での側壁部の軸方向収縮率が4%以下であること、が好ましい。
【0009】
【発明の実施形態】
本発明の延伸成形容器は、結晶化開始温度が75℃以上で、示差走査熱量計(DSC)で測定した温度75乃至160℃の範囲の結晶化発熱温度域に実質上二山のピークを有することを特徴とするものである。
【0010】
ポリ乳酸は、下記式(1)
【化1】

Figure 0003726682
で表される反復単位から成り、構成単位がL−乳酸のみから成るポリ(L−乳酸)、D−乳酸のみから成るポリ(D−乳酸)、及びL−乳酸単位とD−乳酸単位が任意の割合で存在するポリ(DL−乳酸)が存在する。
【0011】
前述した通り、容器の機械的強度を向上させるためには光学純度の高いポリ乳酸を用いることが望ましいが、高結晶性であるため、延伸成形により熱結晶化して白化を生じやすい。一方、延伸成形性に優れた光学純度(光学純度の低い)のポリ乳酸では、延伸成形において配向結晶化しにくく、その結果耐熱性に劣ることになる。
本発明においては、結晶化開始温度が75℃以上のポリ乳酸を用い、分子鎖中に光学活性異性体(d)を不均一分散させることにより、生分解性を有しながら、透明性、延伸成形性、耐熱性を兼ね備えた延伸成形容器を提供することが可能となるのである。
一方、光学活性異性体(d)が少ない場合には、延伸成形途上で結晶化が進行し、優れた透明性を得ることができず、その結果、延伸成形が困難になり、透明性を付与することができなくなる。
【0012】
また、本発明に用いるポリ乳酸乃至その組成物は、結晶化開始温度が75℃以上であることも重要であり、結晶化温度が75℃よりも低い場合は、成形に際して過延伸による白化が生じてしまい、延伸することが困難となっている。
【0013】
更に本発明の延伸成形容器においては、示差走査熱量計(DSC)で測定した温度75乃至160℃の範囲の結晶化範囲温度域に実質上二山のピークを有することが重要である。
図1は、ポリ乳酸の代表的なDSCカーブ、図3は光学活性異性体(d)2.0%含有のポリ乳酸のDSCカーブであり、これらは何れも、結晶化範囲温度域に一つのピークのみを有している。これに対し、本発明で用いるポリ乳酸は、図2に示すように、結晶化温度域に二つのピークを有しているのである。すなわち、本発明の延伸成形容器においては、低温結晶化成分と高温結晶化成分の両方を有していることから、透明性を維持したまま延伸成形が可能になると共に、配向結晶を付与することが可能となり、あわせて耐熱性を向上させることが可能となるのである。このことは後述する実施例の結果からも明らかであり、光学活性異性体(d)比率が2.0%と同比率のポリ乳酸においても、シングルピークを有するポリ乳酸では、延伸成形過程で白化を生じ、透明性を付与することができない(比較例1及び比較例2)のに対し、ダブルピークを有する本発明の延伸成形容器においては、白化を生じることなく、透明性に優れている容器を提供できる。(実施例1及び2)。
【0014】
(ポリ乳酸)
本発明に用いるポリ乳酸は、勿論これに限定されないが、10000〜300000、特に20000〜250000の範囲の重量平均分子量を有することが好ましい。また密度1.26〜1.20g/cm、融点165〜200℃、メルトフローレート(ASTM D1238,190℃)2〜20g/10分の範囲にあることが好ましい。
【0015】
本発明の延伸成形容器においては、光学活性異性体(d)の比率が高いポリ乳酸(A)と光学活性異性体(d)の比率が低いポリ乳酸(B)をブレンドして用いることが望ましい。光学活性異性体(d)の比率が高いとは、一般に4乃至10%の範囲で光学活性異性体(d)を含有する場合であり、また光学活性異性体(d)の比率が低いとは、一般に0.5乃至1.5%の範囲で光学活性異性体(d)を含有する場合である。
本発明においては、光学活性異性体の平均比率が1.5〜3.5%の範囲に配合することが望ましい。また、ブレンドの方法としては、ドライブレンドやメルトブレンド等を挙げることができ、更に、必要により固相重合を施すことも可能である。
【0016】
本発明の容器においては、上記ポリ乳酸を単独で使用することもできるし、他の脂肪族ポリエステル或いは他の樹脂とのブレンド物として使用することもできる。
他の脂肪族ポリエステルとしては、3−ヒドロキシブチレート、3−ヒドロキシバリレート、3−ヒドロキシカプロエート、3−ヒドロキシヘプタノエート、3−ヒドロキシオクタノエート、3−ヒドロキシナノエート、3−ヒドロキシデカノエート、γ−ブチロラクトン、δ−バレロラクトン、ε−カプロラクトン等のポリヒドロキシアルカノエート、或いはこれらの共重合体である。
また、本発明の容器は上記ポリ乳酸乃至その樹脂組成物の単層で使用することもできるし、内容物の性状に応じて、エチレン・ビニルアルコール共重合体ケン化物、メタキシリレンアジパミド(MXD6)、環状オレフィン共重合体等の層を設けて多層とすることも、金属酸化物コーティング層を設けることも可能である。
【0017】
更に、ブレンド物或いは積層体の形で使用可能な他の樹脂としては、バリアー樹脂、例えば酸素に対してバリアー性を示す水酸基含有熱可塑性樹脂、ナイロン樹脂、バリアー性ポリエステル樹脂、ハイニトリル樹脂や、水蒸気に対してバリアー性を示す環状オレフィン系共重合体等を挙げることができる。
これらの中でも、生分解性の点では水酸基含有樹脂が好ましく、熱成形が可能である限り、任意の樹脂を用いることができる。この樹脂は、その分子鎖中に、水酸基を有する反復単位と、樹脂に熱成形性を付与する単位とを有している。水酸基含有反復単位はビニルアルコール単位、ヒドロキシアルキル(メタ)アクリレート単位であってよいが、生分解性の点ではビニルアルコール単位が好ましい。この水酸基含有樹脂中に含有される他の単位は、エチレン、プロピレン等のオレフィン単位、酢酸ビニル等のビニルエステル単位、アルキル(メタ)アクリレート単位等が挙げられる。またこれらの水酸基含有樹脂は、少なくともフィルムを形成するに足る分子量を有するべきである。
【0018】
好適な水酸基含有樹脂は、10乃至40モル%のエチレン単位と、40乃至88モル%のビニルアルコール単位と、50モル%以下のエステル含有ビニル単位とを含有する共重合体からなる。
このような水酸基含有重合体をブレンド物或いは積層体として用いることで、延伸成形体のガスバリアー性を向上させることができ、しかも生分解性を実質上阻害しないという利点が達成される。
【0019】
本発明の容器には、その用途に応じて、各種着色剤、充填剤、無機系或いは有機系の補強剤、滑剤、可塑剤、レベリング剤、界面活性剤、増粘剤、減粘剤、安定剤、抗酸化剤、紫外線吸収剤、防錆剤等を、公知の処方に従って配合することができる。
【0020】
(延伸成形容器及びその製法)
本発明の延伸ブロー成形体は、上述したポリ乳酸乃至その樹脂組成物から成る層を備えた予備成形体(プリフォーム)を二軸延伸を行うことにより製造される。
予備成形体(プリフォーム)の製造は、それ自体公知の押出成形法や射出成形法、圧縮成形法で製造することができる。
例えば、溶融樹脂をTーダイを通して押し出しすることにより、延伸フィルムの薄肉シート、及び、フィルムや、カップへの圧空成形乃至プラグアシスト成形用のシートが成形される。また、溶融樹脂をリングダイを通して押し出しすることにより、容器成形用のパイプ状プリフォームも成形することができる。
更に、溶融樹脂を、スクリュー或いはプランジャーにより、キャビテイ金型とコア金型とからなる金型中に射出することで、ボトルなどの立体容器用のプリフォームが成形される。また、溶融樹脂のパリソンをキャビテイ金型とコア金型で圧縮することでもボトルなどの立体用プリフォームが得られる。
【0021】
ポリ乳酸と他の樹脂、例えば水酸基含有樹脂との積層体から成る予備成形体を製造するには、それ自体公知の積層技術が使用され、例えば押出成形法の場合、樹脂の種類に対応する押出機を用い、多層ダイを用いて共押出することにより、多層の予備成形体を製造する。
また、射出成形では、それ自体公知の同時共射出法や逐次共射出法により、多層プリフォームを形成することができる。更に、圧縮成形法でも、共押出などにより多層の溶融樹脂パリソンを形成することで、多層プリフォームを製造することができる。
【0022】
得られたプリフォームは、赤外線加熱、熱風加熱、高周波誘導加熱或いは超音波加熱等の加熱手段によって加熱した後、金型内で延伸ブローすることにより延伸成形体が得られる。
延伸温度は、ポリ乳酸とブレンド或いは積層する樹脂の種類等によっても相違するが、一般的にいって、ポリ乳酸のガラス転移点(Tg)を基準とし、Tg+10℃乃至Tg+20℃の温度が適当である。延伸倍率は一般的に言って、機械方向(容器軸方向)の延伸倍率が1.4乃至4.0倍、横断方向(容器周方向)の延伸倍率が1.4乃至4.0倍で、面積延伸倍率が2乃至16倍となるように延伸することが好ましい。
【0023】
本発明の延伸成形容器は、後述する実施例の結果からも明らかなように、温度55℃での側壁部の軸方向収縮率が4%以下、特に3%以下と、耐熱性、特に寸法安定性に優れている。
また、本発明の延伸成形容器は、過延伸や過加熱による白化がなく、側壁部における波長465nmの光線透過率が60%以上、特に70%以上と透明性にも優れている。
【0024】
【実施例】
以下に本発明の実施例を示す。尚、本発明は以下の実施例に限定されるものではない。
(樹脂)
(株)島津製作所より、重量平均分子量が160000で、且つ光学活性異性体(d)比 率が1.2%のポリ乳酸樹脂(Lacty9010)、2.0%のポリ乳酸樹脂(Lacty9020)、及び5.0%のポリ乳酸樹脂(Lacty5000)を購入した。
(ボトル成形)
射出成形機を用い、190℃〜200℃条件下、金型温度15℃にて、口径28mmφのプリフォームを射出成形した。次にプリフォームを赤外線加熱ヒーターにて80〜90℃に再加熱後、金型ブロー成形機を用い、面積延伸倍率4〜10倍の延伸にて、500ml容の平均肉厚300μmのボトルを作成した。
【0025】
(成形ボトルの外観評価)
ブロー成形直後、過延伸によるマイクロボイド状白化、ならびに過加熱による結晶白化の有無を確認した。この場合、過延伸ならびに結晶形成による白化が生成したボトル(465nmにおける光線透過率が60%未満)を×とし、透明性が維持されていたボトル(465nmにおける光線透過率が60%以上)を○とした。
【0026】
(示差走査熱量測定)
SEIKO示差走査熱量計にて、プリフォームから切り出した10mg量のポリ乳酸試料を用い、40℃から200℃の温度範囲で昇温速度10℃/分にて測定した。尚、この場合、結晶化ピークのベースラインはガラス転移点吸熱ピーク終了後の平坦部ベースラインを高温側に延ばした直線とし、このベースラインから立ち上がった点を結晶化開始温度と定義した。
【0027】
(耐熱性)
得られた射出成形容器を55℃恒温槽に5日間保存し、容器側壁部の寸法変形を観察した。寸法が4%より大きく収縮したものを×とし、収縮が4%以下のものを○とした。
【0028】
(実施例1)
光学活性異性体(d)の比率が1.2%のポリ乳酸樹脂と光学活性異性体(d)の比率が5.0%のポリ乳酸樹脂を、それぞれ重量比率が78%と22%とするメルトブレンドを行い、平均光学活性異性体(d)比率が1.8%のポリ乳酸樹脂組成ペレットを作成した。次に、射出成形機を用い、190℃〜200℃条件下、金型温度15℃にて、口径28mmφのプリフォームを射出成形した。得られたプリフォームを赤外線加熱ヒーターにて90℃に再加熱後、面積延伸倍率4〜10倍の延伸倍率にて、ブロー成形機を用い、500ml容の平均肉厚300μmのボトルを成形した。
【0029】
(実施例2)
光学活性異性体(d)の比率が1.2%のポリ乳酸樹脂と光学活性異性体(d)の比率が5.0%のポリ乳酸樹脂を、それぞれ重量比率が78%と22%とするメルトブレンドを行った後、攪拌型減圧乾燥機を用い、160℃までの温度範囲で固相重合し、平均光学活性異性体(d)比率が1.8%のポリ乳酸樹脂組成ペレットを作成した。次に、射出成形機を用い、190℃〜200℃条件下、金型温度15℃にて、口径28mmφのプリフォームを射出成形した。得られたプリフォームを赤外線加熱ヒーターにて90℃に再加熱後、面積延伸倍率4〜10倍の延伸倍率にて、ブロー成形機を用い、500ml容の平均肉厚300μmのボトルを成形した。
【0030】
(比較例1)
光学活性異性体(d)の比率が2.0%のポリ乳酸樹脂を用いた。射出成形機を用い、190℃〜200℃条件下、金型温度15℃にて、口径28mmφのプリフォームを射出成形した。得られたプリフォームを赤外線加熱ヒーターにて90℃に再加熱後、面積延伸倍率4〜10倍の延伸倍率にて、ブロー成形機を用い、500ml容の平均肉厚300μmのボトルを成形した。
【0031】
(比較例2)
光学活性異性体(d)の比率が2.0%のポリ乳酸樹脂を用いた。射出成形機を用い、190℃〜200℃条件下、金型温度15℃にて、口径28mmφのプリフォームを射出成形した。得られたプリフォームを赤外線加熱ヒーターにて80℃に再加熱後、面積延伸倍率4〜10倍の延伸倍率にて、ブロー成形機を用い、500ml容の平均肉厚300μmのボトルを成形した。
【0032】
(比較例3)
光学活性異性体(d)の比率が1.2%のポリ乳酸樹脂と光学活性異性体(d)の比率が5.0%のポリ乳酸樹脂を、それぞれ重量比率が78%と22%となるメルトブレンドを行い、平均光学活性異性体(d)比率が1.8%のポリ乳酸樹脂組成ペレットを作成した。次に、射出成形機を用い、190℃〜200℃条件下、金型温度15℃にて、口径28mmφのプリフォームを射出成形した。得られたプリフォームを赤外線加熱ヒーターにて90℃に再加熱後、面積延伸倍率7〜25倍の延伸倍率にて、ブロー成形機を用い、500ml容の平均肉厚200μmのボトルを成形した。
【0033】
【表1】
Figure 0003726682
【0034】
【発明の効果】
本発明によれば、ポリ乳酸を主体とする樹脂から形成された延伸成形容器において、結晶化開始温度が75℃以上で、示差走査熱量計で測定した温度75乃至160℃の範囲の結晶化発熱温度域に実質上二山のピークを有することにより、延伸成形が可能で、透明性、耐熱性に優れた延伸成形容器を提供することにある。
【図面の簡単な説明】
【図1】一般的なポリ乳酸のDSCカーブを示す図である。
【図2】実施例1に用いたポリ乳酸のDSCカーブを示す図である。
【図3】比較例1及び2に用いたポリ乳酸のDSCカーブを示す図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a stretch-molded container formed from a resin mainly composed of polylactic acid. More specifically, the present invention relates to a resin composed mainly of polylactic acid which is excellent in stretch moldability and has improved heat resistance and transparency of the container. It relates to the formed stretch-molded container.
[0002]
As an ideal solution for plastic waste, degradable plastics that have disappeared in the natural environment have attracted attention. Among them, biodegradable plastics that have been destroyed by the action of enzymes released from the body by bacteria and fungi have been used. Yes.
[0003]
However, although this biodegradable plastic is excellent in terms of harmony with the environment, such as biodegradability, it has not yet been sufficiently satisfactory in terms of moldability, mechanical strength of the stretched molded product, and the like.
For example, among the biodegradable plastics, aliphatic polyesters have a problem that the melt properties of the resin are inferior, and molding such as direct blow, injection stretch molding, and thermoform molding of a sheet is difficult. For this reason, improvement of the melt tension by adding an inorganic filler (Japanese Patent Laid-Open No. 5-289623) and high molecular weight (Japanese Patent Laid-Open No. 7-205278) by chain length drawing using a diisocyanate, an epoxy compound, or an acid anhydride. Proposed.
[0004]
Conventional aliphatic polyesters include, for example, polyhydroxybutyrate (PHB), random copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV), poly (ε-caprolactone) (PCL), poly Butylene succinate (PBS), polybutylene succinate adipate (PBAS), polylactic acid (PLLA) and the like are known.
[0005]
Among these aliphatic polyesters, polylactic acid is particularly mentioned as an aliphatic polyester which is industrially mass-produced and easily available and is also environmentally friendly. Polylactic acid (PLLA) is a resin made from cereal starch such as corn, and is a polymer containing starch lactic acid fermentation product, L-lactic acid fermentation product, and L-lactic acid as monomers. In general, it is produced by a ring-opening polymerization method of the dimer lactide and a direct polycondensation method. This polymer is decomposed by water and carbon dioxide by microorganisms existing in nature, and has attracted attention as a completely recycle system type resin. Further, the glass transition point (Tg) has an advantage that it is about 60 ° C., which is close to that of polyethylene terephthalate.
[0006]
[Problems to be solved by the invention]
However, polylactic acid generally used in the field of packaging containers has a problem that still has to be solved in terms of moldability and the like, like other aliphatic polyesters.
That is, as will be described later, polylactic acid includes D-lactic acid, L-lactic acid, and DL-lactic acid, and among these, poly (L-lactic acid) composed of L-lactic acid exhibits oriented crystals by stretching. It can be used to improve the mechanical strength such as yield point strength, elastic modulus and thermal dimensional stability, so it can be used in the field of packaging containers. On the other hand, polylactic acid consisting only of L-lactic acid has optical purity. Is high and highly crystalline, whitening due to crystal formation and overstretching occurs in the heating and subsequent stretching of the preform, and it is difficult to combine orientation crystallinity and transparency, Has practical problems.
[0007]
Accordingly, an object of the present invention is to provide a stretch-molded container formed of a resin mainly composed of polylactic acid, which has transparency, stretch-moldability, and thermal dimensional stability.
[0008]
[Means for Solving the Problems]
According to the present invention, polylactic acid having a ratio of optically active isomer (d) of 4 to 10% and polylactic acid having a ratio of optically active isomer (d) of 0.5 to 1.5% are blended. A stretch-molded container formed from polylactic acid , having a crystallization start temperature of 75 ° C. or higher, and substantially two peaks in a crystallization exothermic temperature range of 75 to 160 ° C. measured with a differential scanning calorimeter. And a stretch-molded container characterized in that the light transmittance at a wavelength of 465 nm in the side wall portion is 60% or more .
In the stretch-molded container of the present invention, it is preferable that the axial shrinkage of the side wall at a temperature of 55 ° C. is 4% or less .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The stretch-molded container of the present invention has a crystallization start temperature of 75 ° C. or higher and substantially two peaks in the crystallization exothermic temperature range of 75 to 160 ° C. measured by a differential scanning calorimeter (DSC). It is characterized by this.
[0010]
Polylactic acid has the following formula (1)
[Chemical 1]
Figure 0003726682
A poly (L-lactic acid) consisting only of L-lactic acid, a poly (D-lactic acid) consisting only of D-lactic acid, and any L-lactic acid unit and D-lactic acid unit. There is poly (DL-lactic acid) present at a ratio of
[0011]
As described above, in order to improve the mechanical strength of the container, it is desirable to use polylactic acid having high optical purity. However, since it has high crystallinity, it tends to be whitened by thermal crystallization by stretch molding. On the other hand, polylactic acid with optical purity (low optical purity) excellent in stretch moldability is difficult to be oriented and crystallized in stretch molding, resulting in poor heat resistance.
In the present invention, polylactic acid having a crystallization start temperature of 75 ° C. or higher is used, and the optically active isomer (d) is heterogeneously dispersed in the molecular chain, thereby having transparency and stretching while having biodegradability. This makes it possible to provide a stretch-molded container having both moldability and heat resistance.
On the other hand, when the optically active isomer (d) is small, crystallization proceeds in the course of stretch molding, and excellent transparency cannot be obtained. As a result, stretch molding becomes difficult and transparency is imparted. Can not do.
[0012]
It is also important that the polylactic acid or the composition thereof used in the present invention has a crystallization start temperature of 75 ° C. or higher. When the crystallization temperature is lower than 75 ° C., whitening due to overstretching occurs during molding. It has become difficult to stretch.
[0013]
Further, in the stretch-molded container of the present invention, it is important to have substantially two peaks in the crystallization range temperature range of 75 to 160 ° C. measured by a differential scanning calorimeter (DSC).
FIG. 1 is a representative DSC curve of polylactic acid, and FIG. 3 is a DSC curve of polylactic acid containing 2.0% of the optically active isomer (d), both of which are in one crystallization range temperature range. It has only peaks. On the other hand, the polylactic acid used in the present invention has two peaks in the crystallization temperature region as shown in FIG. That is, since the stretch-molded container of the present invention has both a low-temperature crystallization component and a high-temperature crystallization component, stretch-molding is possible while maintaining transparency, and orientation crystals are imparted. It is possible to improve the heat resistance. This is clear from the results of the examples described later. Even in the case of polylactic acid having a ratio of optically active isomer (d) of 2.0%, the polylactic acid having a single peak is whitened during the stretch molding process. In the stretch-molded container of the present invention having a double peak, the container is excellent in transparency without causing whitening, whereas the transparency cannot be imparted (Comparative Example 1 and Comparative Example 2). Can provide. (Examples 1 and 2).
[0014]
(Polylactic acid)
The polylactic acid used in the present invention is of course not limited thereto, but preferably has a weight average molecular weight in the range of 10,000 to 300,000, particularly 20,000 to 250,000. The density is preferably in the range of 1.26 to 1.20 g / cm 3 , the melting point of 165 to 200 ° C., and the melt flow rate (ASTM D1238, 190 ° C.) of 2 to 20 g / 10 minutes.
[0015]
In the stretch-molded container of the present invention, it is desirable to use a blend of polylactic acid (A) having a high ratio of optically active isomer (d) and polylactic acid (B) having a low ratio of optically active isomer (d). . A high ratio of the optically active isomer (d) generally means that the optically active isomer (d) is contained in the range of 4 to 10%, and that the ratio of the optically active isomer (d) is low. In general, the optically active isomer (d) is contained in the range of 0.5 to 1.5%.
In the present invention, it is desirable that the average ratio of optically active isomers is blended in the range of 1.5 to 3.5%. Further, examples of the blending method include dry blending and melt blending, and solid phase polymerization can be performed as necessary.
[0016]
In the container of the present invention, the above polylactic acid can be used alone, or can be used as a blend with other aliphatic polyesters or other resins.
Other aliphatic polyesters include 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxycaproate, 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxynanoate, 3-hydroxy It is a polyhydroxyalkanoate such as decanoate, γ-butyrolactone, δ-valerolactone, ε-caprolactone, or a copolymer thereof.
In addition, the container of the present invention can be used as a single layer of the above polylactic acid or its resin composition. Depending on the properties of the content, the saponified ethylene / vinyl alcohol copolymer, metaxylylene adipamide Layers such as (MXD6) and cyclic olefin copolymer can be provided to form a multilayer, or a metal oxide coating layer can be provided.
[0017]
Furthermore, as other resins that can be used in the form of a blend or a laminate, a barrier resin, for example, a hydroxyl group-containing thermoplastic resin having a barrier property against oxygen, a nylon resin, a barrier polyester resin, a high nitrile resin, Examples thereof include a cyclic olefin copolymer that exhibits barrier properties against water vapor.
Among these, a hydroxyl group-containing resin is preferable in terms of biodegradability, and any resin can be used as long as thermoforming is possible. This resin has a repeating unit having a hydroxyl group and a unit imparting thermoformability to the resin in its molecular chain. The hydroxyl group-containing repeating unit may be a vinyl alcohol unit or a hydroxyalkyl (meth) acrylate unit, but a vinyl alcohol unit is preferred in terms of biodegradability. Examples of other units contained in the hydroxyl group-containing resin include olefin units such as ethylene and propylene, vinyl ester units such as vinyl acetate, and alkyl (meth) acrylate units. These hydroxyl group-containing resins should have a molecular weight sufficient to form at least a film.
[0018]
A preferred hydroxyl group-containing resin comprises a copolymer containing 10 to 40 mol% ethylene units, 40 to 88 mol% vinyl alcohol units, and 50 mol% or less ester-containing vinyl units.
By using such a hydroxyl group-containing polymer as a blend or a laminate, it is possible to improve the gas barrier properties of the stretch-molded product and to achieve the advantage that the biodegradability is not substantially inhibited.
[0019]
In the container of the present invention, various colorants, fillers, inorganic or organic reinforcing agents, lubricants, plasticizers, leveling agents, surfactants, thickeners, thickeners, stable, depending on the application. An agent, an antioxidant, an ultraviolet absorber, a rust inhibitor, and the like can be blended according to a known formulation.
[0020]
(Stretch molded container and its manufacturing method)
The stretch blow molded article of the present invention is produced by biaxially stretching a preform (preform) having a layer made of the above-described polylactic acid or a resin composition thereof.
The preform (preform) can be produced by a known extrusion molding method, injection molding method or compression molding method.
For example, by extruding the molten resin through a T-die, a thin sheet of stretched film and a sheet for pressure-air molding or plug assist molding on a film or cup are formed. Moreover, the pipe-shaped preform for container shaping | molding can also be shape | molded by extruding molten resin through a ring die.
Furthermore, a preform for a three-dimensional container such as a bottle is formed by injecting the molten resin into a mold composed of a cavity mold and a core mold with a screw or a plunger. Further, a three-dimensional preform such as a bottle can be obtained by compressing a molten resin parison with a cavity mold and a core mold.
[0021]
In order to produce a preform formed of a laminate of polylactic acid and another resin, such as a hydroxyl group-containing resin, a known lamination technique is used. For example, in the case of an extrusion molding method, an extrusion corresponding to the type of resin is used. A multilayer preform is produced by coextrusion using a multilayer die using a machine.
In injection molding, a multilayer preform can be formed by a co-injection method or a sequential co-injection method known per se. Furthermore, even by the compression molding method, a multilayer preform can be produced by forming a multilayer molten resin parison by coextrusion or the like.
[0022]
The obtained preform is heated by heating means such as infrared heating, hot air heating, high frequency induction heating or ultrasonic heating, and then stretched and blown in a mold to obtain a stretched molded body.
The stretching temperature differs depending on the type of resin blended or laminated with polylactic acid, but generally speaking, a temperature of Tg + 10 ° C. to Tg + 20 ° C. is appropriate based on the glass transition point (Tg) of polylactic acid. is there. Generally speaking, the draw ratio is 1.4 to 4.0 times in the machine direction (container axial direction), 1.4 to 4.0 times in the cross direction (container circumferential direction), It is preferable to stretch so that the area stretching ratio is 2 to 16 times.
[0023]
As is apparent from the results of Examples described later, the stretch-molded container of the present invention has an axial shrinkage rate of 4% or less, particularly 3% or less at a temperature of 55 ° C., heat resistance, particularly dimensional stability. Excellent in properties.
Moreover, the stretch-molded container of the present invention is not whitened by overstretching or overheating, and has excellent transparency with a light transmittance of 60% or more, particularly 70% or more, at a wavelength of 465 nm at the side wall.
[0024]
【Example】
Examples of the present invention are shown below. The present invention is not limited to the following examples.
(resin)
From Shimadzu Corporation, a polylactic acid resin (Lacty 9010) having a weight average molecular weight of 160000 and an optically active isomer (d) ratio of 1.2%, a 2.0% polylactic acid resin (Lacty 9020), and 5.0% polylactic acid resin (Lacty5000) was purchased.
(Bottle molding)
A preform having a diameter of 28 mmφ was injection-molded using an injection molding machine at a mold temperature of 15 ° C. under conditions of 190 ° C. to 200 ° C. Next, the preform is reheated to 80 to 90 ° C. with an infrared heater, and then a 500-ml bottle with an average wall thickness of 300 μm is prepared by stretching a stretch ratio of 4 to 10 times using a mold blow molding machine. did.
[0025]
(Appearance evaluation of molded bottles)
Immediately after blow molding, the presence or absence of microvoid whitening by overstretching and crystal whitening by overheating was confirmed. In this case, bottles in which whitening due to overstretching and crystal formation was generated (light transmittance at 465 nm is less than 60%) were evaluated as x, and bottles having transparency maintained (light transmittance at 465 nm was 60% or more) It was.
[0026]
(Differential scanning calorimetry)
Using a SEIKO differential scanning calorimeter, a 10 mg polylactic acid sample cut out from the preform was used and measured at a temperature rising rate of 10 ° C./min in a temperature range of 40 ° C. to 200 ° C. In this case, the base line of the crystallization peak was defined as a straight line obtained by extending the flat part base line after the end of the glass transition point endothermic peak to the high temperature side, and the point rising from this base line was defined as the crystallization start temperature.
[0027]
(Heat-resistant)
The obtained injection molded container was stored in a 55 ° C. constant temperature bath for 5 days, and dimensional deformation of the container side wall was observed. Those whose dimensions shrunk more than 4% were rated as x, and those whose shrinkage was 4% or less were marked as ◯.
[0028]
(Example 1)
The ratio of the optically active isomer (d) is 1.2% and the ratio of the optically active isomer (d) is 5.0%. The weight ratio is 78% and 22%, respectively. Melt blending was performed to prepare polylactic acid resin composition pellets having an average optically active isomer (d) ratio of 1.8%. Next, a preform with a diameter of 28 mmφ was injection-molded using an injection molding machine at a mold temperature of 15 ° C. under conditions of 190 ° C. to 200 ° C. The obtained preform was reheated to 90 ° C. with an infrared heater, and then a 500 ml bottle having an average wall thickness of 300 μm was formed using a blow molding machine at an area draw ratio of 4 to 10 times.
[0029]
(Example 2)
The ratio of the optically active isomer (d) is 1.2% and the ratio of the optically active isomer (d) is 5.0%. The weight ratio is 78% and 22%, respectively. After the melt blending, solid-phase polymerization was carried out in a temperature range up to 160 ° C. using a stirring type vacuum dryer to prepare polylactic acid resin composition pellets having an average optically active isomer (d) ratio of 1.8%. . Next, a preform with a diameter of 28 mmφ was injection-molded using an injection molding machine at a mold temperature of 15 ° C. under conditions of 190 ° C. to 200 ° C. The obtained preform was reheated to 90 ° C. with an infrared heater, and then a 500 ml bottle having an average wall thickness of 300 μm was formed using a blow molding machine at an area draw ratio of 4 to 10 times.
[0030]
(Comparative Example 1)
A polylactic acid resin having a ratio of the optically active isomer (d) of 2.0% was used. A preform having a diameter of 28 mmφ was injection-molded using an injection molding machine at a mold temperature of 15 ° C. under conditions of 190 ° C. to 200 ° C. The obtained preform was reheated to 90 ° C. with an infrared heater, and then a 500 ml bottle having an average wall thickness of 300 μm was formed using a blow molding machine at an area draw ratio of 4 to 10 times.
[0031]
(Comparative Example 2)
A polylactic acid resin having a ratio of the optically active isomer (d) of 2.0% was used. A preform having a diameter of 28 mmφ was injection-molded using an injection molding machine at a mold temperature of 15 ° C. under conditions of 190 ° C. to 200 ° C. The obtained preform was reheated to 80 ° C. with an infrared heater, and then a 500 ml bottle having an average wall thickness of 300 μm was formed using a blow molding machine at a draw ratio of 4 to 10 times the area draw ratio.
[0032]
(Comparative Example 3)
The ratio of the optically active isomer (d) is 1.2% and the ratio of the optically active isomer (d) is 5.0%, and the weight ratio is 78% and 22%, respectively. Melt blending was performed to prepare polylactic acid resin composition pellets having an average optically active isomer (d) ratio of 1.8%. Next, a preform with a diameter of 28 mmφ was injection-molded using an injection molding machine at a mold temperature of 15 ° C. under conditions of 190 ° C. to 200 ° C. The obtained preform was reheated to 90 ° C. with an infrared heater, and then a 500 ml bottle having an average wall thickness of 200 μm was formed using a blow molding machine at a draw ratio of 7 to 25 times the area draw ratio.
[0033]
[Table 1]
Figure 0003726682
[0034]
【The invention's effect】
According to the present invention, in a stretch-molded container formed of a resin mainly composed of polylactic acid, the crystallization start temperature is 75 ° C. or higher, and the crystallization exothermic temperature is in the range of 75 to 160 ° C. measured with a differential scanning calorimeter. An object of the present invention is to provide a stretch-molded container that can be stretch-molded and has excellent transparency and heat resistance by having substantially two peaks in the temperature range.
[Brief description of the drawings]
FIG. 1 is a diagram showing a DSC curve of general polylactic acid.
2 is a diagram showing a DSC curve of polylactic acid used in Example 1. FIG.
3 is a diagram showing a DSC curve of polylactic acid used in Comparative Examples 1 and 2. FIG.

Claims (2)

光学活性異性体(d)の比率が4乃至10%のポリ乳酸と光学活性異性体(d)の比率が0.5乃至1.5%のポリ乳酸をブレンドして成るポリ乳酸から形成された延伸成形容器であって、結晶化開始温度が75℃以上で、示差走査熱量計で測定した温度75乃至160℃の範囲の結晶化発熱温度域に実質上二山のピークを有すると共に、側壁部における波長465nmの光線透過率が60%以上であることを特徴とする延伸成形容器。It was formed from polylactic acid obtained by blending polylactic acid having a ratio of optically active isomer (d) of 4 to 10% and polylactic acid having a ratio of optically active isomer (d) of 0.5 to 1.5% . a stretch-formed container, at the crystallization starting temperature is 75 ° C. or more, which has a peak of substantially of two mountains on the crystallization exotherm temperature region in the range of temperature 75 to 160 ° C. as measured by differential scanning calorimetry, the side wall portions A stretch molded container having a light transmittance of 60% or more at a wavelength of 465 nm . 温度55℃での側壁部の軸方向収縮率が4%以下であることを特徴とする請求項1記載の延伸成形容器。  The stretch-molded container according to claim 1, wherein the axial shrinkage of the side wall at a temperature of 55 ° C is 4% or less.
JP2000403280A 2000-12-28 2000-12-28 Stretch molded container Expired - Lifetime JP3726682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000403280A JP3726682B2 (en) 2000-12-28 2000-12-28 Stretch molded container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000403280A JP3726682B2 (en) 2000-12-28 2000-12-28 Stretch molded container

Publications (2)

Publication Number Publication Date
JP2002201293A JP2002201293A (en) 2002-07-19
JP3726682B2 true JP3726682B2 (en) 2005-12-14

Family

ID=18867435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000403280A Expired - Lifetime JP3726682B2 (en) 2000-12-28 2000-12-28 Stretch molded container

Country Status (1)

Country Link
JP (1) JP3726682B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294475B2 (en) * 2001-07-19 2009-07-15 東洋製罐株式会社 Biaxial stretch blow thermoset container and method for manufacturing the same
JP3972950B2 (en) * 2006-02-27 2007-09-05 大紀商事株式会社 Biodegradable resin composition and molded product thereof
JP5157094B2 (en) 2006-05-30 2013-03-06 東洋製罐株式会社 Biodegradable stretch-molded container with excellent heat resistance
JP4745135B2 (en) * 2006-06-01 2011-08-10 ユニチカ株式会社 Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container
EP2130783A4 (en) * 2007-04-05 2015-10-28 Toyo Seikan Kaisha Ltd Multilayered polyester container and process for producing the same

Also Published As

Publication number Publication date
JP2002201293A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
KR100451403B1 (en) Gas-barrier, multi-layer hollow container
JP4256779B2 (en) Polyglycolic acid composition
JP4294475B2 (en) Biaxial stretch blow thermoset container and method for manufacturing the same
JPWO2006107099A1 (en) Multilayer blow molded container and method for producing the same
KR100265877B1 (en) Stretch blow molded container and production process thereof
JP2005343098A (en) Biodegradable stretch-molded container
JP3838757B2 (en) Gas barrier multilayer hollow container
JP3988619B2 (en) Polylactic acid resin composition and molded article comprising the same
JP5157094B2 (en) Biodegradable stretch-molded container with excellent heat resistance
JP2010529284A (en) Poly (hydroxyalkanoic acid) and articles using the same
JP3809850B2 (en) Stretch blow container and manufacturing method thereof
JP3726682B2 (en) Stretch molded container
JP2001354223A (en) Container made of aliphatic polyester
US8349955B2 (en) Poly(hydroxyalkanoic acid) plasticized with poly(trimethylene ether) glycol
JP2003020344A (en) Polyglycolic acid molded article
WO2016104689A1 (en) Polyester resin pellets, process for producing same, and molded article obtained therefrom
JP4117083B2 (en) Polylactic acid-based shrinkable sheet material, and packaging material or shrinkable label material using the same
JP2008037939A (en) Lactic acid resin composition
JP4285016B2 (en) Flat polyester stretch molding
JP4348960B2 (en) POLYESTER RESIN COMPOSITION, EXTENDED MOLDED BODY, AND METHOD FOR PRODUCING EXTENDED MOLDED BODY
JPH11310629A (en) New polyester and production of polyester
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article
WO2004003077A1 (en) Container formed by stretch forming
JP2003128797A (en) Biodegradable resin product
WO2024030347A1 (en) Dimensionally stable biodegradable film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3726682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term