JPS6089326A - Manufacture of multi-layered container - Google Patents

Manufacture of multi-layered container

Info

Publication number
JPS6089326A
JPS6089326A JP19603583A JP19603583A JPS6089326A JP S6089326 A JPS6089326 A JP S6089326A JP 19603583 A JP19603583 A JP 19603583A JP 19603583 A JP19603583 A JP 19603583A JP S6089326 A JPS6089326 A JP S6089326A
Authority
JP
Japan
Prior art keywords
pet
polyester
layer
preform
polyethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19603583A
Other languages
Japanese (ja)
Other versions
JPH0361573B2 (en
Inventor
Tadao Tanitsu
忠男 谷津
Nobuya Asahioka
旭岡 宣哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP19603583A priority Critical patent/JPS6089326A/en
Publication of JPS6089326A publication Critical patent/JPS6089326A/en
Publication of JPH0361573B2 publication Critical patent/JPH0361573B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a PET container excellent in gas permeation resistance and impact resistance, by biaxially stretching and blow molding a preform that has been prepared by laminating a polyethylene terephthalate (PET) and a polyester in a melted state under specified conditions that has been prepared using isophthalic acid as a major raw material. CONSTITUTION:A melted PET at 230-300 deg.C and a melted polyester at 180- 260 deg.C that consists of a dicarboxylic acid constituent containing at least more than 20mol% of isophthalic acid and ethylene glycol as major constituent are laminated under a molding pressure (gauge pressure) of 20kg/cm<2> or more. The laminate is cooled and solidified at a cooling temperature of -10-30 deg.C to provide a preform made up of a PET layer and a polyester layer. Thereafter, the preform is biaxially stretched and blow molded at a stretching temperature of 80-130 deg.C with the degree of the stretching at least 1.5 times longitudinally and at least 2 times laterally to obtain a multi-layer container mainly made of PET excellent in gas permeation resistance and impact resistance.

Description

【発明の詳細な説明】 本発明はポリエチレンテレフタレートを主体とした多層
容器の製造方法に関する。更に詳しくば、耐ガス透過性
及び耐衝撃性に優れた多層容器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer container mainly made of polyethylene terephthalate. More specifically, the present invention relates to a method for producing a multilayer container with excellent gas permeability and impact resistance.

ポリエチレンテレフタレート(以下、PETと呼ぶ場合
がある)の二軸延伸成形品は機械的強度、剛性、耐熱性
、耐薬品性、耐油性、透明性等の優れた性質を活かして
フィルム、シート及び容器等の包装材料として広く用い
られている。
Biaxially stretched molded products of polyethylene terephthalate (hereinafter sometimes referred to as PET) take advantage of their excellent properties such as mechanical strength, rigidity, heat resistance, chemical resistance, oil resistance, and transparency to produce films, sheets, and containers. Widely used as packaging material.

しかしながらPETを主体とした二軸延伸吹込成形され
た容器にも欠点がないわけではなく、例えば充分な熱固
定ができないこと、耐ガス透過性が充分ではないこと等
の欠点を有している。中でも耐ガス透過性の不充分さは
、PET本来の材質に基因するものであり、成形加工に
より解決することは困ゲVであった。
However, biaxially stretched blow-molded containers mainly made of PET are not without drawbacks, such as inability to achieve sufficient heat fixation and insufficient gas permeability. Among these, the insufficient gas permeability is due to the original material of PET, and it has been difficult to solve it by molding.

PET容器の耐ガス透過性を改良する方法としては、P
ETに比べて耐ガス透過性に優れる樹脂、例えばポリ塩
化ビニリデン、エチレン・酢酸ビニル共重合体鹸化物、
ポリ了ミド等と積層する方法が考えられるが、かかる樹
脂はいずれにしてもPETとの接着性に劣るので、たと
えばPETで挟んだ三層構造としても延伸成形あるいは
使用時に一部が剥離し、耐ガス透過性が低下する虞れが
あった。
As a method to improve the gas permeability of PET containers, P
Resins with superior gas permeation resistance compared to ET, such as polyvinylidene chloride, saponified ethylene/vinyl acetate copolymer,
A method of laminating it with polyester, etc. is considered, but in any case, such resin has poor adhesion with PET, so even if the three-layer structure is sandwiched between PET, parts of the resin may peel off during stretch molding or use. There was a risk that gas permeability resistance would decrease.

そこで本発明者等は、耐ガス透過性及び耐衝撃性に優れ
たPET容器の製造方法を開発すべく種々検討した結果
、PETにイソフタル酸を主原料としたポリエステルを
溶融状態で特定の条件下で積層して得た予備成形品を二
軸延伸吹込成形することにより、上記目的が達成できる
ことが分かり、本発明を完成するに至った。
Therefore, the present inventors conducted various studies in order to develop a method for manufacturing PET containers with excellent gas permeability and impact resistance. As a result, the present inventors added polyester containing isophthalic acid as a main raw material to PET under specific conditions. It has been found that the above object can be achieved by biaxially stretching blow molding a preformed product obtained by laminating layers, and the present invention has been completed.

すなわち本発明は、230ないし300℃の溶融ポリエ
チレンテレフタレート(A)と180ないし260°C
のイソフタル酸を少なくとも20モル%を越える量を含
むジカルボン酸成分とエチレングリコールを主成分とす
るグリコールからなる溶融ポリエステル(B)を成形圧
力(ゲージ圧)20kg/cnt以上で積層し、冷却温
度−10ないし30℃で冷却固化して、少なくともポリ
エチレンテレフタレート(A) 層とポリエステル(B
)層からなる予備成形品をiすた後、延伸温度80ない
し130℃で縦方向に少なくとも1.5倍及び横方向に
少なくとも2倍に二軸延伸吹込成形することを特徴とす
る、ポリエチレンテレフタレートを主体とした耐ガス透
過性及び耐衝撃性に優れた多層容器の製造方法を提供す
るものである。
That is, the present invention provides molten polyethylene terephthalate (A) at 230 to 300°C and molten polyethylene terephthalate (A) at 180 to 260°C.
A molten polyester (B) consisting of a dicarboxylic acid component containing at least 20 mol% of isophthalic acid and a glycol whose main component is ethylene glycol is laminated at a molding pressure (gauge pressure) of 20 kg/cnt or more, and the cooling temperature - Cool and solidify at 10 to 30°C to form at least a polyethylene terephthalate (A) layer and a polyester (B) layer.
) polyethylene terephthalate, characterized in that after the preform consisting of the layers is removed, it is biaxially stretched by blow molding at a stretching temperature of 80 to 130° C. at least 1.5 times in the machine direction and at least twice in the transverse direction. The present invention provides a method for producing a multilayer container with excellent gas permeability and impact resistance.

本発明におけるポリエチレンテレフタレート(A)とは
、通常ジカルボン酸成分の80モル%以上、好ましくは
90モル%以上がテレフタル酸であり、グリコール成分
の80モル%以上、好ましくは90モル%以上がエチレ
ングリコールである結晶性のl:()可塑性ポリエステ
ル樹脂である。尚、残余の他のジカルボン酸としては、
具体的には例えばイソフタル酸、ジフェニルエーテル−
4,4′−ジカルボン酸、ナフタリン−1,4−または
2.6−ジカルボン酸等の芳香族ジカルボン酸、シュウ
酸、コハク酸、アジピン酸、セバシン酸、ウンデカジカ
ルボン酸等の脂肪族ジカルボン酸、ヘキサヒドロテレフ
タル酸等の脂環族ジカルボン酸等が挙げられ、他のグリ
コール成分としては、プロピレングリコール、1.4−
ブタンジオール、ネオペンチルグリコール等の脂肪族グ
リコール、シクロヘキサンジメタツール等の脂環族グリ
コール、ビスフェノールA等の芳香族ジヒドロキシ化合
物等が挙げられる。テレフタル酸及びエチレングリコー
ルが上記範囲であれば、共重合体でもPETと他のポリ
エステルとの混合物であってもよい。
Polyethylene terephthalate (A) in the present invention usually has a dicarboxylic acid component of 80 mol% or more, preferably 90 mol% or more of terephthalic acid, and a glycol component of 80 mol% or more, preferably 90 mol% or more of ethylene glycol. Crystalline l: () is a plastic polyester resin. In addition, the remaining dicarboxylic acids are as follows:
Specifically, for example, isophthalic acid, diphenyl ether-
Aromatic dicarboxylic acids such as 4,4'-dicarboxylic acid, naphthalene-1,4- or 2,6-dicarboxylic acid, aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, undecadicarboxylic acid, etc. , alicyclic dicarboxylic acids such as hexahydroterephthalic acid, and other glycol components include propylene glycol, 1,4-
Examples include aliphatic glycols such as butanediol and neopentyl glycol, alicyclic glycols such as cyclohexane dimetatool, and aromatic dihydroxy compounds such as bisphenol A. As long as terephthalic acid and ethylene glycol are within the above range, a copolymer or a mixture of PET and other polyester may be used.

前記PET (A)fitと積層して用いるイソフタル
酸を主体とするポリエステル(B)とは、イソフタル酸
を少なくとも20モル%を越える量、好ましくは30モ
ル%以上、さらに好ましくは40モル%以上を含むジカ
ルボン酸成分とエチレングリコールを主成分とするグリ
コールとからなる非晶性もしくは低結晶性のポリエステ
ルである。イソフタル酸の量が20モル%以下では耐ガ
ス透過性の改良効果が少ないので本発明の目的に合致し
ない。イソフタル酸以外のジカルボン酸としては、具体
的には例えばテレフタル酸、ジフェニル−4,4′−ジ
カルボン酸、ジフェニルエーテル−4,4′−ジカルボ
ン酸、ナフタリン−1,4−または2.6−ジカルボン
酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、7シ
ヒン酸、セバシン酸、ウンデカジカルボン酸等の脂肪族
ジカルボン酸、ヘキサヒドロテレフタル酸等の脂環族ジ
カルボン酸等が挙げられる。またエチレングリコールを
主成分とするグリコールとは、グリコール成分の80モ
ル%以上、好ましくは90モル%以」二カ(エチレング
リコ−Jしであることであり、他のグリコール成分とし
てはプロピレングリコール、1,4−ブタンジオール、
ネオペンチルグリコールなどの脂肪族グリコ−)IMP
、シクロヘキサンジメタツールなどの脂環族グリコール
、ビスフェノールAなどの芳香族ジヒドロキシ化合物等
があげられる。
The polyester (B) mainly composed of isophthalic acid used in lamination with the PET (A) fit contains isophthalic acid in an amount exceeding at least 20 mol%, preferably 30 mol% or more, and more preferably 40 mol% or more. It is an amorphous or low-crystalline polyester consisting of a dicarboxylic acid component and a glycol whose main component is ethylene glycol. If the amount of isophthalic acid is less than 20 mol %, the effect of improving gas permeability resistance will be small, and the object of the present invention will not be met. Examples of dicarboxylic acids other than isophthalic acid include terephthalic acid, diphenyl-4,4'-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, and naphthalene-1,4- or 2,6-dicarboxylic acid. Examples include aromatic dicarboxylic acids such as oxalic acid, succinic acid, aliphatic dicarboxylic acids such as succinic acid, sebacic acid, and undecadicarboxylic acid, and alicyclic dicarboxylic acids such as hexahydroterephthalic acid. In addition, glycol whose main component is ethylene glycol means that it contains 80 mol% or more, preferably 90 mol% or more of the glycol component, and other glycol components include propylene glycol, 1,4-butanediol,
Aliphatic glycol (such as neopentyl glycol) IMP
, alicyclic glycols such as cyclohexane dimetatool, aromatic dihydroxy compounds such as bisphenol A, and the like.

前記ポリエステル(B)としては、具体的にはポリエチ
レンイソフタレート、ジカルボン酸成分中のイソフタル
酸の含量が20モル%以上であるポリエチレンイソフタ
レート・テレフタレートコポリマーなどが挙げられる。
Specific examples of the polyester (B) include polyethylene isophthalate and polyethylene isophthalate/terephthalate copolymers in which the content of isophthalic acid in the dicarboxylic acid component is 20 mol% or more.

また分子量は通常フェノール/テトラクロルエタン−1
フ1重量%溶媒中25℃す1で測定した極限粘度〔η〕
が0.6なし1し1.3d//gの範囲である。また前
記ポリエステル(B)は非晶性もしくは低結晶性のポリ
エステルであり、とくに限定はされないが、ガラス転移
温度(Tg)は55ないし90℃であることが好ましい
Also, the molecular weight is usually phenol/tetrachloroethane-1
Intrinsic viscosity [η] measured at 25°C in 1% by weight solvent
ranges from 0.6 to 1 to 1.3 d//g. Further, the polyester (B) is an amorphous or low-crystalline polyester, and although not particularly limited, it is preferable that the glass transition temperature (Tg) is 55 to 90°C.

Tgが55℃未満のものは、耐熱性に劣り、90°Cを
越えるものは、前記PETと積層して二軸延伸する場合
、PETに適した延伸温度下では充分に延伸されない虞
れがある。なお前記Tgは示差走査型熱量計(D S 
C)を用い、10℃/minの昇温速度で測定すること
によりめた値である。
Those with a Tg of less than 55°C have poor heat resistance, and those with a Tg of over 90°C may not be sufficiently stretched at a stretching temperature suitable for PET when laminated with the above-mentioned PET and biaxially stretched. . Note that the above Tg is measured using a differential scanning calorimeter (DS
C) at a temperature increase rate of 10° C./min.

本発明に用いるPET (A)及びポリエステル(B)
には、本発明の目的を損わない範囲で耐熱安定剤、耐候
安定剤、滑剤、核剤、顔料、染料及び無機あるいは有機
充填剤を添加しておいてもよい。
PET (A) and polyester (B) used in the present invention
Heat-resistant stabilizers, weather-resistant stabilizers, lubricants, nucleating agents, pigments, dyes, and inorganic or organic fillers may be added to the composition without impairing the purpose of the present invention.

本発明の多層容器の製造方法は、230ないし300°
C1好ましくは240ないし260℃の溶融ポリエチレ
ンテレフタレート(A)と180ないし260℃、好ま
しくは190ないし210℃の溶融ポリエステル(B)
を成形圧力(ゲージ圧) 20kg、/cJ以上、好ま
しくは50 kg / ct&以上で積層し、冷却温度
−10ないし30℃、好ましくはOないし10℃で冷却
固化して、少なくともポリエチレンテレフタレート(A
)層とポリエステル(B)Nからなる予備成形品を得た
後、延伸温度80ないし130°C1好ましくは90な
いし110℃で縦方向に少なくとも1.5倍、好ましく
は2ないし2.5倍及び横方向に少なくとも2倍、好ま
しくは3ないし4倍に二軸延伸吹込成形する方法である
The method for manufacturing a multilayer container of the present invention includes
C1 Molten polyethylene terephthalate (A) preferably at 240 to 260°C and molten polyester (B) at 180 to 260°C, preferably 190 to 210°C
are laminated at a molding pressure (gauge pressure) of 20 kg/cJ or more, preferably 50 kg/ct& or more, and cooled and solidified at a cooling temperature of -10 to 30°C, preferably O to 10°C, to form at least polyethylene terephthalate (A
) layer and polyester (B)N, the stretching temperature is 80 to 130° C., preferably 90 to 110° C., at least 1.5 times, preferably 2 to 2.5 times and This is a method of biaxially stretching blow molding in the transverse direction at least 2 times, preferably 3 to 4 times.

ポリエチレンテレフタレート(A)及びポリエステル(
B)の溶融温度が上記範囲外では、溶融粘度が大きいか
、あるいは溶融粘度が低過ぎて成形性に劣る。成形圧力
が20 kg / c+a’未満ではポリエチレンテレ
フタレート(A)とポリエステル(B)の(6着強度が
低く、耐衝撃性に劣る。延伸温度が80℃未満では、冷
延伸となり、透明性が著しく低下し、一方、130℃を
越えると、容器の偏肉が著しくなる。延伸倍率が1.5
倍未満(縦方向)及び2倍未満(横方向)では耐ガス透
過性及び耐衝撃性に劣る。
Polyethylene terephthalate (A) and polyester (
When the melting temperature of B) is outside the above range, the melt viscosity is either too high or too low, resulting in poor moldability. If the forming pressure is less than 20 kg/c+a', the strength of polyethylene terephthalate (A) and polyester (B) will be low and the impact resistance will be poor. If the stretching temperature is less than 80°C, it will be cold stretched and the transparency will be significantly reduced. On the other hand, if the temperature exceeds 130°C, the uneven thickness of the container will become significant.The stretching ratio is 1.5.
If it is less than double (in the longitudinal direction) or less than twice (in the transverse direction), the gas permeability and impact resistance will be poor.

予備成形品を得る方法としては、例えば複数の押出機を
用いて、ポリエチレンテレフタレート(A)とポリエス
テル(B)とをそれぞれ溶融し、前記溶融温度で共押出
し多層ダイに供給して、グイ内の成形圧力を20 kg
 / cJ以上にして多層パイプを押出し前記冷却温度
で冷却した後、底部及び口部を加工する方法、あるいは
複数の射出装置を用いて、ポリエチレンテレフタレート
(A)とポリエステル(B)とをそれぞれ溶融し、前記
溶融温度で単一成形金型内に多層射出成形する方法が挙
げられるが、射出成形する場合は、先に射出成形したも
のが冷却固化した後に射出成形した場合は層間接着性に
劣る虞れがある。
As a method for obtaining a preform, for example, polyethylene terephthalate (A) and polyester (B) are each melted using a plurality of extruders, and the polyethylene terephthalate (A) and polyester (B) are fed to a coextrusion multilayer die at the above melting temperature to form a coextrusion in a goo. Molding pressure 20 kg
/cJ or more, extrude the multilayer pipe, cool it at the cooling temperature, and then process the bottom and mouth parts, or use multiple injection devices to melt polyethylene terephthalate (A) and polyester (B), respectively. , a method of multi-layer injection molding in a single mold at the above-mentioned melting temperature, but in the case of injection molding, if the first injection molded material is cooled and solidified and then injection molded, the interlayer adhesion may be inferior. There is.

本発明の方法により得られる多層容器は、PET(A)
/ポリエステル(B)を構成要件とする限り、内層はP
ET(A)あるいはポリエステル(B)のいずれでもよ
いし、PET (A)あるいはポリエステル(B)を中
間層としたポリエステル(B)/PET (A)/ポリ
エステル(B)、PET (A)/ポリエステル(B)
/PET (A)のような三層構造あるいはそれ以上か
らなる容器であってもよい。
The multilayer container obtained by the method of the present invention is made of PET (A)
/As long as polyester (B) is a constituent element, the inner layer is P.
Either ET (A) or polyester (B) may be used, or polyester (B)/PET (A)/polyester (B), PET (A)/polyester with PET (A) or polyester (B) as an intermediate layer. (B)
/PET (A) The container may have a three-layer structure or more.

またPET (A)層及びポリエステル(B)層の厚み
もとくに限定はされないが、ボトル胴部のPET (A
)#の厚みは通常100ないし600μ、好ましくは2
00ないし500μであり、ポリエステル(B)層の厚
みは通常10ないし350μ、好ましくば60ないし2
00μである。
Furthermore, the thickness of the PET (A) layer and the polyester (B) layer is not particularly limited;
) The thickness of # is usually 100 to 600μ, preferably 2
00 to 500μ, and the thickness of the polyester (B) layer is usually 10 to 350μ, preferably 60 to 2
It is 00μ.

本発明の方法により、得られる多層容器は、従来のPE
T単体からなる二軸延伸延伸容器に比べて爾ガス透過性
に優れ且つPET本来の剛性、透明性、機械的強度は全
く損われず、又ポリ塩化ビニリデンやエチレン・酢酸ビ
ニル共重合体鹸化物とPETとからなる多層容器に比べ
て層間接着力に優れ、更には、溶融状態でPET(A)
とポリエステル(B)とを加圧積層させるので、耐衝撃
性にも優れビール容器、清涼飲料水容器、アルコール飲
料容器、果汁飲料容器等に好適である。
By the method of the present invention, the multilayer container obtained can be made of conventional PE.
Compared to a biaxially stretched container made of T alone, it has superior gas permeability, and the original rigidity, transparency, and mechanical strength of PET are not impaired at all, and it is also compatible with polyvinylidene chloride and saponified ethylene/vinyl acetate copolymers. It has superior interlayer adhesive strength compared to multilayer containers made of PET (A) and
Since the material and polyester (B) are laminated under pressure, it has excellent impact resistance and is suitable for beer containers, soft drink containers, alcoholic beverage containers, fruit juice beverage containers, and the like.

次に実施例を挙げて本発明を更に具体的に説明するが、
本発明はその要旨を越えない限り、これらの例に何ら制
約されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples in any way unless it goes beyond the gist thereof.

実施例1 150°Cで3時間乾燥させたPET−4(商品名、三
層P ET J 055)を90mmφの押出機を用い
て、成形温度280℃で溶融し、別途50℃で24時間
乾燥させたポリエチレンイソフタレート(Tg : 6
2℃、〔η) : 0.8dl/g、以下PEl−2と
略す)を40+nmφ押出機を用いて、成形温度230
℃で溶融し、二種三層のバイブダイ (成形温度:25
0°C)にそれぞれ供給し、成形圧力(ゲージ圧)80
kg / cnlでPET−1/PEl−2/PET−
1(厚さ1.2/ 1.2/ 1.2mm)から構成さ
れる三層パイプを押出し、10℃の水で冷却し、外径2
4.8mmφ、厚さ3.6mmの三層パイプを得た。次
いで、該パイプを切り取り、一端を加熱溶融させて底部
加工し、他端を同様に加熱溶融させて口栓部加工を行い
、全長16.5Cm、重量50gの予備成形体を得た。
Example 1 PET-4 (trade name, three-layer PET J 055) dried at 150°C for 3 hours was melted at a molding temperature of 280°C using a 90mmφ extruder, and separately dried at 50°C for 24 hours. polyethylene isophthalate (Tg: 6
2°C, [η): 0.8dl/g, hereinafter abbreviated as PEl-2) was molded at a molding temperature of 230°C using a 40+nmφ extruder.
Melt at
0°C) and molding pressure (gauge pressure) 80
PET-1/PEl-2/PET- in kg/cnl
1 (thickness 1.2/1.2/1.2 mm) was extruded, cooled with water at 10℃, and the outer diameter was 2 mm.
A three-layer pipe with a diameter of 4.8 mm and a thickness of 3.6 mm was obtained. Next, the pipe was cut, one end was heated and melted to form a bottom part, and the other end was similarly heated and melted to form a plug part, thereby obtaining a preform having a total length of 16.5 cm and a weight of 50 g.

次いで二軸延伸吹込成形機(コーホプラスト(CORP
OPLAST)社製LB 01)を用いて、吹込圧力2
5kg / cJ、予備成形体加熱時間15秒、延伸温
度115℃の条件下で縦2.5倍及び横4倍に二軸延伸
し、内容積が約1.51の多層容器(PET−1/PE
T−2/PF、T−1= 120/ 120/ 120
μ)を得た。次にこの多層容器の酸素ガス透過度をモコ
ン(MOCON )社製、オキシド−3/ 7 (OX
TRAN) 装置を用いて測定したところ0.14 m1/day−bottle・aimであり、又炭酸ガ
ス透過度をモコン(MOCON )社製、パーマトラン
(Pl’!RMATRAN ’) C−IV装置を用い
て測定したところ2.0ml/day、bottle−
atmであった。次いでO”cの水を充填して多層容器
が破壊に至る最小高さをめたところ2m以下では破壊に
至らながった。
Next, a biaxial stretch blow molding machine (CORP
Using LB 01) manufactured by OPLAST, the blowing pressure was 2.
A multilayer container (PET-1/ P.E.
T-2/PF, T-1= 120/ 120/ 120
μ) was obtained. Next, the oxygen gas permeability of this multilayer container was measured using Oxide-3/7 (OX
When measured using a device (TRAN), it was 0.14 m1/day-bottle・aim, and carbon dioxide gas permeability was measured using a Permatran (Pl'! RMATRAN') C-IV device manufactured by MOCON. When measured, it was 2.0ml/day, bottle-
It was an ATM. Next, when the multilayer container was filled with O''c of water to determine the minimum height at which the multilayer container would break, it was found that the multilayer container did not break at a height of 2 m or less.

また各層のデラミネーションも認められなかった。Further, delamination of each layer was not observed.

比較例1 実施例1における成形圧力80kg/cJAの条件のか
わりに成形圧力10 kg / c+aの条件で得た多
層容器の酸素ガス透過度は0.16m1 / day、
bottle、atmで、炭酸ガス透過度は2.1ml
/ day−bottle−atmで良好であったが、
落下強度テストでは0.2m以下でデラミネーションを
起し、0.5mで破壊に至った。
Comparative Example 1 The oxygen gas permeability of a multilayer container obtained under the conditions of a molding pressure of 10 kg/c+a instead of the molding pressure of 80 kg/cJA in Example 1 was 0.16 m1/day,
Bottle, ATM, carbon dioxide permeability is 2.1ml
/ Day-Bottle-ATM was good, but
In a drop strength test, delamination occurred at a drop of 0.2 m or less, and destruction occurred at a drop of 0.5 m.

実施例2 2層射出成形機を用いて、1台の射出成形機により15
0℃で3時間乾燥したPET−3(商品名、三層P E
T J 135)を成形温度280°Cで溶融し、別途
50℃で24時間乾燥したPEl−2をもう一台の射出
成形機により成形温度270℃で溶融し、10℃に冷却
された単一のプレフォーム金型に成形圧力200 kg
 / cdで2層射出成形し、内層PET−3/PEl
−2(厚さ1.6/ 1.6mm)から構成される、外
径24 、8mmφ、厚さ3.2mmの2層プレフォー
ムを得た。次いで二軸延伸吹込成形機(コーホ7”+ス
) (CORPOPLAST)社製LB 01)を用い
て、吹込圧力25kg/cn+、プレフォーム加熱時間
15秒、延伸温度115℃の条件下で縦2.5倍および
横4倍に二軸延伸し、内容積が約1.Olの多層容器(
P ET−3/P E I−2= 150/ 150μ
)を得た。この容器の酸素ガス透過度は0.09m1 
/ day−bottle−atmで炭酸ガス透過度は
0.8ml /day−bottle−atmであった
。落下強度テストでば1,4mで破壊したがデラミネー
ションは認められなかった。
Example 2 Using a two-layer injection molding machine, one injection molding machine produced 15
PET-3 (trade name, three-layer PE) dried at 0°C for 3 hours
TJ 135) was melted at a molding temperature of 280°C and separately dried at 50°C for 24 hours. Molding pressure 200 kg in preform mold
/CD two-layer injection molding, inner layer PET-3/PEI
-2 (thickness 1.6/1.6 mm), a two-layer preform with an outer diameter of 24 mm, 8 mmφ, and a thickness of 3.2 mm was obtained. Next, using a biaxial stretch blow molding machine (LB 01 manufactured by CORPOPLAST), it was lengthwise 2.5 cm under the conditions of a blowing pressure of 25 kg/cn+, a preform heating time of 15 seconds, and a stretching temperature of 115°C. A multilayer container (biaxially stretched 5 times and 4 times horizontally, with an internal volume of about 1.0 l)
PET-3/PEI-2=150/150μ
) was obtained. The oxygen gas permeability of this container is 0.09m1
/day-bottle-atm, and the carbon dioxide gas permeability was 0.8 ml/day-bottle-atm. In a drop strength test, it broke at 1.4 meters, but no delamination was observed.

比較例2Comparative example 2

Claims (1)

【特許請求の範囲】[Claims] (11230なし300℃の溶融ポリエチレンテレフタ
レート(A)と、180ないし260℃のイソフタル酸
を少なくとも20モル%を越える量を含むジカルボン酸
成分とエチレングリコールを主成分とするグリコールか
らなる溶融ポリエステル(B)を成形圧力(ゲージ圧)
20kg/cd1以上で積層し、冷却温度−10ないし
30℃で冷却固化して、少なくともポリエチレンテレフ
タレート(A) Fitとポリエステル(B)層からな
る予備成形品を得た後、延伸温度80ないし130℃で
縦方向に少なくとも1.5倍及び横方向に少なくとも2
倍に二軸延伸吹込成形することを特徴とする多層容器の
製造方法。
(No 11230) Molten polyethylene terephthalate (A) at 300°C and molten polyester (B) consisting of glycol whose main component is ethylene glycol and a dicarboxylic acid component containing at least 20 mol% of isophthalic acid at 180 to 260°C. Molding pressure (gauge pressure)
After laminating at 20 kg/cd1 or more and cooling and solidifying at a cooling temperature of -10 to 30°C to obtain a preformed product consisting of at least polyethylene terephthalate (A) Fit and polyester (B) layers, the stretching temperature is 80 to 130°C. at least 1.5 times vertically and at least 2 times horizontally
A method for manufacturing a multilayer container characterized by double biaxial stretch blow molding.
JP19603583A 1983-10-21 1983-10-21 Manufacture of multi-layered container Granted JPS6089326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19603583A JPS6089326A (en) 1983-10-21 1983-10-21 Manufacture of multi-layered container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19603583A JPS6089326A (en) 1983-10-21 1983-10-21 Manufacture of multi-layered container

Publications (2)

Publication Number Publication Date
JPS6089326A true JPS6089326A (en) 1985-05-20
JPH0361573B2 JPH0361573B2 (en) 1991-09-20

Family

ID=16351116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19603583A Granted JPS6089326A (en) 1983-10-21 1983-10-21 Manufacture of multi-layered container

Country Status (1)

Country Link
JP (1) JPS6089326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728347A (en) * 1992-07-07 1998-03-17 Continental Pet Technologies, Inc. Method of forming multi-layer preform and container with low crystallizing interior layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728347A (en) * 1992-07-07 1998-03-17 Continental Pet Technologies, Inc. Method of forming multi-layer preform and container with low crystallizing interior layer

Also Published As

Publication number Publication date
JPH0361573B2 (en) 1991-09-20

Similar Documents

Publication Publication Date Title
EP0109305B1 (en) Laminates and their use in making containers
US4874647A (en) Polyester composition, molded polyester laminate and use thereof
US6749785B2 (en) Multilayer structures of poly(1,3-propylene 2,6 napthalate) and poly (ethylene terephthalate)
JP3978012B2 (en) Multilayer container and manufacturing method thereof
JP2543544B2 (en) Gas barrier multi-layer structure
JPH0160416B2 (en)
WO2005099996A1 (en) Multi-layered biaxial stretch blow molded bottle and method for production thereof
JPH0420784B2 (en)
JPH0374182B2 (en)
JPS59230049A (en) Low gas permeability polyester composition and products thereof
JP3997102B2 (en) Multilayer blow molded container
JPH0243628B2 (en) PURASUCHITSUKUSEKISOKOZOTAIOYOBYOKI
JPS6089326A (en) Manufacture of multi-layered container
JPS5939547A (en) Polyester multilayer vessel excellent in gas permeability-resistance and its manufacture
JPS63267548A (en) Gas-barrier multi-layer structure
JPH0331126B2 (en)
JPS6279258A (en) Polyester bottle and production thereof
JPH0323336B2 (en)
JPS63267549A (en) Gas-barrier multi-layer structure
JPS6333242A (en) Oriented multilayer plastic vessel and manufacture thereof
JPS6147337A (en) Plastic vessel having excellent gas barrier property
JP2004168039A (en) Preform, its manufacturing method, and container produced by biaxially stretching the preform
JPH11115134A (en) Extrusion molded laminate of thermoplastic polyester resin
JPH02113940A (en) Multilayer container
JPH01153444A (en) Hollow container