JP2005200600A - Lactic acid-based polymer composition - Google Patents

Lactic acid-based polymer composition Download PDF

Info

Publication number
JP2005200600A
JP2005200600A JP2004010325A JP2004010325A JP2005200600A JP 2005200600 A JP2005200600 A JP 2005200600A JP 2004010325 A JP2004010325 A JP 2004010325A JP 2004010325 A JP2004010325 A JP 2004010325A JP 2005200600 A JP2005200600 A JP 2005200600A
Authority
JP
Japan
Prior art keywords
lactic acid
weight
preform
polymer composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004010325A
Other languages
Japanese (ja)
Inventor
Takayuki Yamada
山田孝行
Takayuki Watanabe
渡辺孝行
Yasuhiro Kitahara
北原泰広
Masahiro Sugi
杉正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004010325A priority Critical patent/JP2005200600A/en
Publication of JP2005200600A publication Critical patent/JP2005200600A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lactic acid-based polymer composition excellent in injection biaxially stretching blow-molding processability, and an injection biaxially stretched blow bottle obtained therefrom. <P>SOLUTION: This lactic acid-based polymer composition contains (A) 100 pts.wt. lactic acid polymer and (B) 0.1-10 pt.wt. crystalline inorganic compound containing ≥30% silicic acid (SiO<SB>2</SB>) component as a crystal-nucleating agent. The injection biaxially stretched blow bottle is obtained from the composition. Further, the method for producing the lactic acid-based polymer composition by a master batch method, and the master batch are also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は乳酸系ポリマー組成物に関する。更に詳しくは成形が良好で、使用後自然環境下で分解する乳酸系ポリマー組成物並びに該組成物より得られる射出二軸延伸ブローボトルに関する。   The present invention relates to a lactic acid polymer composition. More specifically, the present invention relates to a lactic acid-based polymer composition that is well molded and decomposes in a natural environment after use, and an injection biaxially stretched blow bottle obtained from the composition.

従来、プラスチックから作られる成形物の材料としては、ポリスチレン、ポリ塩化ビニル、ポリプロピレン、ポリエチレンテレフタレート樹脂等が使用されている。かかる樹脂から製造された成形物は透明性に優れているものもあるが、廃棄する際その処理方法を誤るとゴミの量を増すうえに、自然環境下では殆ど分解しないため、埋設処理すると、半永久的に地中に残留する。一方、熱可塑性樹脂で生分解性のあるポリマーとして、ポリ乳酸または乳酸とその他のヒドロキシカルボン酸のコポリマーが開発されている。これらの樹脂は、動物の体内で数カ月から1年以内に100%生分解し、また、土壌や海水中に置かれた場合、湿った環境下では数週間で分解を始め、約1年から数年で消滅し、さらに分解生成物は、人体に無害な乳酸と二酸化炭素と水になるという特性を有している。   Conventionally, polystyrene, polyvinyl chloride, polypropylene, polyethylene terephthalate resin, and the like are used as materials for molded articles made of plastic. Some of the molded products produced from such resins are excellent in transparency, but if they are disposed of in an incorrect manner, the amount of dust is increased, and they are hardly decomposed in the natural environment. It remains in the ground semipermanently. On the other hand, polylactic acid or a copolymer of lactic acid and other hydroxycarboxylic acid has been developed as a biodegradable polymer of a thermoplastic resin. These resins are 100% biodegradable within a few months to one year in the body of an animal, and when placed in soil or seawater, they begin to degrade in a few weeks in a moist environment. It disappears over the years, and the degradation products have the property of becoming lactic acid, carbon dioxide and water that are harmless to the human body.

これらの乳酸系ポリマー組成物は透明性、剛性に優れているものの、耐熱性の付与された射出二軸延伸ブローボトルを成形しようとすると以下のような問題を有していた。耐熱性を付与された射出二軸延伸ブローボトルを製造する場合、射出成形されたプリフォームを延伸ブロー前に、プリフォームの口部を結晶化させる必要がある。しかし、乳酸系ポリマーは本来、結晶化速度が遅い為、これを改良する為に結晶化速度を速くするのに有効な結晶核剤の添加が行われるが、結晶化が短時間で進むような処方にすると、延伸時のプリフォーム胴体部の予熱の間に、この胴体部の結晶化が進んでしまい、延伸性が悪くなる為、予熱温度や予熱時間が極端に制限を受けるという欠点を有していた。   Although these lactic acid-based polymer compositions are excellent in transparency and rigidity, they have the following problems when trying to mold an injection biaxially stretched blow bottle with heat resistance. When producing an injection biaxially stretched blow bottle with heat resistance, it is necessary to crystallize the mouth of the preform before stretch-blowing the injection-molded preform. However, since lactic acid polymers are inherently slow in crystallization speed, in order to improve this, a crystal nucleating agent effective for increasing the crystallization speed is added, but crystallization proceeds in a short time. If the prescription is used, the crystallization of the body part progresses during the preheating of the preform body part during stretching, and the stretchability deteriorates, so that the preheating temperature and the preheating time are extremely limited. Was.

また、延伸時の成形性を重視し、胴体部の予熱時に結晶化が進まない処方にすると、乳酸系ポリマーは、結晶化速度が遅い為、事前の口部の結晶化に長時間を要し、生産性という点で問題があった。
特開2001-354223号公報 特開平08-244781号公報
Also, if the emphasis is on moldability at the time of stretching, and the prescription is such that crystallization does not progress during preheating of the body part, the lactic acid-based polymer takes a long time to crystallize in advance because the crystallization rate is slow There was a problem in terms of productivity.
JP 2001-354223 A Japanese Patent Application Laid-Open No. 08-244781

本発明が解決しようとする課題は、射出二軸延伸ブロー成型加工性に優れ、使用後自然環境下で分解する乳酸系ポリマー組成物、ボトルを得ることである。   The problem to be solved by the present invention is to obtain a lactic acid-based polymer composition and a bottle that are excellent in injection biaxial stretch blow molding processability and decompose in a natural environment after use.

本発明は、乳酸系ポリマー(A)100重量部に対ししてケイ酸(SiO)成分を30%以上含む結晶性の無機化合物(B)0.07〜10重量部を含有する乳酸系ポリマー組成物(AA)を提供する。 The present invention relates to a lactic acid-based polymer containing 0.07 to 10 parts by weight of a crystalline inorganic compound (B) containing 30% or more of a silicic acid (SiO 2 ) component with respect to 100 parts by weight of the lactic acid-based polymer (A). A composition (AA) is provided.

前記無機化合物(B)が、タルク、カオリン、クレー、シリカから選ばれた少なくとも1種である前記乳酸系ポリマー組成物(AA)は本発明の好ましい形態である。   The lactic acid polymer composition (AA) in which the inorganic compound (B) is at least one selected from talc, kaolin, clay, and silica is a preferred embodiment of the present invention.

前記乳酸系ポリマー(A)中の乳酸単位中のD体の含有量が8%以下である乳酸系ポリマー組成物(AA)も本発明の好ましい態様である。   A lactic acid polymer composition (AA) in which the content of D-form in the lactic acid unit in the lactic acid polymer (A) is 8% or less is also a preferred embodiment of the present invention.

本発明はさらに、前記乳酸系ポリマー組成物(AA)からなる射出二軸延伸ブローボトルを提供する。   The present invention further provides an injection biaxially stretched blow bottle comprising the lactic acid-based polymer composition (AA).

本発明は、乳酸系ポリマー(A)100重量部に対しケイ酸(SiO)成分を30%以上含む結晶性の無機化合物(B)1.0〜50重量部を含んでなる乳酸系ポリマー組成
物(AAA)を、乳酸系ポリマー(A)によって希釈することによって前記乳酸系ポリマー組成物(AA)を製造する方法を提供する。
The present invention relates to a lactic acid polymer composition comprising 1.0 to 50 parts by weight of a crystalline inorganic compound (B) containing 30% or more of a silicic acid (SiO 2 ) component with respect to 100 parts by weight of a lactic acid polymer (A). A method for producing the lactic acid polymer composition (AA) by diluting the product (AAA) with the lactic acid polymer (A) is provided.

本発明はさらに、乳酸系ポリマー(A)100重量部に対し、ケイ酸(SiO)成分を30%以上含む結晶性の無機化合物(B)を1.0〜50重量部を含んでなるマスターバッチに適した乳酸系ポリマー組成物(AAA)を提供する。 The present invention further includes a master comprising 1.0 to 50 parts by weight of a crystalline inorganic compound (B) containing 30% or more of a silicic acid (SiO 2 ) component with respect to 100 parts by weight of a lactic acid-based polymer (A). A lactic acid-based polymer composition (AAA) suitable for batch is provided.

また本発明は、結晶化度が1%以下の乳酸系ポリマーをガラス転移温度以上100℃以下で5分の加熱処理したときの結晶化度が5%以下であってかつ、120℃以上融点以下で5分の加熱処理したときの結晶化度が15%以上である乳酸系ポリマー組成物を提供する。   The present invention also provides a crystallinity of 5% or less when a lactic acid polymer having a crystallinity of 1% or less is heat-treated for 5 minutes at a glass transition temperature of 100 ° C. or less and a melting point of 120 ° C. or more and a melting point or less. A lactic acid-based polymer composition having a crystallinity of 15% or more when subjected to a heat treatment for 5 minutes is provided.

本発明により、射出二軸延伸ブロー成型加工性に優れ、更に分解性が良好な乳酸系ポリマー組成物およびそれからなる射出延伸ブローボトルを提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a lactic acid polymer composition excellent in injection biaxial stretch blow molding processability and further having good decomposability, and an injection stretch blow bottle comprising the same.

本発明において乳酸系ポリマー(A)とは、乳酸を主成分とするポリエステルであって、好ましくは乳酸を50%以上、特に好ましくは75%以上を含有し、その他の成分として乳酸以外の炭素数2〜10の脂肪族ヒドロキシカルボン酸、脂肪族ジカルボン酸、脂肪族ジオールなどからなるものであり、また、ポリマーの生分解性を損なわない範囲でテレフタル酸などの芳香族化合物を含有するものであっても良い。これらを主成分とするホモポリマー、コポリマー、ならびにこれらの混合物を含む。   In the present invention, the lactic acid-based polymer (A) is a polyester having lactic acid as a main component, preferably containing 50% or more, particularly preferably 75% or more of lactic acid, and the number of carbons other than lactic acid as other components. It consists of 2-10 aliphatic hydroxycarboxylic acids, aliphatic dicarboxylic acids, aliphatic diols, etc., and contains an aromatic compound such as terephthalic acid as long as the biodegradability of the polymer is not impaired. May be. Homopolymers, copolymers based on these, and mixtures thereof are included.

ポリマーの原料に用いられる乳酸類としては、L−乳酸、D−乳酸,DL−乳酸又はそれらの混合物または乳酸の環状2量体であるラクタイドを使用することができる。また乳酸類と併用できるヒドロキシカルボン酸類としては、炭素数2〜10の乳酸以外のヒドロキシカルボン酸類が好ましく、具体的にはグリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などを好適に使用することができ、更にヒドロキシカルボン酸の環状エステル中間体、例えば、グリコール酸の2量体であるグリコライドや6−ヒドロキシカプロン酸の環状エステルであるε−カプロラクトンも使用できる。   As the lactic acid used for the raw material of the polymer, L-lactic acid, D-lactic acid, DL-lactic acid or a mixture thereof or lactide which is a cyclic dimer of lactic acid can be used. The hydroxycarboxylic acids that can be used in combination with lactic acids are preferably hydroxycarboxylic acids other than lactic acid having 2 to 10 carbon atoms, specifically glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid, and the like can be suitably used. Further, cyclic ester intermediates of hydroxycarboxylic acid, for example, glycolide which is a dimer of glycolic acid and 6-hydroxycaproic acid A cyclic ester ε-caprolactone can also be used.

脂肪族ジカルボン酸としては、炭素数2〜30の脂肪族ジカルボン酸が好ましく、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、フェニルコハク酸、1,4-フェニレンジ酢酸等が挙げられる。これらは、単独で又は二種以上の組合せて使用することができる。   The aliphatic dicarboxylic acid is preferably an aliphatic dicarboxylic acid having 2 to 30 carbon atoms, specifically, oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecane. Examples include diacid, dodecanedioic acid, phenylsuccinic acid, 1,4-phenylenediacetic acid and the like. These can be used alone or in combination of two or more.

脂肪族ジオールとしては、炭素数2〜30の脂肪族ジオールが好ましく、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、3−メチル−1,5−ペンタンジオール、1,6−へキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、ポリテトラメチレングリコール、1,4−シクロヘキサンジメタノ一ル、1,4−ベンゼンジメタノール等が挙げら
れる。これらは、単独で又は二種以上の組合せて使用することができる。
As the aliphatic diol, an aliphatic diol having 2 to 30 carbon atoms is preferable. Specifically, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1 , 4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, polytetramethylene glycol, 1,4-cyclohexanedimethanol 1,4-benzenedimethanol and the like. These can be used alone or in combination of two or more.

原料としての乳酸以外のヒドロキシカルボン酸、脂肪族ジカルボン酸、脂肪族ジオールは、得られるコポリマーならびに混合物中の乳酸含有率が50%以上になるように、種々の組み合わせで使用することができる。   Hydroxycarboxylic acids other than lactic acid, aliphatic dicarboxylic acids, and aliphatic diols as raw materials can be used in various combinations so that the lactic acid content in the resulting copolymer and mixture is 50% or more.

乳酸系ポリマーは、上記原料を直接脱水重縮合する方法、または上記乳類やヒドロキシカルボン酸類の環状2量体、例えばラクタイドやグリコライド、あるいはε−カプロラクトンのような環状エステル中間体を開環重合させる方法により得られる。   Lactic acid-based polymers can be obtained by direct dehydration polycondensation of the above raw materials, or ring-opening polymerization of the above cyclic dimers of milk and hydroxycarboxylic acids, such as lactide and glycolide, or cyclic ester intermediates such as ε-caprolactone. It is obtained by the method.

直接脱水重縮合して製造する場合、原料である乳酸類又は乳酸類とヒドロキシカルボン酸類を、脂肪族ジカルボン酸類 及び脂肪族ジオ−ル類を好ましくは有機溶媒、特にフェ
ニルエーテル系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより、本発明に適した強度を持つ高分子量の乳酸系ポリマーが得られる。乳酸系ポリマーの重量平均分子量は、成形性が可能な範囲で高分子量のものが好ましく、3万以上500万以下がより好ましく、更に好ましくは7万以上300万が好ましく、特に好ましくは10万以上150万以下が好ましい。
In the case of production by direct dehydration polycondensation, the raw materials lactic acid or lactic acids and hydroxycarboxylic acids, aliphatic dicarboxylic acids and aliphatic diols are preferably added in the presence of an organic solvent, particularly a phenyl ether solvent. Polymerization is performed by a method in which azeotropic dehydration condensation is carried out, and polymerization is performed by a method in which water is removed from a solvent distilled off by azeotropy, and the solvent is made substantially anhydrous, and returned to the reaction system. A molecular weight lactic acid polymer is obtained. The weight average molecular weight of the lactic acid-based polymer is preferably a high molecular weight within a range in which moldability is possible, more preferably 30,000 to 5,000,000, still more preferably 70,000 to 3,000,000, particularly preferably 100,000 or more. 1.5 million or less is preferable.

本発明では乳酸系ポリマー中の、全乳酸単位含有量中のD−乳酸含有量が8%以下、好ましくは5%以下となる事が好ましい   In the present invention, the D-lactic acid content in the total lactic acid unit content in the lactic acid-based polymer is 8% or less, preferably 5% or less.

本発明で用いる無機化合物(B)とは無機化合物は、ケイ酸(SiO)成分を30%以上含む結晶性の無機化合物が好ましく、より好ましくはケイ酸(SiO)成分を40%以上含む結晶性の無機化合物である。その具体例としては、タルク、カオリン、クレー、シリカが挙げられる。これらは単独で使用しても良いし、また、二種以上を混合して使用しても良い。これらの中でも特に、タルクが好ましい。 Inorganic compound and the inorganic compound (B) used in the present invention include silicic acid (SiO 2) crystalline inorganic compound component containing 30% or more, more preferably silicate (SiO 2) component 40% It is a crystalline inorganic compound. Specific examples thereof include talc, kaolin, clay, and silica. These may be used alone or in combination of two or more. Of these, talc is particularly preferable.

本発明で示す無機化合物(B)とは、ポリマーの結晶化を促進向上させるもので、具体的には成形加工された成形物の結晶化速度を促進作用を有するものを言う。   The inorganic compound (B) shown in the present invention is a compound that promotes and improves the crystallization of a polymer, and specifically has a function of promoting the crystallization speed of a molded product that has been molded.

また該無機化合物(B)の平均粒径は0.1μm〜50μm、好ましくは0.5μm〜30μm、より好ましくは1.0μm〜20μmである。   The average particle size of the inorganic compound (B) is 0.1 μm to 50 μm, preferably 0.5 μm to 30 μm, and more preferably 1.0 μm to 20 μm.

本発明の乳酸系ポリマー組成物(AA)は、乳酸系ポリマー(A)100重量部に対し無機化合物(B)の含有量は0.07〜10.0重量部、好ましくは0.08〜10.0重量部であり、さらに好ましくは0.09〜9.0重量部である。その含有量は、結晶化度が1%以下の乳酸系ポリマーをガラス転移温度以上100℃以下で5分の加熱後の結晶化度が5%以下かつ、120℃以上融点以下で5分の加熱後の結晶化度が15%以上、また目的とする成形、加工性当が良好となる最適量が適宜選択される。   In the lactic acid polymer composition (AA) of the present invention, the content of the inorganic compound (B) is 0.07 to 10.0 parts by weight, preferably 0.08 to 10 parts per 100 parts by weight of the lactic acid polymer (A). 0.0 part by weight, and more preferably 0.09 to 9.0 parts by weight. The content is such that a lactic acid polymer having a crystallinity of 1% or less is heated for 5 minutes at a glass transition temperature of 100 ° C. or less for 5 minutes and a crystallinity of 5% or less and 120 ° C. or more and a melting point or less for 5 minutes. The optimum amount is selected as appropriate so that the subsequent crystallinity is 15% or more and the desired molding and workability are good.

本発明に記載の結晶化度とは、特に記述しない場合は、パーキンエルマー社製示差走査型熱量計(DSC Pyris1)を用い、窒素雰囲気下で10℃/分の昇温条件で0℃から200℃まで昇温した時の結晶融解熱量の絶対値から昇温結晶化熱量の絶対値を引いた値を、ポリ乳酸の理論結晶融解熱量の93.1J/gで除して求めた。   Unless otherwise specified, the crystallinity described in the present invention is a differential scanning calorimeter (DSC Pyris 1) manufactured by PerkinElmer, Inc. The value obtained by subtracting the absolute value of the heat-up crystallization calorie from the absolute value of the heat of crystal-melting when the temperature was raised to 0 ° C. was divided by 93.1 J / g of the theoretical heat of crystal melting of polylactic acid.

また、組成物中に、ポリ乳酸が昇温結晶化する温度域に近い温度域で結晶融解する成分を含む場合は、上述の方法ではポリ乳酸の結晶化熱量を正確に測定できない為、広角X線法(X線解析装置:理学電気(株) RINT2500、Cuターゲット、透過法)により結晶化度を求めた。   Further, when the composition contains a component that crystal melts in a temperature range close to the temperature range where polylactic acid is heated and crystallized, the above method cannot accurately measure the heat of crystallization of polylactic acid. The crystallinity was determined by the line method (X-ray analyzer: Rigaku Electric Co., Ltd. RINT2500, Cu target, transmission method).

本発明では必要により可塑剤、酸化防止剤、紫外線吸収剤等の改質剤を添加することもできる。その添加量は、目的とする物性によってその際適量が適宜選択できる。   In the present invention, a modifier such as a plasticizer, an antioxidant, or an ultraviolet absorber can be added as necessary. The addition amount can be appropriately selected depending on the desired physical properties.

乳酸系ポリマーと結晶核剤等の混合には公知の混練技術を適用できる。本発明による乳酸系ポリマー組成物は造粒することにより、ペレット状のものが得られ、成形に用いられる。   A known kneading technique can be applied to the mixing of the lactic acid polymer and the crystal nucleating agent. The lactic acid-based polymer composition according to the present invention is pelletized to be used for molding.

乳酸系ポリマー組成物の成形方法としては、公知の方法を用いることができる。通常パウダー状あるいはペレット状の乳酸系ポリマーに結晶核剤をリボンブレンダーなどで混合した後、二軸押出機で組成物を押出しペレット化して成形に供せられる。例えば(a)前記方法にて得られたペレットを成形機に供給する方法、(b)乳酸系ポリマーのペレットを二軸押出機で溶融混練する際に結晶核剤を同時にフィードしながら溶融混練し、成形機に供給する方法、(c)結晶核剤を高濃度に含有した乳酸系ポリマー組成物(マスターバッチ)を一旦製造し、この乳酸系ポリマー組成物を改質用のマスターバッチとして使用し、このマスターバッチを通常のペレットとしての乳酸系ポリマーのペレットで希釈混合して成形機に供給する方法などが挙げられる。   A known method can be used as a method for molding the lactic acid-based polymer composition. Usually, after a crystal nucleating agent is mixed with a lactic acid polymer in powder form or pellet form by a ribbon blender or the like, the composition is extruded and pelletized by a twin screw extruder and used for molding. For example, (a) a method of supplying the pellets obtained by the above method to a molding machine, (b) melt-kneading while simultaneously feeding a crystal nucleating agent when melt-kneading pellets of a lactic acid polymer with a twin screw extruder (C) A lactic acid polymer composition (master batch) containing a crystal nucleating agent at a high concentration is once manufactured, and this lactic acid polymer composition is used as a master batch for modification. And a method of diluting and mixing the master batch with lactic acid polymer pellets as normal pellets and feeding them to a molding machine.

上記(c)のマスターバッチ方式を採用する場合、改質用のマスターバッチの希釈倍率は、マスターバッチ中の結晶核剤の濃度によって変わるが、通常2〜50倍、好ましくは3〜40倍、より好ましくは5〜30倍である。この範囲では結晶核剤が均一に分散するので好適に採用できる。   When adopting the master batch method of the above (c), the dilution ratio of the master batch for modification varies depending on the concentration of the crystal nucleating agent in the master batch, but is usually 2 to 50 times, preferably 3 to 40 times, More preferably, it is 5 to 30 times. In this range, the crystal nucleating agent is uniformly dispersed and can be preferably used.

このような結晶核剤を高濃度に含有した乳酸系ポリマー組成物(マスターバッチ)としては、乳酸系ポリマー(A)100重量部に対し、無機化合物(B)を1.0〜50重量部、好ましくは2.0〜40重量部、さらに好ましくは5.0〜30重量部含んでなる乳酸系ポリマー組成物(AAA)が好ましい。マスターバッチ(AAA)と乳酸系ポリマー(A)との公知の混練にも公知の混練技術を適用することができる。   As a lactic acid polymer composition (masterbatch) containing such a crystal nucleating agent at a high concentration, 1.0 to 50 parts by weight of the inorganic compound (B) with respect to 100 parts by weight of the lactic acid polymer (A), A lactic acid polymer composition (AAA) comprising 2.0 to 40 parts by weight, more preferably 5.0 to 30 parts by weight is preferred. A known kneading technique can also be applied to a known kneading of the master batch (AAA) and the lactic acid polymer (A).

ペレットにした組成物は、加熱処理を行なう事でペレット中のポリマーの結晶化度を促進し、耐熱性が向上して、ペレット同士の融着が防止されて押出安定性が向上する。成形機は公知のものをそのまま用い、公知の方法で成形することができる。   The pelletized composition promotes the crystallinity of the polymer in the pellet by heat treatment, improves heat resistance, prevents fusion of the pellets, and improves extrusion stability. A known molding machine can be used as it is, and molding can be performed by a known method.

本発明の組成物からボトルを成形するには、公知公用の方法が用いることができる。例えば、射出成形機によってプリフォームを成形し、このものの口部を加熱し結晶化させた後に延伸ブロー成形法によって得ることができる。   In order to form a bottle from the composition of the present invention, a publicly known method can be used. For example, a preform can be formed by an injection molding machine, and the mouth of this can be heated and crystallized, and then obtained by a stretch blow molding method.

本発明のボトルは、必要に応じてボトル表面に帯電防止性、防曇性、粘着性、ガスバリヤー性、密着性および易接着性等の機能を有する層をコーティングにより形成することができる。例えば、ボトルの表面に、帯電防止剤を含む水性塗工液を塗布、乾燥することによって帯電防止層を形成することができる。   In the bottle of the present invention, a layer having functions such as antistatic property, antifogging property, tackiness, gas barrier property, adhesion and easy adhesion can be formed on the bottle surface by coating as necessary. For example, the antistatic layer can be formed by applying and drying an aqueous coating solution containing an antistatic agent on the surface of the bottle.

本発明に係る樹脂組成物からなるボトルは、飲料用その他のボトルとして好適に用いることができる。   The bottle made of the resin composition according to the present invention can be suitably used as other bottles for beverages.

以下に実施例によって本発明をより詳細に説明するが、本発明はこれらの例によって何ら制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

なお、本発明において各種物性は下記の方法で測定し評価した。
(1)結晶化度
特に断りのない限り、パーキンエルマー社製示差走査型熱量計(DSC Pyris1)を用い、窒素雰囲気下で10℃/分の昇温条件で0℃から200℃まで昇温した時の結晶融解熱量の絶対値から昇温結晶化熱量の絶対値を引いた値を、ポリ乳酸の理論結晶融解熱量の93.1J/gで除して求めた。また、組成物中に、ポリ乳酸が昇温結晶化する温度
域に近い温度域で結晶融解する成分を含む場合は、前述の方法ではポリ乳酸の結晶化熱量を正確に測定できない為、広角X線法(X線解析装置:理学電気(株) RINT2500
、Cuターゲット、透過法)により結晶化度を求めた。
(2)二軸延伸ブロー成形時の口部の形状
目視にて、評価し、形状の変形の見られなかったものを「変形なし」とした。
(3)二軸延伸ブロー成形時のボトル胴体部の延伸性
延伸時にプリフォームが途中で破れずに、最後まで賦形出来た場合を「良好」とした。
In the present invention, various physical properties were measured and evaluated by the following methods.
(1) Crystallinity Unless otherwise specified, the temperature was raised from 0 ° C. to 200 ° C. using a differential scanning calorimeter (DSC Pyris 1) manufactured by Perkin Elmer under a nitrogen atmosphere at 10 ° C./min. The value obtained by subtracting the absolute value of the heat-up crystallization heat quantity from the absolute value of the heat of crystal fusion at the time was divided by 93.1 J / g of the theoretical heat of crystal fusion of polylactic acid. Further, when the composition contains a component that crystal melts in a temperature range close to the temperature range where polylactic acid is heated and crystallized, the crystallization heat quantity of polylactic acid cannot be accurately measured by the above-described method. X-ray analyzer (Rigaku Electric Co., Ltd. RINT2500)
, Cu target, permeation method).
(2) Shape of mouth at the time of biaxial stretch blow molding Evaluated by visual inspection, and the case where no deformation of the shape was observed was defined as “no deformation”.
(3) Stretchability of the bottle body at the time of biaxial stretch blow molding The case where the preform could be formed to the end without being broken during stretching was defined as “good”.

[実施例1]
ヘンシェルミキサー中でポリ乳酸(A1)(H−440(三井化学(株)販売)、重量平均
分子量 21万、L体/D体=96/4、融点 155℃)100重量部、タルクXE−7
1(富士タルク工業(株)製)0.6重量部を混合し、ドライブレンド物を調製した。その後、このドライブレンド物を、210℃に設定された、スクリュー径が35mmφの同方向二軸回転式押出機へと供給し、溶融混練して、ペレットを調製した。
[Example 1]
Polylactic acid (A1) in Henschel mixer (H-440 (sold by Mitsui Chemicals), weight average molecular weight 210,000, L-form / D-form = 96/4, melting point 155 ° C.) 100 parts by weight, talc XE-7
0.6 parts by weight of 1 (manufactured by Fuji Talc Kogyo Co., Ltd.) was mixed to prepare a dry blend. Then, this dry blend was supplied to the same-direction biaxial rotary extruder set at 210 ° C. and having a screw diameter of 35 mmφ, and melt-kneaded to prepare pellets.

次いで、前記の方法で得たペレットを用い、シリンダー温度200℃に設定した射出成形機により、非晶の500ccボトル用プリフォーム(目付け量=約32g)を成形した。   Next, using the pellets obtained by the above-described method, an amorphous 500 cc bottle preform (weighing amount = about 32 g) was molded by an injection molding machine set at a cylinder temperature of 200 ° C.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時の口部の結晶化度は15%であった。   The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth was 15%.

続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、口部の変形は起らず、且つ胴体部は良好な延伸性をしめした。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は1%未満であった。   Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute, and then subjected to stretch blow molding. As a result, the mouth portion was not deformed and the body portion was stretched well. Sexually. After heating the preform body at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was less than 1%.

[実施例2]
実施例1のタルクXE−71の添加量0.6重量部を1.0重量部に変更した以外は、
実施例1と同様な操作を行い、プリフォームを得た。
[Example 2]
Except for changing the addition amount of 0.6 parts by weight of talc XE-71 in Example 1 to 1.0 parts by weight,
The same operation as in Example 1 was performed to obtain a preform.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時のプリフォームの口部の結晶化度は20%であった。   The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth of the preform was 20%.

続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、口部の変形は起らず、且つ胴体部は良好な延伸性をしめした。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は1%未満であった。   Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute, and then subjected to stretch blow molding. As a result, the mouth portion was not deformed and the body portion was stretched well. Sexually. After heating the preform body at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was less than 1%.

[実施例3]
実施例1のタルクXE−71の添加量0.6重量部を8.0重量部に変更した以外は、
実施例1と同様な操作を行い、プリフォームを得た。
[Example 3]
Except for changing the amount of addition of 0.6 parts by weight of talc XE-71 in Example 1 to 8.0 parts by weight,
The same operation as in Example 1 was performed to obtain a preform.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時のプリフォームの口部の結晶化度は30%であ
った。
The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth of the preform was 30%.

続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、口部の変形は起らず、且つ胴体部は良好な延伸性をしめした。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は4%であった。   Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute, and then subjected to stretch blow molding. As a result, the mouth portion was not deformed and the body portion was stretched well. Sexually. After the preform body was heated at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was 4%.

[実施例4]
実施例2のポリ乳酸(A1)100重量部をポリ乳酸(A2)(H−400(三井化学
(株)販売)、重量平均分子量 20万、L体/D体=98.6/1.4)100重量部に変
更した以外は、実施例2と同様な操作を行い、プリフォームを得た。
[Example 4]
100 parts by weight of polylactic acid (A1) of Example 2 was added to polylactic acid (A2) (H-400 (sold by Mitsui Chemicals), weight average molecular weight 200,000, L-form / D-form = 98.6 / 1.4. ) A preform was obtained in the same manner as in Example 2 except that the amount was changed to 100 parts by weight.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時のプリフォームの口部の結晶化度は35%であった。   The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth of the preform was 35%.

続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、口部の変形は起らず、且つ胴体部は良好な延伸性をしめした。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は4%であった。   Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute, and then subjected to stretch blow molding. As a result, the mouth portion was not deformed and the body portion was stretched well. Sexually. After the preform body was heated at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was 4%.

[実施例5]
実施例4のタルクXE−71の添加量1.0重量部を0.1重量部に変更した以外は、実施例1と同様な操作を行い、プリフォームを得た。
[Example 5]
A preform was obtained in the same manner as in Example 1 except that the amount of addition of 1.0 part by weight of talc XE-71 in Example 4 was changed to 0.1 part by weight.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時のプリフォームの口部の結晶化度は29%であった。   The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth of the preform was 29%.

続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、口部の変形は起らず、且つ胴体部は良好な延伸性をしめした。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は1%未満であった。   Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute, and then subjected to stretch blow molding. As a result, the mouth portion was not deformed and the body portion was stretched well. Sexually. After heating the preform body at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was less than 1%.

[実施例6]
実施例2のポリ乳酸(A1)100重量部を、ポリ乳酸(A1)90重量部とビオノーレ#1001(昭和高分子(株)製)10重量部にした以外は実施例2と同様な操作を行い、プリフォームを得た。
[Example 6]
The same operation as in Example 2 was conducted except that 100 parts by weight of polylactic acid (A1) in Example 2 was changed to 90 parts by weight of polylactic acid (A1) and 10 parts by weight of Bionore # 1001 (manufactured by Showa Polymer Co., Ltd.). Done to obtain a preform.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時のプリフォームの口部の結晶化度は23%であった。   The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth of the preform was 23%.

続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、口部の変形は起らず、且つ胴体部は良好な延伸性をしめした。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は1%未満であった。   Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute, and then subjected to stretch blow molding. As a result, the mouth portion was not deformed and the body portion was stretched well. Sexually. After heating the preform body at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was less than 1%.

[実施例7]
ヘンシェルミキサー中でポリ乳酸(A1)(H−440(三井化学(株)販売)、重量平
均分子量 21万、L体/D体=96/4、融点 155℃)100重量部、タルクXE−
71(富士タルク工業(株)製)10重量部を混合し、ドライブレンド物を調製した。その後、このドライブレンド物を、210℃に設定された、スクリュー径が35mmφの同方向二軸回転式押出機へと供給し、溶融混練して、ペレットを調製しタルクXE−71のマスターバッチペレットとした。
[Example 7]
Polylactic acid (A1) (H-440 (Mitsui Chemicals, Inc.), weight average molecular weight 210,000, L-form / D-form = 96/4, melting point 155 ° C.) 100 parts by weight in a Henschel mixer, talc XE-
A dry blend was prepared by mixing 10 parts by weight of 71 (Fuji Talc Kogyo Co., Ltd.). Thereafter, this dry blended product is supplied to a co-axial twin screw extruder having a screw diameter of 35 mmφ set at 210 ° C., melt kneaded to prepare a pellet, and a master batch pellet of talc XE-71 It was.

次いで、前記の方法で得たマスターバッチペレット10重量部とポリ乳酸(A1)90重量部をペレット状態で予備混合し、シリンダー温度200℃に設定した射出成形機に供給し、非晶の500ccボトル用プリフォーム(目付け量=約32g)を成形した。   Next, 10 parts by weight of the master batch pellets obtained by the above method and 90 parts by weight of polylactic acid (A1) were premixed in a pellet state and supplied to an injection molding machine set at a cylinder temperature of 200 ° C. A preform (weight per unit area = about 32 g) was molded.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時の口部の結晶化度は17%であった。
続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、口部の変形は起らず、且つ胴体部は良好な延伸性をしめした。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は1%未満であった。即ち、実施例1と同等の効果が得られた。
The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. The crystallinity of the mouth at this time was 17%.
Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute, and then subjected to stretch blow molding. As a result, the mouth portion was not deformed and the body portion was stretched well. Sexually. After heating the preform body at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was less than 1%. That is, the same effect as in Example 1 was obtained.

[比較例1]
実施例1のタルクXE−71の添加量0.6重量部を0.05重量部に変更した以外は、実施例1と同様な操作を行い、プリフォームを得た。
[Comparative Example 1]
A preform was obtained in the same manner as in Example 1 except that the amount of talc XE-71 added in Example 1 was changed from 0.6 parts by weight to 0.05 parts by weight.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時のプリフォームの口部の結晶化度は8%であった。続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、縦延伸時に口部のつぶれ及びブロー成形時に口部の膨れが発生し良好なボトルは得られなかった。
[比較例2]
実施例4のタルクXE−71の添加量1.0重量部を15重量部に変更した以外は、実
施例1と同様な操作を行い、プリフォームを得た。
The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth of the preform was 8%. Subsequently, the preform body was heated at 80 ° C. within the stretchable temperature range for 1 minute and then stretch blow molded. As a result, the mouth was crushed during longitudinal stretching and the mouth was swollen during blow molding. Occurred and a good bottle was not obtained.
[Comparative Example 2]
A preform was obtained in the same manner as in Example 1 except that 1.0 part by weight of talc XE-71 in Example 4 was changed to 15 parts by weight.

このプリフォームの口部の結晶化度は1%未満であった。このプリフォームの口部を表面温度140℃で5分間加熱した。この時のプリフォームの口部の結晶化度は45%であった。   The crystallinity of the mouth portion of this preform was less than 1%. The mouth of this preform was heated at a surface temperature of 140 ° C. for 5 minutes. At this time, the crystallinity of the mouth of the preform was 45%.

続いてこのプリフォームの胴体部を、延伸ブロー可能温度範囲内の80℃で1分加熱した後、延伸ブロー成形を行ったところ、延伸時に胴体部の破れが発生し成形出来なかった。このプリフォームの胴体部の80℃で1分加熱後、延伸ブロー成形前の結晶化度は25%であった。

Figure 2005200600
Subsequently, the body part of this preform was heated at 80 ° C. within the stretch blowable temperature range for 1 minute and then stretch blow molded. As a result, the body part was broken during stretching and could not be molded. After the preform body was heated at 80 ° C. for 1 minute, the crystallinity before stretch blow molding was 25%.
Figure 2005200600

ポリ乳酸(A1):重量平均分子量21万、L体/D体=96/4、融点155℃(三井化学(株)販売 H−440)
ポリ乳酸(A2):重量平均分子量20万、L体/D体=98.6/1.4、融点167℃(三井化学(株)販売 H−400)
結晶化度A:射出成形されたプリフォームの口部を140℃で5分加熱した後の口部の結晶化度
結晶化度B:プリフォームの口部を140℃で5分加熱後、胴体部を80℃で1分過熱した後の胴体部の結晶化度
Polylactic acid (A1): weight average molecular weight 210,000, L-form / D-form = 96/4, melting point 155 ° C. (Mitsui Chemicals, Inc., sales H-440)
Polylactic acid (A2): weight average molecular weight 200,000, L-form / D-form = 98.6 / 1.4, melting point 167 ° C. (Mitsui Chemicals, Inc., sales H-400)
Crystallinity A: Crystallinity of the mouth after heating the mouth of the injection-molded preform at 140 ° C. for 5 minutes Crystallinity B: Body after heating the mouth of the preform at 140 ° C. for 5 minutes Of the body after heating the part at 80 ° C for 1 minute

本発明によれば、成形性に優れ、さらに分解性が良好な乳酸系ポリマー組成物の提供が可能になる。さらに本発明によれば、乳酸系ポリマー組成物から、成形性、生産性に優れ、さらに分解性が良好な射出二軸延伸ブローの提供が可能となる。   According to the present invention, it is possible to provide a lactic acid polymer composition having excellent moldability and good degradability. Furthermore, according to the present invention, it is possible to provide an injection biaxial stretch blow having excellent moldability and productivity and good decomposability from the lactic acid-based polymer composition.

Claims (7)

乳酸系ポリマー(A)100重量部に対しケイ酸(SiO)成分を30%以上含む結晶性の無機化合物(B)0.07〜10重量部を含有する乳酸系ポリマー組成物(AA)。 A lactic acid polymer composition (AA) containing 0.07 to 10 parts by weight of a crystalline inorganic compound (B) containing 30% or more of a silicic acid (SiO 2 ) component with respect to 100 parts by weight of the lactic acid polymer (A). 前記無機化合物(B)が、タルク、カオリン、クレー、シリカから選ばれた少なくとも1種であることを特徴とする請求項1記載の乳酸系ポリマー組成物(AA)。 The lactic acid polymer composition (AA) according to claim 1, wherein the inorganic compound (B) is at least one selected from talc, kaolin, clay, and silica. 乳酸系ポリマー(A)中の乳酸単位中のD体の含有量が8%以下である事を特徴とする請求項1〜2に記載の乳酸系ポリマー組成物(AA)。 Content of D body in the lactic acid unit in lactic acid-type polymer (A) is 8% or less, The lactic acid-type polymer composition (AA) of Claims 1-2 characterized by the above-mentioned. 請求項1〜3記載のいずれかに記載の乳酸系ポリマー組成物(AA)からなる射出二軸延伸ボトル An injection biaxially stretched bottle comprising the lactic acid-based polymer composition (AA) according to any one of claims 1 to 3. 乳酸系ポリマー(A)100重量部及びケイ酸(SiO)成分を30%以上含む結晶性の無機化合物(B)1.0〜50重量部を含有する樹脂組成物(AAA)を、乳酸系ポリ
マー(A)によって希釈することによって請求項1〜3に記載した乳酸系ポリマー組成物(AA)を製造する方法。
A resin composition (AAA) containing 100 to 50 parts by weight of a lactic acid polymer (A) and 1.0 to 50 parts by weight of a crystalline inorganic compound (B) containing 30% or more of a silicic acid (SiO 2 ) component, The method to manufacture the lactic acid-type polymer composition (AA) described in Claims 1-3 by diluting with a polymer (A).
乳酸系ポリマー(A)100重量部に対し、ケイ酸(SiO)成分を30%以上含む結晶性の無機化合物(B)を1.0〜50重量部含んでなるマスターバッチに適した樹脂組
成物(AAA)。
Resin composition suitable for a masterbatch comprising 1.0 to 50 parts by weight of a crystalline inorganic compound (B) containing 30% or more of a silicic acid (SiO 2 ) component with respect to 100 parts by weight of a lactic acid polymer (A) Things (AAA).
結晶化度が1%以下の乳酸系ポリマーをガラス転移温度以上100℃以下で5分の加熱処理したときの結晶化度が5%以下であってかつ、120℃以上融点以下で5分の加熱処理したときの結晶化度が15%以上であることを特徴とする乳酸系ポリマー組成物
Heating a lactic acid polymer having a crystallinity of 1% or less for 5 minutes at a glass transition temperature of 100 ° C. or less for 5 minutes and a crystallinity of 5% or less and 120 ° C. or more and a melting point or less for 5 minutes. Lactic acid-based polymer composition characterized by having a crystallinity of 15% or more when treated
JP2004010325A 2004-01-19 2004-01-19 Lactic acid-based polymer composition Pending JP2005200600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010325A JP2005200600A (en) 2004-01-19 2004-01-19 Lactic acid-based polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010325A JP2005200600A (en) 2004-01-19 2004-01-19 Lactic acid-based polymer composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009237130A Division JP2010006082A (en) 2009-10-14 2009-10-14 Method of manufacture bottle from lactic acid-based polymer composition

Publications (1)

Publication Number Publication Date
JP2005200600A true JP2005200600A (en) 2005-07-28

Family

ID=34823088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010325A Pending JP2005200600A (en) 2004-01-19 2004-01-19 Lactic acid-based polymer composition

Country Status (1)

Country Link
JP (1) JP2005200600A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040187A1 (en) 2005-10-03 2007-04-12 Kri, Inc. Functional filler and resin composition containing same
WO2007138842A1 (en) * 2006-05-30 2007-12-06 Toyo Seikan Kaisha, Ltd. Biodegradable stretch-molded container having excellent heat resistance
JP2007320203A (en) * 2006-06-01 2007-12-13 Unitika Ltd Resin composition for draw molding, draw-molded container and method for manufacturing draw-molded container
WO2008012981A1 (en) 2006-07-28 2008-01-31 Yoshino Kogyosho Co., Ltd. Heat-resistant poly(l-lactic acid) preform
WO2008032484A1 (en) 2006-09-13 2008-03-20 Panasonic Corporation Method of molding polylactic acid resin
JP2008101096A (en) * 2006-10-18 2008-05-01 Aichi Prefecture Polylactic acid-based resin composition, and molded product thereof and method for producing the molded product
JP2010529284A (en) * 2007-06-11 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (hydroxyalkanoic acid) and articles using the same
WO2010134205A1 (en) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 Polylactic acid resin compositions and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087976A (en) * 1996-07-26 1998-04-07 Mitsui Petrochem Ind Ltd Resin composition, and molded and processed product thereof
JP2001354223A (en) * 2000-06-09 2001-12-25 Toyo Seikan Kaisha Ltd Container made of aliphatic polyester
JP2002012674A (en) * 1999-06-25 2002-01-15 Mitsui Chemicals Inc Aliphatic polyester composition for master batch and method for producing aliphatic polyester film using the composition
JP2004230866A (en) * 2003-02-03 2004-08-19 Toyo Seikan Kaisha Ltd Flat polyester oriented molded object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087976A (en) * 1996-07-26 1998-04-07 Mitsui Petrochem Ind Ltd Resin composition, and molded and processed product thereof
JP2002012674A (en) * 1999-06-25 2002-01-15 Mitsui Chemicals Inc Aliphatic polyester composition for master batch and method for producing aliphatic polyester film using the composition
JP2001354223A (en) * 2000-06-09 2001-12-25 Toyo Seikan Kaisha Ltd Container made of aliphatic polyester
JP2004230866A (en) * 2003-02-03 2004-08-19 Toyo Seikan Kaisha Ltd Flat polyester oriented molded object

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902304B2 (en) 2005-10-03 2011-03-08 Dai-Ichi Kogyo Seiyaku Co., Ltd. Functional filler and resin composition containing same
WO2007040187A1 (en) 2005-10-03 2007-04-12 Kri, Inc. Functional filler and resin composition containing same
US8354479B2 (en) 2005-10-03 2013-01-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Functional filler and resin composition containing same
WO2007138842A1 (en) * 2006-05-30 2007-12-06 Toyo Seikan Kaisha, Ltd. Biodegradable stretch-molded container having excellent heat resistance
US8012553B2 (en) 2006-05-30 2011-09-06 Toyo Seikan Kaisha, Ltd. Biodegradable stretch mold container having excellent heat resistance
JP2007320203A (en) * 2006-06-01 2007-12-13 Unitika Ltd Resin composition for draw molding, draw-molded container and method for manufacturing draw-molded container
JP4745135B2 (en) * 2006-06-01 2011-08-10 ユニチカ株式会社 Stretch-molding resin composition, stretch-molded container, and method for producing stretch-molded container
WO2008012981A1 (en) 2006-07-28 2008-01-31 Yoshino Kogyosho Co., Ltd. Heat-resistant poly(l-lactic acid) preform
EP2047967A4 (en) * 2006-07-28 2010-07-28 Yoshino Kogyosho Co Ltd Heat-resistant poly(l-lactic acid) preform
US8574693B2 (en) 2006-07-28 2013-11-05 Yoshino Kogyosho Co., Ltd. Heat-resistant poly-L-lactic acid preform
WO2008032484A1 (en) 2006-09-13 2008-03-20 Panasonic Corporation Method of molding polylactic acid resin
JP2008101096A (en) * 2006-10-18 2008-05-01 Aichi Prefecture Polylactic acid-based resin composition, and molded product thereof and method for producing the molded product
JP2010529284A (en) * 2007-06-11 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (hydroxyalkanoic acid) and articles using the same
WO2010134205A1 (en) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 Polylactic acid resin compositions and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5867084B2 (en) Polylactic acid film
JP3410075B2 (en) Crystalline polylactic acid resin composition, film and sheet using the same
JP6609667B2 (en) Polymer composition comprising PLLA and PDLA
JP5274251B2 (en) Manufacturing method of polylactic acid-based molded products
WO2006121056A1 (en) Lactic acid polymer composition, molded article made of same, and method for producing such molded article
JP2005330318A (en) High impact resistant polylactic acid composition
KR100428953B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film using said composition
JP2005200600A (en) Lactic acid-based polymer composition
JP2003082140A (en) Biodegradable porous film and its production process
JP4652082B2 (en) Biodegradable moisture-proof material and method for producing the same
JP2004149679A (en) Biodegradable porous film and manufacturing method therefor
JP3430125B2 (en) Aliphatic polyester composition for masterbatch and method for producing aliphatic polyester film using the composition
JP2004143203A (en) Injection molded product
JP4082052B2 (en) Resin composition and molded article comprising the same
JP2006035666A (en) Multiple layer polylactic acid resin film and its manufacturing method
KR102257140B1 (en) Biodegradable resin composition, molded article comprising the same, and method for manufacturing the molded article
JP2010006082A (en) Method of manufacture bottle from lactic acid-based polymer composition
JP2005179619A (en) Lactic acid-based polymer composition
JP4186477B2 (en) Resin composition and molded article comprising the same
JP5041649B2 (en) Lactic acid polymer composition
JPH10249925A (en) Lactate polymer container and its manufacture
JP4315698B2 (en) L-lactic acid polymer composition
JP2009293034A (en) Injection-molded product
JP2005325291A (en) High impact resistance polylactic acid composition
JPH07286082A (en) Resin composition having improved mechanical characteristic and biodegradability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518