WO2003005476A1 - Charging or discharging station for a redox flow battery - Google Patents

Charging or discharging station for a redox flow battery Download PDF

Info

Publication number
WO2003005476A1
WO2003005476A1 PCT/AT2002/000145 AT0200145W WO03005476A1 WO 2003005476 A1 WO2003005476 A1 WO 2003005476A1 AT 0200145 W AT0200145 W AT 0200145W WO 03005476 A1 WO03005476 A1 WO 03005476A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
charging
electrodes
electrode
connection
Prior art date
Application number
PCT/AT2002/000145
Other languages
German (de)
French (fr)
Inventor
Martha Maly-Schreiber
Adam Whitehead
Christoph Hagg
Original Assignee
Funktionswerkstoffe Forschungs- U. Entwicklungs Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funktionswerkstoffe Forschungs- U. Entwicklungs Gmbh filed Critical Funktionswerkstoffe Forschungs- U. Entwicklungs Gmbh
Publication of WO2003005476A1 publication Critical patent/WO2003005476A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a charging or discharging station for a redox flow-through battery, with a number of flow-through cells, each consisting of two half-cells that can be flowed through by differently charged electrolyte liquids and separated by means of a selectively ion-permeable membrane, in each of which an electrode is arranged, which is electrically connected to the electrode of another cell or to an external connection.
  • Arrangements of the type mentioned are known, for example, from DE 29 27 868 AI or also WO 00/57507 AI and use electro-chemical reduction and oxidation processes for storing and releasing electrical energy, which are essentially in the liquid phase using soluble salts of Metals that have different oxidation states run off.
  • chrome redox batteries, iron-titanium redox batteries or, more recently, vanadium redox batteries (VRB) are known, which have now reached technologically and structurally mature stages and are used in practical use, for example for temporary storage in photovoltaic systems.
  • Redox batteries of this type have the serious advantage that the underlying electrochemical reactions take place completely in the solutions themselves, and thus no chemical compounds are deposited on or in the electrodes or are detached from them during charging or discharging. This makes it possible, for example, to charge the battery by simply and quickly replacing the otherwise charged electrolyte liquids, which also allows the use of batteries of this type in vehicles which, like the conventional filling stations, can also be charged at electrolyte filling stations.
  • the storage capacity of such redox batteries can be influenced in the simplest way via the volume of the available electrolyte solutions, the available discharge voltage and output being easily influenced via the cell size and number of interconnected cells.
  • Electrodes to be assigned to adjacent flow cells in the partition are themselves electrically conductive connections created by overlapping continuous electrically conductive fibers. In this way, too, there is an electrical series connection of a large number of flow cells which can be selected within wide limits, which makes it possible to select discharge voltages in a very simple manner.
  • the present invention now takes a different approach. It is based on the consideration that the requirements for a charging station for redox flow batteries can usually be met much better and more simply by connecting the individual flow cells in parallel, while in most cases it is simpler and more advantageous for the discharge station for the electrical ones Series connection of the cells remain.
  • the addressed electrically conductive connection of at least some of the electrodes via interposed switching elements which selectively connect parallel or series electrical connection of at least individual groups of cells enable, runs, which enables a very advantageous influence on the characteristics of the battery or the adaptation to the respective use of the cell network (for charging or discharging).
  • This allows the current and voltage to be adapted to the respective needs in the simplest way, both when charging and discharging the battery.
  • the parallel connection of all individual cells results, for example, in a charge or discharge voltage corresponding to the individual cell with a correspondingly multiplied charge or discharge current - the groupwise or parallel connection which is possible in groups enables a wide variety of gradations to be made between maximum voltage and maximum current.
  • Individual cells or even cell groups can be monitored very easily in the parallel connection, with which, for example, defective individual cells or cell groups can be recognized and taken into account. Local overloading of individual cells and thus dangerous gas development can occur This prevents them, which increases the lifespan and the security of the system.
  • the switching elements have a switching position in which at least individual connections of the electrodes are open. With these opened connections, for example, the self-discharges via the electrolyte fluids which are otherwise inevitable when such redox flow-through batteries are in the idle state, since there is no longer an electrically conductive connection between the electrodes of different electrolyte spaces.
  • the cell contents were shut off in an electrically insulating manner from the remaining electrolyte volume during standstill, so that this self-discharge was limited to the cell contents.
  • FIG. 1 shows a redox flow-through battery according to the known prior art
  • FIGS. 2 to 4 each show only the most essential components of a charging or discharging station for such a battery in an exemplary embodiment according to the present invention.
  • the redox flow battery according to FIG. 1 (for example a vanadium redox battery) has four flow cells 1, each of which consists of two half cells 3, 4 which can be flowed through by differently charged electrolyte liquids and separated by means of a selectively ion-permeable membrane 2.
  • each of the half cells 3, 4 there is in each case an electrode 5, 6 which is electrical in the manner explained in more detail below is conductively connected to the electrode 6, 5 of another cell or to an external connection (+ or - at the top in FIG. 1).
  • the electrolyte liquids (corresponding to the anode and cathode also referred to as a ⁇ olyte and catholyte) are stored in containers 7, 8 (the volume of which determines the storage capacity of the battery) and are fed via lines 9, 10 and pumps 11, if necessary, via the respective half cells 3 , 4 is circulated, the electrochemical reduction or oxidation processes which cause the storage or release of the electrical energy to take place (see, for example, the explanations in the aforementioned DE 29 27 868 A1).
  • the further electrodes 5, 6, respectively assigned to the half cells are arranged on bipolar partition walls 14, with flow between the two adjoining one another Electrodes to be assigned to cells are created via the partition 14 even electrically conductive connections. This results in an electrical series connection of all (in the example four) flow cells 1, the total voltage between the connections + and - (lines 12 and 13) corresponding to the sum of the individual cell voltages, which in turn depends on the redox potential of the respective redox partner depend.
  • the electrically conductive connection 15 at least some of the elec- trodes 5, 6 runs through interposed switching elements 16, which enable the optional electrical parallel (Fig. 3) or series connection (Fig. 2) at least individual groups of cells 1 or according to Fig. 4 can also have a switching position in which at least individual connections 15 of the electrodes 5, 6 are open at all.
  • the switching elements 16 (which can be imagined in FIG. 2 as two switching bridges lying in parallel and rotatable by one end point each) are now switched so that each electrode 5 with the plus connection and each electrode 6 with the minus connection in Connection is established, with which an electrical parallel connection is realized and the total voltage corresponds to that of a single flow cell.
  • the switching elements 16 are in the open position, the individual electrodes 6, 7 being potential-free, which prevents the electrolyte liquids from self-discharging.
  • the switching elements 16 or their attachment in the electrical connections 15 between the electrodes 5, 6 can be freely selected within wide limits - in particular, semiconductor switching elements, electronic switches such as IGBTs, Mosfets, electrical ones, for example Relays or transistors, are used and also controlled by an electronic feedback / control system. Apart from that, manually operated switches (cells are manually switched to parallel or serial operation) would also be possible.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a charging or discharging station for a redox flow battery. Said station comprises a number of flow cells (1) which respectively consist of two half cells (3, 4) which are separated by a selectively ion-permeable membrane (2) and can be flown through by differently charged electrolyte liquids. An electrode (5, 6) is respectively arranged in each half cell (3, 4) and is connected in an electroconductive manner to the electrode of another cell (1) or to an external connection (+, -). In order to be able to adjust the charging or discharging current and voltage for the respective function, the electroconductive connection (15) of at least one of the electrodes (5, 6) can be carried out by means of interconnected switching elements (16) which enable at least individual groups of cells (1) to be the optionally connected in parallel or in series.

Description

Die Erfindung betrifft eine Lade- bzw. Entladestation für eine Redox- Durchflußbatterie, mit einer Anzahl von Durchfluß-Zellen, die jeweils aus zwei von unterschiedlich geladenen Elektrolytflüssigkeiten durchströmbaren, mittels einer selektiv ionendurchlässigen Membran getrennten Halbzellen bestehen, in denen jeweils eine Elektrode angeordnet ist, welche elektrisch leitend mit der Elektrode einer anderen Zelle bzw. mit einem äußeren Anschluß verbunden ist. The invention relates to a charging or discharging station for a redox flow-through battery, with a number of flow-through cells, each consisting of two half-cells that can be flowed through by differently charged electrolyte liquids and separated by means of a selectively ion-permeable membrane, in each of which an electrode is arranged, which is electrically connected to the electrode of another cell or to an external connection.
Anordnungen der genannten Art sind beispielsweise aus DE 29 27 868 AI oder auch WO 00/57507 AI bekannt und nutzen zur Speicherung und Freisetzung von elektrischer Energie elektro-chem ische Reduktions- und Oxidationsvorgänge, die im wesentlichen in flüssiger Phase unter Verwendung von löslichen Salzen von Metallen, die verschiedene Oxidationszu- stände aufweisen, ablaufen. Bekannt sind beispielsweise Chrom-Redoxbatterien, Eisen-Titan- Redoxbatterien oder in letzter Zeit vermehrt auch Vanadium-Redoxbatterien (VRB), die mittlerweile technologisch und konstruktiv ausgereifte Stadien erreicht haben und im praktischen Einsatz beispielsweise zur Zwischenspeicherung bei Photovoltaikanlagen Verwendung finden. Derartige Redoxbatterien haben den gravierenden Vorteil, dass die zugrundeliegenden elektro-chemischen Reaktionen vollständig in den Lösungen selbst ablaufen und sich damit während der Ladung bzw. Entladung keine chemischen Verbindungen auf bzw. in den Elektroden abscheiden oder von diesen abgelöst werden. Damit ist es beispielsweise möglich, ein Laden der Batterie durch einfachen und schnellen Austausch der anderweitig geladenen Elektrolytflüssigkeiten durchzuführen, was die Verwendung derartiger Batterien auch in Fahrzeugen erlaubt, die ähnlich den konventionellen Tankstellen auch an Elektrolyt-Tankstellen aufgeladen werden können. Die Speicherkapazität derartiger Redoxbatterien kann auf einfachste Weise über das Volumen der verfügbaren Elektrolytlösungen beeinflusst werden, wobei die verfügbare Entladespannung und -leistung über die Zellengröße und Anzahl der zusammengeschalteten Zellen leicht beeinflussbar ist.Arrangements of the type mentioned are known, for example, from DE 29 27 868 AI or also WO 00/57507 AI and use electro-chemical reduction and oxidation processes for storing and releasing electrical energy, which are essentially in the liquid phase using soluble salts of Metals that have different oxidation states run off. For example, chrome redox batteries, iron-titanium redox batteries or, more recently, vanadium redox batteries (VRB) are known, which have now reached technologically and structurally mature stages and are used in practical use, for example for temporary storage in photovoltaic systems. Redox batteries of this type have the serious advantage that the underlying electrochemical reactions take place completely in the solutions themselves, and thus no chemical compounds are deposited on or in the electrodes or are detached from them during charging or discharging. This makes it possible, for example, to charge the battery by simply and quickly replacing the otherwise charged electrolyte liquids, which also allows the use of batteries of this type in vehicles which, like the conventional filling stations, can also be charged at electrolyte filling stations. The storage capacity of such redox batteries can be influenced in the simplest way via the volume of the available electrolyte solutions, the available discharge voltage and output being easily influenced via the cell size and number of interconnected cells.
Um die systembedingten Verluste zufolge des notwendigen Austausches an Ionen und Elektronen zwischen den Halbzellen bzw. zu den Stromableitern herabzusetzen, wurde gemäß der eingangs bereits erwähnten DE 2927 868 vorgeschlagen, Anode und Kathode als elektrolytdurchlässige dünne Schicht unmittelbar auf gegenüberliegenden Oberflächen der die beiden Halbzellen trennenden, teildurchlässigen, ionenselektiven Membran aufzubringen und auf der der Membran abgewandten Oberfläche mittels eines elektrisch leitenden Gitterwerks an vielen Punkten zu kontaktieren. Dieser gitterförmige Stromableiter wurde dann mittels leitender und Strömungskanäle für den Elektrolyten bildender Teile von Endplatten bzw. von bipolaren Trenneinsätzen nach außen oder zur nächstgelegenen Elektrode einer benachbarten Zelle elektrisch leitend verbunden. Es ergaben sich damit auf konstruktiv einfache Weise elektrisch seriell geschaltete Zellenverbände, die über Kanäle und Zu- bzw. Abströmöffnungen im wesentlichen parallel mit den Elektrolytflüssigkeiten durchströmbar waren.In order to reduce the system-related losses due to the necessary exchange of ions and electrons between the half cells or to the current arresters, According to DE 2927 868 already mentioned at the beginning, it is proposed to apply the anode and cathode as an electrolyte-permeable thin layer directly to opposite surfaces of the partially permeable, ion-selective membrane separating the two half cells and to contact them at many points on the surface facing away from the membrane by means of an electrically conductive lattice. This grid-shaped current conductor was then electrically conductively connected to the outside or to the closest electrode of an adjacent cell by means of end plates or bipolar separating inserts forming flow channels for the electrolyte. This resulted in a structurally simple manner in electrically series-connected cell assemblies through which the electrolyte fluids could flow essentially in parallel via channels and inflow and outflow openings.
Aus der eingangs an zweiter Stelle angesprochenen WO 00/57507 sind ähnliche Anordnungen bekannt, bei denen die den Halbzellen zugeordneten Elektroden nicht auf der mittigen, ionenselektiven Trennmembran sondern auf den äußeren Zellwänden angeordnet sind, wobei sogenannte bipolare Elektroden verwendet werden, bei denen zwischen den beiden, aneinander angrenzenden Durchfluß-Zellen zuzuordnenden Elektroden in der Trennwand selbst elektrisch leitfähige Verbindungen durch überlappend durchgehende elektrisch leitende Fasern geschaffen sind. Auch auf diese Weise ergibt sich eine elektrische Serienschaltung von in weiten Grenzen wählbar vielen Durchfluß-Zellen, was auf recht einfache Weise wählbare Entladespannungen ermöglicht.Similar arrangements are known from WO 00/57507 mentioned in the introduction, in which the electrodes assigned to the half cells are not arranged on the central, ion-selective separation membrane but on the outer cell walls, so-called bipolar electrodes being used, in which between the two , Electrodes to be assigned to adjacent flow cells in the partition are themselves electrically conductive connections created by overlapping continuous electrically conductive fibers. In this way, too, there is an electrical series connection of a large number of flow cells which can be selected within wide limits, which makes it possible to select discharge voltages in a very simple manner.
Bei allen bekannten Anordnungen der eingangs genannten Art wurde zur Ermöglichung des beschriebenen einfachen Aufbaus des Zellenverbundes bzw. zur Sicherstellung von ohne weitere Verluste erhaltbaren gängigen Ausgangsspannungen stets die serielle Verbindung der einzelnen Durchfluß-Zellen angewandt, was aber (soferne der gleiche Zellenverbund wechselweise als Lade- und Entladestation verwendet wird) den Nachteil hat, dass damit auch das Laden der Batterie seriell erfolgen muß. Dem wurde beispeilsweise gemäß WO 89/05528 dadurch zu begegnen versucht, dass in einem Batteriesystem je eine separate Lade- und Entladestation (zusammenarbeitend mit dem gleichen Elektrolytreservoir) vorgesehen sind, womit die einzelnen Stationen dann besser auf die Lade- bzw. Entladefunktion abgestellt sein können, was beispielweise über unterschiedliche Anzahl und Größe der- nach wie vor seriell geschalteten - einzelnen Zellen erfolgt.In all known arrangements of the type mentioned at the outset, the serial connection of the individual flow cells was always used to enable the described simple structure of the cell network or to ensure common output voltages that can be obtained without further losses, which however (as long as the same cell network alternately as charging and discharge station is used) has the disadvantage that the battery must also be charged serially. An attempt was made to counter this, for example in accordance with WO 89/05528, by having a separate battery system in each case Charging and discharging station (working together with the same electrolyte reservoir) are provided, with which the individual stations can then be better adapted to the charging or discharging function, which is done, for example, by varying the number and size of the individual cells, which are still connected in series.
Zur Vermeidung der in den unterschiedlichen Anforderungen an Lade- und Entladestation gelegenen Nachteilen der genannten bekannten Anordnungen geht die vorliegende Erfindung nun einen anderen Weg. Sie geht aus von der Überlegung, dass die Anforderungen an eine Ladestation von Redox-Durchflußbatterien üblicherweise wesentlich besser und einfacher durch eine elektrische Parallelschaltung der einzelnen Durchfluß-Zellen erfüllbar sind, während es für die Entladestation in den meisten Fällen einfacher und vorteilhafter ist bei der elektrischen Serienschaltung der Zellen zu verbleiben. Um nun ein derartiges Konzept unter Beibehaltung eines konstruktiv einfachen Aufbaus des Zellenverbundes zu ermöglichen, wird gemäß der vorliegenden Erfindung vorgeschlagen, dass die angesprochene elektrisch leitende Verbindung zumindest einzelner der Elektroden über zwischengeschaltete Schaltelemente, welche die wahlweise elektrische Parallel- oder Serienschaltung zumindest einzelner Gruppen der Zellen ermöglichen, verläuft, womit eine sehr vorteilhafte Einfluss- nahme auf die Charakteristik der Batterie bzw. die Anpassung an die jeweilige Verwendung des Zellenverbundes (zum Laden oder zum Entladen) ermöglicht ist. Damit kann sowohl bei der Ladung als auch bei der Entladung der Batterie auf einfachste Weise der Strom bzw. die Spannung an die jeweiligen Bedürfnisse angepasst werden. Die Parallelschaltung aller einzelnen Zellen ergibt beispielsweise eine der einzelnen Zelle entsprechende Lade- bzw. Entladespannung bei entsprechend vervielfachtem Lade- bzw. Entladestrom - durch die gruppenweise mögliche Serien- bzw. Parallelschaltung können verschiedenste Abstufungen zwischen Maximalspannung und Maximalstrom vorgenommen werden. Einzelne Zellen oder auch Zellengruppen lassen sich in der Parallelschaltung sehr einfach überwachen, womit beispielsweise defekte einzelne Zellen oder Zellengruppen erkannt und berücksichtigt werden können. Eine lokale Überladung einzelner Zellen und damit gefährliche Gasentwicklung kann dadurch verhindert werden, was eine Erhöhung der Lebensdauer und der Sicherheit des Systems zur Folge hat.In order to avoid the disadvantages of the known arrangements mentioned in the different requirements for loading and unloading stations, the present invention now takes a different approach. It is based on the consideration that the requirements for a charging station for redox flow batteries can usually be met much better and more simply by connecting the individual flow cells in parallel, while in most cases it is simpler and more advantageous for the discharge station for the electrical ones Series connection of the cells remain. In order to enable such a concept while maintaining a structurally simple structure of the cell network, it is proposed according to the present invention that the addressed electrically conductive connection of at least some of the electrodes via interposed switching elements, which selectively connect parallel or series electrical connection of at least individual groups of cells enable, runs, which enables a very advantageous influence on the characteristics of the battery or the adaptation to the respective use of the cell network (for charging or discharging). This allows the current and voltage to be adapted to the respective needs in the simplest way, both when charging and discharging the battery. The parallel connection of all individual cells results, for example, in a charge or discharge voltage corresponding to the individual cell with a correspondingly multiplied charge or discharge current - the groupwise or parallel connection which is possible in groups enables a wide variety of gradations to be made between maximum voltage and maximum current. Individual cells or even cell groups can be monitored very easily in the parallel connection, with which, for example, defective individual cells or cell groups can be recognized and taken into account. Local overloading of individual cells and thus dangerous gas development can occur This prevents them, which increases the lifespan and the security of the system.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass die Schaltelemente eine Schaltstellung aufweisen, in der zumindest einzelne Verbindungen der Elektroden offen sind. Mit diesen geöffneten Verbindungen können beispielsweise die sonst im Ruhezustand derartiger Redox-Durchflußbatterien unvermeidlichen Selbstentladungen über die Elektrolytflussigkeiten unterbunden werden, da nun keine elektrisch leitende Verbindung zwischen den Elektroden verschiedener Elektrolyträume mehr besteht. Bei den bisherigen Anordnungen wurde zur Vermeidung einer weitergehenden Selbstentladung der Elektrolytflüssigkeiten stets vorgesehen, dass beim Stillstand die Zellinhalte elektrisch isolierend vom übrigen Elektrolytvolumen abgesperrt wurden, womit sich diese Selbstentladung auf den Zelleninhalt beschränkte. Bei Wiederinbetriebnahme der Batterie war dann allerdings stets vorerst ein Austausch der Elektrolytflüssigkeiten in den Zellen erforderlich, bevor wieder die normale Funktion gegeben war. Durch das beschriebene, durch die Erfindung mögliche Auftrennung der Verbindungen der Elektroden ist das Problem auf einfachste Weise gänzlich behoben und die Batterie jederzeit ohne Selbstentladungsverluste einsetzbar.In a further embodiment of the invention, it is provided that the switching elements have a switching position in which at least individual connections of the electrodes are open. With these opened connections, for example, the self-discharges via the electrolyte fluids which are otherwise inevitable when such redox flow-through batteries are in the idle state, since there is no longer an electrically conductive connection between the electrodes of different electrolyte spaces. In the previous arrangements, in order to avoid further self-discharge of the electrolyte fluids, it was always provided that the cell contents were shut off in an electrically insulating manner from the remaining electrolyte volume during standstill, so that this self-discharge was limited to the cell contents. When the battery was put back into operation, however, it was always necessary to replace the electrolyte fluids in the cells before normal function was restored. The described separation of the connections of the electrodes, which is possible by the invention, completely eliminates the problem in the simplest way and the battery can be used at any time without loss of self-discharge.
Die Erfindung wird im folgenden noch anhand der in der Zeichnung schematisch dargestellten Ausführungen näher erläutert. Fig. 1 zeigt dabei eine Redox-Durchflussbatterie nach dem bekannten Stande der Technik und die Fig. 2 bis 4 zeigen jeweils nur die wesentlichsten Komponenten einer Lade- bzw. Entladestation für eine derartige Batterie in einer beispielhaften Ausführung nach der vorliegenden Erfindung.The invention is explained in more detail below with reference to the embodiments shown schematically in the drawing. 1 shows a redox flow-through battery according to the known prior art, and FIGS. 2 to 4 each show only the most essential components of a charging or discharging station for such a battery in an exemplary embodiment according to the present invention.
Die Redox-Durchflußbatterie nach Fig. 1 (beispielsweise eine Vanadium- Redoxbatterie) weist vier Durchfluß-Zellen 1 auf, die jeweils aus zwei von unterschiedlich geladenen Elektrolytflüssigkeiten durchströmbaren, mittels einer selektiv ionendurchlässigen Membran 2 getrennten Halbzellen 3, 4 bestehen. In jeder der Halbzellen 3, 4 ist jeweils eine Elektrode 5, 6 angeordnet, welche auf untenstehend noch näher erläuterte Weise elektrisch leitend mit der Elektrode 6, 5 einer anderen Zelle bzw. mit einem äußeren Anschluß (+ bzw. - oben in Fig. 1) verbunden ist.The redox flow battery according to FIG. 1 (for example a vanadium redox battery) has four flow cells 1, each of which consists of two half cells 3, 4 which can be flowed through by differently charged electrolyte liquids and separated by means of a selectively ion-permeable membrane 2. In each of the half cells 3, 4 there is in each case an electrode 5, 6 which is electrical in the manner explained in more detail below is conductively connected to the electrode 6, 5 of another cell or to an external connection (+ or - at the top in FIG. 1).
Die Elektrolytflüssigkeiten (in Entsprechung zur Anode und Kathode auch als Aπolyt und Katholyt bezeichnet) sind in Behältern 7, 8 (über deren Volumen die Speicherkapazität der Batterie bestimmt ist) gespeichert und werden über Leitungen 9, 10 und Pumpen 11 bedarfsweise über die jeweiligen Halbzellen 3, 4 umgewälzt, wobei die die Speicherung bzw. Freisetzung der elektrischen Energie bewirkenden Elektro-chemischen Reduktions- bzw. Oxi- dationsvorgänge ablaufen (siehe dazu beispielsweise die Erläuterungen in der eingangs bereits erwähnten DE 29 27 868 AI). Abgesehen von den äußeren Elektroden 5, 6, die über Anschlussleitungen 12, 13 mit den äußeren Anschlüssen + und - verbunden sind, sind die den Halbzellen jeweils zugeordneten weiteren Elektroden 5, 6 auf bipolaren Trennwänden 14 angeordnet, wobei zwischen den beiden, aneinander angrenzenden Durchfluß-Zellen zuzuordnenden Elektroden über die Trennwand 14 selbst elektrisch leitfähige Verbindungen geschaffen sind. Auf diese Weise ergibt sich eine elektrische Serienschaltung aller (im Beispiel vier) Durchfluß-Zellen 1, wobei die Gesamtspannung zwischen den Anschlüssen + und - (Leitungen 12 und 13) der Summe der einzelnen Zellenspannungen entspricht, welche wiederum vom Redoxpotential der jeweiligen Redox-Partner abhängen.The electrolyte liquids (corresponding to the anode and cathode also referred to as aπolyte and catholyte) are stored in containers 7, 8 (the volume of which determines the storage capacity of the battery) and are fed via lines 9, 10 and pumps 11, if necessary, via the respective half cells 3 , 4 is circulated, the electrochemical reduction or oxidation processes which cause the storage or release of the electrical energy to take place (see, for example, the explanations in the aforementioned DE 29 27 868 A1). Apart from the outer electrodes 5, 6, which are connected to the outer connections + and - via connection lines 12, 13, the further electrodes 5, 6, respectively assigned to the half cells, are arranged on bipolar partition walls 14, with flow between the two adjoining one another Electrodes to be assigned to cells are created via the partition 14 even electrically conductive connections. This results in an electrical series connection of all (in the example four) flow cells 1, the total voltage between the connections + and - (lines 12 and 13) corresponding to the sum of the individual cell voltages, which in turn depends on the redox potential of the respective redox partner depend.
Zur Berücksichtigung bzw. Ermöglichung unterschiedlicher Lade- bzw. Entladespannungen und -ströme ist bei derartigen Serienanordnungen von Durchfluß-Zellen bereits vorgeschlagen worden, einzelne Anzapfstellen an mittigen Elektroden 5 bzw. 6 vorzusehen, was die Nutzung auch nur eines Teilverbundes der gesamten Durchfluß-Zellen beispielsweise für die Aufladung der Elektrolytflussigkeiten mit geringerer Spannung ermöglicht. Weiters ist auch bereits vorgeschlagen worden, derartige Anordnungen mit separat konfigurierbaren Lade- und Entladestationen auszuführen, was ebenfalls unabhängig voneinander optimierbare Lade- und Entladevorgänge ermöglicht.In order to take into account or enable different charging and discharging voltages and currents, it has already been proposed in such series arrangements of flow cells to provide individual tapping points on central electrodes 5 and 6, which also means the use of only a partial combination of the entire flow cells, for example for charging the electrolyte fluids with a lower voltage. Furthermore, it has also already been proposed to implement such arrangements with separately configurable charging and discharging stations, which likewise enables charging and discharging processes which can be optimized independently of one another.
Gemäß der vorliegenden Erfindung ist nun wie in den Fig. 2 bis 4 schematisch dargestellt vorgesehen, dass die elektrisch leitende Verbindung 15 zumindest einzelner der Elek- troden 5, 6 über zwischengeschaltete Schaltelemente 16 verläuft, welche die wahlweise elektrische Parallel- (Fig. 3) oder Serienschaltung (Fig. 2) zumindest einzelner Gruppen der Zellen 1 ermöglichen bzw. gemäß Fig. 4 auch eine Schaltstellung aufweisen können, in der zumindest einzelne Verbindungen 15 der Elektroden 5, 6 überhaupt offen sind.According to the present invention, as schematically shown in FIGS. 2 to 4, it is now provided that the electrically conductive connection 15 at least some of the elec- trodes 5, 6 runs through interposed switching elements 16, which enable the optional electrical parallel (Fig. 3) or series connection (Fig. 2) at least individual groups of cells 1 or according to Fig. 4 can also have a switching position in which at least individual connections 15 of the electrodes 5, 6 are open at all.
Gemäß Fig. 2 liegt nur die oberste äußere Elektrode 5 (entsprechend der linken äußeren Elektrode 5 in Fig. 1) am Plusanschluß, während entsprechend auch nur die unterste äußere Elektrode 6 (entsprechend der rechten äußeren Elektrode 6 in Fig. 1) am Minusanschluß liegt. Die dazwischen liegenden (hier vier) Elektrodenpaare 5, 6 sind über die Schaltelemente 15 verbunden, womit sich elektrisch betrachtet die gleiche Serienschaltung des Zellenverbundes wie in Fig. 1 ergibt. Die trennenden Membranen 2 sind hier als punktierte Linien angedeutet - die Durchströmung der Halbzellen durch die beiden unterschiedlichen Elektrolytflüssigkeiten ist mit den Pfeilen 17 bzw. 18 angedeutet. Abweichend von Fig. 1 sind hier natürlich zwischen den aneinanderliegend dargestellten mittleren Elektroden 5, 6 keine unmittelbaren elektrisch und ionisch (Elektrode 5 und 6 ist durch eine Isolationsschicht getrennt) leitenden Verbindungen vorgesehen - diese erfolgen wie beschrieben nur über die hier außen liegend dargestellten Schaltelemente 16.According to FIG. 2, only the uppermost outer electrode 5 (corresponding to the left outer electrode 5 in FIG. 1) is connected to the positive connection, while correspondingly only the lowest outer electrode 6 (corresponding to the right outer electrode 6 in FIG. 1) is connected to the negative connection , The electrode pairs 5, 6 lying between them (here four) are connected via the switching elements 15, which, viewed electrically, results in the same series connection of the cell network as in FIG. 1. The separating membranes 2 are indicated here as dotted lines - the flow through the half cells through the two different electrolyte liquids is indicated by the arrows 17 and 18, respectively. 1, there are of course no direct electrically and ionically conductive connections between the adjacent electrodes 5, 6 (electrodes 5 and 6 are separated by an insulation layer) - as described, these connections are only made via the switching elements 16 shown here ,
Gemäß Fig. 3 sind die Schaltelemente 16 (die man sich in Fig. 2 als zwei parallel hintereinander liegende und um jeweils einen Endpunkt drehbare Schaltbrücken vorstellen kann) nun so umgeschaltet, dass jede Elektrode 5 mit dem Plusanschluß und jede Elektrode 6 mit dem Minusanschluß in Verbindung steht, womit eine elektrische Parallelschaltung realisiert ist und die Gesamtspannung der einer einzelnen Durchfluß-Zelle entspricht.According to FIG. 3, the switching elements 16 (which can be imagined in FIG. 2 as two switching bridges lying in parallel and rotatable by one end point each) are now switched so that each electrode 5 with the plus connection and each electrode 6 with the minus connection in Connection is established, with which an electrical parallel connection is realized and the total voltage corresponds to that of a single flow cell.
Gemäß Fig. 4 sind die Schaltelemente 16 in Offenstellung, wobei die einzelnen Elektroden 6, 7 potentiallos sind, was eine Selbstentladung der Elektrolytflüssigkeiten verhindert.4, the switching elements 16 are in the open position, the individual electrodes 6, 7 being potential-free, which prevents the electrolyte liquids from self-discharging.
Abgesehen von der in Fig. 2 bis 4 dargestellten Gleichschaltung aller Schaltelemente 16 könnte diese aber auch so geschaltet werden, dass beispielsweise jeweils zwei Zellen in Serie und diese Gruppen dann parallel geschaltet werden - es sind damit vielfältigste Kombinationen im gesamten Zellenverbund möglich, was weitgehend freie Einflussnahme auf La- de- bzw. Entladespannung und -ström ermöglicht. Auch könnten beispielsweise offene Schaltzustände gemäß Fig. 4 für einzelne Zellen im Verbund dann vorgesehen werden, wenn über angeschlossene Messgeräte (hier nicht dargestellt) ein Fehlverhalten einzelner Zellen festgestellt wird, die sicherheitshalber abgeschaltet bleiben sollen. Insgesamt ergeben sich über die zwischengeschalteten Schaltelemente 16 also vielfältigste Möglichkeiten.Apart from the synchronization of all switching elements 16 shown in FIGS. 2 to 4, this could also be switched so that, for example, two cells in series and these groups are then connected in parallel - a wide variety of combinations are possible in the entire cell network, which is largely free Influencing La discharge and discharge voltage and current enables. For example, open switching states according to FIG. 4 could also be provided for individual cells in the network if a faulty behavior of individual cells is detected via connected measuring devices (not shown here), which should remain switched off for safety reasons. Overall, the most diverse possibilities result from the interposed switching elements 16.
Es ist für den Fachmann auch einsichtig, dass die Schaltelemente 16 bzw. deren Anbringung in den elektrischen Verbindungen 15 zwischen den Elektroden 5, 6 in weiten Grenzen beliebig wählbar sind - insbesonders können beispielsweise Halbleiter-Schaltelemente, elektronische Schaltern, wie IGBTs, Mosfets, elektrische Relais oder Transistoren, eingesetzt und auch über ein elektronisches Feedback/Steuersystem kontrolliert werden. Davon abgesehen wären aber auch manuell betätigte Schalter (Zellen werden händisch auf parallelen oder seriellen Betrieb geschaltet) möglich.It is also clear to the person skilled in the art that the switching elements 16 or their attachment in the electrical connections 15 between the electrodes 5, 6 can be freely selected within wide limits - in particular, semiconductor switching elements, electronic switches such as IGBTs, Mosfets, electrical ones, for example Relays or transistors, are used and also controlled by an electronic feedback / control system. Apart from that, manually operated switches (cells are manually switched to parallel or serial operation) would also be possible.
Patentansprüche: claims:

Claims

Patentansprüche: claims:
1. Lade- bzw. Entladestation für eine Redox-Durchflußbatterie, mit einer Anzahl von Durchfluß-Zellen (1), die jeweils aus zwei von unterschiedlich geladenen Elektrolytflüssigkeiten durchströmbaren, mittels einer selektiv ionendurchlässigen Membran (2) getrennten Halbzellen (3, 4) bestehen, in denen jeweils eine Elektrode (5, 6) angeordnet ist, welche elektrisch leitend mit der Elektrode (6, 5) einer anderen Zelle 1 bzw. mit einem äußeren Anschluß (+, -) verbunden ist, dadurch gekennzeichnet, dass die elektrisch leitende Verbindung (15) zumindest einzelner der Elektroden (5, 6) über zwischengeschaltete Schaltelemente (16), welche die wahlweise elektrische Parallel- oder Serienschaltung zumindest einzelner Gruppen der Zellen (1) ermöglichen, verläuft.1. Charging or discharging station for a redox flow-through battery, with a number of flow-through cells (1), each of which consists of two differently charged electrolyte liquids through which by means of a selectively ion-permeable membrane (2) separate half cells (3, 4) , in each of which an electrode (5, 6) is arranged, which is electrically conductively connected to the electrode (6, 5) of another cell 1 or to an external connection (+, -), characterized in that the electrically conductive Connection (15) of at least some of the electrodes (5, 6) via interposed switching elements (16), which allow the optional electrical parallel or series connection of at least individual groups of cells (1).
2. Lade- bzw. Entladestation nach Anspruch 1, dadurch gekennzeichnet, dass die Schaltelemente (16) eine Schaltstellung aufweisen, in der zumindest einzelne Verbindungen (15) der Elektroden (5, 6) offen sind. 2. Loading or unloading station according to claim 1, characterized in that the switching elements (16) have a switching position in which at least individual connections (15) of the electrodes (5, 6) are open.
PCT/AT2002/000145 2001-07-02 2002-05-15 Charging or discharging station for a redox flow battery WO2003005476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1014/2001 2001-07-02
AT0101401A AT410268B8 (en) 2001-07-02 2001-07-02 LOADING OR DISCHARGE STATION FOR A REDOX FLOW BATTERY

Publications (1)

Publication Number Publication Date
WO2003005476A1 true WO2003005476A1 (en) 2003-01-16

Family

ID=3684102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2002/000145 WO2003005476A1 (en) 2001-07-02 2002-05-15 Charging or discharging station for a redox flow battery

Country Status (2)

Country Link
AT (1) AT410268B8 (en)
WO (1) WO2003005476A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502979B1 (en) * 2006-05-15 2007-06-15 Funktionswerkstoffe Forschungs Electrochemical flow module e.g. vanadium redox-flow battery, has flowable device in which electrically nonconducting phase with thickness different from that of electrolyte fluid is given, which increases electrical resistance in circuit
CN102867975A (en) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 Method for reducing or even eliminating leakage current of all vanadium flow energy storage battery system
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
WO2015182339A1 (en) * 2014-05-28 2015-12-03 住友電気工業株式会社 Redox flow battery system and redox flow battery system operation method
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
KR101655292B1 (en) * 2016-04-15 2016-09-07 스탠다드에너지(주) Redox flow battery
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
GB2604091A (en) * 2021-01-25 2022-08-31 Goldstein Jonathan Redox battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485154A (en) * 1981-09-08 1984-11-27 Institute Of Gas Technology Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
US6074775A (en) * 1998-04-02 2000-06-13 The Procter & Gamble Company Battery having a built-in controller
US6239508B1 (en) * 1997-10-06 2001-05-29 Reveo, Inc. Electrical power generation system having means for managing the discharging and recharging of metal fuel contained within a network of metal-air fuel cell battery subsystems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1212303B (en) * 1978-07-10 1989-11-22 Elche Ltd REDOX ACCUMULATOR.
WO1989005528A1 (en) * 1987-12-10 1989-06-15 Unisearch Limited Vanadium charging cell and vanadium dual battery system
AUPP938799A0 (en) * 1999-03-23 1999-04-15 Unisearch Limited Electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485154A (en) * 1981-09-08 1984-11-27 Institute Of Gas Technology Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
US6239508B1 (en) * 1997-10-06 2001-05-29 Reveo, Inc. Electrical power generation system having means for managing the discharging and recharging of metal fuel contained within a network of metal-air fuel cell battery subsystems
US6074775A (en) * 1998-04-02 2000-06-13 The Procter & Gamble Company Battery having a built-in controller

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502979B1 (en) * 2006-05-15 2007-06-15 Funktionswerkstoffe Forschungs Electrochemical flow module e.g. vanadium redox-flow battery, has flowable device in which electrically nonconducting phase with thickness different from that of electrolyte fluid is given, which increases electrical resistance in circuit
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
CN102867975A (en) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 Method for reducing or even eliminating leakage current of all vanadium flow energy storage battery system
WO2015182339A1 (en) * 2014-05-28 2015-12-03 住友電気工業株式会社 Redox flow battery system and redox flow battery system operation method
US10263270B2 (en) 2014-05-28 2019-04-16 Sumitomo Electric Industries, Ltd. Redox flow battery system and method for operating redox flow battery system
KR101655292B1 (en) * 2016-04-15 2016-09-07 스탠다드에너지(주) Redox flow battery
US10090550B2 (en) 2016-04-15 2018-10-02 Standard Energy Co., Ltd. Redox flow battery
GB2604091A (en) * 2021-01-25 2022-08-31 Goldstein Jonathan Redox battery
GB2604091B (en) * 2021-01-25 2023-04-26 Goldstein Jonathan Redox battery

Also Published As

Publication number Publication date
AT410268B8 (en) 2003-04-25
ATA10142001A (en) 2002-07-15
AT410268B (en) 2003-03-25

Similar Documents

Publication Publication Date Title
DE102014006028B4 (en) Multi-battery system to increase the electric range
DE102009014499B4 (en) Fuel cell system for fully charging an electrical energy storage device
DE4100571C2 (en) Battery with a main battery and a spare battery
DE3326729A1 (en) METHOD FOR OPERATING AN ELECTROCHEMICAL STORAGE
EP3593435B1 (en) Method for operating a modular battery storage system and modular battery storage system
AT410268B (en) LOADING OR DISCHARGE STATION FOR A REDOX FLOW BATTERY
EP2424069A2 (en) Assembly for forming lithium-ion cells
WO2016202846A1 (en) Inverter, flow battery system, and method for charging and discharging a flow battery
DE3221161A1 (en) METHOD FOR MINIMIZING THE IMPACT OF FOREIGN CURRENTS
WO2018233954A1 (en) Electric energy supply device comprising a busbar matrix, and method for operating the energy supply device
EP3676933B1 (en) Device for electropolishing an energy storage device comprising at least one lithium ion cell, charger, and method for operating the charger
DE102018108041B4 (en) Procedure for connecting several battery blocks connected in parallel
AT514391B1 (en) Redox flow battery and method of reactivation
AT394119B (en) METHOD FOR TARGETED ELECTROCHEMICAL IMPLEMENTATION IN GALVANIC CELLS AND RECHARGEABLE BATTERY
DE102011077664A1 (en) Energy storage system e.g. battery system for e.g. hybrid vehicle, has control switches which are provided for individually applying the adjustable output voltage for charging and discharging the energy storage units respectively
DE2819584C2 (en) Circuit for securing memory cells
DE1942331C3 (en) Method for charging a galvanic battery with multiple cells containing a positive oxygen electrode and a rechargeable negative electrode
DE1934974A1 (en) Galvanic memory
DE112022001561T5 (en) Power battery pack and its control method
EP0343144B1 (en) Galvanic element and method for the determination of a uniform charging condition
DE102022200344A1 (en) Battery and energy system having such a battery
WO2022033750A1 (en) Redox flow battery system and operating method
DE102020117681A1 (en) Control device for a battery storage
DE102018121669A1 (en) Reversible fuel cell unit and a reversible fuel cell
DE102022200989B3 (en) high-voltage battery system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 091302002

Country of ref document: AT

Date of ref document: 20030116

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 91302002

Country of ref document: AT

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP