JP4745135B2 - Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container - Google Patents

Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container Download PDF

Info

Publication number
JP4745135B2
JP4745135B2 JP2006153932A JP2006153932A JP4745135B2 JP 4745135 B2 JP4745135 B2 JP 4745135B2 JP 2006153932 A JP2006153932 A JP 2006153932A JP 2006153932 A JP2006153932 A JP 2006153932A JP 4745135 B2 JP4745135 B2 JP 4745135B2
Authority
JP
Japan
Prior art keywords
resin composition
stretch
crystallization
temperature
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006153932A
Other languages
Japanese (ja)
Other versions
JP2007320203A (en
Inventor
淳一 三井
美穂 中井
光博 川原
一恵 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2006153932A priority Critical patent/JP4745135B2/en
Publication of JP2007320203A publication Critical patent/JP2007320203A/en
Application granted granted Critical
Publication of JP4745135B2 publication Critical patent/JP4745135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Description

本発明は、耐熱性及びガスバリア性に優れた延伸成形容器に適した樹脂組成物に関するものである。   The present invention relates to a resin composition suitable for a stretch-molded container having excellent heat resistance and gas barrier properties.

近年環境保護の観点から、自然環境中で微生物等の作用によって無害な分解物へと変換される生分解性樹脂が注目されている。   In recent years, from the viewpoint of environmental protection, biodegradable resins that are converted into harmless degradation products by the action of microorganisms or the like in the natural environment have attracted attention.

しかし、生分解性樹脂、特に脂肪族ポリエステルは、化粧品容器や食品保存容器等の流動体保存容器として使用するにはガスバリア性が不足し、また耐熱性が不十分であるので高い温度において使用すると変形する。さらに、高温時の剛性が低いために高温でブロー容器を成形したときの成形加工性が低いなど、実用上の問題点があり、用途に制限があった。   However, biodegradable resins, particularly aliphatic polyesters, are insufficient when used as fluid storage containers such as cosmetic containers and food storage containers, and when used at high temperatures due to insufficient heat resistance. Deform. Furthermore, since the rigidity at high temperature is low, there are practical problems such as low molding processability when the blow container is molded at high temperature, and there is a limit to the use.

一般的に結晶性高分子では、結晶化を進めることによってガスバリア性、耐熱性を高めることが可能である。しかしポリ乳酸のような脂肪族ポリエステルの場合、結晶化速度が低く、結晶化に最適な金型温度90〜120℃に設定しても、半溶融状態のままである。金型温度を室温近傍に設定することにより、ようやく冷却・固化されるものの、結晶化度は極めて低いものしか得られなかった(例えば、非特許文献1)。   In general, in a crystalline polymer, it is possible to improve gas barrier properties and heat resistance by advancing crystallization. However, in the case of an aliphatic polyester such as polylactic acid, the crystallization rate is low, and even when the mold temperature is set to 90 to 120 ° C., which is optimal for crystallization, it remains in a semi-molten state. By setting the mold temperature close to room temperature, it was finally cooled and solidified, but only a very low degree of crystallinity was obtained (for example, Non-Patent Document 1).

また、ポリエチレンテレフタレート(PET)容器においては、結晶性樹脂を添加することでPETの結晶化速度を制御して成形加工性を向上させる方法が提案されている(特許文献1、特許文献2)。しかし、180℃における半結晶化時間が30〜100秒(0.5分〜1.7分)と短いため、脂肪族ポリエステル、特にポリ乳酸に適用する場合には結晶化速度が高すぎて十分な成形加工性が得られない問題点があった。   In polyethylene terephthalate (PET) containers, a method has been proposed in which a crystallizing resin is added to control the crystallization rate of PET to improve molding processability (Patent Documents 1 and 2). However, since the half crystallization time at 180 ° C. is as short as 30 to 100 seconds (0.5 to 1.7 minutes), the crystallization rate is too high when applied to aliphatic polyesters, particularly polylactic acid. There was a problem that a good moldability could not be obtained.

一方、脂肪族ポリエステルを用いて耐熱性及び成形加工性に優れたブロー容器を製造する目的で、示差走査熱量計(DSC)で測定した温度75〜160℃の結晶化温度域に実質上二山のピークを持つ樹脂を用いる方法(特許文献3)や、脂肪族ポリエステル樹脂とポリアセタール樹脂を混合する方法(特許文献4)などが提案されている。   On the other hand, for the purpose of producing a blow container having excellent heat resistance and molding processability using aliphatic polyester, there are substantially two peaks in the crystallization temperature range of 75 to 160 ° C. measured with a differential scanning calorimeter (DSC). A method using a resin having a peak of (Patent Document 3), a method of mixing an aliphatic polyester resin and a polyacetal resin (Patent Document 4), and the like have been proposed.

これらの方法においては、耐熱性の有無を判断する基準が、特許文献3の方法では「容器を55℃の高温槽に5日間保存し、容器側壁部の寸法変形が4%以下」、特許文献4の方法では「容器から切り出した試験片を加熱し、試験片が垂れ下がる温度が65℃以上」と低いものであり、この基準を満たしただけでは実用に十分な耐熱性があるとは言えなかった。また、特許文献4のようなアロイによる改質では、脂肪族ポリエステルの生分解性が低下してしまうという問題もあった。   In these methods, the criterion for determining the presence or absence of heat resistance is that in the method of Patent Document 3, “the container is stored in a high-temperature bath at 55 ° C. for 5 days and the dimensional deformation of the side wall of the container is 4% or less”, Patent Document In Method 4, the test piece cut from the container is heated and the temperature at which the test piece hangs is 65 ° C. or higher, and just satisfying this standard cannot be said to have sufficient heat resistance for practical use. It was. Further, the modification by alloy as in Patent Document 4 has a problem that the biodegradability of the aliphatic polyester is lowered.

また、脂肪族ポリエステル樹脂の結晶化を進める方法として、有機化合物の添加により結晶化度を向上させる技術(特許文献5)、結晶核剤や結晶化促進剤を樹脂に含有させることで樹脂組成物の結晶化速度を制御し、結晶化度を向上させる技術(特許文献6)、延伸により結晶配向性と結晶化度を向上させる技術(特許文献7)、結晶化速度の高いポリマーとのアロイを用いる技術(特許文献4)、層状珪酸塩を分散させることで結晶化度を向上させる技術(特許文献8)などが知られている。   In addition, as a method for promoting the crystallization of the aliphatic polyester resin, a technique for improving the crystallization degree by adding an organic compound (Patent Document 5), a resin composition containing a crystal nucleating agent or a crystallization accelerator in the resin. A technique for controlling the crystallization rate of the polymer (Patent Document 6), a technique for improving the crystal orientation and crystallinity by stretching (Patent Document 7), and an alloy with a polymer having a high crystallization speed. A technique to be used (Patent Document 4), a technique to improve crystallinity by dispersing a layered silicate (Patent Document 8), and the like are known.

しかしいずれの方法においても、もともと射出成形を想定した樹脂の結晶化を進める方法であるため、必ずしもそのまま延伸成形に応用できるものではなかった。そのため樹脂の結晶化速度が高すぎて成形加工の最中に急速な結晶化が起こりうまく成形できない、逆に結晶化速度が低すぎて十分な耐熱性が得られない、あるいは成形サイクルに長時間要するなど、成形加工性及び耐熱性の両方に優れた容器を製造することは困難であった。   However, any of these methods is a method of proceeding with crystallization of a resin originally assumed for injection molding, and thus cannot be applied to stretch molding as it is. Therefore, the crystallization rate of the resin is too high and rapid crystallization occurs during the molding process and molding cannot be performed well. Conversely, the crystallization rate is too low to obtain sufficient heat resistance, or the molding cycle is long. For example, it has been difficult to produce a container excellent in both moldability and heat resistance.

プラスチックス、Vol.53、No.10、2002年、37〜39頁Plastics, Vol. 53, no. 10, 2002, pp. 37-39 特開2004−010727号公報JP 2004-010727 A 特開2004−010742号公報Japanese Patent Laid-Open No. 2004-010742 特開2002−201293号公報JP 2002-201293 A 特開2004−091684号公報JP 2004-091684 A 特開2003−128901号公報JP 2003-128901 A 特開2003−253009号公報JP 2003-253209 A 特開平9−025345号公報JP-A-9-025345 特開2004−204143号公報JP 2004-204143 A

本発明は、上記の従来技術の問題点を解決し、耐熱性及びガスバリア性に優れた延伸成形容器の成形加工に適した樹脂組成物を提供することを目的とするものである。   An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a resin composition suitable for molding a stretch-molded container having excellent heat resistance and gas barrier properties.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、脂肪族ポリエステル樹脂の結晶化速度を制御することにより、延伸成形法により耐熱性及びガスバリア性を兼ね備えた容器を作製し得る樹脂組成物を提供し得ることを見出し、かかる知見に基づき本発明に到達した。   As a result of intensive studies to solve the above problems, the inventors of the present invention produced a container having both heat resistance and gas barrier properties by a stretch molding method by controlling the crystallization rate of the aliphatic polyester resin. The present inventors have found that an obtained resin composition can be provided, and arrived at the present invention based on such knowledge.

すなわち本発明の要旨は、次のとおりである。
(1) ポリ乳酸を主成分とし、層状珪酸塩の層間イオンを有機アンモニウムイオンに置換した層状珪酸塩を含有する樹脂組成物であって、示差走査熱量計(DSC)により測定される、結晶化温度+20℃における等温結晶化の発熱量が最大値を示すまでの時間が1.5分〜100分であることを特徴とする延伸成形用樹脂組成物。
(2) (1)に記載の樹脂組成物からなる延伸成形容器。
(3) (1)又は(2)に記載の樹脂組成物を、この樹脂組成物の結晶化温度±20℃の範囲内の温度で延伸成形し、延伸成形と同時にあるいは延伸成形の後に、同温度範囲内で熱処理して結晶化を促進することを特徴とする延伸成形容器の製造方法。
That is, the gist of the present invention is as follows.
(1) A resin composition containing a layered silicate containing polylactic acid as a main component and intercalating ions between layered silicates with organic ammonium ions, and measured by a differential scanning calorimeter (DSC) A resin composition for stretch molding, characterized in that the time until the calorific value of isothermal crystallization at a crystallization temperature of + 20 ° C. reaches a maximum is 1.5 to 100 minutes.
(2) A stretch-molded container comprising the resin composition according to (1) .
(3) The resin composition according to (1) or (2) is stretch-molded at a temperature within the range of the crystallization temperature of the resin composition ± 20 ° C., and the same as or after the stretch molding. A method for producing a stretch-molded container, characterized by promoting crystallization by heat treatment within a temperature range.

本発明によれば、延伸成形加工性に優れた脂肪族ポリエステル樹脂組成物が提供され、この樹脂組成物を延伸成形することにより、耐熱性及びガスバリア性に優れた延伸成形容器を容易に製造することができる。この容器は、化粧品容器や食品保存容器等の流動体保存容器として良好に使用できる。   According to the present invention, an aliphatic polyester resin composition excellent in stretch molding processability is provided, and a stretch-molded container excellent in heat resistance and gas barrier properties is easily produced by stretching the resin composition. be able to. This container can be favorably used as a fluid storage container such as a cosmetic container or a food storage container.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の樹脂組成物においては、溶融状態の樹脂を冷却するときに起こる結晶化(すなわちメルト結晶化)の際の結晶化速度が判断の指標となる。   In the resin composition of the present invention, the crystallization speed at the time of crystallization (that is, melt crystallization) that occurs when the molten resin is cooled is an index for judgment.

まず、示差走査熱量計(DSC)を用いて樹脂組成物の結晶化温度(T)を測定しておく。次いでDSCを用いて、樹脂組成物の融点(T)以上に昇温した後に(T+20℃)に降温し、その温度を保持して樹脂を等温結晶化させる。(T+20℃)に到達してから、結晶化による発熱量が最大値を示すまでの時間(tmax)をもって、結晶化速度を表す指標とすることができる。tmaxの値が小さいほど結晶化速度の高い樹脂組成物であると判断できる。 First, the crystallization temperature (T c ) of the resin composition is measured using a differential scanning calorimeter (DSC). Next, using DSC, the temperature is raised to the melting point (T m ) or more of the resin composition, the temperature is lowered to (T c + 20 ° C.), and the temperature is maintained and the resin is crystallized isothermally. The time (t max ) from when the temperature reaches (T c + 20 ° C.) until the calorific value due to crystallization reaches the maximum value can be used as an index representing the crystallization rate. It can be determined that the smaller the value of tmax , the higher the crystallization rate.

等温結晶化させる温度がTに近すぎると、樹脂組成物によっては結晶化が速すぎて最大値が明瞭に検出されない問題が起こる可能性があるため、tmaxは、(T+20℃)で測定することが必要である。 If the isothermal crystallization temperature is too close to T c , crystallization may be too fast depending on the resin composition and the maximum value may not be clearly detected. Therefore , t max is (T c + 20 ° C.) It is necessary to measure with.

本発明の樹脂組成物は、tmaxが1.5分〜100分であることが必要である。好ましくは1.7分〜100分、より好ましくは5分〜50分、もっとも好ましくは10分〜50分である。tmaxが1.5分未満の場合には、延伸成形時に急速な結晶化が起こり、成形品に肉厚ムラや変形が生じやすい。また、tmaxが100分を超えると成形時に高温金型内で固化が進まず、耐熱性やガスバリア性が不十分なものとなりやすい。 The resin composition of the present invention needs to have a tmax of 1.5 minutes to 100 minutes. It is preferably 1.7 minutes to 100 minutes, more preferably 5 minutes to 50 minutes, and most preferably 10 minutes to 50 minutes. When t max is less than 1.5 minutes, rapid crystallization occurs during stretch molding, and thickness unevenness or deformation tends to occur in the molded product. On the other hand, if t max exceeds 100 minutes, solidification does not proceed in the high-temperature mold during molding, and heat resistance and gas barrier properties tend to be insufficient.

本発明における脂肪族ポリエステルとしては、(1)グリコール酸、乳酸、ヒドロキシブチルカルボン酸、(2)グリコリド、ラクチド、ブチロラクトン、カプロラクトンなどの脂肪族ラクトン、(3)エチレングリコール、プロピレングリコール、ブタンジオールなどの脂肪族ジオール、(4)ジエチレングリコール、トリエチレングリコール、エチレン/プロピレングリコール、ジヒドロキシエチルブタンなどのようなポリアルキレンエーテルのオリゴマー、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレンエーテルなどのポリアルキレングリコール、(5)ポリプロピレンカーボネート、ポリブチレンカーボネート、ポリヘキサンカーボネート、ポリオクタンカーボネート、ポリデカンカーボネートなどのポリアルキレンカーボネートグリコール及びそれらのオリゴマー、(6)コハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの脂肪族ジカルボン酸などから選ばれる少なくとも1つ以上の原料を主成分(70質量%以上)とした重合体であって、脂肪族ポリエステルのブロック及び/またはランダム共重合体に他の成分、たとえば芳香族ポリエステル、ポリエーテル、ポリカーボネート、ポリアミド、ポリウレタン、ポリオルガノシロキサンなどを30質量%以下の範囲でブロック共重合またはランダム共重合したもの、及び/またはそれらの混合したものも含まれる。   Examples of the aliphatic polyester in the present invention include (1) glycolic acid, lactic acid, hydroxybutylcarboxylic acid, (2) aliphatic lactones such as glycolide, lactide, butyrolactone, caprolactone, (3) ethylene glycol, propylene glycol, butanediol, etc. (4) oligomers of polyalkylene ethers such as diethylene glycol, triethylene glycol, ethylene / propylene glycol, dihydroxyethylbutane, polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polybutylene ether, (5) Polyalkylene carbonates such as polypropylene carbonate, polybutylene carbonate, polyhexane carbonate, polyoctane carbonate, and polydecane carbonate Main component (70 mass) of at least one raw material selected from sulfonate glycols and oligomers thereof, (6) aliphatic dicarboxylic acids such as succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid 30% by mass of an aliphatic polyester block and / or random copolymer with other components such as aromatic polyester, polyether, polycarbonate, polyamide, polyurethane, polyorganosiloxane, etc. Those obtained by block copolymerization or random copolymerization in the following range and / or mixtures thereof are also included.

脂肪族ポリエステル樹脂として植物由来原料からなる樹脂を50質量%以上含有する樹脂を用いると、植物由来度が高いことから石油資源の削減効果が高くなり、好ましい。より好ましくは、植物由来原料からなる樹脂を60質量%以上使用することであり、さらに好ましくは80質量%以上とすることである。植物由来原料からなる樹脂としてポリ乳酸を用いると、成形加工性、透明性、耐熱性が向上するため特に好ましい。また、ポリ乳酸としては、L−乳酸、D−乳酸の含有比率は特に限定されないが、市販されているものとしては(L−乳酸/D−乳酸)=80/20〜99.5/0.5の範囲のものが一般的である。   It is preferable to use a resin containing 50% by mass or more of a resin derived from a plant-derived raw material as the aliphatic polyester resin because the effect of reducing petroleum resources is increased because the plant-derived degree is high. More preferably, the resin composed of plant-derived materials is used in an amount of 60% by mass or more, and more preferably 80% by mass or more. It is particularly preferable to use polylactic acid as a resin made from plant-derived materials because molding processability, transparency, and heat resistance are improved. Moreover, as polylactic acid, although the content ratio of L-lactic acid and D-lactic acid is not specifically limited, As what is marketed, (L-lactic acid / D-lactic acid) = 80 / 20-99.5 / 0. A range of 5 is common.

本発明の樹脂組成物は、主成分である脂肪族ポリエステルに、たとえば添加剤やその他の樹脂成分を添加することによって作製できる。   The resin composition of the present invention can be produced by adding, for example, additives and other resin components to the aliphatic polyester as the main component.

本発明の樹脂組成物を作製するために添加剤を用いる場合、たとえば熱安定剤や酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、滑剤、離型剤、帯電防止剤、末端封鎖剤、充填材、分散剤等が使用できる。熱安定剤や酸化防止剤としては、たとえばホスファイト系有機化合物、ヒンダードフェノール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物、ヒンダードアミン系化合物、イオウ化合物、銅化合物、アルカリ金属のハロゲン化物あるいはこれらの混合物を使用することができる。これらの添加剤は一般に溶融混練時あるいは重合時に加えられる。末端封鎖剤としては、カルボジイミド、オキサゾリンなどが挙げられる。無機充填材としては、タルク、層状珪酸塩、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、金属繊維、金属ウイスカー、セラミックウイスカー、チタン酸カリウム、窒化ホウ素、グラファイト、ガラス繊維、炭素繊維等が挙げられる。有機充填材としては、澱粉、セルロース微粒子、木粉、おから、モミ殻、フスマ、ケナフ等の天然に存在するポリマーやこれらの変性品が挙げられる。   When additives are used to prepare the resin composition of the present invention, for example, heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, lubricants, mold release agents, antistatic agents, endblockers , Fillers, dispersants and the like can be used. Examples of heat stabilizers and antioxidants include phosphite organic compounds, hindered phenol compounds, benzotriazole compounds, triazine compounds, hindered amine compounds, sulfur compounds, copper compounds, alkali metal halides, or these. Mixtures can be used. These additives are generally added during melt-kneading or polymerization. Examples of the terminal blocking agent include carbodiimide and oxazoline. Inorganic fillers include talc, layered silicate, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon , Carbon black, zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fiber, metal whisker, ceramic whisker, potassium titanate, boron nitride, graphite, glass fiber, carbon fiber and the like. Examples of the organic filler include naturally occurring polymers such as starch, cellulose fine particles, wood flour, okara, fir shell, bran and kenaf, and modified products thereof.

また、これらの添加物は、本発明の効果を損なわない範囲において、本発明の目的とは別の理由で添加してもよい。   Moreover, you may add these additives for the reason different from the objective of this invention in the range which does not impair the effect of this invention.

樹脂中に分散したアスペクト比の高いフィラーは樹脂組成物のガスバリア性を向上させる効果を持つため、添加剤として層状珪酸塩を使用するとガスバリア性が高くなり好ましい。ポリ乳酸に対しては、層状珪酸塩の層間イオンを有機アンモニウムイオンに置換した層状珪酸塩を用いるとフィラーの分散性が向上し、ガスバリア性が高くなり、さらに好ましい。   Since the filler having a high aspect ratio dispersed in the resin has an effect of improving the gas barrier property of the resin composition, it is preferable to use a layered silicate as an additive because the gas barrier property becomes high. For polylactic acid, use of a layered silicate in which the interlayer ions of the layered silicate are substituted with organic ammonium ions improves the dispersibility of the filler and increases the gas barrier property, which is more preferable.

添加剤の濃度や種類によって樹脂組成物の結晶化速度は変化し、その結果tmaxの値が変化する。たとえばタルクを添加剤として用いた場合、tmaxを本発明の範囲にするためには、0.01〜10重量%の範囲で添加することが好ましい。 The crystallization rate of the resin composition changes depending on the concentration and type of the additive, and as a result, the value of tmax changes. For example, when talc is used as an additive, it is preferably added in the range of 0.01 to 10% by weight in order to make t max within the range of the present invention.

本発明の樹脂組成物を作製するために、種類の異なる脂肪族ポリエステル樹脂同士、あるいは脂肪族ポリエステル以外の樹脂と脂肪族ポリエステル樹脂とを混合する方法も使用できる。主成分である脂肪族ポリエステル樹脂よりも結晶化速度の高い樹脂を用いれば、添加剤と同様にその混合比を調整することで本発明の樹脂組成物を作製できる。   In order to produce the resin composition of the present invention, a method of mixing different kinds of aliphatic polyester resins or a resin other than aliphatic polyester and an aliphatic polyester resin can also be used. If a resin having a higher crystallization rate than the aliphatic polyester resin as the main component is used, the resin composition of the present invention can be produced by adjusting the mixing ratio in the same manner as the additive.

また、本発明の樹脂組成物には、本発明の効果を損なわない限り、ポリアミド(ナイロン)、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリスチレン、AS樹脂、ABS樹脂、ポリ(アクリル酸)、ポリ(アクリル酸エステル)、ポリ(メタクリル酸)、ポリ(メタクリル酸エステル)、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、及びそれらの共重合体等の非脂肪族ポリエステル樹脂を添加してもよい。添加量は特に限定されないが、脂肪族ポリエステル樹脂の生分解性を損なわないために、樹脂組成物全体100質量%に対して非脂肪族ポリエステル樹脂の割合を20質量%以下とすることが好ましく、10質量%以下とすることがさらに好ましい。   In addition, the resin composition of the present invention includes polyamide (nylon), polyethylene, polypropylene, polybutadiene, polystyrene, AS resin, ABS resin, poly (acrylic acid), poly (acrylic acid ester) unless the effects of the present invention are impaired. ), Poly (methacrylic acid), poly (methacrylic acid ester), polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and copolymers thereof may be added. The addition amount is not particularly limited, but in order not to impair the biodegradability of the aliphatic polyester resin, the proportion of the non-aliphatic polyester resin is preferably 20% by mass or less with respect to 100% by mass of the entire resin composition, More preferably, it is 10 mass% or less.

本発明の樹脂組成物は、一部が架橋されていてもかまわない。また、エポキシ化合物などで修飾されていてもかまわない。   The resin composition of the present invention may be partially crosslinked. Moreover, it may be modified with an epoxy compound or the like.

本発明の脂肪族ポリエステル樹脂の分子量は特に限定されないが、その指標となる190℃、2.16kgにおけるメルトフローインデックス(MFI)が0.1〜50g/10分の範囲であれば好ましく使用することができ、さらに好ましくは、0.2〜40g/10分の範囲である。   The molecular weight of the aliphatic polyester resin of the present invention is not particularly limited, but is preferably used as long as the melt flow index (MFI) at 190 ° C. and 2.16 kg as an index is in the range of 0.1 to 50 g / 10 min. More preferably, it is the range of 0.2-40 g / 10min.

本発明の樹脂組成物を用いた容器の成形方法は特に限定されず、公知のブロー成形方法により、延伸成形容器を製造することができる。   The molding method of the container using the resin composition of the present invention is not particularly limited, and a stretch-molded container can be produced by a known blow molding method.

ブロー成形法としては、例えば原料チップの溶融後に溶融パリソンを成形し直ちにブロー成形を行うダイレクトブロー法や、まず射出成形で予備成形体(有底パリソン)を成形して次いでブロー形を行う射出ブロー成形法を採用することができる。また予備成形体成形後に連続してブロー成形を行うホットパリソン法、いったん予備成形体を冷却し取り出してから再度加熱してブロー成形を行うコールドパリソン法のいずれの方法も採用できる。   Examples of the blow molding method include a direct blow method in which a molten parison is formed after the raw material chips are melted and immediately blow-molded, or an injection blow in which a preform (bottomed parison) is first molded by injection molding and then blown. A molding method can be employed. In addition, any of a hot parison method in which blow molding is continuously performed after molding of a preformed body, and a cold parison method in which blow molding is performed by once cooling and taking out the preformed body and then performing blow molding can be employed.

本発明では、樹脂の結晶化度を向上させて容器の耐熱性及びガスバリア性を向上させるために、容器を構成する成形体を、T±20℃の範囲内の温度で延伸成形後さらに同温度範囲内で熱処理して結晶化を促進することが好適である。熱処理工程は、成形加工と同時でもあるいは成形加工後でも構わない。上述のブロー成形において、成形金型の温度を上記範囲内に設定した場合は、成形加工と同時に熱処理が行われることになるので工程が簡略化されてより好ましい。本発明の樹脂組成物を用いることで、成形加工と同時の熱処理工程で起こる急速な結晶化による成形の不具合の問題を回避でき、目的の成形体を得ることができる。成形金型の温度を上記範囲より低く設定した場合は、結晶化が困難になり得られる容器の耐熱性及びガスバリア性が不十分となる場合がある。したがって成形加工後に上記範囲で熱処理することで、樹脂の結晶化度を向上させて容器の耐熱性及びガスバリア性を向上させることができる。逆に成形金型の温度を上記範囲より高く設定した場合は、偏肉が生じる、粘度低下によりドローダウンする等の成形加工性の問題が発生する可能性がある。 In the present invention, in order to improve the crystallinity of the resin and improve the heat resistance and gas barrier properties of the container, the molded body constituting the container is further stretched and molded at a temperature within the range of Tc ± 20 ° C. It is preferable to promote crystallization by heat treatment within a temperature range. The heat treatment step may be performed simultaneously with the molding process or after the molding process. In the blow molding described above, when the temperature of the molding die is set within the above range, the heat treatment is performed simultaneously with the molding process, so that the process is simplified, which is more preferable. By using the resin composition of the present invention, it is possible to avoid the problem of molding defects due to rapid crystallization that occurs in the heat treatment step at the same time as the molding process, and it is possible to obtain the desired molded body. When the temperature of the molding die is set lower than the above range, the heat resistance and gas barrier properties of the container that may be difficult to crystallize may be insufficient. Therefore, by performing the heat treatment in the above range after the molding process, the resin crystallinity can be improved and the heat resistance and gas barrier properties of the container can be improved. On the other hand, when the temperature of the molding die is set higher than the above range, there may be a problem of molding processability such as uneven thickness or drawing down due to a decrease in viscosity.

本発明の延伸成形容器としては、流動体用容器等が挙げられる。その形態は、特に限定されないが、流動体を収容するためには深さ20mm以上に成形されていることが好ましい。容器の厚さは、特に限定しないが、必要強度から考えて0.2mm以上、好ましくは0.5〜5mmである。流動体用容器の具体例としては、乳製品や清涼飲料水や酒類等の飲料用コップ及び飲料用ボトル、醤油、ソース、マヨネーズ、ケチャップ、食用油等の調味料の一時保存容器、シャンプー・リンス等の容器、化粧品用容器、農薬用容器等が挙げられる。   Examples of the stretch-molded container of the present invention include a fluid container. Although the form is not specifically limited, In order to accommodate a fluid, it is preferable to shape | mold to the depth of 20 mm or more. Although the thickness of a container is not specifically limited, Considering required strength, it is 0.2 mm or more, Preferably it is 0.5-5 mm. Specific examples of containers for fluids include cups for beverages such as dairy products, soft drinks and alcoholic beverages, bottles for beverages, soy sauce, sauces, mayonnaise, ketchup, temporary containers for seasonings such as edible oils, shampoos and rinses Containers, cosmetic containers, agricultural chemical containers, and the like.

以下、本発明を実施例によりさらに具体的に説明するが、本発明は実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited only to an Example.

実施例及び比較例において、評価に用いた測定法は次の通りである。   In the examples and comparative examples, the measurement methods used for evaluation are as follows.

(1)樹脂組成物の融点Tと結晶化温度T
DSC(パーキンエルマー社製DSC7)を用い、25℃から200℃に20℃/分で昇温し、その温度を10分間維持した。その後−55℃まで20℃/分で降温し、再び200℃まで20℃/分で昇温した。降温時に得られた発熱ピークのトップを樹脂の結晶化温度Tとし、2回目の昇温時に得られた吸熱ピークのトップをその樹脂組成物の融点Tとした。
(1) Melting point Tm and crystallization temperature Tc of the resin composition:
Using DSC (DSC7 manufactured by Perkin Elmer), the temperature was raised from 25 ° C. to 200 ° C. at 20 ° C./min, and the temperature was maintained for 10 minutes. Thereafter, the temperature was lowered to −55 ° C. at 20 ° C./min, and again raised to 200 ° C. at 20 ° C./min. The top of the exothermic peak obtained during cooling and crystallization temperature T c of the resin, the top of the endothermic peak obtained during the second heating was taken as the melting point T m of a the resin composition.

(2)tmax
延伸成形前の樹脂組成物について、DSCを用いて融点以上に昇温し、その温度を10分間維持した。その後、(T+20℃)に降温し、その温度を保持して樹脂を等温結晶化させた。この等温結晶化の温度(T+20℃)に到達してから、結晶化による発熱量が最大値となるまでの時間をtmaxとした。tmaxが小さいほど結晶化の速い樹脂であると判断できる。比較例1では、結晶化速度が低くTの値が測定できないため、等温結晶化の温度を130℃とした。
(2) t max :
About the resin composition before stretch molding, it heated up more than melting | fusing point using DSC, and maintained the temperature for 10 minutes. Thereafter, the temperature was lowered to (T c + 20 ° C.), and the resin was crystallized isothermally while maintaining the temperature. The time from when the isothermal crystallization temperature (T c + 20 ° C.) was reached to when the calorific value due to crystallization reaches the maximum value was defined as t max . It can be determined that the smaller the tmax , the faster the crystallization resin. In Comparative Example 1, since the crystallization rate was low and the value of Tc could not be measured, the isothermal crystallization temperature was set to 130 ° C.

(3)酸素透過量:
成形したボトルについて、窒素ガスチャンバーを用いて窒素ガス置換後、ゴム栓で密栓し、20℃、相対湿度60%の条件下にて30日間保存した。ガスタイトシリンジを用いてボトル内のガスを採取し、ガスクロマトグラフ(熱伝導度検出器)にてボトル内の酸素濃度変化を測定した。得られた測定値から、一日あたりの酸素透過量(ml・day−1・bottle−1で表す)を求め、この値が0.1ml・day−1・bottle−1以下であるものを良好(○)とし、これを超えるものを不良(×)とした。
(3) Oxygen permeation amount:
The molded bottle was purged with nitrogen gas using a nitrogen gas chamber, sealed with a rubber stopper, and stored for 30 days under conditions of 20 ° C. and 60% relative humidity. The gas in the bottle was collected using a gas tight syringe, and the oxygen concentration change in the bottle was measured with a gas chromatograph (thermal conductivity detector). From the measured values obtained, the amount of oxygen permeation per day (expressed as ml · day −1 · bottle −1 ) was determined, and those having a value of 0.1 ml · day −1 · bottle −1 or less were good (○) and those exceeding this were regarded as defective (×).

(4)水蒸気透過率:
この値が小さいほど、バリア性が良好であることを示す。すなわち、成形したボトルに純水を充填して密封し、50℃の乾燥機中にて30日間保存した後、内容物減少率が3重量%以下であるものを良好(○)とし、3重量%を超えるものを不良(×)とした。
(4) Water vapor transmission rate:
It shows that barrier property is so favorable that this value is small. That is, after filling the molded bottle with pure water and sealing it, and storing it in a dryer at 50 ° C. for 30 days, the one whose content reduction rate is 3% by weight or less is judged as good (◯), and 3% by weight Those exceeding% were regarded as defective (x).

(5)成形性:
成形したボトルに対し、成形時に目視で評価を行った。成形後のボトルの外観が良好で連続成形可能なものを成形性良(○)とし、肉厚ムラ・変形などが生じたものを成形性不良(×)とした。
(5) Formability:
The molded bottle was visually evaluated at the time of molding. A bottle having a good appearance after molding and capable of continuous molding was defined as good moldability (◯), and a bottle with uneven thickness or deformation was designated as poor moldability (X).

(6)耐熱性:
成形後のボトルを120℃(実施例13〜16及び比較例1〜7、比較例9〜20)または90℃で(比較例8、21)で30分間熱処理した後の外観が良好なものを耐熱性良(○)とし、肉厚ムラ・変形などが生じたものを耐熱性不良(×)とした。
(6) Heat resistance:
A bottle having a good appearance after heat treatment at 120 ° C. (Examples 13 to 16 and Comparative Examples 1 to 7 and Comparative Examples 9 to 20 ) or 90 ° C. (Comparative Examples 8 and 21 ) for 30 minutes. The heat resistance was good (◯), and the one with uneven thickness or deformation was regarded as poor heat resistance (×).

実施例、比較例において用いた各種原料を示す。   Various raw materials used in Examples and Comparative Examples are shown.

(1)脂肪族ポリエステル樹脂
・ポリ乳酸(NatureWorks社製4031D、重量平均分子量190,000、T167℃、T110℃)
・ポリブチレンサクシネート(三菱化学社製GS Pla P−10、重量平均分子量170,000、T108℃、T73℃)
(1) Aliphatic polyester resin / polylactic acid (manufactured by NatureWorks, 4031D, weight average molecular weight 190,000, T m 167 ° C., T c 110 ° C.)
・ Polybutylene succinate (GS Pla P-10 manufactured by Mitsubishi Chemical Corporation, weight average molecular weight 170,000, T m 108 ° C., T c 73 ° C.)

(2)無機添加物
・微粉タルク(林化成社製MW HS−T、平均粒径2.5μm)
(2) Inorganic additive, fine powder talc (MW HS-T, Hayashi Kasei Co., Ltd., average particle size 2.5 μm)

(3)有機添加物
・ステアリン酸マグネシウム(和光化成社製)
・エチレングリコールジメタクリレート(日本油脂社製)
・ジエチレングリコールジメタクリレート(日本油脂社製)
・グリシジルメタクリレート(日本油脂社製)
・ヘキサメチレンジイソシアネート(和光化成社製)
・ジブチルパーオキサイド(日本油脂社製)
・エルカ酸アミド(和光化成社製)
・エチレンビスステアリルアミド(和光化成社製)
(3) Organic additive magnesium stearate (manufactured by Wako Kasei Co., Ltd.)
・ Ethylene glycol dimethacrylate (Nippon Yushi Co., Ltd.)
・ Diethylene glycol dimethacrylate (manufactured by NOF Corporation)
・ Glycidyl methacrylate (Nippon Yushi Co., Ltd.)
・ Hexamethylene diisocyanate (Wako Kasei Co., Ltd.)
・ Dibutyl peroxide (Nippon Yushi Co., Ltd.)
・ Erucamide (Wako Kasei Co., Ltd.)
・ Ethylenebisstearylamide (Wako Kasei Co., Ltd.)

(4)層状珪酸塩
・ソマシフMEE(コープケミカル社製、層間イオンがジヒドロキシエチルメチルドデシルアンモニウムイオンで置換された膨潤性合成フッ素雲母)
・ソマシフMTE(コープケミカル社製、層間イオンがメチルトリオクチルアンモニウムイオンで置換された膨潤性合成フッ素雲母)
・エスベンE(ホージュン社製、層間イオンがトリメチルオクタデシルアンモニウムイオンで置換されたモンモリロナイト)
(4) Layered silicate somasif MEE (manufactured by Co-op Chemical Co., Ltd., swellable synthetic fluoromica in which interlayer ions are substituted with dihydroxyethylmethyldodecylammonium ions)
・ Somasif MTE (Corp Chemical Co., Ltd., swellable synthetic fluorinated mica in which interlayer ions are replaced with methyltrioctylammonium ions)
・ Esven E (manufactured by Hojun Co., Ltd., montmorillonite with interlayer ions substituted with trimethyloctadecyl ammonium ions)

(樹脂組成物の製造)
実施例13〜16、比較例1〜7、9〜20
ポリ乳酸に、表1に示す添加剤をそれぞれの割合でドライブレンドにて添加し、池貝社製PCM−30型2軸押出機(スクリュー径30mmφ、平均溝深さ2.5mm)を用いて、190℃、スクリュー回転数200rpm(=3.3rps)、滞留時間1.6分で溶融混練を行い、各樹脂組成物を得た。なお、樹脂組成物の組成は、得られる樹脂組成物全体が100質量%となるように設定した。また全ての樹脂組成物において、溶融混練に際して滑剤としてステアリン酸マグネシウムを、樹脂組成物全体100質量%に対して0.02質量%となるようにドライブレンドにて添加した。比較例1は、滑剤のみ添加して溶融混練をおこなった。さらに、比較例4及び比較例13〜16の樹脂組成物については、表1に示す添加剤の他に、ジブチルパーオキサイドを0.1質量%それぞれに添加した。
(Manufacture of resin composition)
Example 13-16, Comparative Examples 1-7, 9-20
To polylactic acid, the additives shown in Table 1 were added in dry blends in respective proportions, and using a PCM-30 type twin screw extruder (screw diameter 30 mmφ, average groove depth 2.5 mm) manufactured by Ikegai Co., Ltd. Melting and kneading were performed at 190 ° C., screw rotation speed 200 rpm (= 3.3 rps), and residence time 1.6 minutes to obtain each resin composition. In addition, the composition of the resin composition was set so that the whole resin composition obtained might be 100 mass%. In all the resin compositions, magnesium stearate as a lubricant at the time of melt kneading was added by dry blending so as to be 0.02% by mass with respect to 100% by mass of the entire resin composition. In Comparative Example 1, only a lubricant was added and melt kneading was performed. Furthermore, about the resin composition of the comparative example 4 and the comparative examples 13-16 , in addition to the additive shown in Table 1, dibutyl peroxide was added to 0.1 mass%, respectively.

比較例8、21
ポリブチレンサクシネートに、表1に示す添加剤をそれぞれの割合でドライブレンドにて添加し、130℃、スクリュー回転数200rpm(=3.3rps)、滞留時間1.6分で溶融混練を行い、樹脂組成物を得た。いずれの樹脂組成物においても、溶融混練に際して、滑剤としてステアリン酸マグネシウムを、樹脂組成物全体100質量%に対して0.02質量%となるようにドライブレンドにて添加した。
Comparative Examples 8 and 21
To polybutylene succinate, the additives shown in Table 1 were added by dry blending at respective ratios, and melt kneading was performed at 130 ° C., screw rotation speed 200 rpm (= 3.3 rps), residence time 1.6 minutes, A resin composition was obtained. In any resin composition, magnesium stearate as a lubricant was added by dry blending so as to be 0.02% by mass with respect to 100% by mass of the entire resin composition during melt kneading.

(熱特性の測定)
次いで、得られた各樹脂組成物を乾燥して水分率300ppm以下とし、DSC(パーキンエルマー社製DSC7)を用いて融点Tと結晶化温度T、tmaxをそれぞれ測定した。各樹脂組成物のT、T、tmaxを表1に示した。
(Measurement of thermal characteristics)
Subsequently, each obtained resin composition was dried to a moisture content of 300 ppm or less, and the melting point T m and the crystallization temperatures T c and t max were measured using DSC (DSC7 manufactured by PerkinElmer Co., Ltd.). Table 1 shows T m , T c , and t max of each resin composition.

(樹脂組成物の延伸成形)
得られた樹脂組成物について、射出ブロー成形機(日精ASB機械社製ASB−50TH)を用い、融点以上の温度であるシリンダ設定温度200℃で溶融して10℃の金型に充填し、10秒間冷却して5mm厚の予備成形体(有底パリソン)を得た。これを120℃の温風で加熱した後、所定の温度に設定された低温金型または高温金型に入れ、圧力空気3.5MPaの条件下でブロー成形し、内容積130ml、厚み1.1mmのボトル容器を作製した。低温金型はその温度を25℃(比較例10)に設定し、高温金型はその温度を120℃(実施例13〜16及び比較例1〜7、9、11〜20)または90℃(比較例8及び比較例21)に設定した。この高温金型の温度は、各樹脂組成物に関し、上述のT±20℃の範囲内という条件を満たすものであった。
(Stretch molding of resin composition)
Using the injection blow molding machine (ASB-50TH manufactured by Nissei ASB Machine Co., Ltd.), the obtained resin composition was melted at a cylinder set temperature of 200 ° C., which is a temperature higher than the melting point, and filled in a 10 ° C. mold. Cooling for 2 seconds, a 5 mm thick preform (bottom parison) was obtained. This is heated with hot air of 120 ° C., then placed in a low temperature mold or a high temperature mold set at a predetermined temperature, blow molded under conditions of pressure air of 3.5 MPa, an internal volume of 130 ml, a thickness of 1.1 mm A bottle container was prepared. The temperature of the low temperature mold is set to 25 ° C ( Comparative Example 10 ), and the temperature of the high temperature mold is set to 120 ° C (Examples 13 to 16 and Comparative Examples 1 to 7 , 9, 11 to 20 ) or 90 ° C ( Comparative Example 8 and Comparative Example 21 ) were set. The temperature of the high-temperature mold satisfied the condition of the above-mentioned range of T c ± 20 ° C. for each resin composition.

実施例14では、成形した容器をさらに熱風乾燥機中において120℃で30分間の熱処理を行った。   In Example 14, the molded container was further heat-treated at 120 ° C. for 30 minutes in a hot air dryer.

得られた容器の評価結果を表1に示す。   Table 1 shows the evaluation results of the obtained container.

実施例13〜16においては、いずれも樹脂組成物のtmaxが1.5〜100分の間にあるため、ブロー成形での成形加工性が良好で、かつガスバリア性を表す酸素透過量と水蒸気透過率も良好であり、また、成形と同時に熱処理を施したため成形体の耐熱性も良好であった。
In Examples 13 to 16 , since the tmax of the resin composition is between 1.5 and 100 minutes, the oxygen permeation amount and the water vapor representing gas barrier properties with good moldability in blow molding. The transmittance was also good, and since the heat treatment was performed simultaneously with the molding, the heat resistance of the molded body was also good.

実施例13〜16の樹脂組成物は、tmaxが10〜50分の間にあり、なおかつ添加剤として層状珪酸塩を含んでいるため、ガスバリア性が特に良好であった。 The resin compositions of Examples 13 to 16 had particularly good gas barrier properties because t max was between 10 and 50 minutes and the layered silicate was included as an additive.

実施例14の樹脂組成物は、成形後にさらに熱処理を行ったことによりさらにガスバリア性が向上していた。   The resin composition of Example 14 was further improved in gas barrier properties by further heat treatment after molding.

比較例1〜2の樹脂組成物は、tmaxが100分よりも大きいために、高温金型での成形時に固化が進まずドローダウンを起こすといった成形加工上の問題があり、また成形と同時の結晶化が不十分であったため、ガスバリア性や耐熱性に問題があった。 Since the resin compositions of Comparative Examples 1 and 2 have a t max of more than 100 minutes, there is a problem in molding processing in which solidification does not proceed during molding with a high-temperature mold and draw-down occurs. Because of insufficient crystallization, gas barrier properties and heat resistance were problematic.

比較例3〜8の樹脂組成物は、tmaxが1.5分よりも小さいために、成形時に急速な結晶化が起こって肉厚ムラ・変形などが生じるといった成形加工上の問題があり、容器にピンホールができるなどしたためガスバリア性の評価が不可能であった。
Since the resin compositions of Comparative Examples 3 to 8 have a t max of less than 1.5 minutes, there is a problem in molding processing such that rapid crystallization occurs during molding and thickness unevenness and deformation occur. The gas barrier property could not be evaluated because of the pinholes in the container.

Claims (3)

ポリ乳酸を主成分とし、層状珪酸塩の層間イオンを有機アンモニウムイオンに置換した層状珪酸塩を含有する樹脂組成物であって、示差走査熱量計(DSC)により測定される、結晶化温度+20℃における等温結晶化の発熱量が最大値を示すまでの時間が1.5分〜100分であることを特徴とする延伸成形用樹脂組成物。 A resin composition containing a layered silicate containing polylactic acid as a main component and intercalating ions between layered silicates with organic ammonium ions, measured by a differential scanning calorimeter (DSC), crystallization temperature +20 A resin composition for stretch molding, characterized in that the time until the calorific value of isothermal crystallization at 0 ° C. reaches a maximum is 1.5 to 100 minutes. 請求項1に記載の樹脂組成物からなる延伸成形容器。 A stretch-molded container comprising the resin composition according to claim 1. 請求項1又は2に記載の樹脂組成物を、この樹脂組成物の結晶化温度±20℃の範囲内の温度で延伸成形し、延伸成形と同時にあるいは延伸成形の後に、同温度範囲内で熱処理して結晶化を促進することを特徴とする延伸成形容器の製造方法。 The resin composition according to claim 1 or 2 is stretch-molded at a temperature within the range of the crystallization temperature of the resin composition ± 20 ° C, and is heat-treated within the same temperature range simultaneously with or after the stretch molding. And a method for producing a stretch-molded container, which promotes crystallization.
JP2006153932A 2006-06-01 2006-06-01 Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container Expired - Fee Related JP4745135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153932A JP4745135B2 (en) 2006-06-01 2006-06-01 Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153932A JP4745135B2 (en) 2006-06-01 2006-06-01 Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container

Publications (2)

Publication Number Publication Date
JP2007320203A JP2007320203A (en) 2007-12-13
JP4745135B2 true JP4745135B2 (en) 2011-08-10

Family

ID=38853395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153932A Expired - Fee Related JP4745135B2 (en) 2006-06-01 2006-06-01 Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container

Country Status (1)

Country Link
JP (1) JP4745135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353726B2 (en) * 2014-07-24 2018-07-04 帝人株式会社 Pressure-resistant container used for fire fighting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036651A (en) * 1996-05-24 1998-02-10 Dainippon Ink & Chem Inc Lactate polyester composition and molded product thereof
JP2002201293A (en) * 2000-12-28 2002-07-19 Toyo Seikan Kaisha Ltd Stretched and molded container
JP2003253009A (en) * 2002-03-06 2003-09-10 Unitika Ltd Polylactic acid based molded product and production method therefor
JP2005200600A (en) * 2004-01-19 2005-07-28 Mitsui Chemicals Inc Lactic acid-based polymer composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036651A (en) * 1996-05-24 1998-02-10 Dainippon Ink & Chem Inc Lactate polyester composition and molded product thereof
JP2002201293A (en) * 2000-12-28 2002-07-19 Toyo Seikan Kaisha Ltd Stretched and molded container
JP2003253009A (en) * 2002-03-06 2003-09-10 Unitika Ltd Polylactic acid based molded product and production method therefor
JP2005200600A (en) * 2004-01-19 2005-07-28 Mitsui Chemicals Inc Lactic acid-based polymer composition

Also Published As

Publication number Publication date
JP2007320203A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4021105B2 (en) Polyester resin composition and hollow molded container comprising the same
TWI403553B (en) Biodegradable container and method for producing the same
JP5036539B2 (en) Biodegradable polyester resin composition, method for producing the same, and molded product obtained by molding the composition
JPWO2005123831A1 (en) Polylactic acid-containing resin composition and molded product obtained therefrom
JP2009144152A (en) Biodegradable polyester composition
JP4749267B2 (en) Heat resistant poly L-lactic acid preform
JPWO2011025028A1 (en) Laminated body and stretched laminated body using the same
JP5339670B2 (en) Resin composition and injection molded body
JP2007126589A (en) Injection-molded article
JP2007217513A (en) Polylactic acid resin composition and molded product
JP5706822B2 (en) Polyglycolic acid resin composition, polyglycolic acid resin molding and laminate
JP2011080015A (en) Molded spectacles article, method for producing the same, and spectacles
JP2006206670A (en) Biodegradable resin composition and resin sheet
JP4745135B2 (en) Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container
JP2006233121A (en) Biodegradable resin composition and molded article therefrom
JP2005298617A (en) Injection molded product
JP4232416B2 (en) Manufacturing method of hollow molded product
US20240093025A1 (en) Polymer blend
JP2005200600A (en) Lactic acid-based polymer composition
JP5319901B2 (en) Heat resistant resin composition
JP4576166B2 (en) Injection molded body
JP2005139441A (en) Injection molded product
JP5563509B2 (en) Multilayer structures and containers
JP2009293034A (en) Injection-molded product
JP2008101067A (en) Stretch-molded article of aliphatic polyester, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees