JP3838757B2 - Gas barrier multilayer hollow container - Google Patents

Gas barrier multilayer hollow container Download PDF

Info

Publication number
JP3838757B2
JP3838757B2 JP25925997A JP25925997A JP3838757B2 JP 3838757 B2 JP3838757 B2 JP 3838757B2 JP 25925997 A JP25925997 A JP 25925997A JP 25925997 A JP25925997 A JP 25925997A JP 3838757 B2 JP3838757 B2 JP 3838757B2
Authority
JP
Japan
Prior art keywords
layer
weight
gas barrier
polyglycolic acid
hollow container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25925997A
Other languages
Japanese (ja)
Other versions
JPH10138371A (en
Inventor
善彌 椎木
進盟 川上
宣夫 佐藤
満 星野
俊孝 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP25925997A priority Critical patent/JP3838757B2/en
Publication of JPH10138371A publication Critical patent/JPH10138371A/en
Application granted granted Critical
Publication of JP3838757B2 publication Critical patent/JP3838757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Packages (AREA)
  • Wrappers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスバリヤー性多層中空容器に関し、さらに詳しくは、ポリオレフィン等の熱可塑性樹脂の層とポリグリコール酸層とを組み合わせることにより、熱可塑性樹脂層の酸素ガスバリヤー性及び/または炭酸ガスバリヤー性が顕著に改善された多層中空容器に関する。本発明のガスバリヤー性多層中空容器は、飲料用、食品用、日用品用、ガソリン用等の各種容器として特に好適である。
【0002】
【従来の技術】
従来より、飲料、食品、日用品、ガソリン等の各種物品の容器として、各種樹脂製の中空容器が使用されている。具体的には、例えば、ポリオレフィン、ポリエステル、ポリスチレン、ポリ塩化ビニル等の熱可塑性樹脂を用いた中空容器が挙げられる。しかし、これらの中空容器は、一般に、酸素ガスバリヤー性、炭酸ガスバリヤー性などのガスバリヤー性が不十分であるため、特に飲料用・食品用容器、トイレタリー用容器等の用途には不満足である。そこで、樹脂製中空容器のガスバリヤー性を改良するために、エチレン・ビニルアルコール共重合体(EVOH)、ポリアミド等からなるガスバリヤー層を組み合わせた多層中空容器が開発されている。
しかしながら、EVOHやポリアミド等のガスバリヤー性樹脂の層は、高温・高湿下でガスバリヤー性が大幅に劣化するため、これらの層を含有する従来の多層中空容器は、レトルト滅菌のような高温・高湿下での処理工程を要する物や、特別に長期保存を要する物などの中空容器としては不十分であった。
【0003】
近年、環境負荷の小さいプラスチック材料として、例えば、ポリ乳酸、ポリこはく酸エステル、ポリカプロラクトン等の生分解性ポリマーが注目され、これらの生分解性ポリマーを用いた中空容器も開発されつつある。しかし、これらの生分解性ポリマーの中空容器は、酸素ガスバリヤー性、炭酸ガスバリヤー性等のガスバリヤー性に関しては不十分である。また、これらの生分解性ポリマー層に、従来のEVOHやポリアミド等からなるガスバリヤー性樹脂層を複合化させて、ガスバリヤー性を向上させると、環境負荷が増大するという問題があった。
本発明者らは、ポリグリコール酸からガスバリヤー性に優れた中空容器を製造することに成功した。しかしながら、ポリグリコール酸単層では、例えば、耐湿性、機械的強度、経済性などが必ずしも十分ではない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、レトルト滅菌のような高温・高湿下での処理工程を要する物、長期保存を要する物等の容器として好適なガスバリヤー性多層中空容器を提供することにある。
また、本発明の目的は、酸素ガスバリヤー性及び炭酸ガスバリヤー性が特に優れたガスバリヤー性多層中空容器を提供することにある。
本発明の他の目的は、環境負荷の小さいガスバリヤー性多層中空容器を提供することにある。
【0005】
本発明者らは、前記従来技術の問題点を克服するために鋭意研究した結果、ポリグリコール酸層と熱可塑性樹脂層とを組み合わせることにより、熱可塑性樹脂層の酸素ガスバリヤー性及び/または炭酸ガスバリヤー性が顕著に改善されたガスバリヤー性多層中空容器が得られることを見いだした。
例えば、ポリオレフィン/ガスバリヤー性樹脂/ポリオレフィンの層構成の器壁を有する従来のガスバリヤー性多層中空容器において、EVOHやポリアミドなどからなるガスバリヤー性樹脂層に代えて、ポリグリコール酸層を配置すると、酸素ガスバリヤー性と炭酸ガスバリヤー性に優れ、高温・高湿下での処理工程を要する物や長期保存を要する物の容器として十分な特性を有するガスバリヤー性多層中空容器を得ることができる。
【0006】
EVOHやポリアミドなどからなるガスバリヤー性樹脂層とポリグリコール酸層を組み合わせて使用すると、酸素ガスバリヤー性のみならず、炭酸ガスバリヤー性が顕著に改善された多層中空容器を得ることができる。ポリ乳酸、ポリこはく酸エステル、ポリカプロラクトン等の生分解性ポリマー層とポリグリコール酸層とを組み合わせると、生分解性(土中崩壊性)が損なわれることなく、ガスバリヤー性や経済性に優れた多層中空容器を得ることができる。
本発明は、これらの知見に基づいて完成するに至ったものである。
【0007】
【課題を解決するための手段】
かくして、本発明によれば、(a)グリコリドに由来する下記式(1)
【0008】
【化4】

Figure 0003838757
で表される繰り返し単位を単独で、あるいは該式(1)で表される繰り返し単位80重量%以上と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1,3−ジオキサンからなる群より選ばれる少なくとも一種の環状モノマーに由来する繰り返し単位20重量%以下とを含有し、
(b)(融点+20℃)の温度及び100/秒の剪断速度で測定した溶融粘度ηが500〜50,000Pa・s、
(c)融点Tmが200℃以上、かつ、
(d)溶融エンタルピーΔHmが20J/g以上
のポリグリコール酸または該ポリグリコール酸100重量部、無機フィラー0〜30重量部、他の熱可塑性樹脂0〜30重量部、及び可塑剤0〜50重量部を含有する樹脂組成物から形成されたポリグリコール酸層の少なくとも片面に、他の熱可塑性樹脂層が積層された多層の器壁構成を有し、1軸または2軸延伸ブロー成形されたものであり、かつ、温度23℃、相対湿度80%で測定した器壁の酸素ガス透過率及び炭酸ガス透過率の少なくとも一方が、他の熱可塑性樹脂単独からなる中空容器の器壁のそれらの値の1/2以下であることを特徴とするガスバリヤー性多層中空容器が提供される。
また、本発明によれば、(a)グリコリドに由来する下記式(1)
【0009】
【化5】
Figure 0003838757
で表される繰り返し単位を単独で、あるいは該式(1)で表される繰り返し単位80重量%以上と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1,3−ジオキサンからなる群より選ばれる少なくとも一種の環状モノマーに由来する繰り返し単位20重量%以下とを含有し、
(b)(融点+20℃)の温度及び100/秒の剪断速度で測定した溶融粘度ηが500〜50,000Pa・s、
(c)融点Tmが200℃以上、かつ、
(d)溶融エンタルピーΔHmが20J/g以上
のポリグリコール酸または該ポリグリコール酸100重量部、無機フィラー0〜30重量部、他の熱可塑性樹脂0〜30重量部、及び可塑剤0〜50重量部を含有する樹脂組成物、及び少なくとも一種の他の熱可塑性樹脂を、各々押出機で加熱溶融し、多層パリソン成形用ダイに流入させて合流させ、多層のチューブ状パリソンを押出し、これを固化しないうちに割り金型で挟んで、当該パリソンの一端をピンチすると共に、融点Tm以下かつガラス転移温度Tg以上の温度で、空気を吹き込んで金型壁まで1軸または2軸延伸ブローし、次いで、冷却することを特徴とする前記ガスバリヤー性多層中空容器の製造方法が提供される。
さらに、本発明によれば、(a)グリコリドに由来する下記式(1)
【0010】
【化6】
Figure 0003838757
で表される繰り返し単位を単独で、あるいは該式(1)で表される繰り返し単位80重量%以上と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1,3−ジオキサンからなる群より選ばれる少なくとも一種の環状モノマーに由来する繰り返し単位20重量%以下とを含有し、
(b)(融点+20℃)の温度及び100/秒の剪断速度で測定した溶融粘度ηが500〜50,000Pa・s、
(c)融点Tmが200℃以上、かつ、
(d)溶融エンタルピーΔHmが20J/g以上
のポリグリコール酸または該ポリグリコール酸100重量部、無機フィラー0〜30重量部、他の熱可塑性樹脂0〜30重量部、及び可塑剤0〜50重量部を含有する樹脂組成物、及び少なくとも一種の他の熱可塑性樹脂を共射出して有底パリソンを成形し、これを一旦固化させ若しくは固化させずに、過冷却状態若しくは融点Tm以下かつガラス転移温度Tg以上の温度で、長さ方向に延伸し、金型内で空気を吹き込んで金型壁まで延伸ブローし、次いで、冷却することを特徴とする前記ガスバリヤー性多層中空容器の製造方法が提供される。
【0011】
熱可塑性樹脂層としては、例えば、ポリオレフィン(メタロセン触媒によるポリオレフィンも含む)、ポリエステル、ポリスチレン、ポリ塩化ビニル、ポリカーボネート、ポリアミド、ポリウレタン、エチレン・ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリ乳酸、ポリこはく酸エステル、及びポリカプロラクトンからなる群より選ばれる熱可塑性樹脂から形成された層が好ましい。
本発明のガスバリヤー性多層中空容器は、23℃、相対湿度(RH)80%で測定した器壁の酸素ガス透過率及び炭酸ガス透過率の少なくとも一方は、これら熱可塑性樹脂単独からなる中空容器の器壁のそれらの値の1/2以下に低減されている。
ポリグリコール酸層の厚みは、通常、1μm〜3mmであり、多層胴部側壁全体の厚みは、通常、5μm〜5mmである。また、各層間の接着性を改善するために、接着剤層を介在させてもよい。
【0012】
【発明の実施の形態】
ガスバリヤー性多層中空容器の器壁構成
本発明のガスバリヤー性多層中空容器は、少なくとも1層の熱可塑性樹脂層(以下、ベース樹脂層ということがある)、及びポリグリコール酸層を有する多層中空容器である。必要に応じて、各層間に接着剤層を介在させることができる。本発明のガスバリヤー性多層中空容器の胴部側壁全体の厚みは、通常5μm〜5mm、好ましくは10μm〜3mm、より好ましくは20μm〜2mmである。この厚みが5μm未満では、機械的強度が不足するおそれがある。この厚みが5mm超過では、中空容器として使用する場合は超過品質となり、コスト高でもあり、生産性、経済性の観点から好ましくない。
【0013】
本発明のガスバリヤー性多層中空容器の基本的な層構成は、次のとおりである。ただし、接着剤層を省略して表記する。また、ポリグリコール酸をPGAと略記する。
(1)熱可塑性樹脂/PGA
(2)熱可塑性樹脂1/PGA/熱可塑性樹脂
(3)熱可塑性樹脂1/PGA/熱可塑性樹脂
本発明のガスバリヤー性多層中空容器は、前記の基本的な層構成を備えておれば、各種の要求特性に応じて、同種または異種の各種熱可塑性樹脂層が付加的に積層されたものであってもよい。また、熱可塑性樹脂層とポリグリコール酸層の多層化法は、特に限定されず、例えば、共押出法や共射出法により積層する方法など、各種の加工法を採用することができる。
【0014】
熱可塑性樹脂層(ベース樹脂層)
本発明のガスバリヤー性多層中空容器において、熱可塑性樹脂層に用いられる熱可塑性樹脂としては、例えば、超低密度ポリエチレン(VLDPE)、線状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)、エチレン・プロピレンゴム(EPM)、エチレン・酢酸ビニル共重合体(EVA)、エチレン・アクリル酸エステル共重合体(EEA)、アイオノマー(IO)などのポリオレフィン;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル;ポリスチレン(PS)、耐衝撃性ポリスチレン(HIPS)、スチレン・ブタジエン・スチレンブロック共重合体(SBS)、水素添加SBS(すなわち、SEBS)などのポリスチレン系樹脂;硬質ポリ塩化ビニル、軟質ポリ塩化ビニルなどのポリ塩化ビニル(PVC)系樹脂、ポリカーボネート(PC)、ポリアミド(PA)、ポリウレタン(PU)、エチレン・ビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン系樹脂(PVDC)などを挙げることができる。
【0015】
環境負荷の小さい熱可塑性樹脂としては、例えば、ポリ乳酸、ポリこはく酸エステル、ポリカプロラクトンなどが好ましい。
本発明のガスバリヤー性多層中空容器では、これらの熱可塑性樹脂層は、単層または多層で用いられる。熱可塑性樹脂層の厚みは、通常4μm〜5mm、好ましくは10μm〜3mm、より好ましくは20μm〜2mmの範囲であることが、加工性、経済性等の面から望ましい。
【0016】
接着剤層
本発明では、熱可塑性樹脂層(ベース樹脂層)とポリグリコール酸層との接着性を高めるために、層間に接着剤層を介在させることができる。接着剤層に用いられる接着剤としては、例えば、カルボキシル化ポリオレフィン、エポキシ化ポリオレフィン、エチレン・酢酸ビニル共重合体、アイオノマー、ポリウレタン、エポキシ樹脂、SBS、SEBS、ポリクロロプレン、スチレン・ブタジエン共重合ゴム(SBR)、天然ゴム(NR)等のポリマーが挙げられる。
カルボキシル化ポリオレフィンとは、ポリオレフィンをアクリル酸、メタクリル酸、無水マレイン酸等の不飽和酸単量体で変性して、カルボキシル基を導入したポリオレフィンである。カルボキシル基の導入は、共重合法及びグラフト法のいずれでもよい。また、上記不飽和酸単量体と、メタクリル酸エステル、アクリル酸エステル、酢酸ビニル等のビニル系単量体とを併用してもよい。
【0017】
エポキシ化ポリオレフィンとは、ポリオレフィンをメタクリル酸グリシジル等のエポキシ基含有単量体で変性して、エポキシ基を導入したポリオレフィンである。エポキシ基の導入は、共重合法及びグラフト法のいずれでもよい。また、上記エポキシ基含有単量体と、メタクリル酸エステル、アクリル酸エステル、酢酸ビニル等のビニル系単量体を併用してもよい。
これらの中でも、カルボキシル化ポリオレフィン及びエチレン・酢酸ビニル共重合体は、接着性と加工性の観点から特に好ましい。接着剤層の厚みは、通常0.5μm〜2mm、好ましくは2μm〜1mm、より好ましくは3μm〜0.5mmの範囲である。この厚みが0.5μm未満では、接着性が不十分となるおそれがある。この厚みが2mm超過では、コスト高であり経済的面から不利である。
【0018】
ポリグリコール酸層
本発明のガスバリヤー性多層中空容器では、酸素ガスバリヤー性及び/または炭酸ガスバリヤー性を改善するために、ガスバリヤー性樹脂層として、ポリグリコール酸層を積層する。一般の熱可塑性樹脂層を用いた場合には、酸素ガスバリヤー性及び炭酸ガスバリヤー性の両方が改善される。
本発明で使用するポリグリコール酸は、下記式(1)
【0019】
【化7】
Figure 0003838757
で表される繰り返し単位を含有するポリマーである。ポリマー中、式(1)で表される繰り返し単位の割合は、80重量%以上である。式(1)で表される繰り返し単位の割合が80重量%未満であると、ガスバリヤー性が損なわれるおそれが生じる。
式(1)で表される繰り返し単位以外の繰り返し単位としては、例えば、下記式(2)
【0020】
【化8】
Figure 0003838757
(式中、n=1〜10、m=0〜10)
で表される繰り返し単位、下記式(3)
【0021】
【化9】
Figure 0003838757
(式中、j=1〜10)
で表される繰り返し単位、下記式(4)
【0022】
【化10】
Figure 0003838757
(式中、R1及びR2は、それぞれ独立に水素原子または炭素数1〜10のアルキル基である。k=2〜10)
で表される繰り返し単位、下記式(5)
【0023】
【化11】
Figure 0003838757
で表される繰り返し単位、及び下記式(6)
【0024】
【化12】
Figure 0003838757
で表される繰り返し単位を挙げることができる。
【0025】
これらの繰り返し単位(2)〜(6)を1重量%以上の割合で導入することにより、ポリグリコール酸ホモポリマーの融点Tmを下げることができる。ポリグリコール酸のTmが下がれば、ポリマーの加工温度を下げることができるので、溶融加工時の熱分解を低減することができる。共重合によりポリグリコール酸の結晶化速度を制御して、押出加工性や延伸加工性を改良することもできる。これらの繰り返し単位(2)〜(6)が20重量%を超過すれば、ポリグリコール酸が本来有するガスバリヤー性が損なわれ、その樹脂層の強靭性、耐熱性等も低下するおそれがある。
【0026】
〈分子量−溶融粘度〉
本発明のガスバリヤー性多層中空容器に使用するポリグリコール酸は、高分子量ポリマーである。溶融粘度を分子量の指標とすることができる。本発明で使用するポリグリコール酸は、(Tm+20℃)の温度(すなわち、通常の溶融加工温度に相当する温度)及び剪断速度100/秒において測定した溶融粘度ηが、通常、500〜50,000Pa・s、好ましくは1,500〜20,000Pa・sである。
ポリグリコール酸の溶融粘度η*が500Pa・s未満では、中空容器に溶融成形する際に溶融体がドローダウンしたりして溶融加工が困難であったり、あるいは、得られた樹脂層の強靭性が不十分となったりするおそれがある。ポリグリコール酸の溶融粘度η*が50,000Pa・s超過では、溶融加工に高い温度が必要となり、加工時にポリグリコール酸が熱劣化を起こすおそれがある。
【0027】
〈熱的物性〉
本発明で使用するポリグリコール酸の融点Tmは、200℃以上であり、多くの場合、210℃以上である。本発明で使用するポリグリコール酸の溶融エンタルピーΔHmは、通常20J/g、好ましくは30J/g以上、より好ましくは40J/g以上である。ポリグリコール酸のTmまたはΔHmが低すぎると、ガスバリヤー性、耐熱性、機械的強度などが不十分となるおそれがある。
【0028】
〈ポリグリコール酸の製造方法〉
本発明で使用するポリグリコール酸は、例えば、下記の開環重合法によって製造することができる。
リコリド(すなわち、1,4−ジオキサン−2,5−ジオン)を、少量の触媒(例えば、有機カルボン酸錫、ハロゲン化錫、ハロゲン化アンチモン等のカチオン触媒)の存在下に、約120℃〜250℃の温度に加熱して、開環重合する方法。開環重合は、塊状重合または溶液重合により行うことが好ましい。
【0029】
ポリグリコール酸共重合体を得るには、上記の方法において、コモノマーとして、例えば、シュウ酸エチレン(すなわち、1,4−ジオキサン−2,3−ジオン)、ラクチド、ラクトン類(例えば、β−プロピオラクトン、β−ブチロラクトン、ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトン等)、トリメチレンカーボネート、及び1,3−ジオキサンなどの環状モノマー;またはこれらの2種以上を、グリコリドと適宜組み合わせて共重合すればよい。
【0030】
環重合法は、高分子量のポリグリコール酸が得られるので、好ましい。モノマーとして使用するグリコリド(グリコール酸の2量体環状エステル)としては、従来のグリコール酸オリゴマーの昇華解重合法によって得られるものよりも、本発明者らが開発した「溶液相解重合法」(特願平9−38404号)によって得られるものの方が、高純度であり、しかも高収率で大量に得ることができるので好ましい。モノマーとして高純度のグリコリドを用いることにより、高分子量のポリグリコール酸を容易に得ることができる。
【0031】
溶液相解重合法では、(1)グリコール酸オリゴマーと230〜450℃の範囲内の沸点を有する少なくとも一種の高沸点極性有機溶媒とを含む混合物を、常圧下または減圧下に、該オリゴマーの解重合が起こる温度に加熱して、(2)該オリゴマーの融液相の残存率(容積比)が0.5以下になるまで、該オリゴマーを該溶媒に溶解させ、(3)同温度で更に加熱を継続して該オリゴマーを解重合させ、(4)生成した2量体環状エステル(すなわち、グリコリド)を高沸点極性有機溶媒と共に溜出させ、(5)溜出物からグリコリドを回収する。
【0032】
高沸点極性有機溶媒としては、例えば、ジ(2−メトキシエチル)フタレートなどのフタル酸ビス(アルコキシアルキルエステル)、ジエチレングリコールジベンゾエートなどのアルキレングリコールジベンゾエート、ベンジルブチルフタレートやジブチルフタレートなどの芳香族カルボン酸エステル、トリクレジルホスフェートなどの芳香族リン酸エステル等を挙げることができ、グリコール酸オリゴマーに対して、通常、0.3〜50倍量(重量比)の割合で使用する。高沸点極性有機溶媒と共に、必要に応じて、グリコール酸オリゴマーの可溶化剤として、ポリプロピレングリコール、ポリエチレングリコール、テトラエチレングリコールなどを併用することができる。グリコール酸オリゴマーの解重合温度は、通常、230℃以上であり、好ましくは230〜320℃である。解重合は、常圧下または減圧下に行うが、0.1〜90.0kPa(1〜900mbar)の減圧下に加熱して、解重合させることが好ましい。
【0033】
本発明で用いるポリグリコール酸層としては、ポリグリコール酸のニートレジンを単独で使用することができるが、本発明の目的を阻害しない範囲内において、無機フィラー、他の熱可塑性樹脂、可塑剤などを配合した樹脂組成物を使用することができる。より具体的には、ポリグリコール酸100重量部に対し、0〜30重量部の無機フィラー、0〜30重量部の他の熱可塑性樹脂、0〜50重量部の可塑剤などを配合した樹脂組成物(コンパウンド)を用いることができる。無機フィラーまたは他の熱可塑性樹脂が30重量部を超過し、あるいは、可塑剤が50重量部を超過すると、得られるポリグリコール酸層のガスバリヤー性が不足し、また、溶融加工性が低下するおそれがある。
【0034】
無機フィラーとしては、例えば、アルミナ、シリカ、シリカアルミナ、ジルコニア、酸化チタン、酸化鉄、酸化ホウ素、炭酸カルシウム、ケイ酸カルシウム、リン酸カルシウム、硫酸カルシウム、炭酸マグネシウム、ケイ酸マグネシウム、リン酸マグネシウム、硫酸マグネシウム、カオリン、タルク、マイカ、フェライト、炭素、ケイ素、窒化ケイ素、二硫化モリブデン、ガラス、チタン酸カリウム等の粉末、ウイスカー、繊維などが挙げられる。これらの無機フィラーは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
【0035】
他の熱可塑性樹脂としては、例えば、乳酸の単独重合体及び共重合体、シュウ酸エチレンの単独重合体及び共重合体、ε−カプロラクトンの単独重合体及び共重合体、ポリこはく酸エステル、ポリヒドロキシブタン酸、ヒドロキシブタン酸−ヒドロキシ吉草酸共重合体、酢酸セルロース、ポリビニルアルコール、でん粉、ポリグルタミン酸エステル、天然ゴム、ポリエチレン、ポリプロピレン、スチレン−ブタジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム、ポリメチルメタクリレート、ポリスチレン、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−エチレン・ブチレン−スチレンブロック共重合体、ABS樹脂、MBS樹脂、エチレン−ビニルアルコール共重合体等が挙げられる。これらの熱可塑性樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
【0036】
可塑剤としては、ジ(メトキシエチル)フタレート、ジオクチルフタレート、ジエチルフタレート、ベンジルブチルフタレート等のフタル酸エステル;ジエチレングリコールジベンゾエート、エチレングリコールジベンゾエート等の安息香酸エステル;アジピン酸ジオクチル、セバチン酸ジオクチル等の脂肪族二塩基酸エステル;アセチルクエン酸トリブチル等の脂肪族三塩基酸エステル;リン酸ジオクチル、リン酸トリクレジル等のリン酸エステル;エポキシ化大豆油等のエポキシ系可塑剤;ポリエチレングリコールジセバケート、ポリプロピレングリコールジラウレート等のポリアルキレングリコールの脂肪酸エステル;等が挙げられる。これらの可塑剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
本発明では、必要に応じて、熱安定剤、光安定剤、防湿剤、防水剤、撥水剤、滑剤、離型剤、カップリング剤、顔料、染料などの各種添加剤をポリグリコール酸に添加することができる。これら各種添加剤は、それぞれの使用目的に応じて有効量が使用される。
尚、当然に本発明における熱可塑性樹脂層においても熱可塑性樹脂に種々のフィラー、あるいは前記のような添加剤が必要に応じて有効量用いられる。
【0037】
ガスバリヤー性多層中空容器の胴部側壁の物性
本発明のガスバリヤー性多層中空容器の胴部側壁は、酸素ガス透過率及び/または炭酸ガス透過率が、熱可塑性樹脂層のそれらの値に比較して、通常1/2以下、好ましくは1/5以下、より好ましくは1/10以下に改善されている。
すなわち、本発明のガスバリヤー性多層中空容器は、例えば、ポリオレフィン、ポリエステル、ポリスチレン、ポリ塩化ビニル、ポリカーボネート、ポリ乳酸、ポリこはく酸エステル、ポリカプロラクトン、ポリアミド、EVOH、ポリウレタン、PVDCなどから選ばれた樹脂からなる熱可塑性樹脂層に、ガスバリヤー性改良材として、ポリグリコール酸層を組み合わせることによって、酸素ガスバリヤー性及び炭酸ガスバリヤー性の少なくとも一方を、該熱可塑性樹脂層に比較して驚異的に改善した中空容器である。
しかも、本発明のガスバリヤー性多層中空容器は、高温・高湿下での処理を受けても、そのガスバリヤー性の低下が極めて少ないことが、大きな特徴である。
【0038】
ガスバリヤー性多層中空容器の製造方法
中空容器の多層化の目的は、単一材料では得られない要求特性を多層化することによって得ることにある。具体的には、酸素、炭酸ガス等に対するガスバリヤー性の付与、ヒートシール性の付与、耐湿性の改善、機械的強度の改善、コストの大幅低減などである。
本発明の多層中空容器の製造方法としては、大別して次のような方法を用いることができる。
ガスバリヤー性多層中空容器の製造方法としては、主として、「多層押出ブロー成形法」及び「多層インジェクションブロー成形法」が採用できる。両ブロー成形法において、それぞれブロー成形時に、1軸または2軸方向に延伸させる「延伸ブロー成形法」と、延伸させない「無延伸ブロー成形法」とがある。ここで、「延伸ブロー成形法」は、ブロー成形時に延伸することにより高分子鎖を配向させ、透明性、強度、弾性率、ガスバリヤー性などの物理的性質を向上させる成形法である。このような物性を向上させるには、延伸ブロー時、パリソンが融点Tm以下、ガラス転移温度Tg以上の温度に保たれていることが肝要である。
【0039】
〈多層押出ブロー成形法〉
本発明の多層押出ブロー成形は、先ず、ポリグリコール酸または該ポリグリコール酸に、無機フィラー、他の熱可塑性樹脂、可塑剤などを配合した樹脂組成物を、少なくとも一種の他の熱可塑性樹脂、及び必要に応じて接着剤から構成される多層のパリソンを成形する。このために、各々の押出機で加熱溶融した各樹脂を、多層パリソン成形用ダイ(通常サーキュラーダイ)に流入させ、ダイ内部で、同時または逐次に合流させ、当該ダイからチューブ状パリソンを押出す。溶融押出したパリソンを固化しないうちに割り金型で挟んで、パリソンの一端をピンチし、内部に空気を吹き込んで金型壁までブローし、冷却する。冷却後、金型を開いて成形品を取出する。ブローをする際に、パリソンを、過冷却状態若しくは結晶化温度(Tc)以下で、かつ、ガラス転移温度Tgより若干高い温度範囲で、1軸または2軸方向に延伸すれば、1軸若しくは2軸方向に配向した成形品を得ることができる。
【0040】
〈多層インジェクションブロー成形法〉
インジェクションブロー成形は、射出成形によって試験管状の有底パリソン(プリフォーム)を射出成形し、このパリソンを過冷却状態またはガラス転移温度Tg以上でブロー成形するものである。このうち、パリソン射出成形後、固化しない状態で、融点Tm以下の温度で調温し、ブロー成形するのが、ホットパリソン法である。一方、パリソン射出成形後、パリソンを一旦冷却固化した後、Tg以上に再加熱し、調温し、ブロー成形するのがコールドパリソン法である。ホットパリソン法には、延伸ブロー成形と未延伸ブロー成形があるが、コールドパリソン法は、通常、延伸ブロー成形のみである。
本発明の多層のインジェクションブロー成形は、ポリグリコール酸または該ポリグリコール酸に、無機フィラー、他の熱可塑性樹脂、可塑剤などを配合した樹脂組成物、少なくとも一種の他の熱可塑性樹脂、及び必要に応じて接着剤を共射出(コインジェクション)法によって、プリフォームを成形し、これをホットパリソン法またはコールドパリソン法によりブロー成形することによって行う。この際、延伸ブロー成形が行われる。
【0041】
用 途
本発明のガスバリヤー性多層中空容器は、その優れた酸素ガスバリヤー性及び/または炭酸ガスバリヤー性を活かして、例えば、飲料用・食品用の中空容器、トイレタリー用容器、ガソリン用容器に用いられる。特に、レトルト滅菌等の高温・高湿下での処理を要する物、特別に長期保存を要する物、炭酸ガスバリヤー性を要求する物、環境負荷の低減が要求される物等の包装容器の用途に好ましく用いられる。
【0042】
【実施例】
以下に、合成例、実施例、及び比較例を挙げて、本発明についてより具体的に説明する。
物性の測定法
(1)溶融粘度η*
ポリマーの分子量の指標として、溶融粘度η*を測定した。試料として、各ポリマーの厚み約0.2mmの非晶シートを約150℃で5分間加熱して結晶化させたものを用い、D=0.5mm、L=5mmのノズル装着キャピログラフ〔東洋精機(株)製〕を用いて、(Tm+20℃)の温度、剪断速度100/秒で測定した。
(2)ポリマーの熱的性質:
試料として、各ポリマーの厚み約0.2mmの非晶シートを用いて、示差走査熱量計(DSC;Mettler社製TC−10A型)を用い、窒素ガス気流下、10℃/分の速度で昇温し、結晶化温度(Tc1)、融点(Tm)、及び溶融エンタルピー(ΔHm)を測定した。ガラス転移温度(Tg)は、5℃/分の昇温速度で測定した。
(3)酸素ガス透過率(O2透過率)
ブロー容器の胴部側壁から切り取った各サンプルについて、GLサイエンス社製の両面加湿式ガス透過試験機を用い、JIS K−7126に準拠して、23℃、80%RHで酸素ガス透過度を測定し、フィルム厚み1mmに換算して酸素ガス透過率を求めた。
(4)炭酸ガス透過率(CO2透過率)
ブロー容器の胴部側壁から切り取った各サンプルについて、GLサイエンス社製両面加湿式ガス透過試験機を用いて、JIS K−7126に準拠して、23℃、80%RHで炭酸ガス透過度を測定し、フィルム厚み1mmに換算して炭酸ガス透過率を求めた。
【0043】
[合成例1]モノマーの合成
10リットルオートクレーブに、グリコール酸〔和光純薬(株)製〕5kgを仕込み、撹拌しながら、170℃から200℃まで約2時間かけて昇温加熱し、生成水を溜出させながら、縮合させた。次いで、20kPa(200mbar)に減圧し2時間保持して、低沸分を溜出させ、グリコール酸オリゴマーを調製した。グリコール酸オリゴマーの融点Tmは、205℃であった。
グリコール酸オリゴマー1.2kgを10リットルのフラスコに仕込み、溶媒としてベンジルブチルフタレート5kg〔純正化学(株)製〕及び可溶化剤としてポリプロピレングリコール〔純正化学(株)製、#400〕150gを加え、窒素ガス雰囲気中、5kPa(50mbar)の減圧下、約270℃に加熱し、グリコール酸オリゴマーの「溶液相解重合」を行い、生成したグリコリドをベンジルブチルフタレートと共溜出させた。
得られた共溜出物に約2倍容のシクロヘキサンを加えて、グリコリドをベンジルブチルフタレートから析出させ、濾別した。これを、酢酸エチルを用いて再結晶し、減圧乾燥し精製グリコリドを得た。
【0044】
[ポリマー調製例1]
合成例1で得たグリコリド200gを、PFA製シリンダーに仕込み、窒素ガスを吹き込みながら約30分間室温で乾燥した。次いで、触媒としてSnCl4・6.5H2Oを0.04g添加し、窒素ガスを吹き込みながら170〜175℃に2時間保持して重合した。重合終了後、シリンダーを室温まで冷却し、シリンダーから取り出したポリマーを粉砕して、約150℃、0.1kPa(=1mbar)以下で一晩減圧乾燥し、残存モノマーを除去してポリグリコール酸〔ポリマー(P−1)〕を得た。同じ方法を繰り返し、必要量のポリマー(P−1)を調製した。
【0045】
[ポリマー調製例2]
グリコリド200gに代えて、グリコリド196gとL−(−)ラクチド4gとの混合物を用いたこと以外は、ポリマー調製例1と同様にして重合と後処理を行い、グリコール酸−ラクチド共重合体〔ポリマー(P−2)〕を得た。同じ方法を繰り返し、必要量のポリマー(P−2)を調製した。
ポリマー調製例1及び2で得られたポリグリコール酸の組成と物性を表1に示す。
【0046】
【表1】
Figure 0003838757
(脚注)GA=グリコリド、LA=L−(−)−ラクチド。
【0047】
[ペレット調製例1]
ポリマー(P−1)を3mmφのノズルを装着した小型二軸混練押出機に窒素ガス流下で供給し、溶融温度約230〜235℃でストランド状に押出し、空冷してカットし、ペレット(No.1)を得た。
【0048】
[ペレット調製例2]
ポリマー(P−2)を用いて、溶融温度を約225〜230℃に変更したこと以外は、ペレット調製例1と同様にして、ペレット(No.2)を調製した。
【0049】
[実施例1]
ペレット(No.1)、中密度ポリエチレン(MDPE;MI=10g/10分)、及びカルボキシル化ポリオレフィン〔登録商標名MODIC E−300S、三菱油化(株)製〕を3種5層用共射出成形機に供給し、射出してプリフォーム金型に注入し、プリフォーム(外径約2cm、長さ約6cm)を成形し、次いで、固化する前に約120℃に調温して、金型内に挿入した。当該プリフォーム内にロッドを挿入して、プリフォームを長さ方向に約2倍延伸すると同時にブロー比約3でブローし、次いで、冷却固化して、多層中空容器MB−1(胴部外径約6cm、胴部長約10cm、首部外径約2cm、首部長約1cm、平底中央凹型)を調製した。
【0050】
[実施例2]
ペレット(No.1)の替わりにペレット(No.2)を用いた点を除く他、実施例1と同様にして、多層中空容器MB−2を調製した。
【0051】
[実施例3]
ペレット(No.1)、MDPE(MI=10g/10分)、及びカルボキシル化ポリオレフィン(登録商標名MODIC E−300S)を、3種5層用多層ダイヘッド(サーキュラーダイ)に供給し、チューブ状に溶融押出してパリソンを作成し、これをボトル用の割り金型に挟んで底部をピンチし、約120℃に調温して、ブロー比約3でブローした。冷却固化して、多層中空容器MB−3(胴部外径約6cm、胴部長約10cm、首部外径約2cm、首部長約1cm、平底中央凹型)を調製した。
【0052】
[実施例4]
ペレット(No.1)、ポリエチレンテレフタレート(PET;MI=13g/10分)、及びカルボキシル化ポリオレフィン(登録商標名MODIC E−300S)を3種5層用共射出成形機に供給し、射出してプリフォーム金型に注入し、プリフォーム(外径約2cm、長さ約6cm)を形成して、冷却固化させた。次いで、該プリフォームを再加熱し、約85℃に調温し、金型内に挿入し、当該プリフォーム内にロッドを挿入して、プリフォームを長さ方向に約2倍延伸すると同時にブロー比約3でブローし、次いで、冷却固化して多層中空容器MB−4を調製した。
【0053】
[比較例1]
ペレット(No.1)の替わりにMDPEを共射出成形機に供給した点を除く外、実施例1と同様にして多層中空容器MB−C1を調製した。
【0054】
[比較例2]
ペレット(No.1)の替わりにPET(MI=13g/10分)を共射出成形機に供給した点を除く外、実施例4と同様にして、多層中空容器MB−C2を調製した。
【0055】
<ガスバリヤー性比較>
実施例1〜4、及び比較例1〜2で得られた各中空容器につき、胴部側壁を切出し、各ガス透過率を測定した。さらに、実施例1〜4、及び比較例1〜2に用いたMDPE及びPETについて、それぞれホットプレスを用いて、溶融加工し、急冷して、厚み約0.1mmのベース樹脂シートBS−1、及びBS−2を調製し、これらについても各ガス透過率を測定し、上記の器胴部側壁の各ガス透過率値と比較した。結果は、一括して表2に示した。
【0056】
【表2】
Figure 0003838757
なお、ベース樹脂シートBS−1、及びBS−2の各ガス透過率の測定結果を表3に示す。
【0057】
【表3】
Figure 0003838757
【0058】
【発明の効果】
本発明によれば、レトルト滅菌のような高温・高湿下での処理工程を要する物、特別に長期保存を要する物、特に炭酸ガスバリヤー性を要する物等の容器として好適なガスバリヤー性多層中空容器が提供される。また、本発明によれば、酸素ガスバリヤー性及び炭酸ガスバリヤー性が特に優れた多層中空容器が提供される。さらに、本発明によれば、環境負荷の小さいガスバリヤー性多層中空容器を提供することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas barrier multilayer hollow container, and more specifically, by combining a thermoplastic resin layer such as polyolefin and a polyglycolic acid layer, an oxygen gas barrier property and / or a carbon dioxide gas barrier of the thermoplastic resin layer. The present invention relates to a multilayer hollow container having remarkably improved properties. The gas barrier multilayer hollow container of the present invention is particularly suitable as various containers for beverages, foods, daily necessities, gasoline and the like.
[0002]
[Prior art]
Conventionally, various resin hollow containers have been used as containers for various articles such as beverages, foods, daily necessities, and gasoline. Specifically, for example, a hollow container using a thermoplastic resin such as polyolefin, polyester, polystyrene, polyvinyl chloride or the like can be used. However, these hollow containers are generally unsatisfactory for applications such as beverage / food containers and toiletries containers because of their insufficient gas barrier properties such as oxygen gas barrier properties and carbon dioxide gas barrier properties. . Therefore, in order to improve the gas barrier properties of the resin hollow container, a multilayer hollow container in which a gas barrier layer made of ethylene / vinyl alcohol copolymer (EVOH), polyamide or the like is combined has been developed.
However, gas barrier resin layers such as EVOH and polyamide are greatly deteriorated in gas barrier properties at high temperatures and high humidity. Therefore, conventional multilayer hollow containers containing these layers have a high temperature such as retort sterilization. -It was insufficient as a hollow container for a product requiring a treatment process under high humidity or a product requiring special long-term storage.
[0003]
In recent years, biodegradable polymers such as polylactic acid, polysuccinic acid ester, and polycaprolactone have attracted attention as plastic materials with a small environmental load, and hollow containers using these biodegradable polymers are being developed. However, these biodegradable polymer hollow containers are insufficient in terms of gas barrier properties such as oxygen gas barrier properties and carbon dioxide gas barrier properties. In addition, when a gas barrier resin layer made of a conventional EVOH, polyamide or the like is combined with these biodegradable polymer layers to improve the gas barrier property, there is a problem that an environmental load increases.
The inventors have succeeded in producing a hollow container excellent in gas barrier properties from polyglycolic acid. However, the polyglycolic acid monolayer is not always sufficient in, for example, moisture resistance, mechanical strength, economy and the like.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a gas barrier multi-layer hollow container suitable as a container for things that require a treatment step under high temperature and high humidity such as retort sterilization, and those that require long-term storage.
Another object of the present invention is to provide a gas barrier multilayer hollow container that is particularly excellent in oxygen gas barrier properties and carbon dioxide gas barrier properties.
Another object of the present invention is to provide a gas barrier multi-layer hollow container having a small environmental load.
[0005]
As a result of diligent research to overcome the problems of the prior art, the present inventors have combined the polyglycolic acid layer and the thermoplastic resin layer to produce an oxygen gas barrier property and / or carbonic acid in the thermoplastic resin layer. It has been found that a gas barrier multi-layer hollow container having significantly improved gas barrier properties can be obtained.
For example, in a conventional gas barrier multi-layer hollow container having a layer structure of polyolefin / gas barrier resin / polyolefin, a polyglycolic acid layer is disposed instead of a gas barrier resin layer made of EVOH, polyamide, or the like. In addition, it is possible to obtain a gas barrier multi-layer hollow container that is excellent in oxygen gas barrier properties and carbon dioxide gas barrier properties, and has sufficient characteristics as a container for items that require a treatment process under high temperature and high humidity and those that require long-term storage. .
[0006]
When a gas barrier resin layer made of EVOH or polyamide and a polyglycolic acid layer are used in combination, it is possible to obtain a multilayer hollow container in which not only oxygen gas barrier property but also carbon dioxide gas barrier property is remarkably improved. Combining a biodegradable polymer layer such as polylactic acid, polysuccinic acid ester or polycaprolactone with a polyglycolic acid layer has excellent gas barrier properties and economic efficiency without impairing biodegradability (disintegration in the soil). A multilayer hollow container can be obtained.
The present invention has been completed based on these findings.
[0007]
[Means for Solving the Problems]
  Thus, according to the present invention,(A) The following derived from glycolideFormula (1)
[0008]
[Formula 4]
Figure 0003838757
The repeating unit represented byAlone or at least one cyclic group selected from the group consisting of ethylene oxalate, lactide, lactones, trimethylene carbonate, and 1,3-dioxane, with 80% by weight or more of the repeating unit represented by the formula (1) 20% by weight or less of repeating units derived from monomersContains,
(B)Melt viscosity η measured at a temperature of (melting point + 20 ° C.) and a shear rate of 100 / sec.*500 ~50,000Pa · s,
(C)Melting point Tm200Over ℃, and
(D)Melting enthalpy ΔHm is 20 J / g or more
Polyglycolic acidOr a resin composition containing 100 parts by weight of the polyglycolic acid, 0 to 30 parts by weight of an inorganic filler, 0 to 30 parts by weight of another thermoplastic resin, and 0 to 50 parts by weight of a plasticizer.Formed fromPolyglycolic acidOn at least one side of the layer,otherIt has a multi-layered container wall structure in which thermoplastic resin layers are laminated and is uniaxially or biaxially stretch blow molded.And at least one of the oxygen gas permeability and carbon dioxide permeability of the vessel wall measured at a temperature of 23 ° C. and a relative humidity of 80% is the value of those of the vessel wall of a hollow container made of another thermoplastic resin alone. Less than halfA gas barrier multi-layer hollow container is provided.
  Moreover, according to the present invention,(A) The following derived from glycolideFormula (1)
[0009]
[Chemical formula 5]
Figure 0003838757
The repeating unit represented byAlone or at least one cyclic group selected from the group consisting of ethylene oxalate, lactide, lactones, trimethylene carbonate, and 1,3-dioxane, with 80% by weight or more of the repeating unit represented by the formula (1) 20% by weight or less of repeating units derived from monomersContains,
(B)Melt viscosity η measured at a temperature of (melting point + 20 ° C.) and a shear rate of 100 / sec.*500 ~50,000Pa · s,
(C)Melting point Tm200Over ℃, and
(D)Melting enthalpy ΔHm is 20 J / g or more
Polyglycolic acidOr a resin composition containing 100 parts by weight of the polyglycolic acid, 0 to 30 parts by weight of an inorganic filler, 0 to 30 parts by weight of another thermoplastic resin, and 0 to 50 parts by weight of a plasticizer, andAt least one kindotherThermoplastic treeFat, Each is heated and melted by an extruder, poured into a die for forming a multi-layer parison, joined together, extruded a multi-layer tubular parison, sandwiched by a split mold before solidifying, and pinched one end of the parison The method for producing a gas barrier multi-layer hollow container according to claim 1, wherein air is blown at a temperature not higher than the melting point Tm and not lower than the glass transition temperature Tg, uniaxially or biaxially stretched to the mold wall, and then cooled Is provided.
  Furthermore, according to the present invention,(A) The following derived from glycolideFormula (1)
[0010]
[Chemical 6]
Figure 0003838757
The repeating unit represented byAlone or at least one cyclic group selected from the group consisting of ethylene oxalate, lactide, lactones, trimethylene carbonate, and 1,3-dioxane, with 80% by weight or more of the repeating unit represented by the formula (1) 20% by weight or less of repeating units derived from monomersContains,
(B)Melt viscosity η measured at a temperature of (melting point + 20 ° C.) and a shear rate of 100 / sec.*500 ~50,000Pa · s,
(C)Melting point Tm200Over ℃, and
(D)Melting enthalpy ΔHm is 20 J / g or more
Polyglycolic acidOr a resin composition containing 100 parts by weight of the polyglycolic acid, 0 to 30 parts by weight of an inorganic filler, 0 to 30 parts by weight of another thermoplastic resin, and 0 to 50 parts by weight of a plasticizer, andAt least one kindotherThermoplastic treeFatCo-injected to form a bottomed parison, which is either solidified or not solidified, and is stretched in the length direction in a supercooled state or at a temperature below the melting point Tm and above the glass transition temperature Tg. There is provided a method for producing the gas barrier multi-layer hollow container, characterized in that air is blown and stretched and blown to a mold wall and then cooled.
[0011]
Examples of the thermoplastic resin layer include polyolefin (including metallocene-catalyzed polyolefin), polyester, polystyrene, polyvinyl chloride, polycarbonate, polyamide, polyurethane, ethylene / vinyl alcohol copolymer, polyvinylidene chloride, polylactic acid, and polyaluminum. A layer formed from a thermoplastic resin selected from the group consisting of acid esters and polycaprolactone is preferred.
The gas barrier multi-layer hollow container of the present invention is a hollow container comprising at least one of oxygen gas permeability and carbon dioxide gas permeability of a vessel wall measured at 23 ° C. and relative humidity (RH) 80%. It is reduced to 1/2 or less of those values of the wall.
The thickness of the polyglycolic acid layer is usually 1 μm to 3 mm, and the thickness of the entire multilayer body side wall is usually 5 μm to 5 mm. Moreover, in order to improve the adhesiveness between each layer, you may interpose an adhesive bond layer.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Wall structure of gas barrier multi-layer hollow container
The gas barrier multilayer hollow container of the present invention is a multilayer hollow container having at least one thermoplastic resin layer (hereinafter sometimes referred to as a base resin layer) and a polyglycolic acid layer. If necessary, an adhesive layer can be interposed between the respective layers. The thickness of the entire trunk side wall of the gas barrier multilayer hollow container of the present invention is usually 5 μm to 5 mm, preferably 10 μm to 3 mm, more preferably 20 μm to 2 mm. If the thickness is less than 5 μm, the mechanical strength may be insufficient. If this thickness exceeds 5 mm, it becomes excessive quality when used as a hollow container, and the cost is high, which is not preferable from the viewpoint of productivity and economy.
[0013]
  The basic layer structure of the gas barrier multilayer hollow container of the present invention is as follows. However, the adhesive layer is omitted. Polyglycolic acid is abbreviated as PGA.
(1) Thermoplastic resinlayer/ PGAlayer
(2) Thermoplastic resinlayer1 / PGAlayer/Thermoplastic resinlayer1
(3) Thermoplastic resinlayer1 / PGAlayer/Thermoplastic resinlayer2
  The gas barrier multi-layer hollow container according to the present invention is obtained by additionally laminating various types of thermoplastic resin layers of the same type or different types according to various required characteristics, provided that the above basic layer configuration is provided. There may be. Moreover, the multilayering method of a thermoplastic resin layer and a polyglycolic acid layer is not specifically limited, For example, various processing methods, such as the method of laminating | stacking by a coextrusion method or a co-injection method, are employable.
[0014]
Thermoplastic resin layer (base resin layer)
In the gas barrier multilayer hollow container of the present invention, examples of the thermoplastic resin used for the thermoplastic resin layer include very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), Medium density polyethylene (MDPE), high density polyethylene (HDPE), polypropylene (PP), ethylene / propylene rubber (EPM), ethylene / vinyl acetate copolymer (EVA), ethylene / acrylic acid ester copolymer (EEA), Polyolefins such as ionomers (IO); polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polystyrene (PS), high impact polystyrene (HIPS), styrene / butadiene / styrene block copolymer (SBS), Polystyrene resin such as SBS (ie, SEBS); Polyvinyl chloride (PVC) resin such as hard polyvinyl chloride and soft polyvinyl chloride, polycarbonate (PC), polyamide (PA), polyurethane (PU), ethylene -A vinyl alcohol copolymer (EVOH), a polyvinylidene chloride resin (PVDC), etc. can be mentioned.
[0015]
As the thermoplastic resin having a small environmental load, for example, polylactic acid, polysuccinic acid ester, polycaprolactone and the like are preferable.
In the gas barrier multilayer hollow container of the present invention, these thermoplastic resin layers are used in a single layer or multiple layers. The thickness of the thermoplastic resin layer is usually 4 μm to 5 mm, preferably 10 μm to 3 mm, more preferably 20 μm to 2 mm, from the viewpoints of workability and economy.
[0016]
Adhesive layer
In this invention, in order to improve the adhesiveness of a thermoplastic resin layer (base resin layer) and a polyglycolic acid layer, an adhesive bond layer can be interposed between layers. Examples of the adhesive used for the adhesive layer include carboxylated polyolefin, epoxidized polyolefin, ethylene / vinyl acetate copolymer, ionomer, polyurethane, epoxy resin, SBS, SEBS, polychloroprene, and styrene / butadiene copolymer rubber ( And polymers such as SBR) and natural rubber (NR).
The carboxylated polyolefin is a polyolefin having a carboxyl group introduced by modifying the polyolefin with an unsaturated acid monomer such as acrylic acid, methacrylic acid, or maleic anhydride. The introduction of the carboxyl group may be either a copolymerization method or a graft method. Moreover, you may use together the said unsaturated acid monomer and vinyl monomers, such as methacrylic acid ester, acrylic acid ester, and vinyl acetate.
[0017]
The epoxidized polyolefin is a polyolefin in which an epoxy group is introduced by modifying a polyolefin with an epoxy group-containing monomer such as glycidyl methacrylate. The introduction of the epoxy group may be either a copolymerization method or a graft method. The epoxy group-containing monomer may be used in combination with a vinyl monomer such as methacrylic acid ester, acrylic acid ester or vinyl acetate.
Among these, carboxylated polyolefin and ethylene / vinyl acetate copolymer are particularly preferable from the viewpoints of adhesiveness and processability. The thickness of the adhesive layer is usually in the range of 0.5 μm to 2 mm, preferably 2 μm to 1 mm, more preferably 3 μm to 0.5 mm. If this thickness is less than 0.5 μm, the adhesion may be insufficient. If this thickness exceeds 2 mm, the cost is high, which is disadvantageous from an economical viewpoint.
[0018]
Polyglycolic acid layer
In the gas barrier multilayer hollow container of the present invention, a polyglycolic acid layer is laminated as a gas barrier resin layer in order to improve oxygen gas barrier property and / or carbon dioxide gas barrier property. When a general thermoplastic resin layer is used, both oxygen gas barrier properties and carbon dioxide gas barrier properties are improved.
The polyglycolic acid used in the present invention has the following formula (1)
[0019]
[Chemical 7]
Figure 0003838757
It is a polymer containing the repeating unit represented by these. In the polymer, the ratio of the repeating unit represented by the formula (1) is, 80% by weight or more. The ratio of the repeating unit represented by formula (1) is80If it is less than% by weight, the gas barrier properties may be impaired.
  As the repeating unit other than the repeating unit represented by the formula (1), for example, the following formula (2)
[0020]
[Chemical 8]
Figure 0003838757
(Where n = 1 to 10, m = 0 to 10)
A repeating unit represented by the following formula (3):
[0021]
[Chemical 9]
Figure 0003838757
(Where j = 1 to 10)
A repeating unit represented by the following formula (4):
[0022]
[Chemical Formula 10]
Figure 0003838757
(Wherein R1And R2Are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. k = 2-10)
A repeating unit represented by the following formula (5):
[0023]
Embedded image
Figure 0003838757
And a repeating unit represented by the following formula (6)
[0024]
Embedded image
Figure 0003838757
The repeating unit represented by these can be mentioned.
[0025]
  By introducing these repeating units (2) to (6) at a ratio of 1% by weight or more, the melting point Tm of the polyglycolic acid homopolymer can be lowered. If the Tm of polyglycolic acid is lowered, the processing temperature of the polymer can be lowered, so that thermal decomposition during melt processing can be reduced. By controlling the crystallization rate of polyglycolic acid by copolymerization, extrusion processability and stretch processability can also be improved. These repeating units (2) to (6)20If it exceeds wt%, the gas barrier property inherent to polyglycolic acid is impaired, and the toughness and heat resistance of the resin layer may be lowered.
[0026]
<Molecular weight-melt viscosity>
  The polyglycolic acid used in the gas barrier multilayer hollow container of the present invention is a high molecular weight polymer. Melt viscosity can be used as an index of molecular weight. The polyglycolic acid used in the present invention has a melt viscosity η measured at a temperature of (Tm + 20 ° C.) (that is, a temperature corresponding to a normal melt processing temperature) and a shear rate of 100 / sec.*But usually 500 ~50,000Pa · sGoodPreferably, it is 1,500 to 20,000 Pa · s.
  If the melt viscosity η * of polyglycolic acid is less than 500 Pa · s, the melt may be drawn down during melt molding into a hollow container, making it difficult to melt, or the toughness of the resulting resin layer May be insufficient. The melt viscosity η * of polyglycolic acid is50,000When Pa · s is exceeded, a high temperature is required for melt processing, and polyglycolic acid may be thermally deteriorated during processing.
[0027]
<Thermal properties>
  The melting point Tm of the polyglycolic acid used in the present invention is2It is 00 ° C. or higher, and in many cases is 210 ° C. or higher. The melting enthalpy ΔHm of the polyglycolic acid used in the present invention is usually 20 J / g, preferably 30 J / g or more, more preferably 40 J / g or more. If Tm or ΔHm of polyglycolic acid is too low, gas barrier properties, heat resistance, mechanical strength, etc. may be insufficient.
[0028]
<Method for producing polyglycolic acid>
  Examples of the polyglycolic acid used in the present invention include the following:OpeningRing polymerizationTo the lawTherefore, it can be manufactured.
  GLicolide (ie, 1,4-dioxane-2,5-dione) is about 120 ° C. to about 120 ° C. in the presence of a small amount of a catalyst (eg, a cationic catalyst such as tin organic carboxylate, tin halide, antimony halide, etc.). A method of ring-opening polymerization by heating to a temperature of 250 ° C. The ring-opening polymerization is preferably carried out by bulk polymerization or solution polymerization.Yes.
[0029]
  To obtain a polyglycolic acid copolymer,OfIn the method, as comonomer, for example, ethylene oxalate (that is, 1,4-dioxane-2,3-dione), lactide, lactones (for example, β-propiolactone, β-butyrolactone, pivalolactone, γ-butyrolactone, cyclic monomers such as δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone, trimethylene carbonate, and 1,3-dioxane.;Or two or more of theseAndWhat is necessary is just to copolymerize combining suitably.
[0030]
  OpenRing polymerization methodIsHigh molecular weight polyglycolic acid is obtained, which is preferable. MoGlycolide (a dimer cyclic ester of glycolic acid) used as a monomer is a “solution phase depolymerization method” developed by the present inventors rather than that obtained by the conventional sublimation depolymerization method of glycolic acid oligomers ( The one obtained by Japanese Patent Application No. 9-38404) is preferred because it has a high purity and can be obtained in a large amount with a high yield. By using high purity glycolide as a monomer, a high molecular weight polyglycolic acid can be easily obtained.
[0031]
In the solution phase depolymerization method, (1) a mixture containing a glycolic acid oligomer and at least one high-boiling polar organic solvent having a boiling point in the range of 230 to 450 ° C. is subjected to decomposition of the oligomer under normal pressure or reduced pressure. (2) the oligomer is dissolved in the solvent until the residual ratio (volume ratio) of the melt phase of the oligomer is 0.5 or less, and (3) further at the same temperature. The oligomer is depolymerized by continuing heating, and (4) the produced dimer cyclic ester (that is, glycolide) is distilled together with a high-boiling polar organic solvent, and (5) glycolide is recovered from the distillate.
[0032]
Examples of the high boiling polar organic solvent include bis (alkoxyalkyl esters) phthalates such as di (2-methoxyethyl) phthalate, alkylene glycol dibenzoates such as diethylene glycol dibenzoate, and aromatic carboxyls such as benzylbutyl phthalate and dibutyl phthalate. Examples thereof include aromatic phosphates such as acid esters and tricresyl phosphate, and are usually used in a proportion of 0.3 to 50 times (weight ratio) with respect to the glycolic acid oligomer. Along with the high-boiling polar organic solvent, polypropylene glycol, polyethylene glycol, tetraethylene glycol or the like can be used in combination as a solubilizer for the glycolic acid oligomer, if necessary. The depolymerization temperature of the glycolic acid oligomer is usually 230 ° C. or higher, preferably 230 to 320 ° C. Depolymerization is carried out under normal pressure or reduced pressure, but it is preferable to depolymerize by heating under reduced pressure of 0.1 to 90.0 kPa (1 to 900 mbar).
[0033]
As the polyglycolic acid layer used in the present invention, a polyglycolic acid neetresin can be used alone, but within the range not impairing the object of the present invention, inorganic fillers, other thermoplastic resins, plasticizers, etc. Can be used. More specifically, a resin composition in which 0 to 30 parts by weight of an inorganic filler, 0 to 30 parts by weight of another thermoplastic resin, 0 to 50 parts by weight of a plasticizer, or the like is blended with 100 parts by weight of polyglycolic acid. An object (compound) can be used. If the inorganic filler or other thermoplastic resin exceeds 30 parts by weight, or if the plasticizer exceeds 50 parts by weight, the resulting polyglycolic acid layer has insufficient gas barrier properties, and the melt processability decreases. There is a fear.
[0034]
Examples of the inorganic filler include alumina, silica, silica alumina, zirconia, titanium oxide, iron oxide, boron oxide, calcium carbonate, calcium silicate, calcium phosphate, calcium sulfate, magnesium carbonate, magnesium silicate, magnesium phosphate, magnesium sulfate. , Kaolin, talc, mica, ferrite, carbon, silicon, silicon nitride, molybdenum disulfide, glass, potassium titanate powder, whiskers, fibers and the like. These inorganic fillers can be used alone or in combination of two or more.
[0035]
Other thermoplastic resins include, for example, lactic acid homopolymers and copolymers, ethylene oxalate homopolymers and copolymers, ε-caprolactone homopolymers and copolymers, polysuccinic acid esters, poly Hydroxybutanoic acid, hydroxybutanoic acid-hydroxyvaleric acid copolymer, cellulose acetate, polyvinyl alcohol, starch, polyglutamic acid ester, natural rubber, polyethylene, polypropylene, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, polymethyl Examples thereof include methacrylate, polystyrene, styrene-butadiene-styrene block copolymer, styrene-ethylene / butylene-styrene block copolymer, ABS resin, MBS resin, and ethylene-vinyl alcohol copolymer. These thermoplastic resins can be used alone or in combination of two or more.
[0036]
Examples of the plasticizer include phthalic acid esters such as di (methoxyethyl) phthalate, dioctyl phthalate, diethyl phthalate, and benzyl butyl phthalate; benzoic acid esters such as diethylene glycol dibenzoate and ethylene glycol dibenzoate; dioctyl adipate, dioctyl sebacate, and the like. Aliphatic dibasic acid esters; Aliphatic tribasic acid esters such as tributyl acetyl citrate; Phosphate esters such as dioctyl phosphate and tricresyl phosphate; Epoxy plasticizers such as epoxidized soybean oil; Polyethylene glycol disebacate; And fatty acid esters of polyalkylene glycols such as polypropylene glycol dilaurate. These plasticizers can be used alone or in combination of two or more.
In the present invention, if necessary, various additives such as a heat stabilizer, a light stabilizer, a moisture proof agent, a waterproofing agent, a water repellent, a lubricant, a release agent, a coupling agent, a pigment, and a dye are added to polyglycolic acid. Can be added. These various additives are used in effective amounts according to their intended purpose.
Of course, in the thermoplastic resin layer of the present invention, various fillers or additives as described above are used in an effective amount as required.
[0037]
Physical properties of the side wall of the gas barrier multilayer hollow container
The side wall of the barrel portion of the gas barrier multilayer hollow container of the present invention has an oxygen gas permeability and / or carbon dioxide gas permeability of usually ½ or less, preferably 1 as compared with those values of the thermoplastic resin layer. / 5 or less, more preferably 1/10 or less.
That is, the gas barrier multilayer hollow container of the present invention was selected from, for example, polyolefin, polyester, polystyrene, polyvinyl chloride, polycarbonate, polylactic acid, polysuccinic acid ester, polycaprolactone, polyamide, EVOH, polyurethane, PVDC and the like. By combining a polyglycolic acid layer as a gas barrier property improving material with a thermoplastic resin layer made of a resin, at least one of oxygen gas barrier property and carbon dioxide gas barrier property is surprising compared to the thermoplastic resin layer. The hollow container is improved.
Moreover, the gas barrier multi-layer hollow container of the present invention is characterized in that the gas barrier property is hardly lowered even when subjected to treatment at high temperature and high humidity.
[0038]
Method for producing gas barrier multilayer hollow container
  The purpose of multilayering of hollow containers is to obtain required properties that cannot be obtained with a single material by multilayering. Specifically, the gas barrier property is imparted to oxygen, carbon dioxide gas, etc., the heat seal property is imparted, the moisture resistance is improved, the mechanical strength is improved, and the cost is greatly reduced.
  As a manufacturing method of the multilayer hollow container of this invention, it can divide roughly and the following methods can be used.
  As a method for producing a gas barrier multilayer hollow container, a “multilayer extrusion blow molding method” and a “multilayer injection blow molding method” can be mainly employed. In both blow molding methods, there are a “stretch blow molding method” for stretching in a uniaxial or biaxial direction at the time of blow molding and a “non-stretch blow molding method” for not stretching. Here, the “stretch blow molding method” is a molding method in which polymer chains are oriented by stretching at the time of blow molding to improve physical properties such as transparency, strength, elastic modulus, and gas barrier properties. To improve such physical properties, the parison has a melting point during stretch blow.TmBelow, glass transitiontemperatureIt is important that the temperature is maintained at Tg or higher.
[0039]
<Multi-layer extrusion blow molding method>
  In the multilayer extrusion blow molding of the present invention, first, polyglycolic acid is used.Or the resin composition which mix | blended inorganic filler, other thermoplastic resin, a plasticizer, etc. with this polyglycolic acidAt least one kindotherA multilayer parison composed of a thermoplastic resin and, if necessary, an adhesive is formed. For this purpose, each resin melted by heating in each extruder is caused to flow into a die for forming a multilayer parison (usually a circular die) and merged simultaneously or sequentially inside the die to extrude a tubular parison from the die. . Before the melt-extruded parison is solidified, it is sandwiched between split molds, one end of the parison is pinched, air is blown into the mold wall, blown to the mold wall, and cooled. After cooling, the mold is opened and the molded product is taken out. When blowing, the parison is placed in a supercooled state or crystallization temperature (Tc1) If the film is stretched in the uniaxial or biaxial direction at a temperature range slightly higher than the glass transition temperature Tg, a molded product oriented in the uniaxial or biaxial direction can be obtained.
[0040]
<Multi-layer injection blow molding method>
  In the injection blow molding, a test tube bottomed parison (preform) is injection molded by injection molding, and the parison is blow molded in a supercooled state or at a glass transition temperature Tg or higher. Among these, the hot parison method is a method in which the temperature is controlled at a temperature equal to or lower than the melting point Tm and blow-molded without being solidified after the parison injection molding. On the other hand, after the parison injection molding, the parison is cooled and solidified once, then reheated to Tg or more, temperature-controlled, and blow molding is a cold parison method. The hot parison method includes stretch blow molding and non-stretch blow molding, but the cold parison method is usually only stretch blow molding.
  The multi-layer injection blow molding of the present invention comprises polyglycolic acidOr the resin composition which mix | blended inorganic filler, other thermoplastic resin, a plasticizer, etc. with this polyglycolic acidAt least one kindotherA preform is formed by a co-injection (coin injection) method using a thermoplastic resin and, if necessary, an adhesive, and then blow-molded by a hot parison method or a cold parison method. At this time, stretch blowShapeDone.
[0041]
Application
The gas barrier multi-layer hollow container of the present invention is used in, for example, a hollow container for beverages and foods, a container for toiletries, and a container for gasoline, taking advantage of its excellent oxygen gas barrier property and / or carbon dioxide gas barrier property. . Especially for packaging containers such as those that require high temperature and high humidity treatment such as retort sterilization, those that require special long-term storage, those that require carbon dioxide barrier properties, and those that require reduced environmental impact. Is preferably used.
[0042]
【Example】
Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples, and comparative examples.
Measurement method of physical properties
(1) Melt viscosity η*
As an index of polymer molecular weight, melt viscosity η*Was measured. As a sample, an amorphous sheet having a thickness of about 0.2 mm for each polymer was crystallized by heating at about 150 ° C. for 5 minutes, and a nozzle mounted capillograph with D = 0.5 mm and L = 5 mm [Toyo Seiki ( The product was measured at a temperature of (Tm + 20 ° C.) and a shear rate of 100 / sec.
(2) Thermal properties of the polymer:
As a sample, an amorphous sheet having a thickness of about 0.2 mm for each polymer was used, and a differential scanning calorimeter (DSC; TC-10A manufactured by Mettler) was used, and the temperature was increased at a rate of 10 ° C./min in a nitrogen gas stream. The crystallization temperature (Tc1), Melting point (Tm), and melting enthalpy (ΔHm). The glass transition temperature (Tg) was measured at a heating rate of 5 ° C./min.
(3) Oxygen gas permeability (O2Transmittance)
For each sample cut from the barrel side wall of the blow container, the oxygen gas permeability was measured at 23 ° C. and 80% RH in accordance with JIS K-7126 using a double-side humidified gas permeation tester manufactured by GL Science. The oxygen gas permeability was calculated in terms of a film thickness of 1 mm.
(4) Carbon dioxide permeability (CO2Transmittance)
For each sample cut from the barrel side wall of the blow container, the carbon dioxide gas permeability was measured at 23 ° C. and 80% RH in accordance with JIS K-7126 using a double-side humidified gas permeation tester manufactured by GL Sciences. The carbon dioxide permeability was calculated in terms of a film thickness of 1 mm.
[0043]
[Synthesis Example 1]Monomer synthesis
A 10 liter autoclave is charged with 5 kg of glycolic acid (manufactured by Wako Pure Chemical Industries, Ltd.), heated with heating from 170 ° C. to 200 ° C. over about 2 hours with stirring, and condensed while distilling the produced water. It was. Next, the pressure was reduced to 20 kPa (200 mbar) and held for 2 hours to distill off the low-boiling components, thereby preparing glycolic acid oligomers. The melting point Tm of the glycolic acid oligomer was 205 ° C.
1.2 kg of glycolic acid oligomer was charged into a 10-liter flask, and 5 kg of benzyl butyl phthalate (manufactured by Junsei Chemical Co., Ltd.) as a solvent and 150 g of polypropylene glycol (manufactured by Junsei Chemical Co., Ltd., # 400) as a solubilizer were added. The solution was heated to about 270 ° C. under a reduced pressure of 5 kPa (50 mbar) in a nitrogen gas atmosphere to perform “solution phase depolymerization” of the glycolic acid oligomer, and the glycolide thus produced was co-distilled with benzylbutyl phthalate.
About 2-fold volume of cyclohexane was added to the resulting co-distillate, and glycolide was precipitated from benzyl butyl phthalate and separated by filtration. This was recrystallized using ethyl acetate and dried under reduced pressure to obtain purified glycolide.
[0044]
[Polymer Preparation Example 1]
200 g of glycolide obtained in Synthesis Example 1 was charged in a PFA cylinder and dried at room temperature for about 30 minutes while blowing nitrogen gas. Then SnCl as catalystFour・ 6.5H20.04 g of O was added, and polymerization was carried out by maintaining at 170 to 175 ° C. for 2 hours while blowing nitrogen gas. After completion of the polymerization, the cylinder was cooled to room temperature, the polymer taken out from the cylinder was pulverized, and dried under reduced pressure overnight at about 150 ° C. and 0.1 kPa (= 1 mbar) or less to remove residual monomers and polyglycolic acid [ Polymer (P-1)] was obtained. The same method was repeated to prepare the required amount of polymer (P-1).
[0045]
[Polymer Preparation Example 2]
Polymerization and post-treatment were performed in the same manner as in Polymer Preparation Example 1 except that 196 g of glycolide and 4 g of L-(-) lactide were used instead of 200 g of glycolide, and a glycolic acid-lactide copolymer [polymer (P-2)] was obtained. The same method was repeated to prepare the required amount of polymer (P-2).
Table 1 shows the composition and physical properties of the polyglycolic acid obtained in Polymer Preparation Examples 1 and 2.
[0046]
[Table 1]
Figure 0003838757
(Footnote) GA = glycolide, LA = L-(−)-lactide.
[0047]
[Pellet preparation example 1]
The polymer (P-1) was supplied to a small twin-screw kneading extruder equipped with a 3 mmφ nozzle under a nitrogen gas flow, extruded into a strand at a melting temperature of about 230 to 235 ° C., air-cooled, cut, and pellets (No. 1) was obtained.
[0048]
[Pellet preparation example 2]
A pellet (No. 2) was prepared in the same manner as in Pellet Preparation Example 1 except that the melting temperature was changed to about 225 to 230 ° C. using the polymer (P-2).
[0049]
[Example 1]
Co-injection of 3 types and 5 layers of pellets (No. 1), medium density polyethylene (MDPE; MI = 10 g / 10 min), and carboxylated polyolefin [registered trademark MODIC E-300S, manufactured by Mitsubishi Yuka Co., Ltd.] Supply to molding machine, inject and inject into preform mold, mold preform (outer diameter about 2cm, length about 6cm), then adjust the temperature to about 120 ° C before solidification, Inserted into the mold. A rod is inserted into the preform, the preform is stretched about twice in the length direction, and simultaneously blown at a blow ratio of about 3, and then cooled and solidified to form a multilayer hollow container MB-1 (outer diameter of the trunk). About 6 cm, body length of about 10 cm, neck outer diameter of about 2 cm, neck length of about 1 cm, flat bottom center concave).
[0050]
[Example 2]
A multilayer hollow container MB-2 was prepared in the same manner as in Example 1 except that the pellet (No. 2) was used instead of the pellet (No. 1).
[0051]
[Example 3]
Pellets (No. 1), MDPE (MI = 10 g / 10 min), and carboxylated polyolefin (registered trade name MODIC E-300S) are supplied to a multilayer die head for 3 types and 5 layers (circular die), and in a tube shape The parison was made by melt extrusion, and the bottom part was pinched with a split mold for bottles, the temperature was adjusted to about 120 ° C., and blown at a blow ratio of about 3. Upon cooling and solidification, a multilayer hollow container MB-3 (a trunk outer diameter of about 6 cm, a trunk length of about 10 cm, a neck outer diameter of about 2 cm, a neck length of about 1 cm, and a flat bottom center concave mold) was prepared.
[0052]
[Example 4]
Pellets (No. 1), polyethylene terephthalate (PET; MI = 13 g / 10 min), and carboxylated polyolefin (registered trade name MODIC E-300S) are supplied to a co-injection molding machine for 3 types and 5 layers and injected. Poured into a preform mold, a preform (outer diameter of about 2 cm, length of about 6 cm) was formed and cooled and solidified. Next, the preform is reheated, adjusted to about 85 ° C., inserted into a mold, a rod is inserted into the preform, and the preform is stretched about twice in the length direction and blown simultaneously. Blowing was performed at a ratio of about 3, and then cooled and solidified to prepare a multilayer hollow container MB-4.
[0053]
[Comparative Example 1]
A multilayer hollow container MB-C1 was prepared in the same manner as in Example 1 except that MDPE was supplied to the co-injection molding machine instead of pellets (No. 1).
[0054]
[Comparative Example 2]
A multilayer hollow container MB-C2 was prepared in the same manner as in Example 4 except that PET (MI = 13 g / 10 min) was supplied to the co-injection molding machine instead of the pellet (No. 1).
[0055]
<Gas barrier properties comparison>
About each hollow container obtained in Examples 1-4 and Comparative Examples 1-2, the trunk | drum side wall was cut out and each gas permeability was measured. Furthermore, about MDPE and PET used in Examples 1 to 4 and Comparative Examples 1 and 2, each was melt processed using a hot press, rapidly cooled, and a base resin sheet BS-1 having a thickness of about 0.1 mm, And BS-2 were prepared, and the gas permeability of each of these was also measured and compared with the gas permeability values of the above-mentioned instrument body side wall. The results are shown in Table 2 collectively.
[0056]
[Table 2]
Figure 0003838757
In addition, Table 3 shows the measurement results of the gas permeability of the base resin sheets BS-1 and BS-2.
[0057]
[Table 3]
Figure 0003838757
[0058]
【The invention's effect】
According to the present invention, a gas barrier multi-layer suitable as a container for a material that requires a treatment step under high temperature and high humidity such as retort sterilization, a material that requires special long-term storage, particularly a material that requires carbon dioxide gas barrier properties, etc. A hollow container is provided. Moreover, according to the present invention, a multilayer hollow container having particularly excellent oxygen gas barrier properties and carbon dioxide gas barrier properties is provided. Furthermore, according to the present invention, it is possible to provide a gas barrier multi-layer hollow container with a small environmental load.

Claims (14)

(a)グリコリドに由来する下記式(1)
Figure 0003838757
で表される繰り返し単位を単独で、あるいは該式(1)で表される繰り返し単位80重量%以上と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1,3−ジオキサンからなる群より選ばれる少なくとも一種の環状モノマーに由来する繰り返し単位20重量%以下とを含有し、
(b)(融点+20℃)の温度及び100/秒の剪断速度で測定した溶融粘度ηが500〜50,000Pa・s、
(c)融点Tmが200℃以上、かつ、
(d)溶融エンタルピーΔHmが20J/g以上
のポリグリコール酸または該ポリグリコール酸100重量部、無機フィラー0〜30重量部、他の熱可塑性樹脂0〜30重量部、及び可塑剤0〜50重量部を含有する樹脂組成物から形成されたポリグリコール酸層の少なくとも片面に、他の熱可塑性樹脂層が積層された多層の器壁構成を有し、1軸または2軸延伸ブロー成形されたものであり、かつ、温度23℃、相対湿度80%で測定した器壁の酸素ガス透過率及び炭酸ガス透過率の少なくとも一方が、他の熱可塑性樹脂単独からなる中空容器の器壁のそれらの値の1/2以下であることを特徴とするガスバリヤー性多層中空容器。
(A) The following formula (1) derived from glycolide
Figure 0003838757
Or a group consisting of ethylene oxalate, lactide, lactones, trimethylene carbonate, and 1,3-dioxane, the repeating unit represented by formula (1) alone or with 80% by weight or more of the repeating unit represented by the formula (1) Containing 20% by weight or less of repeating units derived from at least one cyclic monomer selected from
(B) a melt viscosity η * measured at a temperature of (melting point + 20 ° C.) and a shear rate of 100 / sec is 500 to 50,000 Pa · s,
(C) the melting point Tm is 200 ° C. or higher, and
(D) Polyglycolic acid having a melting enthalpy ΔHm of 20 J / g or more or 100 parts by weight of the polyglycolic acid, 0 to 30 parts by weight of an inorganic filler, 0 to 30 parts by weight of another thermoplastic resin, and 0 to 50 parts by weight of a plasticizer Having a multilayered container wall structure in which another thermoplastic resin layer is laminated on at least one surface of a polyglycolic acid layer formed from a resin composition containing a part, and uniaxially or biaxially stretch blow molded der is, and the temperature 23 ° C., the measured vessel wall relative humidity of 80% at least one of the oxygen gas transmission rate and carbon dioxide gas transmission rate, a hollow container made of another thermoplastic resin alone vessel wall thereof gas barrier multilayer hollow container, wherein half or less der Rukoto values.
熱可塑性樹脂層が、ポリオレフィン、ポリエステル、ポリスチレン、ポリ塩化ビニル、ポリカーボネート、ポリアミド、ポリウレタン、エチレン・ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリ乳酸、ポリこはく酸エステル、及びポリカプロラクトンからなる群より選ばれる熱可塑性樹脂から形成された層である請求項1記載のガスバリヤー性多層中空容器。  The thermoplastic resin layer is selected from the group consisting of polyolefin, polyester, polystyrene, polyvinyl chloride, polycarbonate, polyamide, polyurethane, ethylene / vinyl alcohol copolymer, polyvinylidene chloride, polylactic acid, polysuccinic acid ester, and polycaprolactone. The gas barrier multi-layer hollow container according to claim 1, which is a layer formed of a thermoplastic resin. ポリグリコール酸層と熱可塑性樹脂層との間に接着剤層を介在させてなる請求項1または2記載のガスバリヤー性多層中空容器。  The gas barrier multilayer hollow container according to claim 1 or 2, wherein an adhesive layer is interposed between the polyglycolic acid layer and the thermoplastic resin layer. 接着剤層が、カルボキシル化ポリオレフィン、エポキシ化ポリオレフィン、エチレン・酢酸ビニル共重合体、アイオノマー、ポリウレタン、エポキシ樹脂、スチレン・ブタジエン・スチレンブロック共重合体エラストマー、水添スチレン・ブタジエン・スチレンブロック共重合体エラストマー、ポリクロロプレン、スチレン・ブタジエン共重合ゴム、及び天然ゴムからなる群より選ばれる接着剤から形成された層である請求項3記載のガスバリヤー性多層中空容器。  Adhesive layer is carboxylated polyolefin, epoxidized polyolefin, ethylene / vinyl acetate copolymer, ionomer, polyurethane, epoxy resin, styrene / butadiene / styrene block copolymer elastomer, hydrogenated styrene / butadiene / styrene block copolymer 4. The gas barrier multilayer hollow container according to claim 3, wherein the gas barrier multilayer hollow container is a layer formed of an adhesive selected from the group consisting of an elastomer, polychloroprene, styrene-butadiene copolymer rubber, and natural rubber. ポリグリコール酸が、グリコリドの開環重合体である請求項1乃至4のいずれか1項に記載のガスバリヤー性多層中空容器。  The gas barrier multilayer hollow container according to any one of claims 1 to 4, wherein the polyglycolic acid is a ring-opening polymer of glycolide. ポリグリコール酸が、グリコリド80重量%以上100重量%未満と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1,3−ジオキサンからなる群より選ばれる少なくとも一種の環状モノマー0重量%超過20重量%以下との開環共重合体である請求項1乃至のいずれか1項に記載のガスバリヤー性多層中空容器。Polyglycolic acid is 80 % by weight or more and less than 100% by weight of glycolide, and exceeds 0% by weight of at least one cyclic monomer selected from the group consisting of ethylene oxalate, lactide, lactones, trimethylene carbonate, and 1,3-dioxane. The gas barrier multilayer hollow container according to any one of claims 1 to 4 , which is a ring - opening copolymer of 20 % by weight or less. 熱可塑性樹脂/接着剤/ポリグリコール酸の層構成を有する請求項1乃至6のいずれか1項に記載のガスバリヤー性多層中空容器。The gas barrier multilayer hollow container according to any one of claims 1 to 6, having a layer structure of thermoplastic resin layer / adhesive layer / polyglycolic acid layer . 熱可塑性樹脂/接着剤/ポリグリコール酸/接着剤/熱可塑性樹脂の層構成を有する請求項1乃至6のいずれか1項に記載のガスバリヤー性多層中空容器。The gas barrier multilayer hollow container according to any one of claims 1 to 6, having a layer structure of thermoplastic resin layer / adhesive layer / polyglycolic acid layer / adhesive layer / thermoplastic resin layer . ポリオレフィン/接着剤/ポリグリコール酸/接着剤/ポリオレフィンの層構成を有する請求項8記載のガスバリヤー性多層中空容器。The gas barrier multilayer hollow container according to claim 8, which has a layer structure of polyolefin layer / adhesive layer / polyglycolic acid layer / adhesive layer / polyolefin layer . ポリエステル/接着剤/ポリグリコール酸/接着剤/ポリエステルの層構成を有する請求項8記載のガスバリヤー性多層中空容器。The gas barrier multilayer hollow container according to claim 8, which has a layer structure of polyester layer / adhesive layer / polyglycolic acid layer / adhesive layer / polyester layer . (a)グリコリドに由来する下記式(1)
Figure 0003838757
で表される繰り返し単位を単独で、あるいは該式(1)で表される繰り返し単位80重量%以上と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1,3−ジオキサンからなる群より選ばれる少なくとも一種の環状モノマーに由来する繰り返し単位20重量%以下とを含有し、
(b)(融点+20℃)の温度及び100/秒の剪断速度で測定した溶融粘度ηが500〜50,000Pa・s、
(c)融点Tmが200℃以上、かつ、
(d)溶融エンタルピーΔHmが20J/g以上
のポリグリコール酸または該ポリグリコール酸100重量部、無機フィラー0〜30重量部、他の熱可塑性樹脂0〜30重量部、及び可塑剤0〜50重量部を含有する樹脂組成物、及び少なくとも一種の他の熱可塑性樹脂を、各々押出機で加熱溶融し、多層パリソン成形用ダイに流入させて合流させ、多層のチューブ状パリソンを押出し、これを固化しないうちに割り金型で挟んで、当該パリソンの一端をピンチすると共に、融点Tm以下かつガラス転移温度Tg以上の温度で、空気を吹き込んで金型壁まで1軸または2軸延伸ブローし、次いで、冷却することを特徴とする請求項1記載のガスバリヤー性多層中空容器の製造方法。
(A) The following formula (1) derived from glycolide
Figure 0003838757
Or a group consisting of ethylene oxalate, lactide, lactones, trimethylene carbonate, and 1,3-dioxane, the repeating unit represented by formula (1) alone or with 80% by weight or more of the repeating unit represented by the formula (1) Containing 20% by weight or less of repeating units derived from at least one cyclic monomer selected from
(B) a melt viscosity η * measured at a temperature of (melting point + 20 ° C.) and a shear rate of 100 / sec is 500 to 50,000 Pa · s,
(C) the melting point Tm is 200 ° C. or higher, and
(D) Polyglycolic acid having a melting enthalpy ΔHm of 20 J / g or more or 100 parts by weight of the polyglycolic acid, 0 to 30 parts by weight of an inorganic filler, 0 to 30 parts by weight of another thermoplastic resin, and 0 to 50 parts by weight of a plasticizer resin compositions containing parts, and at least one other thermoplastic resins, heat-melted in each extruder, is combined by flow into the multilayer parison molding die, extruding a multilayer tubular parison, this Before being solidified, it is sandwiched between split molds, pinches one end of the parison, blows air at a temperature not higher than the melting point Tm and not lower than the glass transition temperature Tg, and blows uniaxially or biaxially to the mold wall, The method for producing a gas barrier multi-layer hollow container according to claim 1, which is then cooled.
前記多層のチューブ状パリソンを押出しするに際し、前記のポリグリコール酸または樹脂組成物、及び少なくとも一種の他の熱可塑性樹脂とともに、接着剤をも、各々押出機で加熱溶融し、多層パリソン成形用ダイに流入させて合流させ、多層のチューブ状パリソンを押出しする請求項11記載の製造方法。When extruding the multi-layer tubular parison, the polyglycolic acid or resin composition and at least one other thermoplastic resin together with the adhesive are heated and melted in an extruder, respectively, to form a multi-layer parison molding die. The manufacturing method of Claim 11 which is made to flow in and is made to join, and a multilayered tubular parison is extruded. (a)グリコリドに由来する下記式(1)
Figure 0003838757
で表される繰り返し単位を単独で、あるいは該式(1)で表される繰り返し単位80重量%以上と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1,3−ジオキサンからなる群より選ばれる少なくとも一種の環状モノマーに由来する繰り返し単位20重量%以下とを含有し、
(b)(融点+20℃)の温度及び100/秒の剪断速度で測定した溶融粘度ηが500〜50,000Pa・s、
(c)融点Tmが200℃以上、かつ、
(d)溶融エンタルピーΔHmが20J/g以上
のポリグリコール酸または該ポリグリコール酸100重量部、無機フィラー0〜30重量部、他の熱可塑性樹脂0〜30重量部、及び可塑剤0〜50重量部を含有する樹脂組成物、及び少なくとも一種の他の熱可塑性樹脂を共射出して有底パリソンを成形し、これを一旦固化させ若しくは固化させずに、過冷却状態若しくは融点Tm以下かつガラス転移温度Tg以上の温度で、長さ方向に延伸し、金型内で空気を吹き込んで金型壁まで延伸ブローし、次いで、冷却することを特徴とする請求項1記載のガスバリヤー性多層中空容器の製造方法。
(A) The following formula (1) derived from glycolide
Figure 0003838757
Or a group consisting of ethylene oxalate, lactide, lactones, trimethylene carbonate, and 1,3-dioxane, the repeating unit represented by formula (1) alone or with 80% by weight or more of the repeating unit represented by the formula (1) Containing 20% by weight or less of repeating units derived from at least one cyclic monomer selected from
(B) a melt viscosity η * measured at a temperature of (melting point + 20 ° C.) and a shear rate of 100 / sec is 500 to 50,000 Pa · s,
(C) the melting point Tm is 200 ° C. or higher, and
(D) Polyglycolic acid having a melting enthalpy ΔHm of 20 J / g or more or 100 parts by weight of the polyglycolic acid, 0 to 30 parts by weight of an inorganic filler, 0 to 30 parts by weight of another thermoplastic resin, and 0 to 50 parts by weight of a plasticizer resin compositions containing parts, and at least one other thermoplastic resins coinjection and by molding a bottomed parison, which once without solidified or solidified, a supercooled state or melting point Tm or less and glass The gas barrier multilayer hollow according to claim 1, wherein the gas barrier multilayer hollow is stretched in the length direction at a temperature not lower than the transition temperature Tg, blown into the mold wall and stretched and blown to the mold wall, and then cooled. Container manufacturing method.
前記有底パリソンを成形するに際し、前記のポリグリコール酸または樹脂組成物、及び少なくとも一種の他の熱可塑性樹脂とともに、接着剤をも共射出してIn molding the bottomed parison, the polyglycolic acid or the resin composition and at least one other thermoplastic resin are also co-injected with an adhesive. 有底パリソンを成形する請求項13記載の製造方法。The manufacturing method of Claim 13 which shape | molds a bottomed parison.
JP25925997A 1996-09-13 1997-09-08 Gas barrier multilayer hollow container Expired - Fee Related JP3838757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25925997A JP3838757B2 (en) 1996-09-13 1997-09-08 Gas barrier multilayer hollow container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-265540 1996-09-13
JP26554096 1996-09-13
JP25925997A JP3838757B2 (en) 1996-09-13 1997-09-08 Gas barrier multilayer hollow container

Publications (2)

Publication Number Publication Date
JPH10138371A JPH10138371A (en) 1998-05-26
JP3838757B2 true JP3838757B2 (en) 2006-10-25

Family

ID=26544040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25925997A Expired - Fee Related JP3838757B2 (en) 1996-09-13 1997-09-08 Gas barrier multilayer hollow container

Country Status (1)

Country Link
JP (1) JP3838757B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254413C (en) * 1999-05-28 2006-05-03 诺瓦提斯公司 Package for a pharmaceutical product and method of sterilising the package
CA2314480C (en) * 1999-07-29 2007-01-02 Kuraray Co., Ltd. Fuel container
ES2301658T3 (en) 2001-07-10 2008-07-01 Kureha Corporation POLYHYDROXICARBOXILIC ACID AND ITS PRODUCTION PROCEDURE.
JP2003020344A (en) * 2001-07-10 2003-01-24 Kureha Chem Ind Co Ltd Polyglycolic acid molded article
US20030125508A1 (en) 2001-10-31 2003-07-03 Kazuyuki Yamane Crystalline polyglycolic acid, polyglycolic acid composition and production process thereof
JP3978012B2 (en) * 2001-11-01 2007-09-19 株式会社クレハ Multilayer container and manufacturing method thereof
DE60332752D1 (en) 2002-05-21 2010-07-08 Kureha Corp WELL RECYCLABLE BOTTLE AND METHOD OF RECYCLING THE BOTTLE
AU2003241176A1 (en) * 2002-05-24 2003-12-12 Kureha Chemical Industry Company, Limited Multilayer stretched product
JP4588980B2 (en) * 2003-02-05 2010-12-01 株式会社クレハ Multilayer resin structure
CN100366658C (en) 2003-08-12 2008-02-06 三井化学株式会社 Polyester resin and polyester resin laminate container
WO2006028000A1 (en) * 2004-09-08 2006-03-16 Kureha Corporation Multilayered polyglycolic-acid-resin sheet
KR20070119060A (en) 2005-04-01 2007-12-18 가부시끼가이샤 구레하 Multilayer blow-molded container and method for producing same
JP2008132687A (en) * 2006-11-29 2008-06-12 Kureha Corp Resin laminate and stretched film using the same
JP5003222B2 (en) * 2007-03-16 2012-08-15 大日本印刷株式会社 Heat-sealable film having barrier properties
JP5309456B2 (en) * 2007-03-16 2013-10-09 大日本印刷株式会社 Heat-sealable film having barrier properties
JP5003221B2 (en) * 2007-03-16 2012-08-15 大日本印刷株式会社 Heat-sealable film having barrier properties
JP5069943B2 (en) * 2007-05-07 2012-11-07 ダイセルパックシステムズ株式会社 Laminated sheet for containers
JP2010139810A (en) * 2008-12-12 2010-06-24 Konica Minolta Business Technologies Inc Toner container, toner product, and image-forming method
WO2011025028A1 (en) 2009-08-31 2011-03-03 株式会社クレハ Laminate and stretched laminate using same
JPWO2012073764A1 (en) 2010-11-29 2014-05-19 株式会社クレハ Stretched laminate and stretched laminate using the same
CN110088167B (en) * 2016-12-22 2022-02-08 索尔维公司 Glycolic acid polymers

Also Published As

Publication number Publication date
JPH10138371A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
EP0925915B1 (en) Gas-barrier, multi-layer hollow container
JP3838757B2 (en) Gas barrier multilayer hollow container
US6245437B1 (en) Gas-barrier composite film
JP4073052B2 (en) Polyglycolic acid sheet and method for producing the same
JP3731838B2 (en) Polyglycolic acid oriented film and method for producing the same
US6159416A (en) Stretch blow molded container and production process thereof
JP3913847B2 (en) Gas barrier composite film
EP0806283B1 (en) Stretch blow molded container and production process thereof
JP3809850B2 (en) Stretch blow container and manufacturing method thereof
ITTO20010061A1 (en) BINARY MIXTURES OF BIODEGRADABLE ALIPHATIC POLYESTERS AND PRODUCTS OBTAINED FROM THESE.
JP2003020344A (en) Polyglycolic acid molded article
JP3997102B2 (en) Multilayer blow molded container
TW201638143A (en) Polyester resin pellet, method for producing the same and molded article of the same
JP3726682B2 (en) Stretch molded container
JP3773440B2 (en) Biodegradable resin products
JPS61255857A (en) Multilayer oriented polyester bottle
JP2004161997A (en) Polyester resin
JP2003138029A (en) Polylactic acid based resin product
JPH04279336A (en) Laminated body
JPS6089326A (en) Manufacture of multi-layered container
JP2008179033A (en) Polylactic acid resin laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees