JP3773440B2 - Biodegradable resin products - Google Patents

Biodegradable resin products Download PDF

Info

Publication number
JP3773440B2
JP3773440B2 JP2001331989A JP2001331989A JP3773440B2 JP 3773440 B2 JP3773440 B2 JP 3773440B2 JP 2001331989 A JP2001331989 A JP 2001331989A JP 2001331989 A JP2001331989 A JP 2001331989A JP 3773440 B2 JP3773440 B2 JP 3773440B2
Authority
JP
Japan
Prior art keywords
polylactic acid
biodegradable resin
heat
resin product
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001331989A
Other languages
Japanese (ja)
Other versions
JP2003128797A (en
Inventor
光善 板田
正幸 鋤柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Life and Living Corp
Original Assignee
Asahi Kasei Life and Living Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Life and Living Corp filed Critical Asahi Kasei Life and Living Corp
Priority to JP2001331989A priority Critical patent/JP3773440B2/en
Publication of JP2003128797A publication Critical patent/JP2003128797A/en
Application granted granted Critical
Publication of JP3773440B2 publication Critical patent/JP3773440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、機械適性、耐熱性、高速ヒートシール適性に優れた生分解性を有する樹脂製品に関するものである。本発明の生分解性樹脂製品とは、フィルム及びシート状物(特に、延伸フィルム及びシート状物)や成形物、繊維、不織布、発泡体、及び、それによって包装された包装体、並びに、それを用いた複合材料を含むものである。更に詳しくは、ポリ乳酸系樹脂からなる生分解性を有する熱収縮性又は熱非収縮性の延伸フィルム及びシート、具体的には、弁当や惣菜容器オーバーラップ用等の収縮性フィルム及びシート、又は、チャック付きバッグ用等の非収縮性フィルムに有用な延伸フィルム及びシート、それを用いた包装体、複合材料に関するものである。
【0002】
【従来の技術】
機械適性、耐熱性、ヒートシール適性に優れる樹脂材料として、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリスチレン等の材料が挙げられ、幅広く使用されている。しかしながら、これの樹脂材料の廃棄に関わる自然環境保護の観点から、燃焼熱量が低く、土壌中で分解し、且つ安全であるものが望まれ、ポリ乳酸系樹脂などの脂肪族ポリエステル等の生分解性樹脂を用いた製品、具体的にはフィルム・シートやボトルなどの容器や成形物、繊維、不織布、発泡体、それらを用いた複合材料等の研究が活発に行われている。
【0003】
ポリ乳酸重合体は、光学活性中心を有する乳酸の重縮合体であり、ポリマーを構成するL−乳酸及び/又はD−乳酸単量体単位の構成比率から下記式により計算される光学純度(OP:単位%)に応じて、光学純度が80%以上と高いものは結晶性、光学純度が80%未満と低いものは非晶性となる。
OP=|[L]−[D]| ,但し、[L]+[D]=100
ここで、[L]はポリ乳酸重合体を構成するL−乳酸の重量比率(単位%)、[D]はポリ乳酸重合体を構成するD−乳酸の重量比率(単位%)、||は計算値の絶対値を表す。
【0004】
ポリ乳酸重合体は他の生分解性樹脂に比べて、引張弾性率(ASTM−D882−95aに準拠)が約2〜5GPaと剛性に優れており、特に、それを延伸又は熱処理加工した製品は、引張破断強度(ASTM−D882−95aに準拠)が約70〜300MPaと機械的強度が強く、例えばフィルム・シート状物の場合、巻物状原反フィルムの連続裁断加工等の機械適性に優れ、各種包装用フィルムとして適しているが、これらの特性を損なうことなく耐熱性と高速ヒートシール適性を両立した様なポリ乳酸重合体を主体とする生分解性樹脂製品は未だに得られていない。特に、弁当や惣菜容器オーバーラップ用等の収縮性フィルムは包装体の熱収縮処理(シュリンク工程)に対する耐熱性、チャック付きバッグ等に用いられる非収縮性フィルムは延伸加工後の熱収縮抑制処理(ヒートセット工程)に対する耐熱性と、包装機械又は製袋機にて巻物状原反フィルムから包装体やバッグ等をヒートシール加工するのに適した十分なホットタック強度を発現できる高速ヒートシール適性を満足した生分解性樹脂製品は未だ無い。
【0005】
生分解性を有するポリ乳酸系樹脂製品に関しては、特開2001−122989号公報には、結晶性ポリ乳酸からなる動的粘弾性の温度依存性に対する試験(JIS−K7198)での120℃の貯蔵弾性率E* が100〜230MPaの結晶性のポリ乳酸系樹脂フィルム、特開2000−198913号には、結晶性ポリ乳酸と脂肪族ポリエステルからなる易引裂性二軸延伸フィルムが開示されているが、高速ヒートシール適性に欠ける問題を有する。
又、特開平11−222528号公報には、ポリ乳酸系重合体換算融解熱量ΔHm1が35J/g以下の非晶性ポリ乳酸と脂肪族ポリエステルからなるヒートシール性フィルムが開示されているが耐熱性に劣る問題がある。
【0006】
殊に、特開平11−222528号公報には、動的粘弾性の温度依存性に対する試験(JIS−K7198B)での貯蔵弾性率E* が6MPa以下で安定した結晶性ポリ乳酸と非晶性ポリ乳酸の混合組成物が開示されているが、該組成物は低弾性の熱可塑性エラストマーであって加重平均光学純度が80%未満となり、該組成物からなるポリ乳酸系フィルム又はシートは成型加工性は良いが流動変形しやすいことから、100℃を越える様な温度雰囲気下で熱処理される生分解性樹脂製品に求められる耐熱性に欠ける問題を有する。
【0007】
【発明が解決しようとする課題】
本発明は、ポリ乳酸重合体を主体とする樹脂からなり、機械適性、耐熱性、高速ヒートシール適性に優れた生分解性樹脂製品、及びそれによる包装体、複合材料を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、前記課題を解決するため、鋭意研究を重ねた結果、驚くべきことに、ポリ乳酸系樹脂において、相転移温度Tαとガラス転移温度Tgの差(Tα−Tg)が小さいほど粘弾性の熱応答性が良く、昇温時におけるガラス状態からゴム状態及びゴム状態から溶融状態への相転移速度の指標として活用できること(本願において、(Tα−Tg)を相転移指標と呼ぶ)、更には、特定の結晶融解熱量ΔHm及び相転移指標(Tα−Tg)を持つポリ乳酸系樹脂を用いることで本発明の目的を達成しうることを見い出し、本発明を完成した。
【0009】
すなわち、本発明は下記の通りである。
L −乳酸及び/又はD −乳酸が主成分のポリ乳酸重合体を主体とする生分解性樹脂製品おいて、結晶融解熱量ΔHmが10J/g以上、且つ、相転移指標(Tα−Tg)が15℃以下であることを特徴とする生分解性樹脂製品。
[但し、上記式中の記号は、動的粘弾性の温度依存性に対する試験(JIS−K7198A)での損失正接tanδの相転移温度(単位℃)をTα、示差走査熱量測定(JIS−K7121及びJIS−K7122)でのガラス転移温度(単位℃)をTg、融点Tmにおける結晶融解熱量(単位J/g)をΔHmとした。これらは、0℃から200℃の範囲内での測定値である。]
【0010】
つまり、本発明は、L −乳酸及び/又はD −乳酸が主成分のポリ乳酸重合体を主体とするポリ乳酸系樹脂を延伸及び/又は熱処理加工により成形された生分解性樹脂製品において、下記の2つの要件の組合せである。
▲1▼結晶融解熱量がΔHm≧10J/gの範囲内である。
これは、生分解性樹脂製品が100℃を越える温度の熱処理時に耐える様な結晶成分が適度な存在量であることを示し、耐熱性を発現出来る。
▲2▼相転移指標が(Tα−Tg)≦15℃の範囲である。
これは、生分解性樹脂製品の樹脂成分のうち非晶成分が有効に存在して熱に対する分子鎖の運動性、熱応答性が良い(相転移速度が速い)ことを示し、ホットタック強度の優れた高速ヒートシール適性を発現出来る。
【0011】
本発明について、以下に具体的に説明する。
本発明の生分解性樹脂製品は、ポリ乳酸系樹脂からなるフィルム及びシート状物(特に、延伸フィルム及びシート状物)や成形物、繊維、不織布、発泡体、及び、それによって包装された包装体、並びに、それを用いた複合材料を含むものである。該ポリ乳酸系樹脂とは、L−乳酸単位又はD−乳酸単位の単独重合体、L−乳酸単位及びD−乳酸単位の共重合体、L−乳酸及び/又はD−乳酸、DL−乳酸単位を主成分(80重量%以上)として他のヒドロキシカルボン酸、ラクトン類、ジカルボン酸、多価アルコールからなる群の単量体との共重合体から少なくとも1種選ばれたポリ乳酸重合体を主体(50重量%以上)とした樹脂組成物であって、好ましくは示差走査熱量測定(JIS−K7121及びJIS−K7122)での結晶融点Tmが140℃以上に少なくとも1つ存在する樹脂組成物である。Tmが140℃未満では100℃を越える温度の熱処理時に耐熱性に欠ける場合がある。
【0012】
該単量体のヒドロキシカルボン酸としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸等、;ラクトン類としては、グリコリド、ラクチド、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、ε−カプロラクトンおよびこれらにメチル基などの種々の基が置換したラクトン類等、;ジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等、;多価アルコールとしては、ビスフェノール/エチレンオキサイド付加反応物などの芳香族多価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、トリメチロールプロパン、ネオペンチルグリコールなどの脂肪族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのエーテルグリコール等が挙げられる。
【0013】
本発明の生分解性樹脂製品における結晶融点Tmでの結晶融解熱量ΔHmは、該樹脂製品の100℃を越える温度に対する耐熱性、例えば、収縮フィルムの場合は製品製造後の熱収縮処理に対する耐熱性、非収縮フィルムの場合は製品製造時の熱収縮抑制処理に対する耐熱性の観点から、10J/g以上である。ΔHmが10J/g未満では結晶量が少なくて耐熱性が不足する問題がある為による。ΔHmが30J/gを超えると結晶量が多くてホットタック強度が低くヒートシール適性に欠ける場合があり、10J/g以上30J/g以下が好ましく、15J/g以上25J/g以下がより好ましい。
又、本発明の生分解性樹脂製品における相転移指標(Tα−Tg)は、該樹脂製品のヒートシール強度の経時的安定性の観点から、15℃以下である。相転移指標が15℃を超えると、相転移速度が遅くなりホットタック強度が低くヒートシール適性に欠ける問題がある為による。相転移指標が10℃未満では、相転移速度が速いが耐熱性に欠ける場合があり、10℃以上15℃以下が好ましい。
【0014】
ところで、本発明の生分解性樹脂製品の結晶融解熱量ΔHmは、既に述べたように結晶量を表すものであり、相転移指標(Tα−Tg)は、ポリ乳酸系樹脂の熱に対する分子鎖運動性(熱応答性)、言い換えると非晶成分の熱に対する分子鎖再配列のし易さ(相転移速度)を表わすものである。そして、この相転移速度について更に述べると、ポリ乳酸系樹脂の溶融/固化速度を支配するものであり、この速度が速いとポリ乳酸系樹脂の溶融/固化速度が速くなり、瞬時に融着し一定レベル以上のヒートシール強度を発現し、これとは逆に該速度が遅いとポリ乳酸系樹脂の溶融/固化速度が遅くなり、瞬時に融着して一定レベル以上のヒートシール強度を発現することが困難になる。
以上のことから、相転移速度、ひいては相転移指標(Tα−Tg)は、ホットタック強度(ヒートシールダイの開放後1秒以内に観測されるピーク強度)の指標とすることができ、相転移指標(Tα−Tg)≦15℃であると、ポリ乳酸系樹脂は瞬時に融着し一定レベル以上のヒートシール強度を発現(ホットタック強度が大)し、結果として、高速ヒートシール加工が可能となる。
【0015】
上記結晶融解熱量ΔHmと相転移指標(Tα−Tg)は、ポリ乳酸系樹脂の非晶成分の量及び配向度や結晶成分の分散性に依存しており、即ち、樹脂組成に依存する割合が多いが、延伸及び/又は熱処理加工によっても変位するものであり、生分解性樹脂製品の性能(機械適性、耐熱性、高速ヒートシール適性)を表す意義において、その有用性は大きい。
そして、本発明の生分解性樹脂製品は、後述の様な市販の装置(動的粘弾性測定装置、示差走査熱量計)を用いた簡便なスクリーニング法により、樹脂組成(例えば、上記光学純度OP(A) の結晶性ポリ乳酸(A) /光学純度OP(B) の非晶性ポリ乳酸(B)における、各々の結晶性のレベルや両者(A) /(B)の割合、或いは第3成分としての相溶性可塑剤の添加)、延伸及び/又は熱処理加工条件を適宜選択制御することにより、上記した特定の結晶融解熱量ΔHmと相転移指標(Tα−Tg)を有することができる。
【0016】
本発明が従来技術と最も相違する点は、特定の結晶融解熱量及び相転移指標を有する光学純度の高い緻密な結晶部分と光学純度の低い乱疎な非晶部分の組成構造のポリ乳酸樹脂を主体にしたポリ乳酸系樹脂を延伸及び/又は熱処理加工した生分解性樹脂製品が、良好な機械適性を損なうことなく、100℃を越える温度に対しても熱変形等の起こることのない様な耐熱性、及びホットタック強度が5N/inchW以上(包装機械等で高速シール加工が可能なレベル)の高速ヒートシール適性を併せ持つという点である。
ここで、良好な機械適性とは、例えば、フィルム・シート状物の場合の巻物状原反フィルムの連続裁断加工等の機械適性であって、引張弾性率が約0.5〜5GPaの範囲の剛性のあるものを示す。かかる範囲外である場合、軟らか過ぎたり固過ぎたりすることで、包装機械や製袋機等におけるフィルム搬送時にシワ等が入ったり、フィルムが伸びたり切れたり、フィルムがカールしたりして機械適性に欠ける問題がある。
【0017】
本発明の結晶融点Tmにおける結晶融解熱量ΔHmが10J/g以上で相転移指標(Tα−Tg)が15℃以下の相転移速度の速い生分解性樹脂製品の好ましい樹脂組成としては、特定量の光学純度の高い緻密な結晶部分と光学純度の低い乱疎な非晶部分が海島状の分子構造を有するポリ乳酸計重合体を主体とする組成物が挙げられる。より好ましくは、光学純度が高い結晶性ポリ乳酸と光学純度が低い非晶性ポリ乳酸の混合樹脂を主体にしたポリ乳酸系樹脂として、光学純度OP(A) が100〜90%の高結晶性ポリ乳酸(A)と光学純度OP(B) が80〜70%の低結晶性ポリ乳酸(B)をブレンドして、重量比(A)/(B)が80/20〜40/60、且つ、加重平均光学純度OP(av)が90〜80%の範囲のポリ乳酸重合体を主体(50重量%以上)とした結晶性樹脂組成物がある。重量比(A)/(B)での(A)割合が90%越で且つ加重平均光学純度OP(av)90%越であると結晶成分が多いことから生分解性樹脂製品はヒートシール適性に欠ける場合があり、重量比(A)/(B)での(A)割合が40%未満且つOP(av)80%未満であると結晶成分が少ないことから生分解性樹脂製品は熱処理時の耐熱性に劣る場合がある。
【0018】
尚、加重平均光学純度OP(av)(単位%)は下記式にて算出される。
OP(av)=([A]×OP(A) +[B]×OP(B) )/100 ,但し、[A]+[B]=100
ここで、OP(A) 及び[A]は結晶性ポリ乳酸(A)の光学純度(単位%)及び重量比率(単位%)、OP(B) 及び[B]は非晶性ポリ乳酸(B)の光学純度(単位%)及び重量比率(単位%)を表す。
結晶性の異なるポリ乳酸重合体の混合方法や混合装置は、特に限定されないが、例えば、同一の単軸又は二軸押出混練機にそれぞれの原料を供給して溶融混合して行われ、そのまま口金より押出して直接にフィルム等の製品に加工する方法、或いはストランド形状に押出してペレットを作製し再度押出機にてフィルム等の製品に加工する方法が挙げられる。溶融押出温度としては、ポリ乳酸系樹脂の融点及び混合比率を考慮して適宜選択されるが、通常100〜250℃の温度範囲が選ばれる。
【0019】
ポリ乳酸重合体の重合方法としては、縮合重合法(溶液法:特開平7−2987号公報に記載された方法等)、開環重合法(ラクチド法:特開平9−31171号公報に記載された方法等)などの公知の方法を採用でき、L−乳酸、D−乳酸に由来する単量体比率(L/D比)を変化させることにより、結晶性や融点を自在に調整することができる。例えば、縮重合法(溶液法)では、L−乳酸またはD−乳酸あるいはこれらの混合物を直接脱水縮重合して、任意の組成を持ったポリ乳酸を得ることができる。また、開環重合法(ラクチド法)では、乳酸の環状2量体であるラクチドを、必要に応じて重合調整剤等を用いながら、選ばれた触媒を使用してポリ乳酸を得ることができる。また、ポリイソシアネート、ポリエポキシ化合物、酸無水物、多官能酸塩化物などの結合剤を使用して分子量を増大する重合方法を用いることもできる。ポリ乳酸系樹脂の重量平均分子量は5万〜100万の範囲が好ましく、さらに好ましくは重量平均分子量10万〜50万の範囲である。分子量が5万より小さいと機械的強度や耐熱性等の実用物性が十分に得られず、分子量が100万を越えると成形加工性に劣る問題がある。
【0020】
次に、本発明の生分解性樹脂製品の製造方法について述べる。
延伸及び/又は熱処理加工の方法としては、例えば、フィルム又はシート状物の形態においては、インフレーション法やテンター法などの従来公知の延伸方法にて一軸延伸、或いは、同時又は逐次二軸延伸することにより得られる。その際、押出されたチューブ状またはシート状の樹脂を溶融状態から急冷し非晶状態に近い状態で固化させた後、続いてそのチューブ状またはシート状の樹脂をガラス転移温度以上融点以下に加熱しインフレーション法またはテンター法で延伸することで、或いは、その後にフィルム又はシート状物の熱収縮性の抑制の為にフィルム又はシート状物を把持した状態等で熱処理を行うことで、収縮性或いは非収縮性フィルム又はシート状物を得ることができる。
【0021】
延伸倍率としては、MD方向およびTD方向それぞれに1.5〜6倍延伸するとよく、機械的強度や剛性による機械適性の観点から、好ましくは2〜5倍の範囲である。延伸倍率は大きい方が得られるフィルム又はシート状物の強度及び厚み精度の観点から好ましいが、延伸倍率がMD方向もTD方向も両方6倍を越える延伸は、延伸安定性が極端に低下して、 安定した製膜が行えなくなることがある。又、非収縮フィルム又はシート状物を得る場合には、熱処理温度は100℃〜融点Tmの間、熱処理時間は少なくとも2〜10秒の範囲内である。かかる範囲を下回ると得られたフィルムの熱収縮率が高くて非収縮フィルムにはならず、かかる範囲を上回ると熱処理中にフィルムが融解し破断する場合がある。
延伸後のフィルム又はシート状物の厚みは、好ましくは5〜500μmであり、より好ましくは7〜400μmであるが、本発明では特に限定されるものではない。
【0022】
本発明の生分解性樹脂製品には、所望により当該技術分野において通常用いられる添加剤、例えば、可塑剤、充填剤、酸化防止剤、熱安定剤、紫外線吸収剤、滑剤、帯電防止剤、難燃剤、造核剤、架橋剤、着色剤等を本発明の要件と特性を損なわない範囲で配合することが可能である。可塑剤としては、当業界で一般に用いられているものから選択使用でき、樹脂組成物に10重量%程度添加してもブリードアウトしないものが好ましい。例えば、脂肪族多価カルボン酸エステル、脂肪酸多価アルコールエステル、オキシ酸エステル、エポキシ系可塑剤等が含まれる。具体例としては、トリアセチン(TA)、アセチルクエン酸トリブチル(ATBC)、ジオクチルセバケート(DBS)、トリエチレングリコールジアセテート、グリセリンエステル類、オレイン酸ブチル(BO)、アジピン酸エーテル・エステル、エポキシ化大豆油(ESO)、等が挙げられる。充填剤としては、一般に合成樹脂分野において強度や耐久性などの諸性質を改善する目的で添加される物質である。充填剤の種類としては無機系と有機系があるが目的とするフィルムにより適宜選択して使用できる。無機系充填剤としては、マグネシウム、カルシウム、バリウム、亜鉛、ジルコニウム、モリブデン、珪素、アンチモン、チタン等の金属の酸化物、その水和物(水酸化物)、硫酸塩、炭酸塩、珪酸塩のごとき化合物、これらの複塩並びにこれらの混合物に大別される。具体例としては、例えば、酸化アルミニウム(アルミナ)、その水和物、水酸化カルシウム、酸化マグネシウム(マグネシア)、水酸化マグネシウム、酸化亜鉛(亜鉛華)、鉛丹及び鉛白のごとき鉛の酸化物、炭酸マグネシウム、炭酸カルシウム、塩基性炭酸マグネシウム、ホワイトカーボン、マイカ、タルク、ガラス繊維、ガラス粉末、ガラスビーズ、クレー、珪藻土、シリカ、ワラストナイト、酸化鉄、酸化アンチモン、酸化チタン(チタニア)、リトポン、軽石粉、硫酸アルミニウム(石膏など)、珪酸ジルコニウム、炭酸バリウム、ドロマイト、二硫化モリブデン及び砂鉄が挙げられる。一方、有機系充填剤としては、セルロース系、澱粉系(可塑化澱粉も含む)等が挙げられる。酸化防止剤としてはp−t−ブチルヒドロキシトルエン、p−t−ブチルヒドロキシアニソール等のヒンダードフェノール系酸化防止剤;熱安定剤としてはトリフェニルホスファイト、トリラウリルホスファイト、トリスノリルフェニルホスファイト等;紫外線吸収剤としてはp−t−ブチルフェニルサリシレート、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2,4,5−トリヒドロキシブチロフェノン等;滑剤としてはステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、パルミチン酸ナトリウム等;帯電防止剤としてはN,N−ビス(ヒドロキシエチル)アルキルアミン、アルキルアミン、アルキルアリルスルホネート、アルキルスルフォネート等;難燃剤としてはヘキサブロモシクロドデカン、トリス−(2,3−ジクロロプロピル)ホスフェート、ペンタブロモフェニルアリルエーテル等;造核剤としてはポリエチレンテレフタレート、ポリ−トランスシクロヘキサンジメタノールテレフタレート等が挙げられる。
【0023】
又、 本発明の生分解性樹脂製品は単体材料でも異種又は同種の複合材料でも良い。
更には、印刷、コーテイング、ラミネート等の目的で、ポリオレフィン系樹脂製品に比べて親水性ではあるが、生分解性樹脂製品表面をコロナ処理などによりさらに親水化処理することもできる。その際の表面張力としては、40dyn/cm〜60dyn/cmの範囲が好ましい。
【0024】
【発明の実施の形態】
実施例および比較例によって本発明を説明する。
実施例および比較例で用いた評価方法について以下に説明する。
まず、生分解性樹脂製品の構成組成の評価方法は以下の通りである。
(1)ポリ乳酸重合体の光学純度OP
生分解性樹脂製品を構成する主体の樹脂であるポリ乳酸重合体の光学純度(OP:単位%)は、前述の通り、ポリ乳酸重合体を構成するL−乳酸及び/又はD−乳酸単量体単位の構成比率から下記式により計算される。
OP=|[L]−[D]| ,但し、[L]+[D]=100
【0025】
ポリ乳酸重合体を構成するL−乳酸及び/又はD−乳酸単量体単位の構成比率は、以下の測定条件で、試料を1N−NaOHでアルカリ分解後に1N−HClで中和して蒸留水で濃度調整した加水分解試料(液)について、光学異性体分離カラムを装着した島津製作所製の高速液体クロマトグラフィー(HPLC:LC−10A−VP)にて、紫外線UV254nmでのL−乳酸とD−乳酸の検出ピーク面積比(垂線法による面積測定)から、ポリ乳酸重合体を構成するL−乳酸の重量比率[L](単位%)、ポリ乳酸重合体を構成するD−乳酸の重量比率[D](単位%)を求め、1重合体当り3点の算術平均(四捨五入)をもって測定値とした。
カラム:東ソー製TSKgel−Enantio−L1 [4.6mm経×25cm長]
移動相:1mM−CuSO4 水溶液
試料溶液濃度:25pg/μL [ポリ乳酸重合体としての濃度]
試料溶液注入量:10μL
溶媒流速:0.5〜0.8ml/分
カラム温度:40℃
【0026】
(2)ポリ乳酸重合体の重量平均分子量Mw
東ソー製のゲルパーミエイションクロマトグラフィー装置(GPC:データ処理部GPC−8020、検出器RI−8020)を用いて、以下の測定条件で、標準ポリスチレンを用いてポリスチレン換算して重量平均分子量Mwを求め、1重合体当り3点の算術平均(四捨五入)をもって測定値とした。
カラム:昭和電工製Shodex K −805とK −801の連結カラム[7.8mm経×60cm長]
溶離液:クロロホルム
試料溶液濃度:0.2wt/vol%
試料溶液注入量:200μL
溶媒流速:1ml/分
カラム・検出器温度:40℃
【0027】
(3)融点Tm、ガラス転移温度Tg、結晶融解熱量ΔHm
JIS−K7121及びJIS−K7122に準拠して、生分解性樹脂製品の融点Tm、ガラス転移温度Tg、結晶融解熱量ΔHmを測定した。すなわち、標準状態(23℃65%RH)で状態調節(23℃1週間放置)した生分解性樹脂製品から試験片として長手方向(MD)及び幅方向(TD)に各々2点(2箇所)ずつ約10mgを切り出した後、パーキンエルマー(Perkin−Elmer)社製の示差走査熱量計(熱流速型DSC)、DSC−7型を用いて、窒素ガス流量25ml/分、10℃/分で室温(23℃)から200℃まで昇温し(1次昇温)、200℃で10分間保持して完全に融解させた後、30℃/分で0℃まで降温させて0℃で2分間保持し、更に上記昇温条件で2回目の昇温(2次昇温)する間に描かれるDSC曲線のうち、1次昇温時の融解(吸熱)ピーク頂点から融点Tm(℃)、吸熱ピーク面積から結晶融解熱量ΔHm(単位J/g)、2次昇温時の階段状変化部分曲線と各ベースライン延長線から縦軸方向に等距離にある直線との交点(中間点ガラス転移温度)をTg(単位℃)として測定し、1製品当り4点の算術平均(四捨五入)をもって測定値とした。
【0028】
(4)相転移温度Tα
標準状態(23℃65%RH)で状態調節(23℃1週間放置)した生分解性樹脂製品から試験片として30μm厚×7mm幅×35mm長の短冊状フィルムを長手方向(MD)及び幅方向(TD)に各々2点ずつ切り出した後、JIS−K7198Aに準拠して、レオメトリックス(Rheometric)社製の動的粘弾性測定装置(Dynamic Mechanical Analyzer:DMA)、RSA−II型を用いて、測定周波数1Hz、2℃/分で0℃から160℃まで昇温する間に描かれる動的粘弾性の温度依存曲線のうち、損失正接tanδの極大点の温度を相転移温度Tα(単位℃)として測定し、1製品当り4点の算術平均(四捨五入)をもって測定値とした。
(5)相転移指標
本発明における相転移指標(Tg−Tα)は、上記(1)及び(2)の方法で測定されるTg及びTαの差の絶対値とした。
【0029】
次に、生分解性樹脂製品の性能評価の方法は以下の通りである。
<機械適性>
標準状態(23℃65%RH)で状態調節(23℃1週間放置)した生分解性樹脂製品から試験片として長手方向(MD)及び幅方向(TD)に30μm厚×10mm幅×200mm長の短冊状フィルムを各々3点ずつ切り出した後、ASTM−D882−95aに準拠して、A&D社製のテンシロン万能試験機、RTC−1210型を用いて、チャック間100mm、引張速度10mm/分で標準状態下で引張試験を行い、製品当り6点の算術平均値(有効数字2桁)もって引張弾性率(単位GPa)を算出した。機械適性の観点から、フィルム搬送時に皺の入らない程度の腰の強さの目安として、引張弾性率が0.5GPa以上5GPa以下の範囲内にあるものを適性あり(評価記号:○)、同範囲外にあるものを適性なし(評価記号:×)として評価した。
【0030】
<耐熱性>
標準状態(23℃65%RH)で状態調節(23℃1週間放置)した生分解性樹脂製品から試験片として30μm厚×300mm角の正方形状フィルムに3点切り出した後、約20mm厚×300mm外角(260mm内角)の木枠に両面テープ及び金属クリップにてフィルムを緊張状態で固定したもの(緊張試験片)を用いた。生分解性樹脂製品の耐熱性の評価は、収縮フィルムにおける熱収縮処理工程(例えば、3方シールしたピロー又はL型包装機での包装体シュリンク工程)、及び、非収縮フィルムにおける製造時の熱収縮抑制の為の熱固定処理工程(例えば、テンター内での逐次二軸延伸後のヒートセット加工)を想定する為、この緊張試験片をベルトコンベアで加熱炉内を移動させて任意に熱処理温度(熱風温度)と熱処理時間(加熱炉通過時間)を設定することが可能な装置である加熱トンネル、K&Uシステムズ製のシュリンクトンネル、MS−8441型を用いて、緊張試験片を120℃の加熱トンネル内を3秒間で通過させた熱処理前後の外観の変化を観察して、以下のように評価した。
評価尺度:
評価記号 尺度
○ フィルムの外観は変わらず、良好であった。
× 部分的に靄(厚薄斑のある様な外観)が発生し、美観が損われた。
【0031】
<高速ヒートシール適性>
標準状態(23℃65%RH)で状態調節(23℃1週間放置)した生分解性樹脂製品から試験片として長手方向(MD)に30μm厚×25.4mm幅(=1inch幅)×250mm長の短冊状フィルムを3点切り出した後、ASTM−F1921−98に準拠してTheller社製のホットタック測定器を用いて、ダイの開放後1000mS(=1秒)までの間に観測されるピーク強度であるホットタック強度(HT強度:単位N/1inchW)を以下のシール条件で測定した。
上部ダイ形状:60度V字型(先端断面R=1mmの半丸状×5.25inch長)金属製ダイ
下部ダイ形状:平型(0.5inch幅×5.25inch長)ゴムライニングダイ
シール面寸法:1inch×1mm
シール温度:(上部ダイ温度)120℃、(下部ダイ温度)25℃
シール時間:1000mS
シール圧力:13±1MPa
【0032】
生分解性樹脂製品の高速ヒートシール適性は、フィルム又はシート状物の該樹脂製品が、巻物状原反フィルムの状態から包装機械又は製袋機にて連続して包装体やバッグ等にヒートシール加工する場合に、被包装物がシール部より破出したりシール部が部分的に剥離(又は破断)しない連続ヒートシール安定性の観点から、包装機械や製袋機における高速ヒートシール強度に相当するホットタック強度(HT強度:ピーク強度、単位N/1inchW)により、以下のように評価した。
評価尺度:
評価記号 HT強度 尺度
○ 5以上 強度が実用域で、被包装体の破出やシール線破れがない。
× 5未満 シール部が剥離(破断)し、被包装物が破出する場合がある。
【0033】
(8)総合評価
上記の機械適性、耐熱性、高速ヒートシール適性の評価の総合結果指標を以下に示す。
評価尺度:
評価記号 尺度
○ ×、△が無くて○がある場合、課題は高水準に達成される。
△ ×が無くて△がある場合で、課題を達成したとは言い難い。
× ×がある場合で、課題が達成されていない。
以下の実施例および比較例においては、生分解性樹脂製品の一つの形態であるフィルムについて評価を行った。そして、ポリ乳酸系樹脂は、公知の縮重合法(溶液法)や開環重合法(ラクチド法)により得られた表1に示すポリ乳酸重合体を用いた。尚、市販されているポリ乳酸重合体も同様な方法で得られることは言うまでも無く、表1に示す可塑剤、脂肪族ポリエステルと同様に商業的に容易に入手可能である。
【0034】
フィルムへの延伸加工は、表2の樹脂組成となる様に表1の樹脂原料を同方向2軸押出機を用いて溶融混練してTダイより樹脂温度200℃の樹脂を押出し、35℃のキャステイングロールにて急冷して得た実質的に非晶質シートを、75℃に加熱してMD方向に3倍ロール延伸、次いでテンターで延伸温度80℃にてTD方向に4倍延伸して、その後延伸した状態でフィルムを室温付近まで冷却することで、厚さ30μmのポリ乳酸系樹脂の延伸フィルムを得た。尚、実施例と比較例の全ての例において、上記の延伸加工によるフィルムを使用した。但し、本発明における生分解性樹脂製品の樹脂組成及び形態がこれに限定されるものではない。
【0035】
【実施例1〜3】及び
【比較例1〜2】
表2に示す実施例1〜3及び比較例1〜2の樹脂製品は、表1の高結晶性ポリ乳酸(A)と低結晶性ポリ乳酸(B)のポリ乳酸重合体のみからなる樹脂組成の延伸フィルムについて評価したものである。表2内の評価結果に示すように、ΔHm≧10且つ相転移指標(Tα−Tg)≦15、又は、重量比(A)/(B)が80/20〜40/60且つ加重平均光学純度OP(av)が90〜80の範囲に相当する実施例1〜3は、機械適性、耐熱性、高速ヒートシール適性の全てに優れたものであった。
【0036】
【実施例4】及び
【比較例3】
表2に示す実施例4及び比較例3の樹脂製品は、表1の高結晶性ポリ乳酸(A)及び/又は低結晶性ポリ乳酸(B)のポリ乳酸重合体に対して可塑剤を配合した樹脂組成の延伸フィルムについて評価したものである(ポリ乳酸重合体を100重量部として可塑剤配合量を重量部で表示した)。表2内の評価結果に示すように、比較例3はポリ乳酸重合体に相溶性のある可塑剤配合により、若干のホットタック強度の向上が見られるが、相転移指標(Tα−Tg)が依然大きいためにホットタック強度は十分とは言えず、実用域での高速ヒートシール適性に欠ける結果となった。実施例4はΔHm≧10且つ相転移指標(Tα−Tg)≦15であるため、機械適性、耐熱性、ヒートシール適性の全てに優れたものであった。
【0037】
【実施例5】及び
【比較例4、5】
表2に示す実施例5及び比較例4、5の樹脂製品は、表1の高結晶性ポリ乳酸(A)及び/又は低結晶性ポリ乳酸(B)のポリ乳酸重合体に脂肪族ポリエステルを配合した樹脂組成の延伸フィルムについて評価したものである(ポリ乳酸重合体を100重量部として脂肪族ポリエステル配合量を重量部で表示した)。表2内の評価結果に示すように、ポリ乳酸重合体と相溶性の劣る脂肪族ポリエステルの配合であるが、実施例5はΔHm≧10且つ相転移指標(Tα−Tg)≦15であるため、機械適性、耐熱性、ヒートシール適性の全てに優れたものであった。比較例4は結晶融解熱量が低く、更には結晶融点も低いことから耐熱性に劣り、比較例5は相転移指標(Tα−Tg)が大きいためにホットタック強度は十分とは言えず、実用域での高速ヒートシール適性に欠けるものであった。
【0038】
念の為に、表2に示す実施例1〜5及び比較例1〜5の樹脂製品であるフィルムについて、フジキカイ製の横型ピローシュリンク包装機、FW3451A型を用いて、40パック/分の速度でシュリンク包装体を100パックずつ作成し、仕上がり外観の評価を行った。被包装物としては発泡ポリスチレン製トレーに延伸ポリスチレン透明シートの蓋の付いた弁当容器を用い、弁当容器の周りにフィルムを筒状に送り、被包装物の底部のフィルムの合わせ目をヒートシールし、引き続き、筒状になったフィルムの両端を溶断シールを行った(余裕率は縦及び横方向共に30%)。空気抜きの小孔は被包装物の底部に針状の突起により生じさせた。引き続き120℃の加熱トンネルに搬送し、トンネル滞留時間は3秒で収縮を行い、シュリンク包装体を得た。比較例1及び比較例4のフィルムによるシュリンク包装体は、いづれも全ての包装体のポリスチレン透明シート蓋を覆っているフィルム部分の表面上に部分的にフィルムの厚み斑の様な靄が見られ仕上がり美観が悪いものとなり、比較例2、3、5のフィルムによるシュリンク包装体は、いづれも8割方の包装体のシール部に破れが見られた。本実施例のフィルムによるシュリンク包装体は、いづれも100パック全てにおいて、シール部での破れも無く、フィルムの外観及び仕上がりに優れており、機械適性、耐熱性、ヒートシール適性の全てを満足するものであることを確認した。
【0039】
【表1】

Figure 0003773440
【0040】
【表2】
Figure 0003773440
【0041】
【発明の効果】
本発明の生分解性樹脂製品は自然環境中で生分解性を有し、機械適性、耐熱性、高速ヒートシール適性に優れた樹脂製品である。また、それによって包装された包装体、並びに、それを用いた複合材料は、ポリ乳酸系樹脂からなる生分解性を有する熱収縮性又は熱非収縮性の延伸フィルム又はシート状物、具体的には、弁当や惣菜容器オーバーラップ用等の収縮性フィルム又はシート状物、又は、チャック付きバッグ用等の非収縮性フィルム又はシート状物として非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin product having biodegradability excellent in mechanical suitability, heat resistance, and high-speed heat seal suitability. The biodegradable resin product of the present invention refers to films and sheets (particularly stretched films and sheets) and molded articles, fibers, nonwoven fabrics, foams, and packages packaged thereby, and It includes a composite material using More specifically, a heat-shrinkable or non-heat-shrinkable stretched film and sheet having biodegradability made of a polylactic acid-based resin, specifically, a shrinkable film and sheet for lunch box or sugar beet container overlap, or The present invention relates to a stretched film and sheet useful for a non-shrinkable film for bags with a chuck, etc., a package using the same, and a composite material.
[0002]
[Prior art]
Examples of resin materials excellent in mechanical suitability, heat resistance, and heat seal suitability include materials such as polyethylene terephthalate, polypropylene, polyethylene, and polystyrene, and are widely used. However, from the viewpoint of protecting the natural environment related to the disposal of these resin materials, it is desired to have a low calorific value, decompose in the soil and be safe, and biodegradation of aliphatic polyesters such as polylactic acid resins Research has been actively conducted on products using a functional resin, specifically containers and molded products such as films, sheets and bottles, fibers, nonwoven fabrics, foams, and composite materials using them.
[0003]
The polylactic acid polymer is a polycondensate of lactic acid having an optically active center, and has an optical purity (OP calculated by the following formula from the constituent ratio of L-lactic acid and / or D-lactic acid monomer units constituting the polymer. Depending on the unit%), those having a high optical purity of 80% or more are crystalline, and those having a low optical purity of less than 80% are amorphous.
OP = | [L] − [D] |, where [L] + [D] = 100
Here, [L] is a weight ratio (unit%) of L-lactic acid constituting the polylactic acid polymer, [D] is a weight ratio (unit%) of D-lactic acid constituting the polylactic acid polymer, and || Represents the absolute value of the calculated value.
[0004]
Compared to other biodegradable resins, the polylactic acid polymer has a tensile modulus of elasticity (based on ASTM-D882-95a) of about 2-5 GPa and is particularly rigid. The tensile strength at break (conforming to ASTM-D882-95a) is about 70 to 300 MPa and the mechanical strength is strong. For example, in the case of a film or sheet, it is excellent in mechanical suitability such as continuous cutting of a roll-shaped raw film, Although suitable as various packaging films, a biodegradable resin product mainly composed of a polylactic acid polymer having both heat resistance and high-speed heat sealability without compromising these properties has not yet been obtained. In particular, shrinkable films for lunch boxes and sugar beet container overlap are heat resistant to heat shrinkage treatment (shrink process) of the package, and non-shrinkable films used for bags with chucks are heat shrinkage inhibiting treatment after stretching ( Heat-setting process) and high-speed heat-sealability that can produce sufficient hot tack strength suitable for heat-sealing packaging bodies and bags from a roll-shaped raw film with a packaging machine or bag-making machine. There is still no satisfactory biodegradable resin product.
[0005]
Regarding polylactic acid-based resin products having biodegradability, JP-A-2001-122989 discloses storage at 120 ° C. in a test for temperature dependence of dynamic viscoelasticity made of crystalline polylactic acid (JIS-K7198). Elastic modulus E * 100-230 MPa crystalline polylactic acid resin film, Japanese Patent Application Laid-Open No. 2000-198913 discloses an easily tearable biaxially stretched film made of crystalline polylactic acid and aliphatic polyester. Has a problem of lack of suitability.
Japanese Patent Application Laid-Open No. 11-222528 discloses a heat-sealable film composed of amorphous polylactic acid having an amount of heat of fusion ΔHm1 equivalent to a polylactic acid polymer of 35 J / g or less and an aliphatic polyester. There is a problem inferior to
[0006]
In particular, Japanese Patent Application Laid-Open No. 11-222528 discloses a storage elastic modulus E in a test for temperature dependence of dynamic viscoelasticity (JIS-K7198B). * Is a mixed composition of crystalline polylactic acid and amorphous polylactic acid that is stable at 6 MPa or less, but the composition is a low-elasticity thermoplastic elastomer having a weighted average optical purity of less than 80%, A polylactic acid film or sheet made of the composition has good moldability but is easy to flow and deform, and therefore lacks the heat resistance required for biodegradable resin products that are heat-treated in a temperature atmosphere exceeding 100 ° C. Have a problem.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a biodegradable resin product composed of a resin mainly composed of a polylactic acid polymer and excellent in mechanical suitability, heat resistance, and high-speed heat seal suitability, and a package and composite material thereby. To do.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that the smaller the difference (Tα−Tg) between the phase transition temperature Tα and the glass transition temperature Tg in the polylactic acid-based resin, the more surprising. Viscoelastic thermal responsiveness is good and can be used as an index of the phase transition rate from the glass state to the rubber state and from the rubber state to the molten state at the time of temperature rise (in the present application, (Tα−Tg) is referred to as a phase transition index) Furthermore, the inventors have found that the object of the present invention can be achieved by using a polylactic acid resin having a specific heat of crystal fusion ΔHm and a phase transition index (Tα-Tg), thereby completing the present invention.
[0009]
That is, the present invention is as follows.
In a biodegradable resin product mainly composed of a polylactic acid polymer mainly composed of L-lactic acid and / or D-lactic acid, the heat of crystal fusion ΔHm is 10 J / g or more, and the phase transition index (Tα-Tg) is A biodegradable resin product having a temperature of 15 ° C. or lower.
[However, the symbols in the above formula are Tα for the phase transition temperature (unit ° C.) of the loss tangent tan δ in the test for temperature dependence of dynamic viscoelasticity (JIS-K7198A), differential scanning calorimetry (JIS-K7121 and The glass transition temperature (unit ° C) in JIS-K7122) was Tg, and the heat of crystal fusion (unit J / g) at the melting point Tm was ΔHm. These are measured values in the range of 0 ° C to 200 ° C. ]
[0010]
That is, the present invention relates to a biodegradable resin product formed by stretching and / or heat treatment of a polylactic acid resin mainly composed of a polylactic acid polymer mainly composed of L-lactic acid and / or D-lactic acid. Is a combination of these two requirements.
(1) The amount of heat of crystal melting is in the range of ΔHm ≧ 10 J / g.
This indicates that the crystal component that the biodegradable resin product can withstand during heat treatment at a temperature exceeding 100 ° C. is in an appropriate amount, and can exhibit heat resistance.
(2) The phase transition index is in the range of (Tα−Tg) ≦ 15 ° C.
This indicates that the amorphous component of the resin component of the biodegradable resin product is effectively present, and the molecular chain mobility and heat responsiveness to heat are good (the phase transition speed is fast). Excellent high-speed heat sealability can be expressed.
[0011]
The present invention will be specifically described below.
The biodegradable resin product of the present invention includes a film and a sheet-like product (particularly, a stretched film and a sheet-like product), a molded product, a fiber, a nonwoven fabric, a foamed product, and a package packaged thereby. A body, and a composite material using the body. The polylactic acid-based resin is a homopolymer of L-lactic acid unit or D-lactic acid unit, a copolymer of L-lactic acid unit and D-lactic acid unit, L-lactic acid and / or D-lactic acid, DL-lactic acid unit. Mainly composed of at least one polylactic acid polymer selected from a copolymer with a monomer of the group consisting of other hydroxycarboxylic acids, lactones, dicarboxylic acids and polyhydric alcohols, with a main component (80% by weight or more) (50% by weight or more), preferably a resin composition having at least one crystal melting point Tm at 140 ° C. or higher in differential scanning calorimetry (JIS-K7121 and JIS-K7122). . If Tm is less than 140 ° C, heat resistance may be insufficient during heat treatment at a temperature exceeding 100 ° C.
[0012]
Examples of the hydroxycarboxylic acid of the monomer include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid and the like; and lactones include glycolide , Lactide, β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, and lactones substituted with various groups such as a methyl group; and dicarboxylic acids include succinic acid, glutaric acid, Adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, etc .; as polyhydric alcohols, aromatic polyhydric alcohols such as bisphenol / ethylene oxide addition reaction products, ethylene glycol, propylene glycol, butanediol, hexanediol, Octanediol, glycerin, Rubitan, trimethylolpropane, aliphatic polyhydric alcohols such as neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, and the like ether glycols such as polypropylene glycol.
[0013]
The heat of crystal melting ΔHm at the crystal melting point Tm in the biodegradable resin product of the present invention is the heat resistance of the resin product to a temperature exceeding 100 ° C., for example, in the case of a shrink film, the heat resistance to heat shrink treatment after product production. In the case of a non-shrinkable film, it is 10 J / g or more from the viewpoint of heat resistance against heat shrinkage suppression treatment during product production. This is because if ΔHm is less than 10 J / g, the amount of crystals is small and heat resistance is insufficient. If ΔHm exceeds 30 J / g, the amount of crystals is large, the hot tack strength is low, and the heat sealability may be poor, and is preferably from 10 J / g to 30 J / g, more preferably from 15 J / g to 25 J / g.
Further, the phase transition index (Tα-Tg) in the biodegradable resin product of the present invention is 15 ° C. or less from the viewpoint of the temporal stability of the heat seal strength of the resin product. This is because if the phase transition index exceeds 15 ° C., the phase transition speed becomes slow, the hot tack strength is low, and there is a problem that the heat seal suitability is insufficient. When the phase transition index is less than 10 ° C., the phase transition rate is fast, but the heat resistance may be insufficient, and the temperature is preferably 10 ° C. or more and 15 ° C. or less.
[0014]
By the way, the heat of crystal melting ΔHm of the biodegradable resin product of the present invention represents the amount of crystal as already described, and the phase transition index (Tα−Tg) is the molecular chain motion of polylactic acid resin with respect to heat. (Thermal response), in other words, the ease of molecular chain rearrangement with respect to the heat of the amorphous component (phase transition rate). The phase transition rate is further described as governing the melting / solidification rate of the polylactic acid resin. If this rate is high, the melting / solidification rate of the polylactic acid resin is increased, and the fusion occurs instantaneously. The heat seal strength of a certain level or more is expressed. On the contrary, if the speed is low, the melting / solidifying speed of the polylactic acid resin is slow, and the heat seal strength is expressed by fusing instantaneously. It becomes difficult.
From the above, the phase transition speed, and hence the phase transition index (Tα−Tg), can be used as an index of hot tack strength (peak intensity observed within 1 second after opening the heat seal die). When the index (Tα−Tg) ≦ 15 ° C., the polylactic acid-based resin instantly fuses and develops a heat seal strength above a certain level (high tack strength is high). As a result, high-speed heat seal processing is possible. It becomes.
[0015]
The crystal melting heat ΔHm and the phase transition index (Tα-Tg) depend on the amount and orientation degree of the amorphous component of the polylactic acid resin and the dispersibility of the crystal component, that is, the proportion depending on the resin composition. In many cases, it is also displaced by stretching and / or heat treatment, and its usefulness is significant in terms of representing the performance (mechanical suitability, heat resistance, high-speed heat sealability) of biodegradable resin products.
The biodegradable resin product of the present invention is obtained by a simple screening method using a commercially available apparatus (dynamic viscoelasticity measuring apparatus, differential scanning calorimeter) as described later, for example, the resin composition (for example, the optical purity OP described above). (A) Crystalline polylactic acid (A) / optical purity OP (B) In the non-crystalline polylactic acid (B), the crystallinity level, the ratio of both (A) / (B), or the addition of a compatible plasticizer as the third component), stretching and / or heat treatment processing conditions By appropriately selecting and controlling the above, it is possible to have the specific heat of crystal fusion ΔHm and the phase transition index (Tα−Tg) described above.
[0016]
The most different point of the present invention from the prior art is that a polylactic acid resin having a composition structure of a dense crystal part having a high optical purity and a disordered amorphous part having a low optical purity and having a specific heat of crystal fusion and a phase transition index. A biodegradable resin product obtained by stretching and / or heat-treating the main polylactic acid resin does not cause good mechanical suitability and does not cause thermal deformation even at temperatures exceeding 100 ° C. Heat resistance and hot tack strength are 5 N / inchW or more (a level at which high-speed sealing can be performed with a packaging machine or the like) and high-speed heat sealing suitability.
Here, good mechanical suitability is, for example, mechanical suitability such as continuous cutting of a roll-shaped raw film in the case of a film / sheet-like product, and the tensile elastic modulus is in the range of about 0.5 to 5 GPa. Indicates a rigid object. If it is out of this range, it may be too soft or too hard, causing wrinkles, etc. when the film is transported in a packaging machine or bag making machine, etc. There is a problem that lacks.
[0017]
The preferred resin composition of the biodegradable resin product having a fast phase transition rate with a crystal transition heat amount ΔHm at the crystal melting point Tm of the present invention of 10 J / g or more and a phase transition index (Tα-Tg) of 15 ° C. or less is a specific amount. Examples thereof include a composition mainly composed of a polylactic acid meter polymer in which a dense crystal portion having a high optical purity and a rough amorphous portion having a low optical purity have a sea-island molecular structure. More preferably, as a polylactic acid resin mainly composed of a mixed resin of crystalline polylactic acid having high optical purity and amorphous polylactic acid having low optical purity, optical purity OP (A) 100-90% highly crystalline polylactic acid (A) and optical purity OP (B) Is blended with 80-70% low crystalline polylactic acid (B), weight ratio (A) / (B) is 80 / 20-40 / 60, and weighted average optical purity OP (av) There is a crystalline resin composition mainly composed of a polylactic acid polymer in a range of 90 to 80% (50% by weight or more). (A) ratio in weight ratio (A) / (B) exceeds 90% and weighted average optical purity OP (av) If it exceeds 90%, the biodegradable resin product may lack heat sealability because there are many crystal components, and the (A) ratio in the weight ratio (A) / (B) is less than 40% and OP (av) If it is less than 80%, the biodegradable resin product may be inferior in heat resistance during heat treatment because there are few crystal components.
[0018]
The weighted average optical purity OP (av) (Unit%) is calculated by the following formula.
OP (av) = ([A] x OP (A) + [B] x OP (B) ) / 100 where [A] + [B] = 100
Where OP (A) And [A] are the optical purity (unit%) and weight ratio (unit%) of crystalline polylactic acid (A), OP (B) And [B] represent the optical purity (unit%) and the weight ratio (unit%) of the amorphous polylactic acid (B).
The mixing method and mixing apparatus for polylactic acid polymers having different crystallinity are not particularly limited. For example, each raw material is supplied to the same single-screw or twin-screw extrusion kneader and melt-mixed. A method of further extruding and processing directly into a product such as a film, or a method of extruding into a strand shape to produce a pellet and processing it again into a product such as a film with an extruder. The melt extrusion temperature is appropriately selected in consideration of the melting point and mixing ratio of the polylactic acid resin, but a temperature range of 100 to 250 ° C. is usually selected.
[0019]
As a polymerization method of the polylactic acid polymer, a condensation polymerization method (solution method: a method described in JP-A-7-2987) and a ring-opening polymerization method (lactide method: JP-A-9-31171) are described. And the like, and the crystallinity and melting point can be freely adjusted by changing the monomer ratio derived from L-lactic acid and D-lactic acid (L / D ratio). it can. For example, in the condensation polymerization method (solution method), L-lactic acid, D-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain polylactic acid having an arbitrary composition. In the ring-opening polymerization method (lactide method), polylactic acid can be obtained by using a selected catalyst while using lactide, which is a cyclic dimer of lactic acid, with a polymerization regulator or the like as necessary. . Moreover, the polymerization method which increases molecular weight using binders, such as a polyisocyanate, a polyepoxy compound, an acid anhydride, and polyfunctional acid chloride, can also be used. The weight average molecular weight of the polylactic acid resin is preferably in the range of 50,000 to 1,000,000, more preferably in the range of 100,000 to 500,000. When the molecular weight is less than 50,000, practical physical properties such as mechanical strength and heat resistance cannot be sufficiently obtained, and when the molecular weight exceeds 1,000,000, there is a problem that molding processability is inferior.
[0020]
Next, a method for producing the biodegradable resin product of the present invention will be described.
As a method of stretching and / or heat treatment, for example, in the form of a film or sheet-like material, uniaxial stretching or simultaneous or sequential biaxial stretching by a conventionally known stretching method such as an inflation method or a tenter method. Is obtained. At that time, the extruded tube-shaped or sheet-shaped resin is rapidly cooled from the molten state and solidified in a state close to the amorphous state, and then the tube-shaped or sheet-shaped resin is heated to the glass transition temperature or higher and below the melting point. The film is stretched by the inflation method or the tenter method, or is then subjected to heat treatment in a state where the film or sheet-like material is held to suppress the heat shrinkability of the film or sheet-like material. A non-shrinkable film or sheet can be obtained.
[0021]
The stretching ratio may be 1.5 to 6 times in each of the MD direction and the TD direction, and is preferably in the range of 2 to 5 times from the viewpoint of mechanical suitability due to mechanical strength and rigidity. A larger stretch ratio is preferable from the viewpoint of the strength and thickness accuracy of the film or sheet-like material to be obtained. However, stretching in which the stretch ratio exceeds 6 times in both the MD direction and the TD direction results in extremely low stretch stability. Stable film formation may not be possible. When obtaining a non-shrinkable film or sheet-like material, the heat treatment temperature is between 100 ° C. and the melting point Tm, and the heat treatment time is at least in the range of 2 to 10 seconds. Below this range, the resulting film has a high heat shrinkage rate and does not become a non-shrinkable film, and above this range, the film may melt and break during heat treatment.
The thickness of the stretched film or sheet is preferably 5 to 500 μm, more preferably 7 to 400 μm, but is not particularly limited in the present invention.
[0022]
The biodegradable resin product of the present invention includes additives usually used in the technical field as desired, for example, plasticizers, fillers, antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, antistatic agents, difficulty It is possible to add a flame retardant, a nucleating agent, a crosslinking agent, a colorant and the like as long as the requirements and characteristics of the present invention are not impaired. The plasticizer can be selected from those generally used in the industry, and preferably does not bleed out even when added to the resin composition by about 10% by weight. For example, aliphatic polycarboxylic acid ester, fatty acid polyhydric alcohol ester, oxy acid ester, epoxy plasticizer and the like are included. Specific examples include triacetin (TA), acetyl tributyl citrate (ATBC), dioctyl sebacate (DBS), triethylene glycol diacetate, glycerin esters, butyl oleate (BO), adipic acid ether ester, epoxidation Soybean oil (ESO), and the like. The filler is a substance generally added for the purpose of improving various properties such as strength and durability in the synthetic resin field. There are inorganic and organic fillers, but they can be appropriately selected depending on the intended film. Inorganic fillers include magnesium, calcium, barium, zinc, zirconium, molybdenum, silicon, antimony, titanium and other metal oxides, hydrates (hydroxides), sulfates, carbonates, and silicates. These compounds are roughly classified into compounds, their double salts, and mixtures thereof. Specific examples include aluminum oxide (alumina), hydrates thereof, calcium hydroxide, magnesium oxide (magnesia), magnesium hydroxide, zinc oxide (zinc white), lead oxides such as red lead and white lead. , Magnesium carbonate, calcium carbonate, basic magnesium carbonate, white carbon, mica, talc, glass fiber, glass powder, glass beads, clay, diatomaceous earth, silica, wollastonite, iron oxide, antimony oxide, titanium oxide (titania), Examples include lithopone, pumice powder, aluminum sulfate (such as gypsum), zirconium silicate, barium carbonate, dolomite, molybdenum disulfide, and iron sand. On the other hand, examples of the organic filler include cellulose-based and starch-based (including plasticized starch). Antioxidants such as pt-butylhydroxytoluene, pt-butylhydroxyanisole and other hindered phenol antioxidants; thermal stabilizers such as triphenyl phosphite, trilauryl phosphite, and trisnoryl phenyl phosphite Etc .; Examples of ultraviolet absorbers include pt-butylphenyl salicylate, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2,4,5-trihydroxybutyrophenone, etc .; As calcium stearate, zinc stearate, barium stearate, sodium palmitate, etc .; as antistatic agent, N, N-bis (hydroxyethyl) alkylamine, alkylamine, alkylallylsulfonate, alkylsulfonate Etc .; Examples of the flame retardant include hexabromocyclododecane, tris- (2,3-dichloropropyl) phosphate, and pentabromophenyl allyl ether; Examples of the nucleating agent include polyethylene terephthalate and poly-transcyclohexanedimethanol terephthalate.
[0023]
In addition, the biodegradable resin product of the present invention may be a single material or a different or similar composite material.
Furthermore, for the purpose of printing, coating, laminating, etc., the surface of the biodegradable resin product can be further hydrophilized by corona treatment although it is more hydrophilic than polyolefin resin products. In this case, the surface tension is preferably in the range of 40 dyn / cm to 60 dyn / cm.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be explained by examples and comparative examples.
The evaluation methods used in the examples and comparative examples are described below.
First, the evaluation method of the composition of the biodegradable resin product is as follows.
(1) Optical purity OP of polylactic acid polymer
As described above, the optical purity (OP: unit%) of the polylactic acid polymer, which is the main resin constituting the biodegradable resin product, is the single amount of L-lactic acid and / or D-lactic acid constituting the polylactic acid polymer. It is calculated by the following formula from the composition ratio of the body unit.
OP = | [L] − [D] |, where [L] + [D] = 100
[0025]
The composition ratio of the L-lactic acid and / or D-lactic acid monomer unit constituting the polylactic acid polymer is determined by the following measurement conditions, the sample is alkali-decomposed with 1N NaOH, neutralized with 1N HCl, and distilled water. The hydrolyzed sample (liquid) whose concentration was adjusted in 1) was subjected to high performance liquid chromatography (HPLC: LC-10A-VP) manufactured by Shimadzu Corporation equipped with an optical isomer separation column, and L-lactic acid and D- From the detected peak area ratio of lactic acid (area measurement by perpendicular method), the weight ratio [L] (unit%) of L-lactic acid constituting the polylactic acid polymer, the weight ratio of D-lactic acid constituting the polylactic acid polymer [ D] (unit%) was determined and the arithmetic value (rounded off) of 3 points per polymer was taken as the measured value.
Column: Tosoh TSKgel-Enantio-L1 [4.6 mm length × 25 cm length]
Mobile phase: 1 mM CuSO Four Aqueous solution
Sample solution concentration: 25 pg / μL [Concentration as polylactic acid polymer]
Sample solution injection volume: 10 μL
Solvent flow rate: 0.5-0.8 ml / min
Column temperature: 40 ° C
[0026]
(2) Weight average molecular weight Mw of polylactic acid polymer
Using a gel permeation chromatography device (GPC: data processing unit GPC-8020, detector RI-8020) manufactured by Tosoh, the polystyrene-converted standard polystyrene is used under the following measurement conditions to calculate the weight average molecular weight Mw. The measured value was determined as the arithmetic average (rounded off) of 3 points per polymer.
Column: Connected column of Shodex K-805 and K-801 manufactured by Showa Denko [7.8 mm length × 60 cm length]
Eluent: Chloroform
Sample solution concentration: 0.2 wt / vol%
Sample solution injection volume: 200 μL
Solvent flow rate: 1 ml / min
Column / detector temperature: 40 ° C
[0027]
(3) Melting point Tm, glass transition temperature Tg, crystal melting heat ΔHm
In accordance with JIS-K7121 and JIS-K7122, the melting point Tm, glass transition temperature Tg, and crystal melting heat amount ΔHm of the biodegradable resin product were measured. That is, 2 points (2 places) in the longitudinal direction (MD) and the width direction (TD) as a test piece from a biodegradable resin product that was conditioned (left at 23 ° C. for 1 week) under standard conditions (23 ° C. and 65% RH). After cutting out about 10 mg each, using a differential scanning calorimeter (thermal flow rate type DSC) manufactured by Perkin-Elmer, DSC-7 type, room temperature at a nitrogen gas flow rate of 25 ml / min, 10 ° C./min. The temperature was raised from (23 ° C.) to 200 ° C. (primary temperature rise), kept at 200 ° C. for 10 minutes and completely melted, then lowered to 0 ° C. at 30 ° C./min and held at 0 ° C. for 2 minutes. Furthermore, among the DSC curves drawn during the second temperature increase (secondary temperature increase) under the above temperature increase conditions, the melting (endothermic) peak from the peak of the primary temperature increase to the melting point Tm (° C), the endothermic peak From area to heat of crystal fusion ΔHm (unit: J / g), secondary rise Measure the point of intersection (midpoint glass transition temperature) of the stepwise change partial curve and the straight line equidistant in the vertical axis direction from each baseline extension line as Tg (unit: ° C), and calculate 4 points per product The average (rounded off) was taken as the measured value.
[0028]
(4) Phase transition temperature Tα
A strip-shaped film 30 μm thick × 7 mm wide × 35 mm long as a test piece from a biodegradable resin product that has been conditioned (left at 23 ° C. for 1 week) in a standard state (23 ° C. and 65% RH) as a test piece After cutting out two points each in (TD), in accordance with JIS-K7198A, using a dynamic viscoelasticity measuring device (Dynamic Mechanical Analyzer: DMA) manufactured by Rheometrics, RSA-II type, Among the temperature dependence curves of dynamic viscoelasticity drawn while raising the temperature from 0 ° C to 160 ° C at a measurement frequency of 1 Hz and 2 ° C / min, the temperature at the maximum point of the loss tangent tan δ is the phase transition temperature Tα (unit ° C). As a measurement value, the arithmetic average (rounded off) of 4 points per product was used.
(5) Phase transition index
The phase transition index (Tg−Tα) in the present invention is an absolute value of the difference between Tg and Tα measured by the methods (1) and (2).
[0029]
Next, the performance evaluation method of the biodegradable resin product is as follows.
<Machine suitability>
30 μm thick × 10 mm wide × 200 mm long in the longitudinal direction (MD) and the width direction (TD) as a test piece from a biodegradable resin product that was conditioned (left at 23 ° C. for 1 week) under standard conditions (23 ° C. and 65% RH) After three strips of film are cut out each, in accordance with ASTM-D882-95a, A &D's Tensilon universal testing machine, RTC-1210 type, with a chuck of 100 mm and a tensile speed of 10 mm / min. A tensile test was performed under the condition, and a tensile modulus (unit: GPa) was calculated with an arithmetic average value (2 significant digits) per product. From the viewpoint of mechanical suitability, as a measure of waist strength that does not cause wrinkles during film transport, those having a tensile elastic modulus in the range of 0.5 GPa to 5 GPa are suitable (evaluation symbol: ◯). Those outside the range were evaluated as having no suitability (evaluation symbol: x).
[0030]
<Heat resistance>
After cutting three pieces of a 30 μm thick × 300 mm square film as a test piece from a biodegradable resin product that was conditioned (23 ° C., 65% RH) under standard conditions (23 ° C., 1 week standing), about 20 mm thick × 300 mm A film (tension test piece) in which a film was fixed in a tensioned state with a double-sided tape and a metal clip on a wooden frame at an outer angle (260 mm inner angle) was used. Evaluation of the heat resistance of the biodegradable resin product is based on the heat shrinkage treatment process in the shrink film (for example, the package shrink process in a three-side sealed pillow or L-type packaging machine) and the heat during the production in the non-shrink film. In order to assume a heat setting process for suppressing shrinkage (for example, heat set processing after sequential biaxial stretching in a tenter), this tension test piece is moved in a heating furnace by a belt conveyor, and optionally heat treatment temperature (Temperature of hot air) and heat treatment time (heating furnace passage time) can be set. Heating tunnel, shrink tunnel made by K & U Systems, MS-8441 type, tension test piece is heated to 120 ° C. The changes in the appearance before and after the heat treatment that passed through the interior for 3 seconds were observed and evaluated as follows.
Evaluation scale:
Evaluation symbol Scale
○ The appearance of the film remained unchanged.
X: Wrinkles (appearance with thick and thin spots) occurred partially, and the aesthetic appearance was impaired.
[0031]
<High speed heat sealability>
30 μm thickness x 25.4 mm width (= 1 inch width) x 250 mm length in the longitudinal direction (MD) as a test piece from a biodegradable resin product that was conditioned in a standard state (23 ° C., 65% RH) (left at 23 ° C. for 1 week) The peak observed between 1000 mS (= 1 second) after opening the die, using a hot tack measuring instrument manufactured by Theller in accordance with ASTM-F1921-98 The hot tack strength (HT strength: unit N / 1 inchW), which is strength, was measured under the following sealing conditions.
Upper die shape: 60 degree V-shape (half-section of tip cross section R = 1mm × 5.25inch length) metal die
Lower die shape: Flat type (0.5 inch width x 5.25 inch length) rubber lining die
Seal surface dimensions: 1 inch x 1 mm
Sealing temperature: (Upper die temperature) 120 ° C, (Lower die temperature) 25 ° C
Sealing time: 1000mS
Seal pressure: 13 ± 1 MPa
[0032]
The high-speed heat sealability of a biodegradable resin product is such that the resin product of a film or sheet is continuously heat-sealed from a state of a roll-shaped raw film to a package or bag using a packaging machine or bag making machine. When processing, from the viewpoint of continuous heat seal stability where the article to be packaged does not break out from the seal part or the seal part partially peels (or breaks), this corresponds to high-speed heat seal strength in a packaging machine or bag making machine. The hot tack strength (HT strength: peak strength, unit N / 1 inchW) was evaluated as follows.
Evaluation scale:
Evaluation symbol HT strength scale
○ 5 or more The strength is in the practical range, and there is no breakage of the packaged body or broken seal wire.
X Less than 5 The seal part may peel (break), and the package may break out.
[0033]
(8) Comprehensive evaluation
The overall result index for the evaluation of the mechanical suitability, heat resistance, and high-speed heat seal suitability is shown below.
Evaluation scale:
Evaluation symbol Scale
○ If there is no × or △ but there is ○, the task is achieved at a high level.
It is difficult to say that the task has been achieved when there is no Δ and there is Δ.
× × When there is, the problem has not been achieved.
In the following examples and comparative examples, a film which is one form of a biodegradable resin product was evaluated. The polylactic acid resin used was a polylactic acid polymer shown in Table 1 obtained by a known condensation polymerization method (solution method) or ring-opening polymerization method (lactide method). Needless to say, a commercially available polylactic acid polymer can be obtained in the same manner, and can be easily obtained commercially as well as the plasticizer and aliphatic polyester shown in Table 1.
[0034]
The stretching process to the film was performed by melting and kneading the resin raw materials in Table 1 using the same-direction twin screw extruder so as to have the resin composition shown in Table 2, and extruding a resin having a resin temperature of 200 ° C. from a T-die. A substantially amorphous sheet obtained by quenching with a casting roll was heated to 75 ° C. and stretched 3 times in the MD direction, and then stretched 4 times in the TD direction at a stretching temperature of 80 ° C. with a tenter. Thereafter, the film was cooled to near room temperature in the stretched state, thereby obtaining a stretched film of polylactic acid resin having a thickness of 30 μm. In all of the examples and comparative examples, the above-described stretched film was used. However, the resin composition and form of the biodegradable resin product in the present invention are not limited thereto.
[0035]
Examples 1-3 and
[Comparative Examples 1-2]
The resin products of Examples 1 to 3 and Comparative Examples 1 and 2 shown in Table 2 are resin compositions composed only of polylactic acid polymers of the high crystalline polylactic acid (A) and the low crystalline polylactic acid (B) shown in Table 1. The stretched film was evaluated. As shown in the evaluation results in Table 2, ΔHm ≧ 10 and the phase transition index (Tα−Tg) ≦ 15, or the weight ratio (A) / (B) is 80/20 to 40/60 and the weighted average optical purity. OP (av) Examples 1 to 3 corresponding to the range of 90 to 80 were excellent in all of mechanical suitability, heat resistance, and high-speed heat seal suitability.
[0036]
Example 4 and
[Comparative Example 3]
The resin products of Example 4 and Comparative Example 3 shown in Table 2 are blended with a plasticizer for the polylactic acid polymer of high crystalline polylactic acid (A) and / or low crystalline polylactic acid (B) shown in Table 1. The stretched film of the resin composition was evaluated (the amount of the plasticizer blended is expressed in parts by weight with 100 parts by weight of the polylactic acid polymer). As shown in the evaluation results in Table 2, Comparative Example 3 shows a slight improvement in hot tack strength due to the addition of a plasticizer compatible with the polylactic acid polymer, but the phase transition index (Tα-Tg) is high. Since it was still large, the hot tack strength was not sufficient, resulting in a lack of suitability for high-speed heat sealing in a practical range. In Example 4, since ΔHm ≧ 10 and the phase transition index (Tα−Tg) ≦ 15, the mechanical suitability, heat resistance, and heat seal suitability were all excellent.
[0037]
Example 5 and
[Comparative Examples 4 and 5]
The resin products of Example 5 and Comparative Examples 4 and 5 shown in Table 2 were obtained by adding aliphatic polyester to the polylactic acid polymer of high crystalline polylactic acid (A) and / or low crystalline polylactic acid (B) shown in Table 1. The stretched film having the blended resin composition was evaluated (the blended amount of the aliphatic polyester was expressed in parts by weight with 100 parts by weight of the polylactic acid polymer). As shown in the evaluation results in Table 2, although it is a blend of an aliphatic polyester that is incompatible with the polylactic acid polymer, Example 5 has ΔHm ≧ 10 and a phase transition index (Tα−Tg) ≦ 15. It was excellent in mechanical suitability, heat resistance, and heat sealability. Since Comparative Example 4 has a low heat of crystal fusion and also has a low crystal melting point, it is inferior in heat resistance. Comparative Example 5 has a large phase transition index (Tα-Tg), so the hot tack strength cannot be said to be sufficient. It was lacking in suitability for high-speed heat sealing in the area.
[0038]
As a precaution, for the films that are resin products of Examples 1 to 5 and Comparative Examples 1 to 5 shown in Table 2, using a horizontal pillow shrink wrapping machine, FW3451A, manufactured by Fujikikai, at a rate of 40 packs / minute. 100 packs of shrink wrapping were prepared and the finished appearance was evaluated. As a packaged item, a lunch box with a polystyrene foam sheet lid on a polystyrene foam tray is used. The film is sent around the lunch box in a cylindrical shape, and the seam of the film at the bottom of the package is heat sealed. Subsequently, both ends of the cylindrical film were fused and sealed (the margin ratio was 30% in both the vertical and horizontal directions). A small hole for venting air was generated by a needle-like protrusion on the bottom of the package. Subsequently, it was conveyed to a heating tunnel at 120 ° C., and the tunnel residence time was shrunk in 3 seconds to obtain a shrink package. In the shrink wrapping bodies made of the films of Comparative Example 1 and Comparative Example 4, wrinkles such as film thickness spots are partially observed on the surfaces of the film portions covering the polystyrene transparent sheet lids of all the wrapping bodies. The finished aesthetics were poor, and the shrink wraps made of the films of Comparative Examples 2, 3, and 5 were all broken at the seal part of 80% of the wraps. The shrink wrapping body made of the film of this example has no tearing at the seal part in all 100 packs, has an excellent appearance and finish of the film, and satisfies all of mechanical suitability, heat resistance, and heat sealability. I confirmed that it was.
[0039]
[Table 1]
Figure 0003773440
[0040]
[Table 2]
Figure 0003773440
[0041]
【The invention's effect】
The biodegradable resin product of the present invention is a resin product that has biodegradability in a natural environment and is excellent in mechanical suitability, heat resistance, and high-speed heat seal suitability. Further, the packaged body and the composite material using the same are a heat-shrinkable or non-shrinkable stretched film or sheet-like material having a biodegradability composed of a polylactic acid resin, specifically, Is very useful as a shrinkable film or sheet for lunch box or vegetable container overlap, or a non-shrinkable film or sheet for bag with zipper.

Claims (5)

L −乳酸及び/又はD −乳酸が主成分のポリ乳酸重合体を主体とする生分解性樹脂製品おいて、結晶融解熱量ΔHmが10J/g以上、且つ、相転移指標(Tα−Tg)が15℃以下であることを特徴とする生分解性樹脂製品。
[但し、上記式中の記号は、動的粘弾性の温度依存性に対する試験(JIS−K7198A)での損失正接tanδの相転移温度(単位℃)をTα、示差走査熱量測定(JIS−K7121及びJIS−K7122)でのガラス転移温度(単位℃)をTg、融点Tmにおける結晶融解熱量(単位J/g)をΔHmとした。これらは、0℃から200℃の範囲内での測定値である。]
In a biodegradable resin product mainly composed of a polylactic acid polymer mainly composed of L-lactic acid and / or D-lactic acid, the heat of crystal fusion ΔHm is 10 J / g or more, and the phase transition index (Tα-Tg) is A biodegradable resin product having a temperature of 15 ° C. or lower.
[However, the symbols in the above formula are Tα for the phase transition temperature (unit ° C.) of the loss tangent tan δ in the test for temperature dependence of dynamic viscoelasticity (JIS-K7198A), differential scanning calorimetry (JIS-K7121 and The glass transition temperature (unit ° C) in JIS-K7122) was Tg, and the heat of crystal fusion (unit J / g) at the melting point Tm was ΔHm. These are measured values in the range of 0 ° C to 200 ° C. ]
10≦(Tα−Tg)≦15、且つ、10≦ΔHm≦30である請求項1記載の生分解性樹脂製品。The biodegradable resin product according to claim 1, wherein 10 ≦ (Tα−Tg) ≦ 15 and 10 ≦ ΔHm ≦ 30. 請求項1又は請求項2に記載の生分解性樹脂製品よりなる層を少なくとも1層含む複合体であることを特徴とする生分解性樹脂製品。A biodegradable resin product comprising a composite comprising at least one layer made of the biodegradable resin product according to claim 1. ASTM−F1921−98に準拠したヒートシール部位25.4mm幅当りのホットタック強度のピーク値が5N以上であることを特徴とする請求項1〜3のいずれかに記載の生分解性樹脂製品。The biodegradable resin product according to any one of claims 1 to 3, wherein the peak value of the hot tack strength per 25.4 mm width of the heat-sealed part in accordance with ASTM-F1921-98 is 5N or more. L −乳酸及び/又はD −乳酸が主成分のポリ乳酸重合体を主体とする生分解性樹脂製品おいて、該ポリ乳酸重合体が、下記式(1)〜(3)を満足する光学純度OP(A) の結晶性ポリ乳酸(A) と光学純度OP(B) の非晶性ポリ乳酸(B)を混合した組成物であることを特徴とする請求項1〜のいずれかに記載の生分解性樹脂製品。
(1) 90%≦OP(A) ≦100%, 70%≦OP(B) ≦80%
(2) 40%≦[A]/([A]+[B])≦80%
(3) 80%≦OP(av)≦90%
[但し、OP(av)は加重平均光学純度、OP(av)=([A]×OP(A) +[B]×OP(B) )/100、[A]+[B]=100である。又、OP(A) 及び[A]は結晶性ポリ乳酸(A)の光学純度(単位%)及び重量比率(単位%)、OP(B) 及び[B]は非晶性ポリ乳酸(B)の光学純度(単位%)及び重量比率(単位%)を表す。]
In a biodegradable resin product mainly composed of a polylactic acid polymer mainly composed of L-lactic acid and / or D-lactic acid, the polylactic acid polymer satisfies the following formulas (1) to (3). The composition according to any one of claims 1 to 4 , wherein the composition is a mixture of crystalline polylactic acid (A) of OP (A) and amorphous polylactic acid (B) of optical purity OP (B). Biodegradable resin products.
(1) 90% ≤ OP (A) ≤ 100%, 70% ≤ OP (B) ≤ 80%
(2) 40% ≦ [A] / ([A] + [B]) ≦ 80%
(3) 80% ≦ OP (av) ≦ 90%
[Where OP (av) is the weighted average optical purity, OP (av) = ([A] × OP (A) + [B] × OP (B) ) / 100, [A] + [B] = 100 is there. OP (A) and [A] are optical purity (unit%) and weight ratio (unit%) of crystalline polylactic acid (A), and OP (B) and [B] are amorphous polylactic acid (B). Represents the optical purity (unit%) and the weight ratio (unit%). ]
JP2001331989A 2001-10-30 2001-10-30 Biodegradable resin products Expired - Lifetime JP3773440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331989A JP3773440B2 (en) 2001-10-30 2001-10-30 Biodegradable resin products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331989A JP3773440B2 (en) 2001-10-30 2001-10-30 Biodegradable resin products

Publications (2)

Publication Number Publication Date
JP2003128797A JP2003128797A (en) 2003-05-08
JP3773440B2 true JP3773440B2 (en) 2006-05-10

Family

ID=19147476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331989A Expired - Lifetime JP3773440B2 (en) 2001-10-30 2001-10-30 Biodegradable resin products

Country Status (1)

Country Link
JP (1) JP3773440B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221032A1 (en) * 2002-05-29 2005-10-06 Kazuyuki Yamane Container of biodegradable heat-resistant hard resin molding
JP2005336468A (en) * 2004-04-26 2005-12-08 Mitsubishi Plastics Ind Ltd Lactic acid-based flexible film
GB2445747B (en) 2007-01-22 2012-08-08 Tate & Lyle Plc New lactic acid polymers
CN114083862B (en) * 2021-11-05 2023-02-28 厦门长塑实业有限公司 High-interface-binding-force bidirectional-stretching polylactic acid composite film and preparation method and application thereof

Also Published As

Publication number Publication date
JP2003128797A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP4198058B2 (en) Polylactic acid resin biaxially stretched film
JP3258302B2 (en) Biodegradable biaxially stretched film
JP4916447B2 (en) Multilayer film with biodegradable sealant layer
JP4522868B2 (en) Biodegradable multilayer film with sealing function
JP4243926B2 (en) Biodegradable heat shrinkable film and shrink package using the same
JP2005313998A (en) Biodegradable baglike product
JP3862557B2 (en) Transparent impact-resistant polylactic acid-based stretched film or sheet and method for producing the same
JP5145695B2 (en) Method for producing polylactic acid resin film
JP5269642B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP3773440B2 (en) Biodegradable resin products
JP3739311B2 (en) Biodegradable film
JP2003136592A (en) Biodegradable biaxially stretched film
JP4836194B2 (en) Transparent biodegradable resin stretched film and resin product with improved gas barrier properties
JP2004143432A (en) Polylactic acid-based resin oriented film and method for producing the same
JP2004149636A (en) Polylactic acid resin composition and molded article
JP2009107669A (en) Packaging bag
JP2007106067A (en) Film with biodegradable sealant layer
JP2006335904A (en) Polylactic acid-based oriented film
JP5777133B2 (en) Polylactic acid resin film
JP2005007610A (en) Biodegradable multilayered heat-shrinkable film and package
JP2005028615A (en) Biodegradable film and its manufacturing method
JP2003138029A (en) Polylactic acid based resin product
JP2006088518A (en) Heat-shrinkable polylactic acid film
JP2007069538A (en) Laminated film composed of biodegradable aliphatic polyester
JP4518933B2 (en) Biaxially stretched biodegradable film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060214

R150 Certificate of patent or registration of utility model

Ref document number: 3773440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term