WO2003002694A1 - Low-pollution synthetic liquid fuel for internal combustion engine - Google Patents

Low-pollution synthetic liquid fuel for internal combustion engine Download PDF

Info

Publication number
WO2003002694A1
WO2003002694A1 PCT/JP2001/005730 JP0105730W WO03002694A1 WO 2003002694 A1 WO2003002694 A1 WO 2003002694A1 JP 0105730 W JP0105730 W JP 0105730W WO 03002694 A1 WO03002694 A1 WO 03002694A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
weight
alcohol
internal combustion
low
Prior art date
Application number
PCT/JP2001/005730
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Azuma
Original Assignee
Akihiro Azuma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akihiro Azuma filed Critical Akihiro Azuma
Priority to JP2003509057A priority Critical patent/JPWO2003002694A1/en
Publication of WO2003002694A1 publication Critical patent/WO2003002694A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only

Definitions

  • the present invention provides the same or higher efficiency and output as conventional gasoline without changing the structure or material of the existing gasoline internal combustion engine, and provides carbon monoxide (CO) in exhaust gas. And low-pollution synthetic liquid fuels for internal combustion engines whose hydrocarbon (HC) concentration is significantly reduced compared to conventional gasoline.
  • the synthetic liquid fuel obtained by mixing alcohol and ether with these light naphthas, together with carbon monoxide (CO) and hydrocarbons (HC), has a higher sulfur content in alcohols than in light naphthas.
  • CO carbon monoxide
  • HC hydrocarbons
  • the present invention has been made in view of the above problems, and a low-pollution synthetic liquid fuel for an internal combustion engine which does not cause separation of light naphtha and alcohol even when relatively long-chain ether is used. It is intended to provide. Disclosure of the invention
  • a low-pollution synthetic liquid fuel for an internal combustion engine includes a low-pollution synthetic liquid for an internal combustion engine, which contains at least a saturated or unsaturated hydrocarbon having 12 or less carbon atoms, an alcohol and an ether.
  • the alkyl group in the ether molecule has a relatively long chain by containing an ether having at least two ether bonds in the ether molecule in the ether component, the polarity of the ether is high. Since the decrease in water content is alleviated and the affinity with alcohol is not impaired, light naphtha and alcohol do not separate even if some water flows into the fuel.
  • the number of carbon atoms in the ether molecule having at least two ether bonds is preferably 4 or more.
  • the ether having at least two ether bonds is ethylene glycol dimethyl ether.
  • ethylene glycol dimethyl ether is suitable for use as an ether having at least two ether bonds because it is industrially manufactured in large quantities and can be obtained at low cost.
  • the low-pollution synthetic liquid fuel for an internal combustion engine of the present invention comprises methyl ether as the ether. It is preferably free of butyl ether (M.T.B.E.).
  • methyl butyl butyl ether (M.T.B.E.) has been used as an additive to gasoline fuel, but has recently caused environmental problems due to groundwater pollution and the like. Therefore, by not using these methyl tertiary butyl ethers (MTBE), it is possible to avoid environmental pollution due to the residual methyl tertiary butyl ether (MTBE).
  • the low-pollution synthetic liquid fuel for an internal combustion engine comprises: 15 to 75% by weight of aliphatic monohydric alcohol as the alcohol; and 20 to 8 of saturated or unsaturated hydrocarbon having 9 or less carbon atoms. 0% by weight, and preferably contains 5 to 20% by weight of an ether containing an ether having at least two ether bonds in the molecule.
  • FIG. 1 is a flowchart showing a method for producing a low-pollution liquid fuel for an internal combustion engine in an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the ratio of alcohol and hydrocarbon components in liquid fuel and the concentration of pollutant gas in exhaust gas.
  • FIG. 3 is a graph showing the relationship between the specific gravity of the obtained fuel and the fuel efficiency.
  • Fig. 4 is a graph showing the number of carbon atoms in the ether molecules used and the change in NOx in the exhaust gas.
  • a linear or non-linear alcohol having 2 to 9 carbon atoms in the alcohol molecule can be suitably used as the alcohol. These alcohols have more carbon atoms than ethyl alcohol, which has 2 carbon atoms in the molecule.
  • Examples of these alcohols include glycols having a plurality of hydroxyl groups in the molecule, but these secondary and tertiary polyhydric alcohols are expensive and difficult to obtain. Therefore, it is preferable to use first-class alcohol.
  • the carbon number is preferably 9 or less.
  • an appropriate alcohol is selected in a range of 2 to 5 types depending on the price, availability, brand ability and the like, and the plurality of alcohols can be mixed and used.
  • the specific gravity of the synthetic fuel varies due to variations in the composition of the light naphtha and recycled hydrocarbons used, and the ratio of these alcohols can be adjusted appropriately.
  • the burning rate can be adjusted to gasoline, and From the viewpoint of work when using facilities for soline, it is preferable from the viewpoint of work.
  • combinations of these alcohols include ethanol, isopropyl alcohol (IPA), isobutyl alcohol (IBA), and butyl alcohol. , Pen, octanol, etc. It is preferable to use a non-linear aliphatic monohydric alcohol in particular, since the octane value of the obtained fuel can be improved, but the present invention is not limited to this.
  • the ratio of these alcohols in the synthetic fuel is lower than 15% by weight, the concentration of CO and HC in the exhaust gas increases as shown in FIG.
  • the gasoline engine has a large change in acceleration (acceleration / deceleration), and the amount of fuel supplied is large.
  • the engine cannot keep up with the increase in engine speed, and the resulting combustion speed of the fuel tends to be in a rotation range that is not synchronized between hydrocarbons and alcohol, so that unburned fuel and burning fuel are discharged into the exhaust system.
  • the ratio exceeds 75% by weight, the asynchronous phenomenon of combustion may become more intense and hinder the driving.
  • the range may be from 15 to 75% by weight, more preferably from 25 to 55% by weight.
  • these light naphthas have significantly different intrinsic sulfur concentrations depending on the crude oil producing regions.However, when these sulfur concentrations are high, SOx in the exhaust gas increases, so that it is less than 0.01%. It is preferable to desulfurize so that
  • waste plastics which are currently in large quantities, are being recycled in the form of oil, which is an integral part of the recycling process, with an initial boiling point of 38 to 60 ° C and an end point of 180 to 2 Regenerated oil fractionated to 20 ° C can also be used. Since these re-refined oils are desulfurized at the stage of naphtha, which is the raw material for plastics, SO x in the gas can be further reduced.
  • the ratio of these hydrocarbon components in the synthetic fuel when the hydrocarbon ratio is 20% by weight or less, the alcohol component and the ether component are increased, and the combustion speed is lower than that of the conventional gasoline, as in the case where the alcohol amount is large. As a result, the combustion speed becomes far apart from that of the internal combustion engine, and the speed of the internal combustion engine, such as a car, whose rotation speed changes frequently, is poor in following the acceleration. On the other hand, if the hydrocarbon ratio exceeds 80% by weight, the effect of reducing CO, HC and NOx in the exhaust gas is reduced.
  • the ether component at least one kind of ether having 12 or less carbon atoms in the molecule and having at least one ether bond in the molecule can be used.
  • the ratio of these ether components in the synthetic fuel if the ether ratio is 5% by weight or less, the hydrocarbon component and the alcohol component become associated with the elapse of storage time and the absorption of moisture in the air. If the ether ratio is more than 20% by weight, ether odor will be generated as fuel, and volatility will be improved, the amount of evaporation will increase, and the loss in stockpiling as fuel will increase.
  • the content may be 5 to 20% by weight.
  • any ether having at least an ether bond in the molecule can be used, and the number of carbon atoms in the ether molecule used (the number of hydrogen atoms bonded to the carbon) Changes the amount of NO x in the exhaust gas.
  • Figure 4 shows the number of carbon atoms in the ether molecule and the change in NOx in the exhaust gas.
  • acetyl ether was used as the ether having 4 carbon atoms as the ether of Formulation Example 7 described later, and methyl tertiary butyl ether (M. T. B. E) is converted to an ether having 6 carbon atoms.
  • the NOx amount decreases as the number of carbon atoms in the ether increases, and it can be said that the use of an ether having a relatively large number of carbon atoms is effective in reducing the amount of NOx.
  • the number of carbon atoms is larger than 12 of the ethylene glycol dibutyl ether, not only the volatility of the ether is reduced, but also the price is high, and it is difficult to obtain a quantity as a fuel. It should be less than 1 2.
  • these ethers having a relatively large number of carbon atoms have a smaller polarity than ethers having a relatively small number of carbon atoms, and their ability to prevent the separation of a hydrocarbon from alcohol, which is originally intended for adding the ether, is reduced.
  • the separation of hydrocarbons and alcohols tends to occur easily due to the absorption of water during long-term storage and the like.
  • ether bonds in the molecule By using two or more ether bonds in the molecule or using a compound having a hydroxyl group (OH) in addition to the ether bond in the molecule, such as ethylene glycol monoethyl ether, It is preferable to avoid the separation of hydrocarbons and alcohols due to a decrease in polarity.
  • a compound having a plurality of ether bonds or a hydroxyl group (OH) in addition to these ether bonds in these molecules the conventional low-molecular-weight method can be used. It is possible to obtain a separation prevention effect equal to or higher than that of ether having carbon number.
  • ethers not only a single ether but also an ether having a high ability to prevent separation between a hydrocarbon and an alcohol and a low carbon number for the purpose of separating the hydrocarbon and the alcohol and reducing NOx,
  • the ether having a relatively large number of carbon atoms may be used as a mixture.
  • methyl butyl ether (M.T.B.E.) which has recently become a problem in the United States, etc., even if it is inexpensive, is used. It is preferable not to include these MTBEs in the fuel.
  • ethers besides the above-mentioned ethylene glycol dimethyl ether (molecular weight 90), diethylene glycol dimethyl ether (molecular weight 134), tertiary annealed methyl ether (TAME) and the like can also be suitably used. .
  • FIG. 1 is a flowchart showing a method for producing a liquid fuel for an internal combustion engine of the present embodiment.
  • the liquid fuel for an internal combustion engine of the present invention comprises at least two kinds of aliphatic primary alcohols, a saturated or unsaturated hydrocarbon having 9 or less carbon atoms, and a compound having 9 or less carbon atoms in the molecule. And a single component or a mixed ether containing an ether having at least two ether bonds, and each of these raw fuels is weighed to a predetermined weight percent, and has a relatively large weight ratio, First, ether having a polarity smaller than that of the aliphatic primary alcohol is added to and mixed with the lightest naphtha as the hydrocarbon having the smallest value.
  • the alcohol is gradually added in the order of small alcohol having a small number of carbon atoms, and then the alcohol having a small number of carbon atoms is added. Is preferred.
  • the specific gravity of the mixed liquid fuel is measured, and if the specific gravity is 0.735 or more and a predetermined specific gravity (in this embodiment, 0.755) or less, The alcohol is appropriately added to adjust the specific gravity so that the specific gravity becomes 0.755.
  • Figure 3 shows the relationship between the specific gravity of these fuels and fuel efficiency. From this result, when the specific gravity is less than 0.735, the fuel efficiency is significantly worse than the fuel efficiency of conventional gasoline (7.83 Km / liter), whereas it is 0.775 or more. As a result, the slope of the change curve of the fuel efficiency decreases, and it becomes almost similar to the fuel efficiency of the conventional gasoline.Therefore, by setting the specific gravity of these obtained fuels to 0.735 or more, It turns out that it is possible to obtain fuel efficiency that is almost equal to gasoline or more. As described above, it is preferable that raw fuels can be prevented from being separated by mixing those having similar polarities sequentially, and efficient mixing can be performed. However, the present invention is not limited to this. Further, in the above, the ether and the alcohol are sequentially charged and mixed into the low-polarity light-weight naphtha, but conversely, the ether and the light-weight naphtha may be sequentially charged into the high-polarity alcohol.
  • IBA isobutyl alcohol
  • IPA isopropyl alcohol
  • diethylene glycol dimethyl as the ether component 7% by weight of ether
  • straight-chain hydrocarbons such as light naphtha, gasoline, or oil-regenerated hydrocarbon oil of waste plastics.
  • n-butyl alcohol 25% by weight of n-butyl alcohol, 13% by weight of isopropyl alcohol (IPA), 10% by weight of ethanol, diethylene glycol as ether component Dimethyl ether is 7% by weight, and the linear hydrocarbon is 45% by weight of light naphtha, gasoline, or waste plastics.
  • IPA isopropyl alcohol
  • IPA isopropyl alcohol
  • n-propanol 25% by weight of n-propanol, 13% by weight of n-butanol, 10% by weight of ethanol, and 7% of diethylene glycol dimethyl ether as the ether component.
  • % By weight, as the straight-chain hydrocarbon Of 45% by weight of light naphtha, gasoline, or regenerated hydrocarbon oil from waste plastics.
  • aliphatic monohydric alcohols 25% by weight of n-butanol, 10% by weight of ethanol, and 13% by weight of another one are 2-ethyl-1-propanol.
  • Diethylene glycol dimethyl ether was 7% by weight as the tellurium component, and 45% by weight of any of light naphtha, gasoline, and regenerated hydrocarbon oil from waste plastic was used as the linear hydrocarbon.
  • aliphatic monohydric alcohols one is n-octal 25% by weight, ethanol is 10% by weight, the other is n-pentanol 13% by weight, and ethanol is an alcohol component.
  • Diethylene glycol dimethyl ether is 7% by weight, and the linear hydrocarbon is 45% by volume of any of light naphtha, gasoline, and regenerated hydrocarbon oil of waste plastic.
  • NBA normal alcohol
  • IPA isopropyl alcohol
  • ethanol ethanol
  • diethylene glycol dimethyl ether as an ether component as aliphatic monohydric alcohol % Of any of light naphtha, gasoline, and waste plastic oil reclaimed hydrocarbon oil as the linear hydrocarbon.
  • aliphatic monohydric alcohols one was 20% by weight of isobutyl alcohol (IBA), the other was 10% by weight of isopropyl alcohol (IPA), and 5% by weight of diethylene glycol dimethyl ether was used as an ether component.
  • IBA isobutyl alcohol
  • IPA isopropyl alcohol
  • diethylene glycol dimethyl ether was used as an ether component.
  • Either light naphtha, gasoline, or petroleum regenerated hydrocarbon oil from waste plastics is used as the chain hydrocarbon at 65% by weight.
  • IPA isopropyl alcohol
  • aliphatic monohydric alcohols one is 20% by weight of ethanol, the other is 10% by weight of isopropyl alcohol (IPA), 5% by weight of ethylene glycol dimethyl ether is an ether component, A hydrocarbon containing 65% by weight of light naphtha, gasoline, or regenerated hydrocarbon oil from waste plastics.
  • IPA isopropyl alcohol
  • n-propanol as one of the aliphatic monohydric alcohols
  • n-butanol as the other one
  • diethylene glycol dimethyl ether as an ether component
  • the linear hydrocarbon Either light naphtha, gasoline, or waste plastic oil reclaimed hydrocarbon oil is 65% by weight.
  • aliphatic monohydric alcohols one is 20% by weight of n-butanol, the other is 10% by weight of 2-ethyl-1-propanol, and 5% by weight of diethylene glycol dimethyl ether is an ether component.
  • aliphatic monohydric alcohols one is 20% by weight of n-octal, the other is 10% by weight of n-pentanol, 5% by weight of diethylene glycol dimethyl ether as an ether component, and the linear chain. Either light naphtha, gazolin, or oil-regenerated hydrocarbon oil from waste plastics is used as 65% by volume. Comparative Example 1>
  • methyl alcohol 43% by volume of methyl alcohol, 5% by volume of isopropyl alcohol (IPA) and 4% by volume of methyl tertiary butyl ether (MTB E) as ether component
  • IPA isopropyl alcohol
  • MTB E methyl tertiary butyl ether
  • the linear hydrocarbon Light naphtha gasoline is 48% by volume.
  • the present invention is not limited to these embodiments, and changes and additions without departing from the gist of the present invention, namely, It is optional to add other raw fuels and additives (including metals, etc.) as long as the characteristics of the fuel for an internal combustion engine of the invention do not significantly change. Needless to say, fuel for an internal combustion engine is also included in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

A low-pollution synthetic liquid fuel for internal combustion engines which comprises one or more saturated or unsaturated hydrocarbons having up to 12 carbon atoms, one or more alcohols, and one or more ethers, wherein the ethers comprise an ether having at least two ether bonds per molecule. In the fuel, the hydrocarbon ingredient is prevented from separating from the alcohol ingredient even when a relatively long-chain ether is employed.

Description

明細書 内燃機関用低公害合成液体燃料  Description Low-pollution synthetic liquid fuel for internal combustion engines
技術分野 Technical field
本発明は、 既存のガソリン用内燃機関の構造または材質の変更を必要とせずに 、 従来のガソリンの同程度またはそれ以上の効率と出力が得られ、 かつ排気ガス 中の一酸化炭素 (C O ) と炭化水素 (H C ) 濃度が従来のガソリンに比較して著 しく減少する内燃機関用低公害合成液体燃料の改良に関する。 背景技術  The present invention provides the same or higher efficiency and output as conventional gasoline without changing the structure or material of the existing gasoline internal combustion engine, and provides carbon monoxide (CO) in exhaust gas. And low-pollution synthetic liquid fuels for internal combustion engines whose hydrocarbon (HC) concentration is significantly reduced compared to conventional gasoline. Background art
近年の環境問題への取り組みの一環として、 自動車の排出ガスによる大気汚染 の問題がより一層重大視されるようになつてきており、 これら自動車の排出ガス 中の一酸化炭素 (C O ) と炭化水素 (H C ) 濃度を著しく下げ、 従来のガソリン に代わり使用することのできる内燃機関用燃料としては、 本発明者が先に出願し ているように、 軽質ナフサにアルコールとェ一テルとを混合したものが実用化さ れて既に販売されている。  As part of our efforts to address environmental issues in recent years, the issue of air pollution due to vehicle emissions has become even more important. Carbon monoxide (CO) and hydrocarbons in these vehicle emissions have become increasingly important. As a fuel for an internal combustion engine that can be used as a substitute for conventional gasoline by significantly lowering the concentration of (HC), alcohol and ether are mixed with light naphtha as previously filed by the present inventors. The product has been commercialized and already sold.
これら軽質ナフサにアルコールとエーテルとを混合した合成液体燃料は、 前述 のように一酸化炭素 (C O ) と炭化水素 (H C ) とともに、 アルコール等には実 質的に軽質ナフサ等に比較して硫黄成分が非常に少ないことから S O x等も低減 できることから好ましいものの、 燃料温度が従来のガソリン燃料に比較して高い ためか N O xに関しては、 従来のガソリン燃料よりも排出量が多くなつてしまい 、 配合内容によってはガソリン燃料による排出量の 3倍程度になってしまう場合 があるという問題があった。  As described above, the synthetic liquid fuel obtained by mixing alcohol and ether with these light naphthas, together with carbon monoxide (CO) and hydrocarbons (HC), has a higher sulfur content in alcohols than in light naphthas. Although it is preferable because it can reduce SO x etc. because it has a very small amount of components, it is preferable because the fuel temperature is higher than that of conventional gasoline fuel. There was a problem that the amount of emissions from gasoline fuel might be about three times depending on the content of blending.
このため、 これら N O xの排出量を下げるために、 種々の配合を検討した結果 、 添加するエーテルとして該エーテル分子のアルキル基が比較的長鎖のものを使 用すると N〇xの排出が低下することを見い出したが、 これらアルキル基が比較 的長鎖のエーテルは極性が低くなつてしまうことから、 これらエーテルを加える ことで、 本来は前記軽質ナフサとアルコールの分離を防止することが可能となつ ていたが、 燃料中に吸水等により水分が流入すると、 これらアルキル基が比較的 長鎖のエーテルを使用した場合には、 軽質ナフサとアルコールの分離が生じて良 好な燃料の特性が得られなくなってしまうという問題があつた。 Therefore, as a result of studying various formulations in order to reduce the emission of NOx, the emission of N 低下 x was reduced when the alkyl ether group of the ether molecule used was relatively long as the ether to be added. However, since these alkyl groups have relatively low-chain ethers, the polarity of these ethers becomes lower, so that by adding these ethers, separation of the light naphtha and alcohol can be prevented. Summer However, when water flows into the fuel due to water absorption, etc., when these alkyl groups use relatively long-chain ethers, light naphtha and alcohol are separated, and good fuel characteristics are obtained. There was a problem of disappearing.
よって、 本発明は前記問題点に着目してなされたもので、 比較的長鎖のエーテ ルを用いても、 軽質ナフサとアルコールの分離が生じてしまうことのない内燃機 関用低公害合成液体燃料を提供することを目的としている。 発明の開示  Accordingly, the present invention has been made in view of the above problems, and a low-pollution synthetic liquid fuel for an internal combustion engine which does not cause separation of light naphtha and alcohol even when relatively long-chain ether is used. It is intended to provide. Disclosure of the invention
上記した目的を達成するために、 本発明の内燃機関用低公害合成液体燃料は、 炭素原子数が 1 2以下の飽和または不飽和炭化水素とアルコール並びにエーテル とを少なくとも含む内燃機関用低公害合成液体燃料であって、 前記エーテルが、 その分子中に少なくとも 2つのエーテル結合を有するエーテルを含むことを特徴 としている。  In order to achieve the above object, a low-pollution synthetic liquid fuel for an internal combustion engine according to the present invention includes a low-pollution synthetic liquid for an internal combustion engine, which contains at least a saturated or unsaturated hydrocarbon having 12 or less carbon atoms, an alcohol and an ether. A liquid fuel, wherein the ether includes an ether having at least two ether bonds in its molecule.
この特徴によれば、 エーテル分子中に少なくとも 2つのエーテル結合を有する エーテルを、 エーテル成分中に含むことで、 エーテル分子中のアルキル基が比較 的長鎖なものとなっても、 該エーテルの極性の低下が緩和され、 アルコールとの 親和性が損なわれなくなることから、 燃料中にある程度水分が流入しても軽質ナ フサとアルコールとが分離してしまうことがない。  According to this feature, even if the alkyl group in the ether molecule has a relatively long chain by containing an ether having at least two ether bonds in the ether molecule in the ether component, the polarity of the ether is high. Since the decrease in water content is alleviated and the affinity with alcohol is not impaired, light naphtha and alcohol do not separate even if some water flows into the fuel.
本発明の内燃機関用低公害合成液体燃料は、 前記少なくとも 2つのエーテル結 合を有するエーテル分子中の炭素数が 4以上であることが好ましい。  In the low-pollution synthetic liquid fuel for an internal combustion engine of the present invention, the number of carbon atoms in the ether molecule having at least two ether bonds is preferably 4 or more.
このようにすれば、 炭素数を 4以上のエーテルとすることで、 従来のものと比 較して N O xの排出量を大幅に低減することができる。  In this way, by using an ether having 4 or more carbon atoms, it is possible to significantly reduce the amount of NO x emissions as compared with the conventional one.
本発明の内燃機関用低公害合成液体燃料は、 前記少なくとも 2つのエーテル結 合を有するエーテルがエチレングリコールジメチルエーテルであることが好まし い。  In the low-pollution synthetic liquid fuel for an internal combustion engine of the present invention, it is preferable that the ether having at least two ether bonds is ethylene glycol dimethyl ether.
このようにすれば、 エチレングリコールジメチルエーテルは工業的に大量に製 造されていて安価にて入手できることから、 少なくとも 2つのエーテル結合を有 するエーテルとして好適である。  In this way, ethylene glycol dimethyl ether is suitable for use as an ether having at least two ether bonds because it is industrially manufactured in large quantities and can be obtained at low cost.
本発明の内燃機関用低公害合成液体燃料は、 前記エーテルとしてメチルターシ ャリーブチルェ一テル (M . T . B . E ) を含まないことが好ましい。 The low-pollution synthetic liquid fuel for an internal combustion engine of the present invention comprises methyl ether as the ether. It is preferably free of butyl ether (M.T.B.E.).
このようにすれば、 メチル夕一シャリーブチルェ一テル (M . T . B . E ) は ガソリン燃料への添加剤として使用されているが、 近年、 地下水の汚染等による 環境問題を生じていることから、 これらメチルターシャリ一プチルエーテル (M . T . B . E ) を使用しないことで、 これらメチルターシャリーブチルエーテル ( M . T . B . E ) の残留による環境汚染を回避できる。  In this way, methyl butyl butyl ether (M.T.B.E.) has been used as an additive to gasoline fuel, but has recently caused environmental problems due to groundwater pollution and the like. Therefore, by not using these methyl tertiary butyl ethers (MTBE), it is possible to avoid environmental pollution due to the residual methyl tertiary butyl ether (MTBE).
本発明の内燃機関用低公害合成液体燃料は、 前記アルコールとして脂肪族一価 のアルコールを 1 5〜7 5重量%、 前記炭素原子数が 9以下の飽和または不飽和 炭化水素を 2 0〜8 0重量%、 前記分子中に少なくとも 2つのエーテル結合を有 するエーテルを含むエーテルを 5〜 2 0重量%含むことが好ましい。  The low-pollution synthetic liquid fuel for an internal combustion engine according to the present invention comprises: 15 to 75% by weight of aliphatic monohydric alcohol as the alcohol; and 20 to 8 of saturated or unsaturated hydrocarbon having 9 or less carbon atoms. 0% by weight, and preferably contains 5 to 20% by weight of an ether containing an ether having at least two ether bonds in the molecule.
このようにすれば、 合成液体燃料の熱量 (パワー) と低公害生とを両立させた 好適な内燃機関用低公害合成液体燃料を得ることができる。 図面の簡単な説明  In this way, it is possible to obtain a suitable low-pollution synthetic liquid fuel for an internal combustion engine that achieves both the calorific value (power) of the synthetic liquid fuel and low-pollution life. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施例における内燃機関用低公害液体燃料の製造方法を示 すフロー図である。  FIG. 1 is a flowchart showing a method for producing a low-pollution liquid fuel for an internal combustion engine in an embodiment of the present invention.
第 2図は、 液体燃料中のアルコールと炭化水素成分の比率と排出ガス中の汚染 ガス濃度との関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the ratio of alcohol and hydrocarbon components in liquid fuel and the concentration of pollutant gas in exhaust gas.
第 3図は、 得られる燃料の比重と燃費との関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the specific gravity of the obtained fuel and the fuel efficiency.
第 4図は、 使用するエーテル分子中の炭素原子数と排出ガス中の NOxの変化を 示す図である。 発明を実施するための最良の形態  Fig. 4 is a graph showing the number of carbon atoms in the ether molecules used and the change in NOx in the exhaust gas. BEST MODE FOR CARRYING OUT THE INVENTION
これら配合される前記アルコール、 直鎖系炭化水素並びにエーテルの各々につ いて、 得られる合成液体燃料中の含有比率や好適に使用することのできるものと その理由を以下に説明する。  For each of the above-mentioned alcohols, straight-chain hydrocarbons and ethers to be blended, the content ratio in the obtained synthetic liquid fuel, those which can be suitably used, and the reasons thereof will be described below.
まず、 前記アルコールとしては、 該アルコール分子中の炭素数が 2以上で 9以 下の直鎖系或いは非直鎖系のアルコールを好適に使用することができる。 これら アルコールとして分子中の炭素数が 2であるエチルアルコールよりも炭素数の多 いアルコールを使用し、 極性の著しく大きな炭素数 1のアルコールであるメタノ ールを使用しないようにすることで、 得られる合成液体燃料全体の極性が大きく なってしまうことや、 これら極性の大きなメタノールが分離して燃料供給用のゴ ムパイプ等を膨潤させてしまうことを回避できるようになる。 First, as the alcohol, a linear or non-linear alcohol having 2 to 9 carbon atoms in the alcohol molecule can be suitably used. These alcohols have more carbon atoms than ethyl alcohol, which has 2 carbon atoms in the molecule. The use of low alcohol and the elimination of methanol, which is a highly polar alcohol with 1 carbon atom, increases the overall polarity of the resulting synthetic liquid fuel and increases the polarity of these highly polar methanol. Can be prevented from separating and swelling the fuel supply rubber pipe and the like.
これらアルコールとしては、 複数の水酸基を分子中に有するグリコール類等も あるが、 これら 2級や 3級の多価アルコールは、 その価格が高いとともに入手し 難いために、 得られる合成液体燃料の価格も高くなつてしまうことから、 1級ァ ルコールを使用することが好ましい。  Examples of these alcohols include glycols having a plurality of hydroxyl groups in the molecule, but these secondary and tertiary polyhydric alcohols are expensive and difficult to obtain. Therefore, it is preferable to use first-class alcohol.
また、 これらアルコール分子中に含まれる分子鎖の炭素数としては、 これが 1 0以上となると、 通常の室温における揮発性が大きく低下してしまうとともに、 燃焼において燃焼時間が短くなる傾向にあることから、 炭化水素の燃焼速度との 差が生じやすくなつてしまいガソリン代替え燃料として不適になってしまうこと から、 その炭素数は 9以下とすることが好ましい。  In addition, when the number of carbon atoms in the molecular chain contained in these alcohol molecules is 10 or more, the volatility at ordinary room temperature is greatly reduced, and the combustion time in combustion tends to be short. However, since the difference with the combustion rate of hydrocarbons is likely to occur, and the fuel becomes unsuitable as a gasoline substitute fuel, the carbon number is preferably 9 or less.
また、 これらアルコールとしては、 価格や入手のしゃすさ、 ブラントの能力等 により適宜なアルコールを 2種〜 5種の範囲にて選択し、 該複数のアルコールを 混合して使用することができる。 このように異なる 2種類以上で且つ 5種類以下 のアルコールを併用することにより、 使用する軽質ナフサやリサイクル炭化水素 の組成のばらつきによる合成燃料の比重のばらっきを、 これらアルコールの比率 を適宜に変化させることで調節できるようになるばかりか、 その燃焼速度がそれ それのアルコールで多少違いがあるため、 これらアルコールを組み合わせること で、 燃焼速度をガソリンに合わせることができるようになるとともに、 これらガ ソリン用の施設を利用する場合の作業上の観点から好ましく、 これらアルコール の組み合わせとしては、 価格や揮発性等の観点からエタノール、 イソプロピルァ ルコ一 ( I P A ) 、 イソプチルアルコール ( I B A ) 、 ブチルアルコール、 ペン 夕ノール、 ォクタノール等を適宜に組み合わせることが好ましく、 特に非直鎖系 の脂肪族一価アルコールを用いることは、 得られる燃料のオクタン価を向上でき ることから好ましいが、 本発明はこれに限定されるものではない。  Further, as these alcohols, an appropriate alcohol is selected in a range of 2 to 5 types depending on the price, availability, brand ability and the like, and the plurality of alcohols can be mixed and used. By using two or more different but not more than five different alcohols in this manner, the specific gravity of the synthetic fuel varies due to variations in the composition of the light naphtha and recycled hydrocarbons used, and the ratio of these alcohols can be adjusted appropriately. Not only can it be adjusted by changing it, but also its burning rate is slightly different for each alcohol, so by combining these alcohols, the burning rate can be adjusted to gasoline, and From the viewpoint of work when using facilities for soline, it is preferable from the viewpoint of work. From the viewpoint of price and volatility, combinations of these alcohols include ethanol, isopropyl alcohol (IPA), isobutyl alcohol (IBA), and butyl alcohol. , Pen, octanol, etc. It is preferable to use a non-linear aliphatic monohydric alcohol in particular, since the octane value of the obtained fuel can be improved, but the present invention is not limited to this.
これらアルコールの合成燃料中の比率としては、 これが 1 5重量%よりも低い と、 図 2に示すように、 排出ガス中の COや HCの濃度が上昇してしまうし、 このァ ルコール比率が 5 5重量%を越えるあたりから、 得られる燃料をガソリンェンジ ン用の燃料として使用した場合においては、 該ガソリンエンジンではァクセレ一 シヨン (加減速) の変化が大きく、 燃料の送り込み量がエンジンの回転の上昇に 追随できない場合が生じるとともに、 得られる燃料の燃焼速度が炭化水素とアル コールとで同期しない回転域を生じ易くなり、 未燃焼の燃料と燃焼中の燃料とが 排気系にまで流れ込んで走行に不具合が生じはじめ、 その比率が 7 5重量%を越 えると、 前記燃焼の非同期現象が一層激しくなつて走行に支障をきたす場合があ ることから、 これらアルコール比率としては、 1 5〜7 5重量%の範囲、 より好 ましくは 2 5〜 5 5重量%の範囲とすれば良い。 If the ratio of these alcohols in the synthetic fuel is lower than 15% by weight, the concentration of CO and HC in the exhaust gas increases as shown in FIG. When the obtained fuel is used as a fuel for gasoline engines when the alcohol ratio exceeds about 55% by weight, the gasoline engine has a large change in acceleration (acceleration / deceleration), and the amount of fuel supplied is large. In some cases, the engine cannot keep up with the increase in engine speed, and the resulting combustion speed of the fuel tends to be in a rotation range that is not synchronized between hydrocarbons and alcohol, so that unburned fuel and burning fuel are discharged into the exhaust system. If the ratio exceeds 75% by weight, the asynchronous phenomenon of combustion may become more intense and hinder the driving. The range may be from 15 to 75% by weight, more preferably from 25 to 55% by weight.
次いで、 前記炭化水素としては、 該炭化水素分子中に含まれる炭素数が 1 0を 越えると、 その揮発性が低下して着火装置の着火能力を低下させたり、 燃焼時の 残査による排気ガス中の COや HCの濃度が上昇してしまうことから、 炭素原子数が 9以下の飽和または不飽和炭化水素とすれば良く、 その中でも、 直鎖系炭化水素 の混合物である軽質ナフサは、 価格が安価であることから好適に使用することが できる。  Next, when the number of carbon atoms contained in the hydrocarbon molecule exceeds 10 as the hydrocarbon, the volatility of the hydrocarbon decreases and the igniting ability of the igniter decreases. Since the concentration of CO and HC in the solution increases, it is sufficient to use a saturated or unsaturated hydrocarbon having 9 or less carbon atoms. Among them, light naphtha, which is a mixture of linear hydrocarbons, is expensive. Can be suitably used because of its low cost.
これら軽質ナフサ中には、 B (ベンゼン) 、 T (トルエン) 、 X (キシレン) 等 の芳香族炭化水素を含有するものが多いが、 これら芳香族炭化水素の濃度が高い と、 ガソリン燃料の場合と同様に、 排気ガス中の COや HCの濃度が上昇したり、 こ れら有害な B (ベンゼン) 、 T (トルエン) 、 X (キシレン) 等の芳香族炭化水素 自体が排気ガス中に排出されてしまう場合があることから、 これら B (ベンゼン ) 、 T (トルエン) 、 X (キシレン) 等の芳香族炭化水素の各々の含有率が 1 %以 下となるように精製したものを使用することが好ましい。  Many of these light naphthas contain aromatic hydrocarbons such as B (benzene), T (toluene), and X (xylene), but when the concentration of these aromatic hydrocarbons is high, gasoline fuel Similarly, the concentration of CO and HC in the exhaust gas rises, and the harmful aromatic hydrocarbons such as B (benzene), T (toluene), and X (xylene) themselves are emitted into the exhaust gas. Since they may be removed, use those purified so that the content of each of these aromatic hydrocarbons such as B (benzene), T (toluene) and X (xylene) is 1% or less. Is preferred.
また、 これら軽質ナフサとしては、 原油産地により内在する硫黄分濃度が大き く異なるが、 これら硫黄分濃度が高いと、 排気ガス中の SOxが増大してしまうこ とから、 0 . 0 1 %以下となるように脱硫することが好ましい。  In addition, these light naphthas have significantly different intrinsic sulfur concentrations depending on the crude oil producing regions.However, when these sulfur concentrations are high, SOx in the exhaust gas increases, so that it is less than 0.01%. It is preferable to desulfurize so that
また、 これら軽質ナフサとともに、 昨今大量に処理に窮している廃プラスッテ イク類をリサイクル処理の一貫である油化したリサイクル油を初留点 3 8〜 6 0 °C、 終点 1 8 0〜2 2 0 °Cまで分溜した再製油を使用することもできる。 これら の再製油はプラスッテイクの原料であるナフサの段階で脱硫されているので、 排 気ガス中の S O xをより一層低減する事もできる。 Along with these light naphthas, waste plastics, which are currently in large quantities, are being recycled in the form of oil, which is an integral part of the recycling process, with an initial boiling point of 38 to 60 ° C and an end point of 180 to 2 Regenerated oil fractionated to 20 ° C can also be used. Since these re-refined oils are desulfurized at the stage of naphtha, which is the raw material for plastics, SO x in the gas can be further reduced.
これらリサイクル油を使用する場合は、 初留点が 3 8 °Cを下回ると、 気温が低 い場合や寒冷地では始動性が著しく低下してしまい、 ガソリンと同等の始動性が 得られなくなってしまうし、 終点が 2 2 0 °Cより高くなると、 エンジン回転が高 回転の時に、 エンジンのパワーを設計値通りに発生させることができなくなって しまうことから、 初留点 3 8〜6 0 °C、 終点 1 8 0〜2 2 0 °Cまで分溜した再製 油とすることが好ましい。  When using these recycled oils, if the initial boiling point is lower than 38 ° C, startability will be significantly reduced in low temperatures and in cold regions, and the same startability as gasoline will not be obtained. If the end point is higher than 220 ° C, the engine will not be able to generate the engine power as designed at high engine speeds. C, It is preferable to use a re-refined oil fractionated to an end point of 180 to 220 ° C.
これら炭化水素成分の合成燃料中の比率としては、 これら炭化水素比率が 2 0 重量%以下だとアルコール成分やエーテル成分が多くなつて、 前記アルコール量 が多い場合と同じく、 燃焼速度が従来のガソリンとかけ離れた燃焼速度となって しまうようになり、 自動車のように回転数の変化が多い内燃機関ではァクセレー シヨンとの追随が悪くなつてしまう。 また、 炭化水素比率が 8 0重量%を超える と排気ガス中の C O、 H C、 N O xの減少効果が少なくなつてしまう。 ' 次いで、 エーテル成分としては、 分子中の炭素原子数が 1 2以下であって該分 子中に少なくとも 1つのエーテル結合を有する少なくとも 1種類のエーテルを使 用することができる。  As for the ratio of these hydrocarbon components in the synthetic fuel, when the hydrocarbon ratio is 20% by weight or less, the alcohol component and the ether component are increased, and the combustion speed is lower than that of the conventional gasoline, as in the case where the alcohol amount is large. As a result, the combustion speed becomes far apart from that of the internal combustion engine, and the speed of the internal combustion engine, such as a car, whose rotation speed changes frequently, is poor in following the acceleration. On the other hand, if the hydrocarbon ratio exceeds 80% by weight, the effect of reducing CO, HC and NOx in the exhaust gas is reduced. 'Next, as the ether component, at least one kind of ether having 12 or less carbon atoms in the molecule and having at least one ether bond in the molecule can be used.
これらエーテル成分の合成燃料中の比率としては、 該エーテル比率が 5重量% 以下だと保管時の時間経過に伴い、 空気中の水分を吸収することに伴い、 炭化水 素成分とアルコール成分とが分離してしまうし、 エーテル比率が 2 0重量%以上 だと燃料としてエーテル臭が発生することと、 揮発性が向上して蒸発量が多くな り燃料としての備蓄における損失が多くなることから、 5〜2 0重量%とすれば 良い。  As for the ratio of these ether components in the synthetic fuel, if the ether ratio is 5% by weight or less, the hydrocarbon component and the alcohol component become associated with the elapse of storage time and the absorption of moisture in the air. If the ether ratio is more than 20% by weight, ether odor will be generated as fuel, and volatility will be improved, the amount of evaporation will increase, and the loss in stockpiling as fuel will increase. The content may be 5 to 20% by weight.
これら、 配合するエーテルとしては、 エーテル結合を少なくとも分子中に有す るものであれば使用することができるが、 これら使用するエーテル分子中の炭素 数 (該炭素に結合している水素原子数) により排出ガス中の NO x量が変化する。 このエーテル分子中の炭素原子数と排出ガス中の NOxの変化を図 4に示す。 この 試験としては、 後述する配合例 7のエーテルとして炭素数 4のエーテルとしては 、 ジェチルエーテルを、 炭素数 5のエーテルとしては従来より使用されてきたメ チルターシャリーブチルェ—テル (M . T . B . E ) を、 炭素数 6のエーテルと してはジエチレングリコールジメチルエーテルを、 炭素数 8のエーテルとしては エチレングリコールジェチルエーテルを、 炭素数 9のエーテルとしてはターシャ リーアニールメチルエーテル (T.A.M. E) を、 炭素数 1 2のエーテルとしてはェ チレングリコールジブチルエーテルを、 を使用し、 得られた各燃料の NOx量を測 定した。 As the ether to be compounded, any ether having at least an ether bond in the molecule can be used, and the number of carbon atoms in the ether molecule used (the number of hydrogen atoms bonded to the carbon) Changes the amount of NO x in the exhaust gas. Figure 4 shows the number of carbon atoms in the ether molecule and the change in NOx in the exhaust gas. In this test, acetyl ether was used as the ether having 4 carbon atoms as the ether of Formulation Example 7 described later, and methyl tertiary butyl ether (M. T. B. E) is converted to an ether having 6 carbon atoms. Diethylene glycol dimethyl ether, ethylene glycol dimethyl ether as an ether having 8 carbon atoms, tertiary annealed methyl ether (TAME) as an ether having 9 carbon atoms, and ethylene glycol as an ether having 12 carbon atoms. Using dibutyl ether, the NOx amount of each fuel obtained was measured.
この結果より、 エーテルの炭素数が増加するにつれて NOx量が低下しているこ とが判り、 これら炭素数が比較的多いエーテルを使用することが NOx量の低下に 効果的であるといえるが、 これら炭素原子数が前記エチレングリコールジブチル エーテルの 1 2よりも大きくなると、 エーテルの揮発性が低下するばかりか、 そ の価格が高く、 且つ燃料としての量の入手が難しいことから、 その炭素数は 1 2 以下とすれば良い。  From these results, it can be seen that the NOx amount decreases as the number of carbon atoms in the ether increases, and it can be said that the use of an ether having a relatively large number of carbon atoms is effective in reducing the amount of NOx. When the number of carbon atoms is larger than 12 of the ethylene glycol dibutyl ether, not only the volatility of the ether is reduced, but also the price is high, and it is difficult to obtain a quantity as a fuel. It should be less than 1 2.
また、 これら炭素数が比較的多いエーテルは、 炭素数が比較的少ないエーテル に比較してその極性が小さく、 本来エーテルを添加する目的である炭化水素とァ ルコールとの分離を防止する能力が低下してしまい、 特に長期保存等における水 分の吸収により炭化水素とアルコールとの分離が生じやすくなつてしまうことか ら、 これら炭素数の比較的大きいエーテルを使用する場合には、 上記ジエチレン グリコ一ルジメチルエーテルや、 エチレングリコールジェチルエーテルのように In addition, these ethers having a relatively large number of carbon atoms have a smaller polarity than ethers having a relatively small number of carbon atoms, and their ability to prevent the separation of a hydrocarbon from alcohol, which is originally intended for adding the ether, is reduced. The separation of hydrocarbons and alcohols tends to occur easily due to the absorption of water during long-term storage and the like. Like dimethyl ether and ethylene glycol getyl ether
、 その分子中にエーテル結合を 2つ以上有するものとしたり、 エチレングリコー ルモノェチルエーテルのように、 該分子中にエーテル結合の他に水酸基 (O H ) を有するものを用いるようにすることで、 極性の低下による炭化水素とアルコー ルとの分離を回避することが好ましく、 これらの分子中に複数のエーテル結合や 該エーテル結合の他に水酸基 (O H ) を有するものを用いることで、 従来の低炭 素数のエーテルと同等或いはそれ以上の分離防止効果を得ることができる。 また、 これらエーテルとしては、 単一のエーテルのみではなく、 前記炭化水素 とアルコールとが分離と NOxの低下とを目的として、 炭化水素とアルコールとの 分離防止能の高い炭素数の少ないエーテルと、 前記炭素数の比較的多いエーテル とを混合して使用するようにしても良い。 By using two or more ether bonds in the molecule or using a compound having a hydroxyl group (OH) in addition to the ether bond in the molecule, such as ethylene glycol monoethyl ether, It is preferable to avoid the separation of hydrocarbons and alcohols due to a decrease in polarity. By using a compound having a plurality of ether bonds or a hydroxyl group (OH) in addition to these ether bonds in these molecules, the conventional low-molecular-weight method can be used. It is possible to obtain a separation prevention effect equal to or higher than that of ether having carbon number. Further, as these ethers, not only a single ether but also an ether having a high ability to prevent separation between a hydrocarbon and an alcohol and a low carbon number for the purpose of separating the hydrocarbon and the alcohol and reducing NOx, The ether having a relatively large number of carbon atoms may be used as a mixture.
また、 これらエーテル成分としては、 例え安価であっても近年米国等において 問題となっているメチル夕一シャリ一プチルェ一テル (M . T . B . E ) を使用 しないようにし、 これら M T B Eを燃料中に含有しないようにすることが好まし レ、o In addition, as these ether components, methyl butyl ether (M.T.B.E.) which has recently become a problem in the United States, etc., even if it is inexpensive, is used. It is preferable not to include these MTBEs in the fuel.
また、 これらエーテルとしては、 前記エチレングリコールジメチルエーテル ( 分子量 9 0 ) の他に、 ジエチレングリコールジメチルェ一テル (分子量 1 3 4 ) 、 ターシャリーアニールメチルエーテル (T. A.M. E) 等も好適に使用することが できる。  As these ethers, besides the above-mentioned ethylene glycol dimethyl ether (molecular weight 90), diethylene glycol dimethyl ether (molecular weight 134), tertiary annealed methyl ether (TAME) and the like can also be suitably used. .
(実施例)  (Example)
図 1は、 本実施例の内燃機関用液体燃料の製造方法を示すフロー図である。 本 発明の内燃機関用液体燃料は、 少なくとも 2種の脂肪族一級アルコール、 飽和或 いは不飽和で炭素数 9以下の炭化水素、 並びに分子中の炭素数が 9以下であって 、 該分子中に少なくとも 2つのエーテル結合を有するエーテルを含む単一成分ま たは混合エーテルと、 から主に構成されており、 これら各原燃料を所定重量%に 計量した後、 比較的重量比率の大きく、 極性の一番小さな前記炭化水素としての 軽量ナフサに対し、 まず前記脂肪族一級アルコールよりも極性の小さなエーテル を投入、 混合する。  FIG. 1 is a flowchart showing a method for producing a liquid fuel for an internal combustion engine of the present embodiment. The liquid fuel for an internal combustion engine of the present invention comprises at least two kinds of aliphatic primary alcohols, a saturated or unsaturated hydrocarbon having 9 or less carbon atoms, and a compound having 9 or less carbon atoms in the molecule. And a single component or a mixed ether containing an ether having at least two ether bonds, and each of these raw fuels is weighed to a predetermined weight percent, and has a relatively large weight ratio, First, ether having a polarity smaller than that of the aliphatic primary alcohol is added to and mixed with the lightest naphtha as the hydrocarbon having the smallest value.
この際、 前記アルコールとして 2種以上の脂肪族一級アルコールを使用する場 合においては、 その投入も極性の小さな炭素原子数の多いアルコールより徐々に 投入し、 次いで炭素原子数の少ないアルコールを投入することが好ましい。  At this time, when two or more aliphatic primary alcohols are used as the alcohol, the alcohol is gradually added in the order of small alcohol having a small number of carbon atoms, and then the alcohol having a small number of carbon atoms is added. Is preferred.
このアルコールを投入した後、 混合した液体燃料の比重を測定し、 該比重が 0 . 7 3 5以上の所定比重 (本実施例では 0 · 7 5 5としている) 以下である場合に は、 その比重が 0 . 7 5 5となるように、 前記アルコールを適宜に添加して比重 を調整する。  After the addition of the alcohol, the specific gravity of the mixed liquid fuel is measured, and if the specific gravity is 0.735 or more and a predetermined specific gravity (in this embodiment, 0.755) or less, The alcohol is appropriately added to adjust the specific gravity so that the specific gravity becomes 0.755.
これら得られる燃料の比重と燃費との関係を図 3に示す。 この結果から、 比重 が 0 . 7 3 5未満になると、 燃費が従来のガソリンの燃費 ( 7 . 8 3 K m /リッ ト ル) に比較して著しく悪いのに対し、 0 . 7 3 5以上とすることで、 燃費がの変 化曲線の傾きが減少し、 従来のガソリンの燃費にほぼ近いものとなることから、 これら得られる燃料の比重を 0 . 7 3 5以上とすることで従来のガソリンにほぼ 遜色ないか、 或いはそれ以上の燃費を安定して得ることができるようになること が判る。 このように、 極性の大きさが近いものを順次混合するで原燃料が分離すること を防止でき、 効率の良い混合を実施できることから好ましいが、 本発明はこれに 限定されるものではない。 また、 前記では、 極性の低い軽量ナフサに順次ェ一テ ル、 アルコールを投入、 混合しているが、 逆に極性の高いアルコールに順次エー テル、 軽量ナフサを投入するようにしても良い。 Figure 3 shows the relationship between the specific gravity of these fuels and fuel efficiency. From this result, when the specific gravity is less than 0.735, the fuel efficiency is significantly worse than the fuel efficiency of conventional gasoline (7.83 Km / liter), whereas it is 0.775 or more. As a result, the slope of the change curve of the fuel efficiency decreases, and it becomes almost similar to the fuel efficiency of the conventional gasoline.Therefore, by setting the specific gravity of these obtained fuels to 0.735 or more, It turns out that it is possible to obtain fuel efficiency that is almost equal to gasoline or more. As described above, it is preferable that raw fuels can be prevented from being separated by mixing those having similar polarities sequentially, and efficient mixing can be performed. However, the present invention is not limited to this. Further, in the above, the ether and the alcohol are sequentially charged and mixed into the low-polarity light-weight naphtha, but conversely, the ether and the light-weight naphtha may be sequentially charged into the high-polarity alcohol.
以下、 この前記した製造方法により製造した内燃機関用燃料の配合例を以下に 示す。  Hereinafter, examples of blending of the fuel for an internal combustion engine manufactured by the above-described manufacturing method are shown below.
《配合例 1》  《Formulation Example 1》
脂肪族一価アルコールとして、 その 1つをイソブチルアルコール (IBA) を 2 5重量%、 エタノールを 1 0重量%、 他の 1つをイソプロピルアルコール (IPA ) を 1 3重量%、 エーテル成分としてジエチレングリコールジメチルェ一テルを 7重量%、 前記直鎖系炭化水素として軽質ナフサ, ガソリン, 廃プラスチックの 油化再生炭化水素油のいずれかを 4 5重量%としたもの。  25% by weight of isobutyl alcohol (IBA), 10% by weight of ethanol, 13% by weight of isopropyl alcohol (IPA) as the aliphatic monohydric alcohol, and 13% by weight of diethylene glycol dimethyl as the ether component 7% by weight of ether, and 45% by weight of straight-chain hydrocarbons such as light naphtha, gasoline, or oil-regenerated hydrocarbon oil of waste plastics.
《配合例 2》  《Formulation Example 2》
脂肪族一価アルコールとして、 その 1つ、 n -ブチルアルコールを 2 5重量% 、 他の 1っをィソプロピルアルコール (IPA) を 1 3重量%、 エタノールを 1 0 重量%、 エーテル成分としてジエチレングリコールジメチルエーテルを 7重量% 、 前記直鎖系炭化水素として軽質ナフサ, ガソリン, 廃プラスチックの油化再生 炭化水素油のいづれかを 4 5重量%としたもの。  25% by weight of n-butyl alcohol, 13% by weight of isopropyl alcohol (IPA), 10% by weight of ethanol, diethylene glycol as ether component Dimethyl ether is 7% by weight, and the linear hydrocarbon is 45% by weight of light naphtha, gasoline, or waste plastics.
《配合例 3》  << Formulation Example 3 >>
脂肪族一価アルコールとして、 その 1つエタノールを 3 5重量%、 他の 1つを イソプロピルアルコール (IPA) を 1 3重量%、 エーテル成分としてジエチレン グリコールジメチルエーテルを 7重量%、 前記直鎖系炭化水素として軽質ナフサ , ガソリン, 廃プラスチックの油化再生炭化水素油のいずれかを 4 5重量%とし たもの。  35% by weight of ethanol, 13% by weight of isopropyl alcohol (IPA) as the aliphatic monohydric alcohol, 7% by weight of diethylene glycol dimethyl ether as the ether component, and the linear hydrocarbon Of 45% by weight of light naphtha, gasoline, or regenerated hydrocarbon oil from waste plastics.
《配合例 4》  《Formulation Example 4》
脂肪族一価アルコールとして、 その 1つ n—プロパノールを 2 5重量%、 他の 1つを n-ブ夕ノールを 1 3重量%、 エタノールを 1 0重量%、 エーテル成分とし てジエチレングリコールジメチルエーテルを 7重量%、 前記直鎖系炭化水素とし て軽質ナフサ, ガソリン, 廃プラスチックの油化再生炭化水素油のいずれかを 4 5重量%としたもの。 25% by weight of n-propanol, 13% by weight of n-butanol, 10% by weight of ethanol, and 7% of diethylene glycol dimethyl ether as the ether component. % By weight, as the straight-chain hydrocarbon Of 45% by weight of light naphtha, gasoline, or regenerated hydrocarbon oil from waste plastics.
《配合例 5》  《Formulation Example 5》
脂肪族一価アルコールとして、 その 1つ n-ブタノ一ルを 2 5重量%、 ェタノ一 ルを 1 0重量%、 他の 1つを 2—ェチル - 1 -プロパノールを 1 3重量%、 ェ一テ ル成分としてジエチレングリコールジメチルエーテルを 7重量%、 前記直鎖系炭 化水素として軽質ナフサ, ガソリン, 廃プラスチックの油化再生炭化水素油のい ずれかを 4 5重量%としたもの。  As aliphatic monohydric alcohols, 25% by weight of n-butanol, 10% by weight of ethanol, and 13% by weight of another one are 2-ethyl-1-propanol. Diethylene glycol dimethyl ether was 7% by weight as the tellurium component, and 45% by weight of any of light naphtha, gasoline, and regenerated hydrocarbon oil from waste plastic was used as the linear hydrocarbon.
《配合例 6》  << Formulation Example 6 >>
脂肪族一価アルコールとして、 その 1つを n -ォクタールを 2 5重量%、 エタ ノールを 1 0重量%、 他の 1つを n—ペン夕ノールを 1 3重量%、 エタノールェ —テル成分としてジエチレングリコールジメチルエーテルを 7重量%、 前記直鎖 系炭化水素として軽質ナフサ, ガソリン, 廃プラスチックの油化再生炭化水素油 のいずれかを 4 5容量%としたもの。  As aliphatic monohydric alcohols, one is n-octal 25% by weight, ethanol is 10% by weight, the other is n-pentanol 13% by weight, and ethanol is an alcohol component. Diethylene glycol dimethyl ether is 7% by weight, and the linear hydrocarbon is 45% by volume of any of light naphtha, gasoline, and regenerated hydrocarbon oil of waste plastic.
《配合例 7》  << Formulation Example 7 >>
脂肪族一価アルコールとして、 ノルマルブ夕ノール (NBA) を 2 5重量%、 ィ ソプロピルアルコール (IPA) 7重量%、 他の一つをエタノールを 1 6重量%、 エーテル成分としてジエチレングリコールジメチルエーテルを 7重量%、 前記直 鎖系炭化水素として軽質ナフサ、 ガソリン、 廃プラスチックの油化再生炭化水素 油のいずれかを 4 5重量%としたもの。  25% by weight of normal alcohol (NBA), 7% by weight of isopropyl alcohol (IPA), 16% by weight of ethanol, and 7% by weight of diethylene glycol dimethyl ether as an ether component as aliphatic monohydric alcohol % Of any of light naphtha, gasoline, and waste plastic oil reclaimed hydrocarbon oil as the linear hydrocarbon.
《配合例 8》  《Formulation Example 8》
脂肪族一価アルコールとして、 その 1つをイソブチルアルコール (IBA) を 2 0重量%、 他の 1つをイソプロピルアルコール (IPA) を 1 0重量%、 エーテル 成分としてジエチレングリコールジメチルエーテルを 5重量%、 前記直鎖系炭化 水素として軽質ナフサ, ガソリン, 廃プラスチックの油化再生炭化水素油のいず れかを 6 5重量%としたもの。  As aliphatic monohydric alcohols, one was 20% by weight of isobutyl alcohol (IBA), the other was 10% by weight of isopropyl alcohol (IPA), and 5% by weight of diethylene glycol dimethyl ether was used as an ether component. Either light naphtha, gasoline, or petroleum regenerated hydrocarbon oil from waste plastics is used as the chain hydrocarbon at 65% by weight.
《配合例 9》  《Formulation Example 9》
脂肪族一価アルコールとして、 その 1つを n -ブチルアルコールを 2 0重量% 、 他の 1つをイソプロピルアルコール (IPA) を 10重量%、 エーテル成分として ジエチレングリコールジメチルェ一テルを 5重量%、 前記直鎖系炭化水素として 軽質ナフサ, ガソリン, 廃プラスチックの油化再生炭化水素油のいずれかを 6 5 重量%としたもの。 20% by weight of n-butyl alcohol and 10% by weight of isopropyl alcohol (IPA) as ether component 5% by weight of diethylene glycol dimethyl ether, and 65% by weight of any of light naphtha, gasoline, and regenerated hydrocarbon oil of waste plastic as the linear hydrocarbon.
《配合例 1 0》  << Formulation Example 10 >>
脂肪族一価アルコールとして、 その 1つをエタノールを 2 0重量%、 他の 1つ をイソプロピルアルコール (IPA) を 1 0重量%、 エーテル成分としてジェチレ ングリコールジメチルエーテルを 5重量%、 前記直鎖系炭化水素として軽質ナフ サ, ガソリン, 廃プラスチックの油化再生炭化水素油のいずれかを 6 5重量%と したもの。  As aliphatic monohydric alcohols, one is 20% by weight of ethanol, the other is 10% by weight of isopropyl alcohol (IPA), 5% by weight of ethylene glycol dimethyl ether is an ether component, A hydrocarbon containing 65% by weight of light naphtha, gasoline, or regenerated hydrocarbon oil from waste plastics.
《配合例 1 1》  《Formulation Example 1 1》
脂肪族一価アルコールとして、 その 1つを n—プロパノールを 2 0重量%、 他 の 1つを n-ブタノールを 1 0重量%、 エーテル成分としてジエチレングリコール ジメチルエーテルを 5重量%、 前記直鎖系炭化水素として軽質ナフサ, ガソリン , 廃プラスチックの油化再生炭化水素油のいずれかを 6 5重量%としたもの。  20% by weight of n-propanol as one of the aliphatic monohydric alcohols, 10% by weight of n-butanol as the other one, 5% by weight of diethylene glycol dimethyl ether as an ether component, the linear hydrocarbon Either light naphtha, gasoline, or waste plastic oil reclaimed hydrocarbon oil is 65% by weight.
《配合例 1 2》  《Formulation example 1 2》
脂肪族一価アルコールとして、 その 1つを n-ブタノールを 2 0重量%、 他の 1 つを 2 —ェチル- 1 -プロパノールを 1 0重量%、 エーテル成分としてジエチレン グリコールジメチルエーテルを 5重量%、 前記直鎖系炭化水素として軽質ナフサ , ガソリン, 廃プラスチックの油化再生炭化水素油のいずれかを 6 5重量%とし たもの。  As aliphatic monohydric alcohols, one is 20% by weight of n-butanol, the other is 10% by weight of 2-ethyl-1-propanol, and 5% by weight of diethylene glycol dimethyl ether is an ether component. A straight-chain hydrocarbon containing 65% by weight of light naphtha, gasoline, or regenerated hydrocarbon oil from waste plastic.
《配合例 1 3》  《Formulation Example 1 3》
脂肪族一価アルコールとして、 その 1つを n -ォクタールを 2 0重量%、 他の 1つを n—ペンタノールを 1 0重量%、 エーテル成分としてジエチレングリコー ルジメチルエーテルを 5重量%、 前記直鎖系炭化水素として軽質ナフサ, ガゾリ ン, 廃プラスチックの油化再生炭化水素油のいずれかを 6 5容量%としたもの。 く比較例 1 >  As aliphatic monohydric alcohols, one is 20% by weight of n-octal, the other is 10% by weight of n-pentanol, 5% by weight of diethylene glycol dimethyl ether as an ether component, and the linear chain. Either light naphtha, gazolin, or oil-regenerated hydrocarbon oil from waste plastics is used as 65% by volume. Comparative Example 1>
脂肪族一級アルコールとして、 その 1つをメチルアルコールを 4 3容量%、 他 の 1つをイソプロピルアルコール ( I P A ) を 5容量%、 エーテル成分として メチルターシャリ一プチルエーテル (M.T. B. E) を 4容量%、 前記直鎖系炭化水 素として軽質ナフサガソリンを 4 8容量%としたもの。 43% by volume of methyl alcohol, 5% by volume of isopropyl alcohol (IPA) and 4% by volume of methyl tertiary butyl ether (MTB E) as ether component The linear hydrocarbon Light naphtha gasoline is 48% by volume.
く比較例 2 >  Comparative Example 2>
脂肪族一価アルコールとして、 ノルマルブ夕ノール (NBA) を 2 5重量%、 ィ ソプロピルアルコール (IPA) 7重量%、 他の一つをエタノールを 1 6重量%、 混成ェ一テルとして M T B Eを 7重量%、 前記直鎖系炭化水素として軽質ナフサ 、 ガソリン、 廃プラスチックの油化再生炭化水素油のいずれかを 4 5重量%とし たもの。  25% by weight of normal alcohol (NBA), 7% by weight of isopropyl alcohol (IPA), 16% by weight of ethanol as another aliphatic monohydric alcohol, and MTBE 7 as a hybrid ether % By weight, wherein the linear hydrocarbon is 45% by weight of light naphtha, gasoline, or waste plastic oil regenerated hydrocarbon oil.
く比較例 3 >  Comparative Example 3>
脂肪族一価アルコールとして、 ノルマルブタノール (NBA) を 2 5重量%、 ィ ソプロピルアルコール (IPA) 7重量%、 他の一つをエタノールを 1 6重量%、 ジェチルエーテルを 7重量%、 前記直鎖系炭化水素として軽質ナフサ、 ガソリン 、 廃プラスチックの油化再生炭化水素油のいずれかを 4 5重量%としたもの。 これら各配合を用いて、 以下の各配合に関して長期の保存性を確認する試験と して、 各配合に順次水を添加していき、 分離が生じる水添加量を比較した実験結 果を以下に示す。  25% by weight of normal butanol (NBA), 7% by weight of isopropyl alcohol (IPA), 16% by weight of ethanol and 7% by weight of getyl ether as aliphatic monohydric alcohols Either light naphtha, gasoline, or oil-recycled hydrocarbon oil from waste plastics is used as a linear hydrocarbon at 45% by weight. As a test to confirm the long-term storage stability of each of the following formulations using each of these formulations, the results of experiments comparing the amounts of water that would cause separation to occur by sequentially adding water to each formulation are shown below. Show.
Figure imgf000013_0001
Figure imgf000013_0001
X : 分離 〇:分離せず  X: Separation 〇: No separation
この試験結果から、 エーテル分子内部にエーテル結合を 3つ有し、 エーテル分 子中の炭素数が 個であるジエチレングリコールジメチルェ一テルを配合した配 合例 7は、 長期の保存にて水を吸湿しても、 従来の合成燃料と同等或いはそれ以 上に分離を生じにくいことが判る。  From this test result, it can be seen that in the case of Compound 7, which contains three ether bonds inside the ether molecule and contains diethylene glycol dimethyl ether having the number of carbon atoms in the ether molecule of 7, the water absorbs water after long-term storage. However, it can be seen that separation is less likely to occur at or above the level of conventional synthetic fuels.
以上、 本発明の実施形態を前記実施例にて説明してきたが、 本発明はこれら実 施例に限定されるものではなく、 本発明の主旨を逸脱しない範囲における変更や 追加、 つまりは、 本発明の内燃機関用燃料の特性が大幅に変わることのない範囲 にて他の原燃料や添加剤 (金属等を含む) を加える事等は任意とされ、 これらの 内燃機関用燃料も本発明に含まれることは言うまでもない。 Although the embodiments of the present invention have been described in the above embodiments, the present invention is not limited to these embodiments, and changes and additions without departing from the gist of the present invention, namely, It is optional to add other raw fuels and additives (including metals, etc.) as long as the characteristics of the fuel for an internal combustion engine of the invention do not significantly change. Needless to say, fuel for an internal combustion engine is also included in the present invention.

Claims

請求の範囲 The scope of the claims
1 . 炭素原子数が 1 2以下の飽和または不飽和炭化水素とアルコール並びにエー テルとを少なくとも含む内燃機関用低公害合成液体燃料であって、 前記エーテル が、 その分子中に少なくとも 2つのエーテル結合を有するエーテルを含むことを 特徴とする内燃機関用低公害合成液体燃料。 1. A low-pollution synthetic liquid fuel for an internal combustion engine containing at least a saturated or unsaturated hydrocarbon having 12 or less carbon atoms, an alcohol and ether, wherein the ether has at least two ether bonds in its molecule. A low-pollution synthetic liquid fuel for an internal combustion engine, comprising an ether having the formula:
2 . 前記少なくとも 2つのエーテル結合を有するエーテル分子中の炭素数が 4以 上である請求項 1に記載の内燃機関用低公害合成液体燃料。  2. The low-pollution synthetic liquid fuel for an internal combustion engine according to claim 1, wherein the number of carbon atoms in the ether molecule having at least two ether bonds is 4 or more.
3 . 前記少なくとも 2つのエーテル結合を有するエーテルがエチレングリコール ジメチルエーテルである請求項 2に記載の内燃機関用低公害合成液体燃料。 3. The low-pollution synthetic liquid fuel for an internal combustion engine according to claim 2, wherein the ether having at least two ether bonds is ethylene glycol dimethyl ether.
4 . 前記エーテルとしてメチル夕一シャリーブチルェ—テル (M . T . B . E ) を含まない請求項 1〜 3のいずれかに記載の内燃機関用低公害合成液体燃料。4. The low-pollution synthetic liquid fuel for an internal combustion engine according to any one of claims 1 to 3, wherein the ether does not contain methyl isobutyl butyl ether (M.T.B.E.).
5 . 前記アルコ―ルとして脂肪族一価のアルコールを 1 5〜 7 5重量%、 前記炭 素原子数が 9以下の飽和または不飽和炭化水素を 2 0〜8 0重量%、 前記分子中 に少なくとも 2つのエーテル結合を有するエーテルを含むエーテルを 5〜 2 0重 量%含む請求項 1〜 5のいずれかに記載の内燃機関用低公害合成液体燃料。 5. As the alcohol, 15 to 75% by weight of an aliphatic monohydric alcohol, 20 to 80% by weight of a saturated or unsaturated hydrocarbon having 9 or less carbon atoms, and The low-pollution synthetic liquid fuel for an internal combustion engine according to any one of claims 1 to 5, comprising 5 to 20% by weight of an ether containing an ether having at least two ether bonds.
PCT/JP2001/005730 2001-06-27 2001-07-02 Low-pollution synthetic liquid fuel for internal combustion engine WO2003002694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003509057A JPWO2003002694A1 (en) 2001-06-27 2001-07-02 Low pollution synthetic liquid fuel for internal combustion engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-195582 2001-06-27
JP2001195582 2001-06-27

Publications (1)

Publication Number Publication Date
WO2003002694A1 true WO2003002694A1 (en) 2003-01-09

Family

ID=19033532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005730 WO2003002694A1 (en) 2001-06-27 2001-07-02 Low-pollution synthetic liquid fuel for internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2003002694A1 (en)
WO (1) WO2003002694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022253A (en) * 2004-07-09 2006-01-26 Juichi Ikeuchi Low-pollution fuel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718271A (en) * 1993-06-30 1995-01-20 Nippon Niyuukazai Kk Fuel modifier
US5858030A (en) * 1997-09-23 1999-01-12 Air Products And Chemicals, Inc. Diesel fuel composition comprising dialkoxy alkanes for increased cetane number
JPH11209765A (en) * 1998-01-26 1999-08-03 Yoshitake Nakada Gasoline additive and gasoline
JP2000026871A (en) * 1998-07-09 2000-01-25 Yamaoka Masaru Low-pollution fuel composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718271A (en) * 1993-06-30 1995-01-20 Nippon Niyuukazai Kk Fuel modifier
US5858030A (en) * 1997-09-23 1999-01-12 Air Products And Chemicals, Inc. Diesel fuel composition comprising dialkoxy alkanes for increased cetane number
JPH11209765A (en) * 1998-01-26 1999-08-03 Yoshitake Nakada Gasoline additive and gasoline
JP2000026871A (en) * 1998-07-09 2000-01-25 Yamaoka Masaru Low-pollution fuel composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022253A (en) * 2004-07-09 2006-01-26 Juichi Ikeuchi Low-pollution fuel

Also Published As

Publication number Publication date
JPWO2003002694A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CN107011953B (en) Multi-function gasoline additives and preparation method thereof and the fuel combination containing the multi-function gasoline additives
JP5129426B2 (en) Diesel fuel, its production and use
MXPA03009998A (en) Method and an unleaded low emission gasoline for fuelling an automotive engine with reduced emissions.
NL2002469C2 (en) Environmentally improved motor fuels.
KR100655101B1 (en) Fuel composition containing bioethanol and biodiesel for internal combustion engine
GB2509288A (en) Alternative fuel for internal combustion engine, containing biobutanol
KR100701293B1 (en) Fuel composition containing bioethanol and hydrocarbon solvent for internal combustion engine
JP2000026871A (en) Low-pollution fuel composition
JP2011105958A (en) Method for producing gas oil composition
US20060137243A1 (en) Liquid fuel for internal combustion engine
CN110846091A (en) Oxalate novel oxygen-containing fuel oil or fuel oil additive and application thereof
CN101245266A (en) Environment protection cleaning type gasoline and manufacture method thereof
WO2003002694A1 (en) Low-pollution synthetic liquid fuel for internal combustion engine
CN101538489A (en) Automotive mixed alcohol clean fuel
WO2012059015A1 (en) Methanol fuel that prevents phase separation
EP1251161A1 (en) Low-pollution liquid fuel and process for producing the same
JP2005220330A (en) Gas oil composition
JP4938333B2 (en) Gasoline composition
WO2003066781A1 (en) Low pollution liquid fuel for internal combustion engine
JP4429880B2 (en) Unleaded gasoline
JP2002338974A (en) Fuel oil composition for gasoline engine
JP2005232194A (en) Low-pollution liquid fuel for internal combustion engine and method for producing the same
CN1563290A (en) Clean fuel
JP4746868B2 (en) gasoline
WO2002083821A1 (en) Low pollution liquid fuel and manufacturing method of the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003509057

Country of ref document: JP

122 Ep: pct application non-entry in european phase