WO2003005476A1 - Station de chargement ou dechargement pour batterie a circulation redox - Google Patents
Station de chargement ou dechargement pour batterie a circulation redox Download PDFInfo
- Publication number
- WO2003005476A1 WO2003005476A1 PCT/AT2002/000145 AT0200145W WO03005476A1 WO 2003005476 A1 WO2003005476 A1 WO 2003005476A1 AT 0200145 W AT0200145 W AT 0200145W WO 03005476 A1 WO03005476 A1 WO 03005476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- charging
- electrodes
- electrode
- connection
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04186—Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a charging or discharging station for a redox flow-through battery, with a number of flow-through cells, each consisting of two half-cells that can be flowed through by differently charged electrolyte liquids and separated by means of a selectively ion-permeable membrane, in each of which an electrode is arranged, which is electrically connected to the electrode of another cell or to an external connection.
- Arrangements of the type mentioned are known, for example, from DE 29 27 868 AI or also WO 00/57507 AI and use electro-chemical reduction and oxidation processes for storing and releasing electrical energy, which are essentially in the liquid phase using soluble salts of Metals that have different oxidation states run off.
- chrome redox batteries, iron-titanium redox batteries or, more recently, vanadium redox batteries (VRB) are known, which have now reached technologically and structurally mature stages and are used in practical use, for example for temporary storage in photovoltaic systems.
- Redox batteries of this type have the serious advantage that the underlying electrochemical reactions take place completely in the solutions themselves, and thus no chemical compounds are deposited on or in the electrodes or are detached from them during charging or discharging. This makes it possible, for example, to charge the battery by simply and quickly replacing the otherwise charged electrolyte liquids, which also allows the use of batteries of this type in vehicles which, like the conventional filling stations, can also be charged at electrolyte filling stations.
- the storage capacity of such redox batteries can be influenced in the simplest way via the volume of the available electrolyte solutions, the available discharge voltage and output being easily influenced via the cell size and number of interconnected cells.
- Electrodes to be assigned to adjacent flow cells in the partition are themselves electrically conductive connections created by overlapping continuous electrically conductive fibers. In this way, too, there is an electrical series connection of a large number of flow cells which can be selected within wide limits, which makes it possible to select discharge voltages in a very simple manner.
- the present invention now takes a different approach. It is based on the consideration that the requirements for a charging station for redox flow batteries can usually be met much better and more simply by connecting the individual flow cells in parallel, while in most cases it is simpler and more advantageous for the discharge station for the electrical ones Series connection of the cells remain.
- the addressed electrically conductive connection of at least some of the electrodes via interposed switching elements which selectively connect parallel or series electrical connection of at least individual groups of cells enable, runs, which enables a very advantageous influence on the characteristics of the battery or the adaptation to the respective use of the cell network (for charging or discharging).
- This allows the current and voltage to be adapted to the respective needs in the simplest way, both when charging and discharging the battery.
- the parallel connection of all individual cells results, for example, in a charge or discharge voltage corresponding to the individual cell with a correspondingly multiplied charge or discharge current - the groupwise or parallel connection which is possible in groups enables a wide variety of gradations to be made between maximum voltage and maximum current.
- Individual cells or even cell groups can be monitored very easily in the parallel connection, with which, for example, defective individual cells or cell groups can be recognized and taken into account. Local overloading of individual cells and thus dangerous gas development can occur This prevents them, which increases the lifespan and the security of the system.
- the switching elements have a switching position in which at least individual connections of the electrodes are open. With these opened connections, for example, the self-discharges via the electrolyte fluids which are otherwise inevitable when such redox flow-through batteries are in the idle state, since there is no longer an electrically conductive connection between the electrodes of different electrolyte spaces.
- the cell contents were shut off in an electrically insulating manner from the remaining electrolyte volume during standstill, so that this self-discharge was limited to the cell contents.
- FIG. 1 shows a redox flow-through battery according to the known prior art
- FIGS. 2 to 4 each show only the most essential components of a charging or discharging station for such a battery in an exemplary embodiment according to the present invention.
- the redox flow battery according to FIG. 1 (for example a vanadium redox battery) has four flow cells 1, each of which consists of two half cells 3, 4 which can be flowed through by differently charged electrolyte liquids and separated by means of a selectively ion-permeable membrane 2.
- each of the half cells 3, 4 there is in each case an electrode 5, 6 which is electrical in the manner explained in more detail below is conductively connected to the electrode 6, 5 of another cell or to an external connection (+ or - at the top in FIG. 1).
- the electrolyte liquids (corresponding to the anode and cathode also referred to as a ⁇ olyte and catholyte) are stored in containers 7, 8 (the volume of which determines the storage capacity of the battery) and are fed via lines 9, 10 and pumps 11, if necessary, via the respective half cells 3 , 4 is circulated, the electrochemical reduction or oxidation processes which cause the storage or release of the electrical energy to take place (see, for example, the explanations in the aforementioned DE 29 27 868 A1).
- the further electrodes 5, 6, respectively assigned to the half cells are arranged on bipolar partition walls 14, with flow between the two adjoining one another Electrodes to be assigned to cells are created via the partition 14 even electrically conductive connections. This results in an electrical series connection of all (in the example four) flow cells 1, the total voltage between the connections + and - (lines 12 and 13) corresponding to the sum of the individual cell voltages, which in turn depends on the redox potential of the respective redox partner depend.
- the electrically conductive connection 15 at least some of the elec- trodes 5, 6 runs through interposed switching elements 16, which enable the optional electrical parallel (Fig. 3) or series connection (Fig. 2) at least individual groups of cells 1 or according to Fig. 4 can also have a switching position in which at least individual connections 15 of the electrodes 5, 6 are open at all.
- the switching elements 16 (which can be imagined in FIG. 2 as two switching bridges lying in parallel and rotatable by one end point each) are now switched so that each electrode 5 with the plus connection and each electrode 6 with the minus connection in Connection is established, with which an electrical parallel connection is realized and the total voltage corresponds to that of a single flow cell.
- the switching elements 16 are in the open position, the individual electrodes 6, 7 being potential-free, which prevents the electrolyte liquids from self-discharging.
- the switching elements 16 or their attachment in the electrical connections 15 between the electrodes 5, 6 can be freely selected within wide limits - in particular, semiconductor switching elements, electronic switches such as IGBTs, Mosfets, electrical ones, for example Relays or transistors, are used and also controlled by an electronic feedback / control system. Apart from that, manually operated switches (cells are manually switched to parallel or serial operation) would also be possible.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA1014/2001 | 2001-07-02 | ||
AT0101401A AT410268B8 (de) | 2001-07-02 | 2001-07-02 | Lade- bzw. entladestation für eine redox-durchflussbatterie |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003005476A1 true WO2003005476A1 (fr) | 2003-01-16 |
Family
ID=3684102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2002/000145 WO2003005476A1 (fr) | 2001-07-02 | 2002-05-15 | Station de chargement ou dechargement pour batterie a circulation redox |
Country Status (2)
Country | Link |
---|---|
AT (1) | AT410268B8 (fr) |
WO (1) | WO2003005476A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT502979B1 (de) * | 2006-05-15 | 2007-06-15 | Funktionswerkstoffe Forschungs | Elektrochemischer strömungsmodul mit einer einrichtung zum unterdrücken eines elektrischen nebenschlussstromes |
CN102867975A (zh) * | 2011-07-05 | 2013-01-09 | 中国科学院大连化学物理研究所 | 一种减小甚至消除全钒液流储能电池系统漏电电流的方法 |
US8877365B2 (en) | 2009-05-28 | 2014-11-04 | Deeya Energy, Inc. | Redox flow cell rebalancing |
US8883297B2 (en) | 2008-10-10 | 2014-11-11 | Imergy Power Systems, Inc. | Methods for bonding porous flexible membranes using solvent |
US8951665B2 (en) | 2010-03-10 | 2015-02-10 | Imergy Power Systems, Inc. | Methods for the preparation of electrolytes for chromium-iron redox flow batteries |
US9035617B2 (en) | 2009-05-28 | 2015-05-19 | Imergy Power Systems, Inc. | Control system for a flow cell battery |
WO2015182339A1 (fr) * | 2014-05-28 | 2015-12-03 | 住友電気工業株式会社 | Système de batterie rédox à circulation et procédé de fonctionnement de système de batterie rédox à circulation |
US9281535B2 (en) | 2010-08-12 | 2016-03-08 | Imergy Power Systems, Inc. | System dongle |
KR101655292B1 (ko) * | 2016-04-15 | 2016-09-07 | 스탠다드에너지(주) | 레독스 흐름전지 |
US9479056B2 (en) | 2009-05-28 | 2016-10-25 | Imergy Power Systems, Inc. | Buck-boost circuit with protection feature |
GB2604091A (en) * | 2021-01-25 | 2022-08-31 | Goldstein Jonathan | Redox battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4485154A (en) * | 1981-09-08 | 1984-11-27 | Institute Of Gas Technology | Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system |
US4797566A (en) * | 1986-02-27 | 1989-01-10 | Agency Of Industrial Science And Technology | Energy storing apparatus |
US6074775A (en) * | 1998-04-02 | 2000-06-13 | The Procter & Gamble Company | Battery having a built-in controller |
US6239508B1 (en) * | 1997-10-06 | 2001-05-29 | Reveo, Inc. | Electrical power generation system having means for managing the discharging and recharging of metal fuel contained within a network of metal-air fuel cell battery subsystems |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1212303B (it) * | 1978-07-10 | 1989-11-22 | Elche Ltd | Accumulatore redox. |
WO1989005528A1 (fr) * | 1987-12-10 | 1989-06-15 | Unisearch Limited | Element de charge en vanadium et systeme de batterie double en vanadium |
AUPP938799A0 (en) * | 1999-03-23 | 1999-04-15 | Unisearch Limited | Electrodes |
-
2001
- 2001-07-02 AT AT0101401A patent/AT410268B8/de not_active IP Right Cessation
-
2002
- 2002-05-15 WO PCT/AT2002/000145 patent/WO2003005476A1/fr not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4485154A (en) * | 1981-09-08 | 1984-11-27 | Institute Of Gas Technology | Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system |
US4797566A (en) * | 1986-02-27 | 1989-01-10 | Agency Of Industrial Science And Technology | Energy storing apparatus |
US6239508B1 (en) * | 1997-10-06 | 2001-05-29 | Reveo, Inc. | Electrical power generation system having means for managing the discharging and recharging of metal fuel contained within a network of metal-air fuel cell battery subsystems |
US6074775A (en) * | 1998-04-02 | 2000-06-13 | The Procter & Gamble Company | Battery having a built-in controller |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT502979B1 (de) * | 2006-05-15 | 2007-06-15 | Funktionswerkstoffe Forschungs | Elektrochemischer strömungsmodul mit einer einrichtung zum unterdrücken eines elektrischen nebenschlussstromes |
US8883297B2 (en) | 2008-10-10 | 2014-11-11 | Imergy Power Systems, Inc. | Methods for bonding porous flexible membranes using solvent |
US9479056B2 (en) | 2009-05-28 | 2016-10-25 | Imergy Power Systems, Inc. | Buck-boost circuit with protection feature |
US8877365B2 (en) | 2009-05-28 | 2014-11-04 | Deeya Energy, Inc. | Redox flow cell rebalancing |
US9035617B2 (en) | 2009-05-28 | 2015-05-19 | Imergy Power Systems, Inc. | Control system for a flow cell battery |
US8951665B2 (en) | 2010-03-10 | 2015-02-10 | Imergy Power Systems, Inc. | Methods for the preparation of electrolytes for chromium-iron redox flow batteries |
US9281535B2 (en) | 2010-08-12 | 2016-03-08 | Imergy Power Systems, Inc. | System dongle |
CN102867975A (zh) * | 2011-07-05 | 2013-01-09 | 中国科学院大连化学物理研究所 | 一种减小甚至消除全钒液流储能电池系统漏电电流的方法 |
WO2015182339A1 (fr) * | 2014-05-28 | 2015-12-03 | 住友電気工業株式会社 | Système de batterie rédox à circulation et procédé de fonctionnement de système de batterie rédox à circulation |
US10263270B2 (en) | 2014-05-28 | 2019-04-16 | Sumitomo Electric Industries, Ltd. | Redox flow battery system and method for operating redox flow battery system |
KR101655292B1 (ko) * | 2016-04-15 | 2016-09-07 | 스탠다드에너지(주) | 레독스 흐름전지 |
US10090550B2 (en) | 2016-04-15 | 2018-10-02 | Standard Energy Co., Ltd. | Redox flow battery |
GB2604091A (en) * | 2021-01-25 | 2022-08-31 | Goldstein Jonathan | Redox battery |
GB2604091B (en) * | 2021-01-25 | 2023-04-26 | Goldstein Jonathan | Redox battery |
Also Published As
Publication number | Publication date |
---|---|
AT410268B (de) | 2003-03-25 |
AT410268B8 (de) | 2003-04-25 |
ATA10142001A (de) | 2002-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69801341T2 (de) | Redox durchflussbatteriesystem und zellenstapel | |
DE102014006028B4 (de) | Multibatteriesystem zur Erhöhung der elektrischen Reichweite | |
DE68917810T2 (de) | Verfahren zum Laden und Entladen einer Batterie und dieses Verfahren verwendende Energiequelle. | |
DE102009014499B4 (de) | Brennstoffzellensystem zum vollständigen Aufladen einer elektrischen Energiespeichereinrichtung | |
DE3326729A1 (de) | Verfahren zum betrieb eines elektrochemischen speichers | |
EP3593435B1 (fr) | Procédé de fonctionnement d'un système d'accumulateur modulaire et système d'accumulateur modulaire | |
DE69109252T2 (de) | Gasdichte bipolare Bleisäurebatterie. | |
AT410268B (de) | Lade- bzw. entladestation für eine redox-durchflussbatterie | |
EP2424069A2 (fr) | Installation de formation de batteries lithium-ion | |
WO2016202846A1 (fr) | Onduleur, système de batteries à flux et procédé de chargement et déchargement d'une batterie à flux | |
EP3676933B1 (fr) | Dispositif d'électropolissage d'un accumulateur d'énergie présentant au moins un élément au lithium-ion, appareil de charge et procédé de fonctionnement de l'appareil de charge | |
DE112022001561T5 (de) | Leistungsbatteriesatz und dessen Steuerungsverfahren | |
DE102018108041B4 (de) | Verfahren zum Aufschalten mehrerer, parallel verschalteter Batterieblöcke | |
DE1942331C3 (de) | Verfahren zum Laden einer galvanischen Batterie mit mehreren Zellen, die eine positive Sauerstoffelektrode und eine wiederaufladbare negative Elektrode enthalten | |
AT514391B1 (de) | Redox-Durchflussbatterie und Verfahren zu ihrer Reaktivierung | |
AT394119B (de) | Verfahren zur gezielten elektrochemischen umsetzung in galvanischen zellen sowie wiederaufladbare batterie | |
DE102011077664A1 (de) | Energiespeichersystem mit einer Vergleichmäßigungseinrichtung zum Vergleichmäßigen von Ladezuständen von Energiespeichereinheiten | |
DE2819584C2 (de) | Schaltung zur Sicherung von Speicherzellen | |
EP0343144B1 (fr) | Elément galvanique et procédé de détermination de l'état de charge uniforme | |
EP4193408A1 (fr) | Système de batterie à flux rédox et procédé de fonctionnement | |
DE102016224005A1 (de) | Elektrische Energiespeichereinrichtung | |
DE102020117681A1 (de) | Kontrolleinrichtung für einen Batteriespeicher | |
DE102018121669A1 (de) | Reversible Brennstoffzelleneinheit und eine reversible Brennstoffzelle | |
DE102022200989B3 (de) | Hochvoltbatteriesystem | |
WO2024115220A1 (fr) | Batterie redox comprenant au moins un élément |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 091302002 Country of ref document: AT Date of ref document: 20030116 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 91302002 Country of ref document: AT |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |