JP2005343098A - Biodegradable stretch-molded container - Google Patents

Biodegradable stretch-molded container Download PDF

Info

Publication number
JP2005343098A
JP2005343098A JP2004167888A JP2004167888A JP2005343098A JP 2005343098 A JP2005343098 A JP 2005343098A JP 2004167888 A JP2004167888 A JP 2004167888A JP 2004167888 A JP2004167888 A JP 2004167888A JP 2005343098 A JP2005343098 A JP 2005343098A
Authority
JP
Japan
Prior art keywords
resin
layer
biodegradable
stretch
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167888A
Other languages
Japanese (ja)
Inventor
Takuro Ito
卓郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2004167888A priority Critical patent/JP2005343098A/en
Publication of JP2005343098A publication Critical patent/JP2005343098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a container by attaching a biodegradable resin laminate having a barrier layer to the outer surface of a container consisting of polylactic acid and performing stretch molding. <P>SOLUTION: The container by stretch molding, which is improved in gas barrier properties and decorative nature and provided with biodegradability, is produced by placing the biodegradable resin laminate on the outer surface of a preform before stretch molding having a bottom and made of the biodegradable resin, sticking or welding a film on the outer peripheral surface of the preform by an external heat and subjecting to stretch blow molding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリヒドロキシアルカノエート樹脂、特にポリ乳酸から成る生分解性容器に関し、より詳細には、バリアー性に顕著に優れた生分解性容器に関する。   The present invention relates to a biodegradable container made of a polyhydroxyalkanoate resin, particularly polylactic acid, and more particularly to a biodegradable container that is remarkably excellent in barrier properties.

使用済み樹脂廃棄物の理想的解決法の一つとして、自然環境で消滅する分解性樹脂が注目されており、中でもバクテリヤや真菌類が体外に放出する酵素の作用で崩壊する生分解性樹脂が知られている。   As one of the ideal solutions for used resin waste, degradable resins that disappear in the natural environment are attracting attention. Among them, biodegradable resins that decay by the action of enzymes released by bacteria and fungi outside the body are attracting attention. Are known.

しかしながら、一般に生分解性樹脂として知られているポリ乳酸等は、汎用樹脂に比べ、ガスバリアー性の点で未だ充分満足し得るものではなかった。   However, polylactic acid, which is generally known as a biodegradable resin, has not yet been sufficiently satisfactory in terms of gas barrier properties as compared with general-purpose resins.

したがって、ポリ乳酸容器は、酸素を嫌う内容品や水分の保存性が要求される内容品において、内容物の保存性を確保することができず、ガスバリアー性を向上させる技術確立が課題となっている。   Therefore, polylactic acid containers cannot secure the preservation of the contents in the contents that dislike oxygen and the contents that require the preservation of moisture, and the establishment of technology that improves the gas barrier property becomes an issue. ing.

このような問題点を解決するために、本発明者はガスバリアー性樹脂層を中間層に有し、内外層がポリ乳酸からなり、且つ、前記ガスバリアー性樹脂層と内外樹脂層間に接着性樹脂層を介在させた脂肪族ポリエステル多層容器を提案している(特許文献1参照)。また、本発明者は酸素吸収性樹脂層とガスバリアー性樹脂層を中間層に有し、内外層をポリ乳酸層とし、且つ、最外層に無機蒸着層を設けた、ポリ乳酸多層容器も提案している。(特許文献2参照)。   In order to solve such problems, the present inventor has a gas barrier resin layer in the intermediate layer, the inner and outer layers are made of polylactic acid, and adhesiveness between the gas barrier resin layer and the inner and outer resin layers. An aliphatic polyester multilayer container in which a resin layer is interposed has been proposed (see Patent Document 1). The present inventor also proposed a polylactic acid multilayer container having an oxygen-absorbing resin layer and a gas barrier resin layer as an intermediate layer, inner and outer layers as polylactic acid layers, and an inorganic vapor deposition layer as an outermost layer. doing. (See Patent Document 2).

また、延伸成形前のエチレンテレフタレート単位を主体とする有底プリフォーム胴部にポリエステル系フィルム層で剥離不能に積層したポリエステル樹脂製瓶体、およびもって装飾性またはガスバリアー性等の機能を外表面に付与した容器も提案されている(特許文献3参照)   Also, a polyester resin bottle body that is laminated with a polyester film layer so that it cannot be peeled off on a bottomed preform body mainly composed of ethylene terephthalate units before stretch molding, and has functions such as decorativeness and gas barrier properties on the outer surface. A container attached to the above has also been proposed (see Patent Document 3).

特開2001−347623号公報JP 2001-347623 A 特開2002−200725号公報Japanese Patent Laid-Open No. 2002-200725 特開2002−355886号公報JP 2002-355886 A

異種の樹脂層を共射出成形し積層する多層パリソン成形の場合、バリアー層に用いる樹脂の溶融流動性や結晶化温度が異なることから、樹脂選定とともに共射出成形条件が複雑となり、例えば、決められたプリフォーム位置に決められた層厚みでバリアー中間層を共射出することが極めて難しい技術となっている。又、一旦、所定スペックに共射出成形できたプリフォームにおいても、再加熱後、延伸成形する場合、好適延伸倍率の異なる樹脂をボトル形状に延伸成形することとなり、例えば、中間層バリアー層の好適延伸倍率と内外層樹脂の好適延伸倍率が異なると、過延伸によるマイクロボイド状の白化が生成したり、また、バリアー性中間層と内外樹脂層間の樹脂層間の界面接着性が低下するなど、延伸成形においても解決しなければならない問題が残されている。 In the case of multilayer parison molding in which different types of resin layers are co-injection molded and laminated, the melt flowability and crystallization temperature of the resin used for the barrier layer are different, so the co-injection molding conditions become complicated along with the resin selection. It is extremely difficult to co-inject the barrier intermediate layer with the layer thickness determined at the preform position. In addition, even in a preform that has been co-injection molded to a predetermined specification, when it is stretch-molded after reheating, a resin having a different suitable stretch ratio is stretch-molded into a bottle shape. For example, a suitable intermediate barrier layer If the draw ratio is different from the preferred draw ratio of the inner and outer layer resins, microvoided whitening may occur due to overstretching, and the interfacial adhesion between the barrier intermediate layer and the inner and outer resin layers may decrease. Problems still have to be solved in molding.

また、ガスバリアー性にすぐれた、ビニルアルコール系共重合体やポリオキシ酸樹脂乃至共重合体は、材料コストが高く、容器コスト面からもこれらのバリアー材の使用量に制限がある。容器コスト削減のためには、バリアー性を確保できる限り薄くすることが求められるが、前述した、多層パリソンの共射出成形による多層プリフォーム乃至その延伸成形では、バリアー中間層を可能な限り薄くしようとすると、ガスパリアー性樹脂の射出量が少なくなり、所定位置まで中間層を挿入することができず、均一肉厚のバリアー層を得る共射出成形が困難である。加えて、このような多層プリフォームを延伸成形しても、肉厚分布が不均一になりやすく又、得られた容器において、所定のガスバリアー性を安定して確保するのが困難である。そのため、ガスバリアー性向上技術として、共射出成形によるバリアー性向上技術は、解決しなければならない問題が多く、課題がのこされている。 In addition, vinyl alcohol copolymers and polyoxyacid resins or copolymers having excellent gas barrier properties have high material costs, and the amount of use of these barrier materials is limited from the viewpoint of container costs. In order to reduce the container cost, it is required to make the barrier property as thin as possible. However, in the multilayer preform by co-injection molding of the multilayer parison or the stretch molding described above, the barrier intermediate layer should be as thin as possible. If so, the injection amount of the gas-parier resin is reduced, the intermediate layer cannot be inserted to a predetermined position, and co-injection molding to obtain a uniform-thickness barrier layer is difficult. In addition, even if such a multilayer preform is stretch-molded, the thickness distribution tends to be non-uniform, and it is difficult to stably ensure a predetermined gas barrier property in the obtained container. Therefore, as a gas barrier property improving technique, the barrier property improving technique by co-injection molding has many problems that need to be solved and has been left with problems.

更に、前記特許文献3に係る発明においては、ゲートから射出された樹脂の流動方向に対し、装填フィルムがめくれたり、剥離したり、ならびに、フィルムのめずまりや射出不良が生じる問題を抱えており、前記発明が提案した、外表面に剥離不能なポリエステルフィルムを積層するプリフォームの射出成形においても未だ解決しなければ成らない問題が残されている。 Furthermore, the invention according to Patent Document 3 has problems that the loaded film is turned over or peeled off, and the film is squeezed or poorly injected in the flow direction of the resin injected from the gate. In the injection molding of a preform proposed by the above-mentioned invention in which a polyester film that cannot be peeled is laminated on the outer surface, there still remains a problem to be solved.

本発明によれば、生分解性樹脂よりなる筒状プリフォームの外周面に生分解性樹脂層を表層に有する樹脂積層体を密着等させ、しかる後に延伸成形することを特徴とする生分解性延伸成形容器が提供される。
本発明の生分解性延伸成形容器においては、
1.生分解性樹脂が、ポリ乳酸を主体とすること、
2.樹脂積層体が、ガスバリアー性樹脂層を有すること、
3.バリアー性樹脂層がビニルアルコール主体の共重合樹脂、またはポリオキシ酸主体の樹脂からなる生分解性樹脂群から選択された少なくとも1ヶの樹脂層を有すること、
4.プリフォームの外周面に樹脂積層体が密着していること、
5.容器が、樹脂積層体を装填後プリフォームを延伸成形してなること、
6,容器の胴部に樹脂積層体が密着乃至溶着していること、
が好ましい。
According to the present invention, the biodegradability is characterized in that a resin laminate having a biodegradable resin layer as a surface layer is brought into close contact with an outer peripheral surface of a cylindrical preform made of a biodegradable resin and then stretch-molded. A stretch-molded container is provided.
In the biodegradable stretch-molded container of the present invention,
1. The biodegradable resin is mainly composed of polylactic acid,
2. The resin laminate has a gas barrier resin layer;
3. The barrier resin layer has at least one resin layer selected from a vinyl alcohol-based copolymer resin, or a biodegradable resin group consisting of a polyoxyacid-based resin;
4). That the resin laminate is in close contact with the outer peripheral surface of the preform;
5). The container is formed by stretching a preform after loading the resin laminate,
6, the resin laminate is adhered or welded to the body of the container;
Is preferred.

本発明は、延伸成形前の生分解性樹脂製有底プリフォーム外表面に、樹脂積層体を装填後、外部からの熱により、プリフォーム外周面にシュリンクさせ密着または溶着させ、その後、延伸成形することにより、バリアー性を向上させた生分解性延伸成形容器ならびに、加飾性をも付与された生分解性延伸成形容器を提供する。本発明によれば、延伸成形前の生分解性樹脂製有底プリフォーム外表面に、バリアー性樹脂層を有する樹脂積層体を装填後、外部からの熱により、プリフォーム外周面に樹脂積層体を密着または溶着させ、かつ、延伸成形することにより、高価なバリアー樹脂の使用量を最小限にとどめることができる。加えて、プリフォームに装填する樹脂積層体のバリアー性樹脂層乃至内外層の樹脂厚みならびに樹脂組成を選択することで、要求されるバリアー性能を、樹脂積層体のみで、対処できるという特徴を有し、さらに、複雑な共射出成形条件の選定や材料改質等の煩雑な作業を削減できる。又、印刷を施すことにより加飾性を付与できる。つまり、バリアー樹脂層を均一に共射出成形しなくとも、所定のバリアー性を簡便に確保でき、加えて、同時に加飾も付与できる特徴を有している。 In the present invention, after loading a resin laminate on the outer surface of a bottomed preform made of biodegradable resin before stretch molding, the outer periphery of the preform is shrunk and adhered or welded by heat from the outside, and then stretch molded. By doing this, a biodegradable stretch-molded container with improved barrier properties and a biodegradable stretch-molded container with a decorative property are also provided. According to the present invention, a resin laminate having a barrier resin layer is loaded on the outer surface of a bottomed preform made of biodegradable resin before stretch molding, and then the resin laminate on the outer peripheral surface of the preform by heat from the outside. Can be adhered or welded and stretch-molded to minimize the amount of expensive barrier resin used. In addition, by selecting the resin thickness and resin composition of the barrier resin layer or inner and outer layers of the resin laminate to be loaded into the preform, the required barrier performance can be handled only by the resin laminate. Furthermore, complicated operations such as selection of complicated co-injection molding conditions and material modification can be reduced. Moreover, decorating property can be provided by printing. That is, even if the barrier resin layer is not uniformly co-injection molded, a predetermined barrier property can be easily secured, and at the same time, decoration can be imparted at the same time.

このように、本発明は、実際に生産可能な仕様形態を示すとともに、生分解性樹脂の中で、ポリヒドロキシアルカノエート樹脂、特にポリ乳酸よりなる筒状プリフォームの外周に、ポリ乳酸よりなる筒状プリフォームよりも融解温度の低い非晶乃至低結晶性のポリ乳酸樹脂を表層に有する樹脂積層体を熱密着・溶着させ、しかる後に延伸成形することを特徴としている。樹脂積層体に用いる樹脂の層構成ならびに樹脂組成は変更でき、かつ、従来の単層樹脂の射出プリフォームに適用でき、成形性の面で格段に簡便化されたバリアー性容器の製造方法を提供するに至っている。加えて、単に成形性やバリアー性を改善するだけでなく、プリフォームに装填する樹脂積層体を印刷することにより、情報伝達性も有し、容器の耐内容物特性にも優れ、加えて、堆肥中で微生物菌体外酵素により炭酸ガスと水に生分解するため、廃棄性においても、従来汎用樹脂製容器に比べ、優れているという特徴を見出したのである。 As described above, the present invention shows a specification form that can actually be produced, and among the biodegradable resins, the outer periphery of a cylindrical preform made of polyhydroxyalkanoate resin, particularly polylactic acid, is made of polylactic acid. A feature is that a resin laminate having an amorphous or low crystalline polylactic acid resin having a lower melting temperature than that of a cylindrical preform is heat-adhered and welded, and then stretch-molded. Provided a method for manufacturing a barrier container that can change the layer structure and resin composition of the resin used in the resin laminate, and can be applied to conventional single-layer resin injection preforms, and is greatly simplified in terms of moldability. Has led to. In addition to simply improving the moldability and barrier properties, printing the resin laminate that is loaded into the preform also provides information transmission and excellent container content resistance. Since biodegradation into carbon dioxide gas and water by microbial extracellular enzyme in compost, we have found that it is superior to conventional general-purpose resin containers in terms of disposal.

本発明の生分解性延伸成形容器は、プリフォームとプリフォームに装填する樹脂積層体がポリ乳酸樹脂と生分解性ガスバリアー樹脂から構成され、特に、この樹脂積層体が、ポリビニルアルコール樹脂乃至共重合体、及びポリオキシ酸樹脂乃至共重合体から成る群より選択されたバリアー性樹脂を少なくとも一層用いた多層構造となっており、特に、プリフォームに装着する樹脂積層体が加熱時に所定の熱収縮を生じることが重要となっている。実施例からも理解できるように、プリフォームへ装填した樹脂積層体は熱にて熱収縮し、プリフォーム外周に密着させ、且つ、延伸成形前の予備加熱にて樹脂積層体とプリフォーム外周面が熱溶着することが好ましい。このような構成を採用することにより、優れた延伸成形性や、ガスバリアー性のみならず、多層容器の情報伝達性や表面光沢、耐内容品特性、更には廃棄性に顕著に優れた生分解性延伸成形容器を提供できるという新規知見に基づくものである。 In the biodegradable stretch-molded container of the present invention, the preform and the resin laminate loaded into the preform are composed of a polylactic acid resin and a biodegradable gas barrier resin. In particular, the resin laminate is a polyvinyl alcohol resin or a co-polymer. It has a multilayer structure using at least one barrier resin selected from the group consisting of a polymer and a polyoxy acid resin or copolymer, and in particular, a resin laminate to be attached to a preform has a predetermined heat shrinkage when heated. It is important to produce As can be understood from the examples, the resin laminate loaded into the preform is heat-shrinked by heat, closely adhered to the outer periphery of the preform, and the resin laminate and the outer peripheral surface of the preform by preheating before stretch molding. Is preferably heat-welded. By adopting such a configuration, not only excellent stretch moldability and gas barrier properties, but also biodegradation with outstanding information transmission, surface gloss, content resistance, and disposal properties of multi-layer containers This is based on the new knowledge that a stretchable stretchable container can be provided.

(生分解性樹脂)生分解性樹脂として、ポリヒドロキシブチレート(PHB)、3−ヒドロキシブチレート(3HB)と3−ヒドロキシバリレート(3HV)とのランダムコポリマー、ポリ(ε−カプロラクトン)(PCL)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネート・アジペート(PBAS)、ポリ乳酸(PLLA)、ポリオキシ酸(POA)を用いることができる。 (Biodegradable resin) As a biodegradable resin, polyhydroxybutyrate (PHB), random copolymer of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV), poly (ε-caprolactone) (PCL) ), Polybutylene succinate (PBS), polybutylene succinate adipate (PBAS), polylactic acid (PLLA), and polyoxyacid (POA).

(ポリヒドロキシアルカノエート樹脂)本発明で好適に用いる生分解性樹脂として用いるポリヒドロキシアルカノエート樹脂は、生分解性樹脂として従来公知のポリヒドロキシブチレート(PHB)、3−ヒドロキシブチレート(3HB)と3−ヒドロキシバリレート(3HV)とのランダムコポリマー、ポリ(ε−カプロラクトン)(PCL)、ポリブチレンサクシネート(PBSU)、ポリブチレンサクシネート・アジペート(PBSA)、ポリ乳酸(PLLA)等の脂肪族ポリエステルを1種または2種以上を組み合わせて好適に使用することができる。 (Polyhydroxyalkanoate resin) The polyhydroxyalkanoate resin used as a biodegradable resin preferably used in the present invention is a polyhydroxybutyrate (PHB) or 3-hydroxybutyrate (3HB) conventionally known as a biodegradable resin. And 3-hydroxyvalerate (3HV) random copolymers, poly (ε-caprolactone) (PCL), polybutylene succinate (PBSU), polybutylene succinate adipate (PBSA), polylactic acid (PLLA) and other fats Group polyesters can be suitably used singly or in combination of two or more.

本発明で特に好適に用いることができるポリ乳酸(以下、PLLAと表すことがある)は、下記式(1)

Figure 2005343098

で表される反復単位から成り、構成単位がL−乳酸のみから成るポリ(L−乳酸)、D−乳酸のみから成るポリ(D−乳酸)、及びL−乳酸単位とD−乳酸単位が任意の割合で存在するポリ(DL−乳酸)を使用することができるが、前述したとおり、このポリ乳酸(PLLA)は、工業的に量産され入手が容易であり、環境にも優しい脂肪族ポリエステルであり、自然界に存在する微生物により、水と炭酸ガスにより分解され、以後、大気中に発散された炭酸ガスが太陽光と水により再度、炭素同化されると言う、完全リサイクルシステム樹脂(植物産生樹脂)としても着目されている。プリフォームを構成するポリ乳酸のガラス転移温度(Tg)が50℃以上であり、且つ、融解温度(Tc)が160℃以上である結晶性樹脂であることが好ましく、一方、樹脂積層体を構成するポリ乳酸のガラス転移温度(Tg)が−20℃以上であり、且つ、融解温度(Tc)が160℃未満の融解温度の低い非晶乃至低結晶性のポリ乳酸であることが好ましい。本発明に用いるポリ乳酸としては、勿論これに限定されないが、射出成形プリフォームにおいては11万〜25万範囲の重量平均分子量を有することが好ましい。また密度1.10〜1.28g/cm3、メルトフローレート(ASTM D1238,190℃)1.0〜20.0 g/10分の範囲にあることが好ましい。 Polylactic acid (hereinafter sometimes referred to as PLLA) that can be used particularly preferably in the present invention is represented by the following formula (1).
Figure 2005343098

A poly (L-lactic acid) consisting only of L-lactic acid, a poly (D-lactic acid) consisting only of D-lactic acid, and any L-lactic acid unit and D-lactic acid unit. Poly (DL-lactic acid) can be used at a ratio of 5%, but as mentioned above, this polylactic acid (PLLA) is an industrially mass-produced and easily available aliphatic polyester that is environmentally friendly. Yes, a completely recycled system resin (plant-produced resin) that is decomposed by water and carbon dioxide by microorganisms that exist in nature, and then carbon dioxide emitted from the atmosphere is again assimilated by sunlight and water. ). The polylactic acid constituting the preform is preferably a crystalline resin having a glass transition temperature (Tg) of 50 ° C. or higher and a melting temperature (Tc) of 160 ° C. or higher, while constituting a resin laminate. The polylactic acid having a glass transition temperature (Tg) of −20 ° C. or higher and a melting temperature (Tc) of less than 160 ° C. is preferably an amorphous or low crystalline polylactic acid having a low melting temperature. Of course, the polylactic acid used in the present invention is not limited to this, but the injection-molded preform preferably has a weight average molecular weight in the range of 110,000 to 250,000. The density is preferably in the range of 1.10 to 1.28 g / cm 3 and melt flow rate (ASTM D1238, 190 ° C.) of 1.0 to 20.0 g / 10 min.

(ビニルアルコール主体の共重合体樹脂)
本発明のバリアー性被膜層に用いる樹脂として特に好適なものは、ポリ酢酸ビニルもしくはポリ酢酸ビニル共重合体のケン化度60乃至99.9%のポリビニルアルコールである。ケン化度がこの範囲のポリビニルアルコールは、熱成形が可能で、ポリ乳酸と積層したとき、多層分布構造の形成能にも優れており、機械的強度も大きい。
(Copolymer resin mainly composed of vinyl alcohol)
Particularly preferred as the resin used in the barrier coating layer of the present invention is polyvinyl alcohol or polyvinyl alcohol having a saponification degree of 60 to 99.9%. Polyvinyl alcohol having a saponification degree within this range can be thermoformed, and when laminated with polylactic acid, has excellent ability to form a multilayer distribution structure and has high mechanical strength.

(ポリオキシ酸主体の樹脂)
本発明のバリアー性被膜層に用いる樹脂として特に好適なものは、ポリグリコール酸もしくはポリグリコール酸共重合体である。共重合成分は特に限定されるものではないが、乳酸やカプロラクトン等の脂肪族ポリエステルが適用できる。
(Polyoxy acid-based resin)
A particularly suitable resin for use in the barrier coating layer of the present invention is polyglycolic acid or a polyglycolic acid copolymer. The copolymer component is not particularly limited, but aliphatic polyesters such as lactic acid and caprolactone can be applied.

本発明において、前記バリアー性被覆層は、それ自体で用いてもよいが、アスペスト比10以上鱗片状無機充填材を任意組成に溶融混合したコンパウンドでもよく、アルミフレークないし、光輝性無機充填材等の溶融充填材でも良い。これらの無機充填材の混合量はフィルム製造時に支障ない範囲乃至延伸時に切れや剥離のない範囲であれば良い。 In the present invention, the barrier coating layer may be used by itself, but may be a compound in which a scale-like inorganic filler having an aspect ratio of 10 or more is melt-mixed in an arbitrary composition, such as aluminum flakes or glittering inorganic fillers. The molten filler may be used. The mixing amount of these inorganic fillers may be in a range that does not hinder the production of the film or in a range that does not break or peel off during stretching.

また、本発明においては、前記バリアー性被覆層は、生分解性樹脂膜に予めSiOX等のセラミックやDLC等のカーボンを蒸着した無機蒸着被膜やアルミニウム等の金属を蒸着した金属無機蒸着被膜層等とすることもできる。 In the present invention, the barrier coating layer may be an inorganic vapor-deposited film obtained by pre-depositing a ceramic such as SiOX or carbon such as DLC on a biodegradable resin film, or a metal inorganic vapor-deposited film layer obtained by vapor-depositing a metal such as aluminum. It can also be.

ポリ乳酸樹脂層と、生分解性ポリエステル樹脂乃至その共重合体、ビニルアルコール樹脂乃至その共重合体から成る群から選択されたバリアー性樹脂層を積層する際、従来公知の接着性樹脂を介在させることができる。中でも、生分解性樹脂、例えば、ポリブチレンテレフタレートアジペート樹脂や酸変性ポリエステル又は酸変性エチレン・酢酸ビニル共重合体を接着剤樹脂として用いることが好ましい。 When a polylactic acid resin layer and a barrier resin layer selected from the group consisting of a biodegradable polyester resin or copolymer thereof, a vinyl alcohol resin or copolymer thereof are laminated, a conventionally known adhesive resin is interposed. be able to. Among them, it is preferable to use a biodegradable resin such as polybutylene terephthalate adipate resin, acid-modified polyester or acid-modified ethylene / vinyl acetate copolymer as the adhesive resin.

不飽和カルボン酸乃至その無水物としては、アクリル酸、メタクリル酸のようなモノカルボン酸、マレイン酸、フマル酸、イタコン酸のような多価カルボン酸、無水マレイン酸、無水イタコン酸、ノルボルネン−2,3−ジカルボン酸無水物のような多価カルボン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソブチルのような多価カルボン酸のモノエステルがある。不飽和カルボン酸乃至その無水物のグラフト量は、エチレン・酢酸ビニル共重合体或いはポリエステル樹脂当たり0.1 〜0.5 モル%の範囲にあるのがよい。上記範囲を上回ると接着強度は飽和し一定になる。 Examples of unsaturated carboxylic acids or anhydrides thereof include monocarboxylic acids such as acrylic acid and methacrylic acid, polyvalent carboxylic acids such as maleic acid, fumaric acid and itaconic acid, maleic anhydride, itaconic anhydride and norbornene-2 , 3-dicarboxylic acid anhydrides, and polyesters of monocarboxylic acids such as monomethyl maleate, monoethyl maleate, and monoisobutyl maleate. The graft amount of the unsaturated carboxylic acid or its anhydride is preferably in the range of 0.1 to 0.5 mol% per ethylene / vinyl acetate copolymer or polyester resin. Above the above range, the adhesive strength becomes saturated and constant.

(樹脂積層体の層構成)
本発明の生分解性延伸成形容器は、前述したとおり、ポリ乳酸(PLLA)から成るプリフォームに、ポリオキシ酸樹脂(POA)、ポリビニルアルコール(PVA)、エチレン・ビニルアルコール共重合体(EVOH)から成る群から選択されたバリアー性樹脂を少なくとも一層有し、ポリ乳酸と積層し、所望により各層間に接着剤(AD)層を介在させることにより成る多層構造を採用することができる。例えば、勿論これに限定されないが以下の構成が提案される。
PLLA/AD/EVOH/AD/PLLA
PLLA/AD/POA/AD/PLLA
PLLA/AD/PVA/AD/PLLA
PLLA/AD/PVA/AD/EVOH/AD/PLLA
PLLA/AD/EVOH/AD/POA/AD/PLLA
PLLA/AD/EVOH/AD/PVA/AD/PLLA
PLLA/AD/POA/AD/PVA/AD/PLLA
PLLA/AD/PVA/AD/POA/AD/PLLA
PLLA/AD/PVA/AD/PVA/AD/PLLA
PLLA/AD/EVOH/AD/EVOH/AD/PLLA
等の層構成を採用することができる。
(Layer structure of resin laminate)
As described above, the biodegradable stretch-molded container of the present invention is formed from polyoxyacid resin (POA), polyvinyl alcohol (PVA), and ethylene / vinyl alcohol copolymer (EVOH) on a preform made of polylactic acid (PLLA). A multilayer structure comprising at least one barrier resin selected from the group consisting of, laminated with polylactic acid, and optionally interposing an adhesive (AD) layer between each layer can be employed. For example, of course, although not limited to this, the following configuration is proposed.
PLLA / AD / EVOH / AD / PLLA
PLLA / AD / POA / AD / PLLA
PLLA / AD / PVA / AD / PLLA
PLLA / AD / PVA / AD / EVOH / AD / PLLA
PLLA / AD / EVOH / AD / POA / AD / PLLA
PLLA / AD / EVOH / AD / PVA / AD / PLLA
PLLA / AD / POA / AD / PVA / AD / PLLA
PLLA / AD / PVA / AD / POA / AD / PLLA
PLLA / AD / PVA / AD / PVA / AD / PLLA
PLLA / AD / EVOH / AD / EVOH / AD / PLLA
It is possible to adopt a layer structure such as

本発明の生分解性延伸成形容器は、前述したとおり、ポリ乳酸(PLLA)から成るプリフォームに、ポリオキシ酸樹脂(POA)、ポリビニルアルコール(PVA)、エチレン・ビニルアルコール共重合体(EVOH)から成る群から選択されたバリアー性樹脂を少なくとも一層有し、ポリ乳酸と積層し、所望により各層間に接着剤(AD)層を介在させることにより成る多層構造を採用することはもちろんのこと、バリアー層に予め無機蒸着したバリアー性蒸着層を積層した物でも良い。例えば、勿論これに限定されないが以下の構成が提案される。
PLLA/AD/無機蒸着PLLA/AD/PLLA
PLLA/AD/無機蒸着EVOH/AD/PLLA
PLLA/AD/無機蒸着POA/AD/PLLA
PLLA/AD/無機蒸着PVA/AD/PLLA
PLLA/AD/無機蒸着PVA/AD/無機蒸着EVOH/AD/PLLA
PLLA/AD/無機蒸着EVOH/AD/無機蒸着POA/AD/PLLA
PLLA/AD/無機蒸着EVOH/AD/無機蒸着PVA/AD/PLLA
PLLA/AD/無機蒸着POA/AD/無機蒸着PVA/AD/PLLA
PLLA/AD/無機蒸着PVA/AD/無機蒸着POA/AD/PLLA
PLLA/AD/無機蒸着PVA/AD/無機蒸着PVA/AD/PLLA
PLLA/AD/無機蒸着EVOH/AD/無機蒸着EVOH/AD/PLLA
等の層構成を採用することができる。
As described above, the biodegradable stretch-molded container of the present invention is formed from polyoxyacid resin (POA), polyvinyl alcohol (PVA), and ethylene / vinyl alcohol copolymer (EVOH) on a preform made of polylactic acid (PLLA). It is a matter of course to adopt a multilayer structure comprising at least one barrier resin selected from the group consisting of polylactic acid, and optionally interposing an adhesive (AD) layer between each layer. The layer may be a laminate of a barrier vapor-deposited layer that has been vapor-deposited in advance on the layer. For example, of course, although not limited to this, the following configuration is proposed.
PLLA / AD / Inorganic vapor deposition PLLA / AD / PLLA
PLLA / AD / Inorganic vapor deposition EVOH / AD / PLLA
PLLA / AD / Inorganic vapor deposition POA / AD / PLLA
PLLA / AD / Inorganic vapor deposition PVA / AD / PLLA
PLLA / AD / Inorganic vapor deposition PVA / AD / Inorganic vapor deposition EVOH / AD / PLLA
PLLA / AD / Inorganic vapor deposition EVOH / AD / Inorganic vapor deposition POA / AD / PLLA
PLLA / AD / Inorganic vapor deposition EVOH / AD / Inorganic vapor deposition PVA / AD / PLLA
PLLA / AD / Inorganic vapor deposition POA / AD / Inorganic vapor deposition PVA / AD / PLLA
PLLA / AD / Inorganic vapor deposition PVA / AD / Inorganic vapor deposition POA / AD / PLLA
PLLA / AD / Inorganic vapor deposition PVA / AD / Inorganic vapor deposition PVA / AD / PLLA
PLLA / AD / Inorganic vapor deposition EVOH / AD / Inorganic vapor deposition EVOH / AD / PLLA
It is possible to adopt a layer structure such as

(樹脂積層体の製造方法)
本発明の生分解性延伸成形容器に用いる樹脂積層体は、共押出機にて、用いる樹脂の種類に対応する押出機を用い、内層から外層に至る層構成が、ポリ乳酸/接着層/第1のバリアー層/接着層/ポリ乳酸、ポリ乳酸/接着層/第1のバリアー層/接着層/第2のバリアー層/接着層/ポリ乳酸、または、ポリ乳酸/接着層/第1のバリアー層/接着層/第2のバリアー層/接着層/第3のバリアー層/接着層/ポリ乳酸の構成を満たす多層ダイにて共押出フィルムを製造後、テンター引き取り機により、縦方向、横方向を任意に延伸し冷却する。この場合、共押し出しフィルムに、予めグラビア印刷を施したポリ乳酸フィルム印刷フィルムを内外層の片面、もしくは両面にラミネートしてもよい。次に、フォマーにより、突き合わせ部を溶融ないし接着剤にて溶着させ、所定内径の筒状にフォーミングする。以後、筒状多層フィルムをプリフォームに装填後、外部からの加熱により熱収縮させるとともに、射出成形プリフォームに密着乃至溶着させる。層構成は、以下に限定されるものでないが、プリフォーム側から外層側に向け、一例をもって説明する。PLLA/PLLA印刷層/AD/EVOH/AD/POA/AD/PLLA、乃至、PLLA/AD/EVOH/AD/POA/AD/PLLA印刷層/PLLAでも良い。
(Method for producing resin laminate)
The resin laminate used for the biodegradable stretch-molded container of the present invention is a co-extruder using an extruder corresponding to the type of resin used, and the layer structure from the inner layer to the outer layer is polylactic acid / adhesive layer / 1 barrier layer / adhesive layer / polylactic acid, polylactic acid / adhesive layer / first barrier layer / adhesive layer / second barrier layer / adhesive layer / polylactic acid, or polylactic acid / adhesive layer / first barrier After manufacturing a co-extruded film with a multi-layer die satisfying the structure of layer / adhesive layer / second barrier layer / adhesive layer / third barrier layer / adhesive layer / polylactic acid, longitudinal direction and lateral direction by a tenter take-up machine Is arbitrarily stretched and cooled. In this case, a polylactic acid film printed film that has been previously subjected to gravure printing may be laminated on one or both surfaces of the inner and outer layers on the coextruded film. Next, the butted portion is melted or welded with an adhesive by a former and formed into a cylindrical shape having a predetermined inner diameter. Thereafter, after the cylindrical multilayer film is loaded into the preform, it is thermally shrunk by heating from the outside, and is adhered or welded to the injection-molded preform. The layer structure is not limited to the following, but will be described with an example from the preform side to the outer layer side. PLLA / PLLA printing layer / AD / EVOH / AD / POA / AD / PLLA or PLLA / AD / EVOH / AD / POA / AD / PLLA printing layer / PLLA may be used.

または、それ自体公知の積層技術を適用し、例えば押出成形法の場合、樹脂の種類に対応する押出機を用い、内層から外層に至る層構成が、ポリ乳酸/接着層/第1のバリアー層/接着層/ポリ乳酸、乃至、ポリ乳酸/接着層/第1のバリアー層/接着層/第2のバリアー層/接着層/ポリ乳酸、または、ポリ乳酸/接着層/第1のバリアー層/接着層/第2のバリアー層/接着層/第3のバリアー層/接着層/ポリ乳酸の構成を満たす多層多重ダイを用いて積層体を共押出するとともに、外径サイジングにより、周方向ならびに筒縦方向に延伸処理し製造した、多層パイプも用いることもできる。 Alternatively, a layering technique known per se is applied. For example, in the case of extrusion molding, an extruder corresponding to the type of resin is used, and the layer structure from the inner layer to the outer layer is polylactic acid / adhesive layer / first barrier layer. / Adhesive layer / polylactic acid or polylactic acid / adhesive layer / first barrier layer / adhesive layer / second barrier layer / adhesive layer / polylactic acid or polylactic acid / adhesive layer / first barrier layer / The laminated body is coextruded using a multilayer multiple die satisfying the constitution of adhesive layer / second barrier layer / adhesive layer / third barrier layer / adhesive layer / polylactic acid, and the circumferential direction and the cylinder are formed by outer diameter sizing. A multilayer pipe manufactured by stretching in the longitudinal direction can also be used.

また、ポリエチレンテレフタレートフィルム基材に、ポリ乳酸/接着層/第1のバリアー層/接着層/ポリ乳酸、乃至、ポリ乳酸/接着層/第1のバリアー層/接着層/第2のバリアー層/接着層/ポリ乳酸、または、ポリ乳酸/接着層/第1のバリアー層/接着層/第2のバリアー層/接着層/第3のバリアー層/接着層/ポリ乳酸の構成を満たす各樹脂層を積層する多層構造を構成し、特に第1のバリアー層乃至第3のバリアー層の少なくとも1層の無機蒸着膜からなり、かつ、無機蒸着被膜と各樹脂層の接着を接着樹脂のキャストフィルムによる張り合わせ製造した多層フィルムをポリ乳酸製射出プリフォームに熱転写し、ポリエチレンテレフタレート樹脂を剥離する方法であっても良い。この場合も最外層に相当する樹脂層乃至その内層の層に印刷を施すことで、情報伝達性とガスバリアー性ならびに表面光沢性を確保することができる。 Also, a polyethylene terephthalate film substrate is coated with polylactic acid / adhesive layer / first barrier layer / adhesive layer / polylactic acid or polylactic acid / adhesive layer / first barrier layer / adhesive layer / second barrier layer / Each resin layer satisfying the constitution of adhesive layer / polylactic acid or polylactic acid / adhesive layer / first barrier layer / adhesive layer / second barrier layer / adhesive layer / third barrier layer / adhesive layer / polylactic acid Are formed of at least one inorganic vapor deposition film of the first barrier layer to the third barrier layer, and the adhesion of the inorganic vapor deposition film and each resin layer is made by an adhesive resin cast film. A method may be employed in which the laminated multilayer film is thermally transferred to a polylactic acid injection preform and the polyethylene terephthalate resin is peeled off. In this case as well, information transmission, gas barrier properties, and surface gloss can be ensured by printing on the resin layer corresponding to the outermost layer or the inner layer.

また、押出コート法やサンドイッチラミネーション法を用いて形成されたフィルムをドライラミネーションによって多層ポリ乳酸フィルムを作成してもよく、この場合、予め無機蒸着を施したポリ乳酸フィルムや、無機蒸着を施したバリアーフィルムの多層ラミネートを用いても良い。これらの多層フィルムは前述手法にて筒状にフォーミングし、プリフォームに装着後、熱密着・溶着させた後、延伸ブロー成形にて容器形状に成形することができるし、前述多層フィルムを積層したポリ乳酸シートを、加熱溶融後、真空成形、圧空成形、或いはプラグアシスト成形にて、本発明の多層容器も製造できる。 In addition, a multilayer polylactic acid film may be prepared by dry lamination of a film formed by using an extrusion coating method or a sandwich lamination method. In this case, a polylactic acid film previously subjected to inorganic vapor deposition or an inorganic vapor deposition is performed. A multilayer laminate of barrier films may be used. These multi-layer films can be formed into a cylindrical shape by the above-described method, attached to a preform, heat-adhered and welded, and then formed into a container shape by stretch blow molding. After the polylactic acid sheet is heated and melted, the multilayer container of the present invention can also be produced by vacuum forming, pressure forming, or plug assist forming.

本発明における樹脂積層体は、全体の厚みが 10〜200μm範囲にあり、PLLAから成る内層は10〜180μm範囲であり、第1のガスバリアー層乃至第3のガスバリアー層の少なくとも1層の層の厚みが、0.01〜100μm範囲であり、接着材層の厚みが、1〜50μm範囲にあることが好ましい。上記範囲にあることにより、ポリ乳酸(PLLA)が有する生分解性、及び、ガスバリアー性樹脂乃至無機蒸着層が有するガスバリアー性等を損なうことなく容器にガスバリアー性を発現することができる。 The total thickness of the resin laminate in the present invention is in the range of 10 to 200 μm, the inner layer made of PLLA is in the range of 10 to 180 μm, and at least one layer of the first gas barrier layer to the third gas barrier layer Is preferably in the range of 0.01 to 100 μm, and the thickness of the adhesive layer is preferably in the range of 1 to 50 μm. By being in the said range, gas barrier property can be expressed in a container, without impairing the biodegradability which polylactic acid (PLLA) has, the gas barrier property which gas barrier resin thru | or an inorganic vapor deposition layer have, etc.

本発明における樹脂積層体の最外層部は、予め、デストーション印刷を施しても良く、印刷方式は従来から用いられている、グラビア印刷、フレキソ印刷のどちらを用いても良い。前記印刷を施すことにより、ポリ乳酸プリフォームに装填、熱収縮もしくは熱転写後、延伸ブロー成形することにより、装飾性を合わせもった延伸成形容器を提供することもできる。 The outermost layer portion of the resin laminate in the present invention may be subjected to distortion printing in advance, and the printing method may be either gravure printing or flexographic printing, which has been conventionally used. By carrying out the printing, it is possible to provide a stretch-molded container having a decorative property by being loaded into a polylactic acid preform, subjected to heat shrinkage or thermal transfer, and stretch blow-molded.

本発明の生分解性延伸成形容器に用いる樹脂積層体には、用途に応じて、各種着色剤、充填剤、無機系或いは有機系の補強剤、滑剤、可塑剤、レベリング剤、界面活性剤、増粘剤、減粘剤、安定剤、抗酸化剤、紫外線吸収剤、防錆剤等を公知の処方に従って、配合することができる。 In the resin laminate used in the biodegradable stretch-molded container of the present invention, various colorants, fillers, inorganic or organic reinforcing agents, lubricants, plasticizers, leveling agents, surfactants, Thickeners, thickeners, stabilizers, antioxidants, ultraviolet absorbers, rust inhibitors and the like can be blended according to known formulations.

本発明の生分解性延伸成形容器は、例えばボトルとして有用であるが、延伸成形を行う容器の製造方法として適用できる。例えば、本発明のブロー成形容器乃至圧空成形容器は、充填できる内容物としては、酸素存在下で劣化を生じやすく、また器壁を着色しやすい内容物を収納するのに適している。例えば、勿論これに限定されることはないが、日本酒、ウイスキー、ワイン等の酒類、清涼飲料や果汁飲料等の飲料容器、または、ケチャップ、食用油、ドレッシング、ソース類等の食品容器や、菓子類の容器、その他、医薬品用容器や水性・油性化粧品、乃至、乳化製化粧品等を挙げることができる。また本発明のブロー成形容器は、油性化粧料に好適に用いることができる。
[実施例]
The biodegradable stretch-molded container of the present invention is useful as, for example, a bottle, but can be applied as a method for producing a container that performs stretch-molding. For example, the blow molded container or the compressed air molded container of the present invention is suitable for storing contents that can easily be deteriorated in the presence of oxygen and that can easily color the vessel wall. For example, of course, but not limited to this, alcoholic beverages such as sake, whiskey and wine, beverage containers such as soft drinks and fruit juices, or food containers such as ketchup, edible oil, dressings and sauces, and confectionery Other containers, pharmaceutical containers, aqueous and oily cosmetics, emulsified cosmetics, and the like. The blow molded container of the present invention can be suitably used for oily cosmetics.
[Example]

次に実施例をもって本発明を説明する。なお、本発明は以下の実施例に限定されるものではない。
(樹脂)
生分解性樹脂として、光学活性異性体(d%)が2モル%以下で重量平均分子量が20万のポリ乳酸樹脂と光学活性異性体(d%)が4モル%以上で重量平均分子量20万のポリ乳酸を用い、バリアー性樹脂として、熱成形可能な水酸基含有部分ケン化ポリビニルアルコール樹脂またはポリグリコール酸樹脂を用いた。又、それぞれの樹脂層を接着する接着材としてポリブチレンテレフタレートアジペート樹脂を用いた。
(射出成形)
前記光学活性異性体(d%)が2モル%以下で重量平均分子量が20万のポリ乳酸樹脂を用い、射出成形し、底有プリフォームを得た。
(バリアー性樹脂層)
光学活性異性体(d%)が4モル%以上で重量平均分子量20万のポリ乳酸を用い、共押出機にて、ポリ乳酸/脂肪族ポリエステル系接着層/バリアー層/脂肪族ポリエステル系接着層/ポリ乳酸、3種5層のフィルムを押出後、テンダー延伸装置にて縦1倍、横3倍に延伸し、ポリ乳酸/脂肪族ポリエステル系接着層/バリアー層/脂肪族ポリエステル系接着層/ポリ乳酸の層厚みが、20μm:3μm:30μm:3μm:10μmとなる多層フィルムを作成した。次に、ポリ乳酸の外表面にグラビア印刷を施し、文字や絵柄を印刷後、裁断し、筒状にフォーミングした。フィルムの突き合わせ部はトルエン系接着剤で溶着させた。次に、ポリ乳酸プリフォームに筒状多層フィルムを装填後、熱風装置にてシュリンクさせ、ポリフォーム所定位置にフィルムを固定した。
(無機蒸着樹脂積層体)
光学活性異性体(d%)が4モル%以上で重量平均分子量20万のポリ乳酸をTダイで押出した後、テンダー延伸機で縦1倍、横3倍に延伸し、30μm厚のポリ乳酸フィルムを得た。この30μm厚ポリ乳酸フィルム片面に高周波蒸着装置にてSiOxを1000Å厚に蒸着した。次に、脂肪族ポリエステル系接着材を塗布し、前記ポリ乳酸フィルムを用い、ポリ乳酸/蒸着層/脂肪族ポリエステル系接着材/ポリ乳酸の層構成に張り合わせた。この場合、脂肪族ポリエステル接着材層厚みは平均で1μとした。次に、筒状にフォーミングした、フィルム突き合わせ部はトルエン系接着剤を用いた。次に、ポリ乳酸プリフォームに筒状多層フィルムを装填後、熱風装置にてシュリンクさせ、ポリフォームにフィルムを固定した。
(延伸成形)
前記、樹脂積層体装填プリフォームを延伸ブロー成形機にて再加熱後、ブロー金型に装填し、350ml容の丸形ボトルにブロー成形した。この場合、延伸ブロー成形にて金型形状に均一肉厚延伸ブローできたボトルを○とし、延伸ブロー成形はできたが、底部への肉たまりや胴部周方向で肉たまりを形成したボトルを×とした。
(プリフォームと樹脂積層体の接着性)
筒状にフォ−ミングした樹脂積層体をプリフォームに装填し、熱風もしくは蒸気トンネルを通過させシュリンクさせた後、延伸ブロー成形機の赤外線外部加熱装置にてプリフォームを再加熱した。加熱後のプリフォームを冷却し、プリフォーム外周を手で握りながらプリフォームを回転させた場合、簡単に剥離した多層フィルムを×とし、剥離しない多層フィルムを○とした。
(水分バリアー性評価)
延伸成形後のボトルに蒸留水320ml充填後、ゴム栓にて密封した。このボトルを22℃相対湿度60%条件に保存し、保存経時後の残留水分量を求めた。比較対照ボトルとして同肉厚のポリエチレンテレフタレートボトルを試験した。この場合、ポリエチレンテレフタレートボトルは22℃相対湿度60%条件下、25日保存で約0.2%の水分ロスが確認された。
(堆肥条件下の生分解性)
各ボトル切片を、58℃保存の鶏糞完熟堆肥と海砂の混合物に添加した。この場合、保存容器を全て密封し、アルカリ塩を通気させ炭酸ガスを除去した空気を水中バブリングし加湿させ、堆肥下部より堆肥へ供給した。堆肥部を通気した空気はアルカリ塩で再度炭酸ガスをトラップさせ、重量法にて排出炭酸ガス量を求めた。次に、発生した炭酸ガス量から、ボトル切片を投入しない堆肥のみから出る炭酸ガス量を差引き、試験試料の重量から求まる理論炭酸ガス発生量に対し樹脂から発生した炭酸ガス量比率で生分解度とした。
Next, the present invention will be described with reference to examples. In addition, this invention is not limited to a following example.
(resin)
As a biodegradable resin, a polylactic acid resin having an optically active isomer (d%) of 2 mol% or less and a weight average molecular weight of 200,000 and an optically active isomer (d%) of 4 mol% or more and a weight average molecular weight of 200,000 are used. Polylactic acid was used, and as the barrier resin, a thermoformable hydroxyl group-containing partially saponified polyvinyl alcohol resin or polyglycolic acid resin was used. Further, polybutylene terephthalate adipate resin was used as an adhesive for bonding the respective resin layers.
(injection molding)
A bottomed preform was obtained by injection molding using a polylactic acid resin having an optically active isomer (d%) of 2 mol% or less and a weight average molecular weight of 200,000.
(Barrier resin layer)
Using polylactic acid having an optically active isomer (d%) of 4 mol% or more and a weight average molecular weight of 200,000, polylactic acid / aliphatic polyester adhesive layer / barrier layer / aliphatic polyester adhesive layer using a co-extruder / Polylactic acid, after extruding 3 types, 5 layers of film, stretched 1x longitudinally and 3x laterally with a tender stretcher, polylactic acid / aliphatic polyester adhesive layer / barrier layer / aliphatic polyester adhesive layer / A multilayer film having a polylactic acid layer thickness of 20 μm: 3 μm: 30 μm: 3 μm: 10 μm was prepared. Next, gravure printing was performed on the outer surface of the polylactic acid, and after printing characters and patterns, it was cut and formed into a cylindrical shape. The butted portion of the film was welded with a toluene-based adhesive. Next, after the cylindrical multilayer film was loaded on the polylactic acid preform, it was shrunk by a hot air device, and the film was fixed at a predetermined position of the polyfoam.
(Inorganic vapor-deposited resin laminate)
Polylactic acid with an optically active isomer (d%) of 4 mol% or more and a weight average molecular weight of 200,000 is extruded with a T-die, and then stretched 1x longitudinally and 3x laterally with a tender stretching machine, and 30 μm thick polylactic acid A film was obtained. SiOx was vapor-deposited with a thickness of 1000 mm on one side of the 30 μm-thick polylactic acid film using a high-frequency vapor deposition apparatus. Next, an aliphatic polyester-based adhesive was applied, and the polylactic acid film was used to bond to a polylactic acid / deposition layer / aliphatic polyester-based adhesive / polylactic acid layer structure. In this case, the average thickness of the aliphatic polyester adhesive layer was 1 μm. Next, a toluene adhesive was used for the film butting portion that was formed into a cylindrical shape. Next, after the cylindrical multilayer film was loaded on the polylactic acid preform, it was shrunk with a hot air device to fix the film to the polyfoam.
(Extension molding)
The resin laminate-loaded preform was reheated with a stretch blow molding machine, then loaded into a blow mold, and blow molded into a 350 ml round bottle. In this case, a bottle that was able to be blown uniformly in the shape of a mold by stretch blow molding was marked with ◯, and stretch blow molding was performed, but a bottle that formed a puddle in the circumferential direction of the bottom or body X.
(Adhesiveness between preform and resin laminate)
After the cylindrically formed resin laminate was loaded into the preform and passed through hot air or a steam tunnel to shrink, the preform was reheated by an infrared external heating device of a stretch blow molding machine. When the preform after heating was cooled and the preform was rotated while grasping the outer periphery of the preform by hand, the multilayer film that was easily peeled was marked with x, and the multilayer film that was not peeled was marked with ◯.
(Evaluation of moisture barrier properties)
The bottle after stretch molding was filled with 320 ml of distilled water and sealed with a rubber stopper. The bottle was stored at 22 ° C. and a relative humidity of 60%, and the residual water content after storage was determined. A polyethylene terephthalate bottle of the same thickness was tested as a comparative bottle. In this case, the polyethylene terephthalate bottle was confirmed to have a water loss of about 0.2% after being stored for 25 days under conditions of 22 ° C. and 60% relative humidity.
(Biodegradability under compost conditions)
Each bottle section was added to a mixture of chicken manure ripe compost and sea sand stored at 58 ° C. In this case, all the storage containers were sealed, air from which alkali salts were passed and carbon dioxide was removed was bubbled in water and humidified, and supplied to the compost from the bottom of the compost. The air ventilated through the compost was trapped with carbonic acid again with alkali salt, and the amount of carbon dioxide discharged was determined by the gravimetric method. Next, the amount of carbon dioxide generated from the compost without the bottle section is subtracted from the amount of generated carbon dioxide, and biodegradation is performed at the ratio of the amount of carbon dioxide generated from the resin to the theoretical amount of carbon dioxide generated from the weight of the test sample. Degree.

光学活性異性体(d%)が2モル%以下で重量平均分子量が20万のポリ乳酸を用い、ポリ乳酸製プリフォームを射出成形した。多層フィルムは、光学活性異性体(d%)が4モル%以上で重量平均分子量20万のポリ乳酸を用い、共押出機にて、ポリ乳酸/ポリブチレンテレフタレート・アジペート/ポリグリコール酸/ポリブチレンテレフタレート・アジペート/ポリ乳酸の3種5層のフィルムに押出後、テンター延伸装置にて縦1倍、横3倍に延伸し、ポリ乳酸/ポリブチレンテレフタレート・アジペート/ポリグリコール酸/ポリブチレンテレフタレート・アジペート/ポリ乳酸の層厚みが、20μm:3μm:30μm:3μm:10μmとなる樹脂積層体を作成した。樹脂積層体を装填後のプリフォームの延伸ブロー成形性、ならびに、水分バリアー性、堆肥中の生分解性の評価結果を表1に示した。 Using a polylactic acid having an optically active isomer (d%) of 2 mol% or less and a weight average molecular weight of 200,000, a polylactic acid preform was injection molded. The multilayer film uses polylactic acid having an optically active isomer (d%) of 4 mol% or more and a weight average molecular weight of 200,000. In a co-extruder, polylactic acid / polybutylene terephthalate adipate / polyglycolic acid / polybutylene is used. Polyethylene / polybutylene terephthalate / adipate / polyglycolic acid / polybutylene terephthalate A resin laminate in which the adipate / polylactic acid layer thickness was 20 μm: 3 μm: 30 μm: 3 μm: 10 μm was prepared. Table 1 shows the evaluation results of the stretch blow moldability of the preform after loading the resin laminate, the moisture barrier property, and the biodegradability in compost.

ポリ乳酸プリフォームに装填する樹脂積層体のバリアー層に用いる樹脂が部分ケン化ポリビニルアルコールを用いる以外は実施例1と同様にした。結果を表1に示した。 The same procedure as in Example 1 was performed except that partially saponified polyvinyl alcohol was used as the resin used for the barrier layer of the resin laminate to be loaded into the polylactic acid preform. The results are shown in Table 1.

ポリ乳酸プリフォームに装填する樹脂積層体のバリアー層にアスペクト比50のマイカを7重量%溶融混合した以外は実施例1と同様にした。結果を表1に示した。 The same procedure as in Example 1 was conducted except that 7% by weight of mica having an aspect ratio of 50 was melt mixed in the barrier layer of the resin laminate to be loaded into the polylactic acid preform. The results are shown in Table 1.

ポリ乳酸プリフォームに装填する樹脂積層体が、SiOxを1000Åの厚みに蒸着させた無機蒸着ポリ乳酸層をラミネートした、ポリ乳酸/ポリブチレンテレフタレート・アジペート/SiOX蒸着ポリグリコール酸/ポリブチレンテレフタレート・アジペート/ポリ乳酸、3種5層のフィルム(20μm:3μm:30μm:3μm:10μm)を用いた以外は実施例1と同様にした。結果を表1に示した。
[比較例1]
Polylactic acid / polybutylene terephthalate adipate / SiOX deposited polyglycolic acid / polybutylene terephthalate / adipate laminated with inorganic vapor-deposited polylactic acid layer in which SiOx is vapor-deposited to a thickness of 1000 mm. / Polylactic acid was the same as in Example 1 except that a film of 3 types and 5 layers (20 μm: 3 μm: 30 μm: 3 μm: 10 μm) was used. The results are shown in Table 1.
[Comparative Example 1]

樹脂積層体を使用せず、ポリ乳酸プリフォームのみを延伸成形する以外は実施例1と同様にした。結果を表1に示した。
[比較例2]
The same procedure as in Example 1 was performed except that the resin laminate was not used and only the polylactic acid preform was stretch-molded. The results are shown in Table 1.
[Comparative Example 2]

ポリ乳酸プリフォームに装填する樹脂積層体において、樹脂積層体を構成するポリ乳酸が光学活性異性体(d%)2モル%以下で重量平均分子量が20万のポリ乳酸を用いた以外は実施例1と同様にした。結果を表1に示した。この場合、多層フィルムのシュリンク性劣り、かつ、再加熱後においてもプリフォームから剥離した。
[比較例3]
In the resin laminate to be loaded into the polylactic acid preform, examples were used except that the polylactic acid constituting the resin laminate was 2 mol% or less of the optically active isomer (d%) and the polylactic acid having a weight average molecular weight of 200,000. Same as 1. The results are shown in Table 1. In this case, the shrinkage of the multilayer film was inferior, and it peeled off from the preform even after reheating.
[Comparative Example 3]

樹脂積層体を装填するプリフォームがポリエチレンテレフタレートからなる以外は実施例1と同様にした。結果を表1に示した。

Figure 2005343098
The same procedure as in Example 1 was performed except that the preform loaded with the resin laminate was made of polyethylene terephthalate. The results are shown in Table 1.
Figure 2005343098

本発明の延伸成形容器は、例えばボトルとして有用である。例えば、本発明の延伸成形容器は、充填できる内容物としては、酸素存在下で劣化を生じやすく、また器壁を着色しやすい内容物を収納するのに適している。例えば、勿論これに限定されることはないが、日本酒、ウイスキー、ワイン等の酒類、清涼飲料や果汁飲料等の飲料容器、または、ケチャップ、食用油、ドレッシング、ソース類等の食品容器や、菓子類の容器、その他、医薬品用容器や水性・油性化粧品、乃至、乳化製化粧品等を挙げることができる。また本発明の延伸成形容器は、油性化粧料に好適に用いることができる。 The stretch-molded container of the present invention is useful as a bottle, for example. For example, the stretch-molded container of the present invention is suitable for containing a content that can easily be deteriorated in the presence of oxygen and that can easily color a vessel wall. For example, of course, but not limited to this, alcoholic beverages such as sake, whiskey and wine, beverage containers such as soft drinks and fruit juices, or food containers such as ketchup, edible oil, dressings and sauces, and confectionery Other containers, pharmaceutical containers, aqueous and oily cosmetics, emulsified cosmetics, and the like. The stretch-molded container of the present invention can be suitably used for oily cosmetics.

Claims (8)

生分解性樹脂よりなる筒状プリフォームの外周面に生分解性樹脂層を表層に有する樹脂積層体を密着させ、しかる後に延伸成形することを特徴とする生分解性延伸成形容器。 A biodegradable stretch-molded container, wherein a resin laminate having a biodegradable resin layer as a surface layer is brought into close contact with an outer peripheral surface of a cylindrical preform made of a biodegradable resin, and then stretch-molded. 前記生分解性樹脂がポリヒドロキシアルカノエート樹脂であることを特徴とする請求項1記載の生分解性延伸成形容器。 The biodegradable stretch-molded container according to claim 1, wherein the biodegradable resin is a polyhydroxyalkanoate resin. 前記生分解性樹脂がポリ乳酸主体の樹脂であることを特徴とする請求項2に記載の生分解性延伸成形容器。 The biodegradable stretch-molded container according to claim 2, wherein the biodegradable resin is a resin mainly composed of polylactic acid. 前記樹脂積層体が少なくとも1ヶのガスバリアー性被膜層を有することを特徴とする請求項1乃至3に記載の生分解性延伸成形容器。 The biodegradable stretch-molded container according to any one of claims 1 to 3, wherein the resin laminate has at least one gas barrier coating layer. 前記ガスバリアー性被膜層が、ビニルアルコール主体の共重合樹脂、またはポリオキシ酸主体の樹脂からなる生分解樹脂群から選択された少なくとも1ヶの樹脂層を有することを特徴とする請求項1乃至4に記載の生分解性延伸成形容器。 5. The gas barrier coating layer has at least one resin layer selected from a biodegradable resin group consisting of a vinyl alcohol-based copolymer resin or a polyoxyacid-based resin. A biodegradable stretch-molded container as described in 1. 前記ガスバリアー性被膜層がアスペクト比10以上の無機充填剤を樹脂に溶融混合して成ることを特徴とする請求項5に記載の生分解性延伸成形容器。 The biodegradable stretch-molded container according to claim 5, wherein the gas barrier coating layer is obtained by melting and mixing an inorganic filler having an aspect ratio of 10 or more with a resin. 前記ガスバリアー性被膜層が無機蒸着層を蒸着した生分解性樹脂被覆であることを特徴とする請求項1乃至6に記載の生分解性延伸成形容器。 The biodegradable stretch-molded container according to claim 1, wherein the gas barrier coating layer is a biodegradable resin coating on which an inorganic vapor deposition layer is deposited. 58℃の完熟堆肥中に埋没後、発生した炭酸ガス量をアルカリ塩に吸着させ、重量法で発生炭酸ガス量を測定する生分解性試験法にて、90日後に、理論炭酸ガス量に対し60%以上の炭酸ガス発生量を示す請求項1乃至7記載の生分解性延伸成形容器。 After being buried in a matured compost at 58 ° C, the amount of carbon dioxide generated is adsorbed to an alkali salt, and after 90 days, the amount of generated carbon dioxide is measured by the gravimetric method. The biodegradable stretch-molded container according to any one of claims 1 to 7, which exhibits a carbon dioxide gas generation amount of 60% or more.
JP2004167888A 2004-06-07 2004-06-07 Biodegradable stretch-molded container Pending JP2005343098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167888A JP2005343098A (en) 2004-06-07 2004-06-07 Biodegradable stretch-molded container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167888A JP2005343098A (en) 2004-06-07 2004-06-07 Biodegradable stretch-molded container

Publications (1)

Publication Number Publication Date
JP2005343098A true JP2005343098A (en) 2005-12-15

Family

ID=35495900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167888A Pending JP2005343098A (en) 2004-06-07 2004-06-07 Biodegradable stretch-molded container

Country Status (1)

Country Link
JP (1) JP2005343098A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062586A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Polylactic acid type gas barrier film
WO2008149019A1 (en) 2007-05-14 2008-12-11 Arkema France Coextrusion binders on a renewable/biodegradable basis
JP2009007039A (en) * 2007-06-28 2009-01-15 Yoshino Kogyosho Co Ltd Polylactic acid resin container provided with gas barrier property
JP2010137883A (en) * 2008-12-10 2010-06-24 Nisshin Oillio Group Ltd Bottle
JP2016055522A (en) * 2014-09-09 2016-04-21 大日本印刷株式会社 Manufacturing method of composite container, composite preform, composite container and plastic member
WO2016093177A1 (en) * 2014-12-08 2016-06-16 大日本印刷株式会社 Composite preform, composite container, composite preform, plastic member and method for producing composite container
JP2016107542A (en) * 2014-12-08 2016-06-20 大日本印刷株式会社 Blow molding method, composite preform, composite container, inner label member and plastic member
JP2016112848A (en) * 2014-12-17 2016-06-23 大日本印刷株式会社 Manufacturing method of composite container, composite preform, composite container and plastic member
JP2016117166A (en) * 2014-12-18 2016-06-30 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP2016117200A (en) * 2014-12-19 2016-06-30 大日本印刷株式会社 Composite container and production method thereof, composite preform, plastic member
JP2016120641A (en) * 2014-12-24 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120689A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform and manufacturing method thereof, and plastic member
JP2016120682A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120686A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform and manufacturing method thereof, and plastic member
JP2016120681A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120692A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Production device of complex preform, complex preform and production method thereof, and composite container and production method thereof
JP2016120684A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120640A (en) * 2014-12-24 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, plastic member, and composite preform
JP2016120687A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, plastic member, and composite preform
JP2016124132A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, composite preform, and preform
JP2016124147A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, composite preform, and plastics member
JP2016124137A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, preform, and composite preform
JP2016124136A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, plastics member, and composite preform
JP2019135101A (en) * 2019-03-14 2019-08-15 大日本印刷株式会社 Composite container and production method thereof, composite preform, plastic member
JP2019157005A (en) * 2018-03-14 2019-09-19 Mcppイノベーション合同会社 Adhesive resin composition, laminate and molding
JP2019162876A (en) * 2019-04-12 2019-09-26 大日本印刷株式会社 Production device of complex preform, complex preform and production method thereof, and composite container and production method thereof
JP2019209695A (en) * 2019-09-18 2019-12-12 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP2020073306A (en) * 2019-09-18 2020-05-14 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP2020097228A (en) * 2019-11-12 2020-06-25 大日本印刷株式会社 Method for manufacturing plastic member and method for manufacturing composite container
JP2020157776A (en) * 2020-07-01 2020-10-01 大日本印刷株式会社 Blow molding method and composite preform
JP2021037773A (en) * 2020-12-10 2021-03-11 大日本印刷株式会社 Production device of complex preform, complex preform and production method thereof, and composite container and production method thereof
JP2021049786A (en) * 2021-01-07 2021-04-01 大日本印刷株式会社 Composite preform production device, method for producing composite preform, and method for producing composite container
JP2021075062A (en) * 2021-02-18 2021-05-20 大日本印刷株式会社 Method for manufacturing plastic member and method for manufacturing composite container
US11247381B2 (en) 2013-06-28 2022-02-15 Dai Nippon Printing Co., Ltd. Composite container, inner label and plastic member
JP2022140644A (en) * 2019-09-18 2022-09-26 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991038A (en) * 1982-11-18 1984-05-25 Toyo Seikan Kaisha Ltd Manufacture of bottle
JPS61154920A (en) * 1984-12-28 1986-07-14 Mitsui Toatsu Chem Inc Manufacture of multi-layered vessel
JPS6430729A (en) * 1987-07-27 1989-02-01 Mazda Motor Method and apparatus for manufacturing hollow plastic formed item
JP2001347623A (en) * 2000-06-09 2001-12-18 Toyo Seikan Kaisha Ltd Aliphatic polyester multilayered container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991038A (en) * 1982-11-18 1984-05-25 Toyo Seikan Kaisha Ltd Manufacture of bottle
JPS61154920A (en) * 1984-12-28 1986-07-14 Mitsui Toatsu Chem Inc Manufacture of multi-layered vessel
JPS6430729A (en) * 1987-07-27 1989-02-01 Mazda Motor Method and apparatus for manufacturing hollow plastic formed item
JP2001347623A (en) * 2000-06-09 2001-12-18 Toyo Seikan Kaisha Ltd Aliphatic polyester multilayered container

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062586A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Polylactic acid type gas barrier film
WO2008149019A1 (en) 2007-05-14 2008-12-11 Arkema France Coextrusion binders on a renewable/biodegradable basis
JP2009007039A (en) * 2007-06-28 2009-01-15 Yoshino Kogyosho Co Ltd Polylactic acid resin container provided with gas barrier property
JP2010137883A (en) * 2008-12-10 2010-06-24 Nisshin Oillio Group Ltd Bottle
US11247381B2 (en) 2013-06-28 2022-02-15 Dai Nippon Printing Co., Ltd. Composite container, inner label and plastic member
US11613063B2 (en) 2013-06-28 2023-03-28 Dai Nippon Printing Co., Ltd. Blow molding method, composite preform, composite container, inner label member, and plastic member
US11685098B2 (en) 2013-06-28 2023-06-27 Dai Nippon Printing Co., Ltd. Blow molding method, composite preform, composite container, inner label member, and plastic member
JP2016055522A (en) * 2014-09-09 2016-04-21 大日本印刷株式会社 Manufacturing method of composite container, composite preform, composite container and plastic member
JP2016107542A (en) * 2014-12-08 2016-06-20 大日本印刷株式会社 Blow molding method, composite preform, composite container, inner label member and plastic member
WO2016093177A1 (en) * 2014-12-08 2016-06-16 大日本印刷株式会社 Composite preform, composite container, composite preform, plastic member and method for producing composite container
EP3231576A4 (en) * 2014-12-08 2018-09-26 Dai Nippon Printing Co., Ltd. Composite preform, composite container, composite preform, plastic member and method for producing composite container
US11220367B2 (en) 2014-12-08 2022-01-11 Dai Nippon Printing Co., Ltd. Composite preform, composite container, composite preform, plastic member, and method for producing composite container
AU2015361362B2 (en) * 2014-12-08 2021-05-13 Dai Nippon Printing Co., Ltd. Composite preform, composite container, composite preform, plastic member and method for producing composite container
JP2016112848A (en) * 2014-12-17 2016-06-23 大日本印刷株式会社 Manufacturing method of composite container, composite preform, composite container and plastic member
JP2016117166A (en) * 2014-12-18 2016-06-30 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP2016117200A (en) * 2014-12-19 2016-06-30 大日本印刷株式会社 Composite container and production method thereof, composite preform, plastic member
JP2016120641A (en) * 2014-12-24 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120640A (en) * 2014-12-24 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, plastic member, and composite preform
JP2016120689A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform and manufacturing method thereof, and plastic member
JP2016120682A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120692A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Production device of complex preform, complex preform and production method thereof, and composite container and production method thereof
JP2016120681A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120684A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform, and plastic member
JP2016120687A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, plastic member, and composite preform
JP2016120686A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Composite container and manufacturing method thereof, composite preform and manufacturing method thereof, and plastic member
JP2016124136A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, plastics member, and composite preform
JP2016124132A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, composite preform, and preform
JP2016124137A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, preform, and composite preform
JP2016124147A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Composite container and production method of the same, composite preform, and plastics member
JP2019157005A (en) * 2018-03-14 2019-09-19 Mcppイノベーション合同会社 Adhesive resin composition, laminate and molding
JP7147195B2 (en) 2018-03-14 2022-10-05 Mcppイノベーション合同会社 Adhesive resin composition, laminate and molded article
JP2019135101A (en) * 2019-03-14 2019-08-15 大日本印刷株式会社 Composite container and production method thereof, composite preform, plastic member
JP2019162876A (en) * 2019-04-12 2019-09-26 大日本印刷株式会社 Production device of complex preform, complex preform and production method thereof, and composite container and production method thereof
JP2022140644A (en) * 2019-09-18 2022-09-26 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP7320205B2 (en) 2019-09-18 2023-08-03 大日本印刷株式会社 Composite container and its manufacturing method, composite preform, and plastic member
JP2021107161A (en) * 2019-09-18 2021-07-29 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP2019209695A (en) * 2019-09-18 2019-12-12 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP2020073306A (en) * 2019-09-18 2020-05-14 大日本印刷株式会社 Composite container, production method thereof, composite preform, and plastic member
JP7159134B2 (en) 2019-09-18 2022-10-24 大日本印刷株式会社 Composite container and its manufacturing method, composite preform, and plastic member
JP2020097228A (en) * 2019-11-12 2020-06-25 大日本印刷株式会社 Method for manufacturing plastic member and method for manufacturing composite container
JP2020157776A (en) * 2020-07-01 2020-10-01 大日本印刷株式会社 Blow molding method and composite preform
JP2021037773A (en) * 2020-12-10 2021-03-11 大日本印刷株式会社 Production device of complex preform, complex preform and production method thereof, and composite container and production method thereof
JP7075628B2 (en) 2020-12-10 2022-05-26 大日本印刷株式会社 Composite preform manufacturing equipment, composite preform and its manufacturing method, and composite container and its manufacturing method
JP7024893B2 (en) 2021-01-07 2022-02-24 大日本印刷株式会社 Composite preform manufacturing equipment, composite preform manufacturing method, and composite container manufacturing method
JP2021049786A (en) * 2021-01-07 2021-04-01 大日本印刷株式会社 Composite preform production device, method for producing composite preform, and method for producing composite container
JP7011797B2 (en) 2021-02-18 2022-01-27 大日本印刷株式会社 Manufacturing method of plastic parts and manufacturing method of composite container
JP2021075062A (en) * 2021-02-18 2021-05-20 大日本印刷株式会社 Method for manufacturing plastic member and method for manufacturing composite container

Similar Documents

Publication Publication Date Title
JP2005343098A (en) Biodegradable stretch-molded container
TWI304426B (en)
EP0925915B1 (en) Gas-barrier, multi-layer hollow container
JP3978012B2 (en) Multilayer container and manufacturing method thereof
JP5274556B2 (en) Heat-shrinkable multilayer film or tube showing shrinkage stability after stretching
TWI781086B (en) Laminated Sheets and Formed Containers
JP2009535236A (en) Multi-layer film containing polylactic acid
JP4522868B2 (en) Biodegradable multilayer film with sealing function
JP4776236B2 (en) Polylactic acid-based stretched laminated film
JP2021160155A (en) Biodegradable laminate paper and packaging material
JP4476804B2 (en) Biodegradable heat-resistant hard resin molded container
JPH10138371A (en) Multilayer hollow container of gas barrier property
AU764519B2 (en) Multi layered thermoplastic container
JP2008087357A (en) Deep drawing film, bottom material for deep-drawn package and deep-drawn package
JP3978070B2 (en) Multilayer film or sheet
US20140151258A1 (en) Polymeric Films Comprising Biodegradable Polyester or Copolymer Thereof
JP2008030332A (en) Molding
WO2003006535A1 (en) Molded polyglycolic acid
JP2010247497A (en) Plastic multi-layer structure
JP3010758B2 (en) Laminate
JP2019006082A (en) Laminate
JP2002201293A (en) Stretched and molded container
JP2005007610A (en) Biodegradable multilayered heat-shrinkable film and package
JP2003300293A (en) Gas-barrier multilayer structure and manufacturing method therefor
JP2009173033A (en) Multi-layer container with gas barrier property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100414