WO2003002828A1 - Panneau a isolation par le vide - Google Patents

Panneau a isolation par le vide Download PDF

Info

Publication number
WO2003002828A1
WO2003002828A1 PCT/CH2002/000336 CH0200336W WO03002828A1 WO 2003002828 A1 WO2003002828 A1 WO 2003002828A1 CH 0200336 W CH0200336 W CH 0200336W WO 03002828 A1 WO03002828 A1 WO 03002828A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
vacuum
insulation panel
chamber
vacuum insulation
Prior art date
Application number
PCT/CH2002/000336
Other languages
German (de)
English (en)
Inventor
Gerhard Staufert
Original Assignee
Sager Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sager Ag filed Critical Sager Ag
Publication of WO2003002828A1 publication Critical patent/WO2003002828A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the invention relates to a vacuum insulation panel (VIP) with a large-pore core evacuated to pressures of less than 1 mbar and a long-term sealed vacuum envelope.
  • VIP vacuum insulation panel
  • Vacuum panels with a film-like shell require a pressure-resistant core.
  • the core material must have a low thermal conductivity and be easy to evacuate, i.e. it must be open-pored and have the smallest possible proportion of closed or almost closed pores, have low outgassing behavior, have the smallest possible average diameter of the pores so that thermal conductivities in the range around 5 mW / m ° K are achieved with the lowest possible negative pressure.
  • the desirability of the lowest possible negative pressures - i.e. preferably not falling below the so-called rough vacuum range (1 mbar - 1000 mbar) - is not important because of the somewhat lower expenditure for generating these negative pressures, but it simplifies the maintenance of the negative pressure above the very high one required on the building "Lifetime" of the vacuum of approx. 50 years.
  • the vacuum in the rough vacuum range is required, multi-layer plastic foils can be used, which contain very thin, vapor-deposited layers of aluminum with a total thickness of approx. 0.3 ⁇ m. This low metal content in the case ensures a small amount of heat conduction along the case materials, what before especially important for panels with small lateral dimensions (> approx. 50 cm).
  • nanoporous materials which are offered, for example, by the companies Wacker, Degussa and Cabot. These companies also offer covered and evacuated panels on the market that have the desired low thermal conductivity.
  • the "next worse" known core material is a pressure-resistant, non-outgassing glass wool, which fulfills the first three requirements as well as the nanoporous materials and costs considerably less than these. Because of the significantly larger internal spaces (hereinafter referred to as pores) However, glass wool - and other insulation materials with large open pores such as XPS - must be evacuated to the so-called fine vacuum range (10 "3 mbar - 1 mbar) so that the desired thermal conductivity values in the range of 5 mW / m ° K can be achieved. Long-term compliance with these negative pressures would not be a problem if the casing was to have a significantly higher metal content (metal thickness> a few ⁇ m).
  • the present patent is therefore based on the object of providing a vacuum insulation panel (VIP) with a large-pore core, the sheathing of which is constructed in such a way that, firstly, a sufficient high “service life” of the necessary fine vacuum of an average of 50 years and above is ensured and that secondly, such low heat conduction along the shell is realized that the effective total thermal conductivity of a panel with edge length down to 20 cm remains below 10 mW / m ° K.
  • VIP vacuum insulation panel
  • the VIP according to the invention has a structure which corresponds to the double chamber principle known in vacuum technology, in which an inner low-pressure vacuum chamber is surrounded by an outer vacuum chamber in which a rough vacuum prevails.
  • the VIP according to the double chamber principle has a (for example 1 to 5 cm thick) evacuated core, for example 10 "3 mbar, made of pressure-resistant, large-pored material, which is surrounded by an inner gas-tight film.
  • This inner structure is surrounded by a second, approx. 1 mbar evacuated, thin layer of core material, which in turn is covered with an outer gas-tight film, if the pressure inside the outer chamber increases to approx. 100 mbar in the course of approx.
  • the outer vacuum chamber depending on the structure, can provide a thin but very effective heat insulation and thus a high heat conduction along the inner shell can be neglected overall, it is also conceivable to use an inner shell that is constructed, for example, as a commercially available plastic composite film which includes, for example, a 25 ⁇ m thick aluminum layer. With such a construction, the maintenance of the pressure prevailing in the inner chamber of less than 10 "1 mbar can be guaranteed over periods of the order of 100 years.
  • a first, as inexpensive as possible construction of the VIP according to the double chamber principle with a sufficiently long service life includes, as shown in Fig. 1, an inner core made of pressure-resistant glass wool (1) which does not outgas under vacuum at temperatures up to 100 ° C, which is the actual insulation volume of the VIP.
  • the inner core can also consist of another suitable material, such as extruded polystyrene (XPS), in which case, however, an appropriate getter must be available due to outgassing.
  • XPS extruded polystyrene
  • this core is evacuated to approximately 10 " mbar and welded into an inner gas-tight composite film (2).
  • the thickness of the inner core (1) is aligned depends on the application according to the heat transfer to be observed, which is usually given in W / m 2 K. With a thermal conductivity of approx. 4 mW / m ° K and a heat transfer of approx. 0.2 W / m 2 K, there is, for example, a thickness of inner core (1) of about 2 to 3 cm.
  • the inner film (2) is, for example, a 100 ⁇ m thick PE film onto which, for example, an approximately 0.1 ⁇ m thick aluminum layer is evaporated or sputtered.
  • the PE film acts as a weldable carrier layer, while the aluminum layer forms an effective diffusion barrier for O 2 , N 2 , CO 2 etc. at the average pressure of approx. 10 mbar acting within the outer core material (3).
  • the inner shell (2) is surrounded by a glass wool fleece, for example 5 mm thick, which forms the outer core (3).
  • the outer core (3) is reduced to approx. 1 mbar evacuated and, of course together with the inner chamber (1) + (2) which it envelops, sealed in an outer gas-tight envelope (4). Over the course of approx. 50 years, the pressure inside the outer chamber (3) + (4) may increase to approx. 100 mbar.
  • the outer core (3) should be compressed without losing the desired effect under the initial pressure acting on it from approx. 999 mbar to a few 0.01 mm. When using a glass fleece, its thickness in the compressed state will be at least a few 0.1 mm.
  • the outer casing (4) is a film composite with, for example, a PE layer that acts as a weldable layer and is approximately 50 ⁇ m thick, and a layer that acts as a diffusion barrier against O 2 , N 2 , CO 2 , etc., for example 0.1 ⁇ m vapor-deposited aluminum layer and a PET layer acting as a diffusion barrier against water vapor.
  • a second design of the VIP designed for maximum reliability, based on the double chamber principle, again includes, as shown in Fig. 1, an inner core made of pressure-resistant glass wool (1) which does not outgas under vacuum at temperatures up to 100 ° C (1), which the actual insulation volume of the VIP ensures.
  • this core is evacuated to approx. 10 "3 mbar and welded into an inner gastight envelope (2).
  • the inner shell (2) is constructed as a composite film, which consists, for example, of an approximately 100 ⁇ m thick PE film acting as a carrier layer and as a weldable layer and a laminated approximately 10 - 50 ⁇ m thick aluminum film. It is known that aluminum foils with a thickness of approx. 25 ⁇ m can be manufactured absolutely free of pinhole without great effort and thus a diffusion barrier for O 2 , N 2 , CO 2 etc. with which pressures in the fine vacuum range (10 "3 - 1 mbar) can theoretically be maintained over centuries.
  • the outer core (3) consists of a layer of nanoporous material a few mm thick, which is evacuated, for example, to 1 mbar and welded into an outer envelope film (4).
  • Nanoporous materials that have been evacuated to a pressure of less than approx. 100 mbar have a thermal conductivity in the order of 5 mW / m ° K.
  • the outer chamber (3) + (4) not only forms a rough vacuum, which drastically increases the service life of the fine vacuum prevailing in the inner chamber (l) + (2), but also represents a very effective thermal insulation layer, which increases the thermal conductivity the inner shell (2) compensated.
  • the outer shell (4) consists of a commercially available multi-layer plastic film that contains very thin, vapor-deposited layers of aluminum with a total thickness of approx. 0.3 ⁇ m and thus the pressure in the outer chamber (3) + (4) of less than Maintains 100 mbar over long periods.
  • Fig. 2 illustrates a possible price / performance scenario of some VIP variants in a few years.
  • a VIP with a large-pore core material constructed according to the double chamber principle as inexpensively as possible with a sufficient lifespan with some probability both for a heat transfer of 0.2 W / m K and for one of 0.1 W / m 2 K should be significantly cheaper than a single-sleeve VIP with a nanoporous core.
  • a - according to the second variant described above - a VIP with a large-pore core based on the double chamber principle, optimized with regard to vacuum life, will probably be slightly more expensive than a VIP with a nanoporous core for a heat transfer of 0.2 W / m 2 K, but for one Heat transfer of 0.1 W / m 2 K have a significant price advantage.
  • nanoporous material could also be used as the material for the inner core (1), but this makes no sense due to the price and the “high” permissible pressure (> maximum 100 mbar) necessary for the effectiveness of these materials.

Abstract

L'invention concerne un panneau à isolation par le vide (VIP) qui présente une structure correspondant au principe de double chambre connu dans la technique du vide et dans lequel une chambre à vide intérieure à basse pression est entourée d'une chambre à vide extérieure dans laquelle règne un vide primaire. Le panneau à isolation par le vide selon le principe de la double chambre comprend un noyau (1) de 1 à 5 cm d'épaisseur et mis sous vide à 10-3 millibars, par exemple, qui est constitué d'un matériau à larges pores résistant à la pression et qui est entouré d'un film intérieur (2) étanche aux gaz. Cette structure interne est entourée d'une deuxième couche mince de matériau noyau (3), mise sous vide à environ 1 millibar et qui est elle-même enveloppée d'un film extérieur (4) étanche aux gaz. En supposant que la pression à l'intérieur de la chambre externe augmente jusqu'à atteindre environ 100 millibars au cours d'environ 50 ans, on peut utiliser, pour le film extérieur, un film bon marché à base de plastique et qui ne présente qu'une très mince couche de métal, de 0,1 µm d'ordre de grandeur. Il est ainsi possible de garantir une conduction thermique négligemment faible le long de l'enveloppe extérieure.
PCT/CH2002/000336 2001-06-29 2002-06-21 Panneau a isolation par le vide WO2003002828A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1199/01 2001-06-29
CH11992001 2001-06-29

Publications (1)

Publication Number Publication Date
WO2003002828A1 true WO2003002828A1 (fr) 2003-01-09

Family

ID=4562590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2002/000336 WO2003002828A1 (fr) 2001-06-29 2002-06-21 Panneau a isolation par le vide

Country Status (1)

Country Link
WO (1) WO2003002828A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359005A1 (de) * 2003-12-15 2005-07-14 Va-Q-Tec Ag Verbundwärmedämmplatte
EP1566264A1 (fr) * 2004-02-18 2005-08-24 SCHWENK Dämmtechnik GmbH & Co KG Corps thermo-isolant
DE202004017115U1 (de) * 2004-11-05 2006-03-16 SCHWENK DÄMMTECHNIK GMBH & Co KG Wärmedämmplatte
EP1707349A3 (fr) * 2005-03-31 2006-10-25 Heraklith Ag Panneau isolant thermique
NL1031475C2 (nl) * 2005-03-31 2008-11-04 Jpm Interactive Ltd Spellenvoorzieningssysteem.
EP2119842A2 (fr) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Elément d'isolation et procédé de fabrication d'un élément d'isolation
EP2119841A2 (fr) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Elément d'isolation et procédé de fabrication d'un élément d'isolation
CN102661006A (zh) * 2012-04-29 2012-09-12 万建民 一种外墙保温板及其生产方法
CN102720280A (zh) * 2012-06-17 2012-10-10 万建民 一种异型外墙保温板及其生产方法
DE102013002313A1 (de) * 2013-02-07 2014-08-07 Liebherr-Hausgeräte Lienz Gmbh Vakuumdämmkörper
WO2014191813A1 (fr) 2013-05-29 2014-12-04 Va-Q-Tec Ag Panneau d'isolation sous vide, enveloppé par une feuille
US20160039594A1 (en) * 2014-08-05 2016-02-11 Sonoco Development, Inc. Double Bag Vacuum Insulation Panel For Steam Chest Molding
CN105829622A (zh) * 2013-12-19 2016-08-03 3M创新有限公司 阻隔膜和采用所述阻隔膜的真空隔热板
CN106869344A (zh) * 2017-04-17 2017-06-20 安徽百特新材料科技有限公司 一种高效无机真空绝热板
CN109707954A (zh) * 2018-12-28 2019-05-03 青岛海尔股份有限公司 真空绝热板及具有其的冰箱
CN111559902A (zh) * 2020-05-18 2020-08-21 江南大学 一种多组分混杂vip芯材及其制备方法
IT201900023886A1 (it) * 2019-12-13 2021-06-13 Zelandi Niccolo Pannello per isolamento termico

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284674A (en) * 1979-11-08 1981-08-18 American Can Company Thermal insulation
EP0437930A1 (fr) * 1989-12-18 1991-07-24 Whirlpool Corporation Panneau d'isolation à vide compartimenté
DE19809316A1 (de) * 1998-03-05 1999-09-09 Plus Recycling Gmbh R Wärmeisolationskörper und Mehrschichtkörper hierfür

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284674A (en) * 1979-11-08 1981-08-18 American Can Company Thermal insulation
EP0437930A1 (fr) * 1989-12-18 1991-07-24 Whirlpool Corporation Panneau d'isolation à vide compartimenté
DE19809316A1 (de) * 1998-03-05 1999-09-09 Plus Recycling Gmbh R Wärmeisolationskörper und Mehrschichtkörper hierfür

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359005A1 (de) * 2003-12-15 2005-07-14 Va-Q-Tec Ag Verbundwärmedämmplatte
EP1566264A1 (fr) * 2004-02-18 2005-08-24 SCHWENK Dämmtechnik GmbH & Co KG Corps thermo-isolant
DE202004017115U1 (de) * 2004-11-05 2006-03-16 SCHWENK DÄMMTECHNIK GMBH & Co KG Wärmedämmplatte
EP1707349A3 (fr) * 2005-03-31 2006-10-25 Heraklith Ag Panneau isolant thermique
NL1031475C2 (nl) * 2005-03-31 2008-11-04 Jpm Interactive Ltd Spellenvoorzieningssysteem.
EP2119841A2 (fr) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Elément d'isolation et procédé de fabrication d'un élément d'isolation
DE102008023841A1 (de) * 2008-05-16 2009-11-19 Saint-Gobain Isover G+H Ag Dämmelement und Verfahren zum Herstellen des Dämmelements
DE102008023838A1 (de) * 2008-05-16 2009-11-19 Saint-Gobain Isover G+H Ag Dämmelement und Verfahren zum Herstellen des Dämmelements
EP2119841A3 (fr) * 2008-05-16 2010-06-16 Saint-Gobain Isover G+H Ag Elément d'isolation et procédé de fabrication d'un élément d'isolation
EP2119842A3 (fr) * 2008-05-16 2011-01-26 Saint-Gobain Isover G+H Ag Elément d'isolation et procédé de fabrication d'un élément d'isolation
EP2119842A2 (fr) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Elément d'isolation et procédé de fabrication d'un élément d'isolation
CN102661006A (zh) * 2012-04-29 2012-09-12 万建民 一种外墙保温板及其生产方法
CN102661006B (zh) * 2012-04-29 2014-04-09 万建民 一种外墙保温板及其生产方法
CN102720280B (zh) * 2012-06-17 2014-10-22 万建民 一种异型外墙保温板及其生产方法
CN102720280A (zh) * 2012-06-17 2012-10-10 万建民 一种异型外墙保温板及其生产方法
DE102013002313A1 (de) * 2013-02-07 2014-08-07 Liebherr-Hausgeräte Lienz Gmbh Vakuumdämmkörper
US9688048B2 (en) 2013-05-29 2017-06-27 Va-Q-Tec Ag Film-coated vacuum insulated panel
WO2014191813A1 (fr) 2013-05-29 2014-12-04 Va-Q-Tec Ag Panneau d'isolation sous vide, enveloppé par une feuille
JP2018087639A (ja) * 2013-05-29 2018-06-07 ヴァ−クー−テック アーゲー フィルム被覆真空断熱パネル
CN105829622A (zh) * 2013-12-19 2016-08-03 3M创新有限公司 阻隔膜和采用所述阻隔膜的真空隔热板
CN105829622B (zh) * 2013-12-19 2019-08-06 3M创新有限公司 阻隔膜和采用所述阻隔膜的真空隔热板
US10472158B2 (en) 2014-08-05 2019-11-12 Sonoco Development, Inc. Double bag vacuum insulation panel
US9688454B2 (en) * 2014-08-05 2017-06-27 Sonoco Development, Inc. Double bag vacuum insulation panel for steam chest molding
US20160039594A1 (en) * 2014-08-05 2016-02-11 Sonoco Development, Inc. Double Bag Vacuum Insulation Panel For Steam Chest Molding
CN106869344A (zh) * 2017-04-17 2017-06-20 安徽百特新材料科技有限公司 一种高效无机真空绝热板
CN109707954A (zh) * 2018-12-28 2019-05-03 青岛海尔股份有限公司 真空绝热板及具有其的冰箱
IT201900023886A1 (it) * 2019-12-13 2021-06-13 Zelandi Niccolo Pannello per isolamento termico
CN111559902A (zh) * 2020-05-18 2020-08-21 江南大学 一种多组分混杂vip芯材及其制备方法
CN111559902B (zh) * 2020-05-18 2022-01-07 江南大学 一种多组分混杂vip芯材及其制备方法

Similar Documents

Publication Publication Date Title
WO2003002828A1 (fr) Panneau a isolation par le vide
DE602004008116T2 (de) Evakuierbarer flachplattensonnenkollektor
DE69619737T2 (de) Feuerwiderstandsfähige Verglasung
DE4018970A1 (de) Zur uebertragung von druckkraeften geeignete vakuumwaermeisolierung, insbesondere fuer waermespeicher von kratfahrzeugen
WO1987003327A1 (fr) Elements thermo-isolants de construction et/ou d'eclairage
DE4016407C1 (fr)
DE2734709A1 (de) Sonnenkollektor
DE3125597C2 (fr)
CH629293A5 (de) Solarkollektor mit einem in ein evakuiertes glasrohr eingebauten absorber.
EP0725918B1 (fr) Structure de paroi exterieure pour batiments, notamment panneaux de lambris pour la zone d'appui de la paroi d'un batiment
DE19904799A1 (de) Vakuumisolationspaneel in Komponentenbauweise
EP2119842A2 (fr) Elément d'isolation et procédé de fabrication d'un élément d'isolation
DE19647567C2 (de) Vakuumwärmedämmpaneel
DE102007013584A1 (de) Verfahren zur Herstellung eines Vakuumpaneels, derartiges Vakuumpaneel sowie ein dieses verwendender Mauerstein
EP3049603A1 (fr) Entretoise d'écartement des vitres d'une fenêtre à vitrage multiple, fenêtre à vitrage multiple, film pare-vapeur pour une entretoise, procédé de fabrication d'un film pare-vapeur, ainsi que procédé de fabrication d'une entretoise
EP3104099B1 (fr) Élément d'isolation sous vide commutable
DE19847634C1 (de) Wärmeisolationspaneel
EP2760665B1 (fr) Élément ignifuge à revêtement protecteur et son procédé de fabrication
WO2021140081A1 (fr) Intercalaire à adhérence améliorée
DE10031149C2 (de) Wärmedämmplatte
DE10123453A1 (de) Vakuumdämmplattensystem mit mehrfacher Umhüllung
EP4202140A1 (fr) Élément d'isolation sous vide
AT503131B1 (de) Wärmespeicher
DE19814271A1 (de) Vakuumisolationspaneele
EP3586940A1 (fr) Corps isolant sous vide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP