WO2002103092A1 - Dispositif permettant la production d'un monocristal semi-conducteur et procede permettant de produire un monocristal semi-conducteur au moyen de ce dispositif - Google Patents

Dispositif permettant la production d'un monocristal semi-conducteur et procede permettant de produire un monocristal semi-conducteur au moyen de ce dispositif Download PDF

Info

Publication number
WO2002103092A1
WO2002103092A1 PCT/JP2002/005840 JP0205840W WO02103092A1 WO 2002103092 A1 WO2002103092 A1 WO 2002103092A1 JP 0205840 W JP0205840 W JP 0205840W WO 02103092 A1 WO02103092 A1 WO 02103092A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
layer
heat
semiconductor single
refractive index
Prior art date
Application number
PCT/JP2002/005840
Other languages
English (en)
French (fr)
Inventor
Takao Abe
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to JP2003505398A priority Critical patent/JP4244010B2/ja
Publication of WO2002103092A1 publication Critical patent/WO2002103092A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Definitions

  • the present invention relates to a single crystal manufacturing apparatus for growing a semiconductor single crystal by the Czochralski method (hereinafter referred to as the CZ method) and a semiconductor single crystal manufacturing method using the same.
  • Si single crystals such as Si or GaAs grown by the CZ method have been processed into semiconductor wafers and used in large numbers as substrates for semiconductor devices.
  • Si single crystals are used in large quantities for the production of integrated circuits and various discrete components.
  • Japanese Patent Application Laid-Open No. 3-97688 discloses a method in which radiant heat of a Si single crystal pulled up from a raw material melt contained in a rutupo is removed.
  • a method of pulling a Si single crystal by disposing a cylindrical or conical member so as to surround a single crystal grown directly above the raw material melt is disclosed. Have been.
  • the cooling cylinder arranged so as to surround the pulled single crystal increases the rectifying action of the inert gas downstream from above the melt surface and increases the rectification of the raw material melt.
  • This is widely used, for example, in Si single crystal manufacturing equipment, because the evaporated material can be efficiently discharged to the outside of the growth furnace and dislocation of the grown crystal due to the evaporated material can be prevented.
  • the cooling cylinder is disposed immediately above the high-temperature raw material melt having a temperature of 140 ° C. or more, the cooling cylinder itself is heated by a heater for heating the raw material melt or radiant heat from the raw material melt. When the temperature rises, there is a disadvantage that a sufficient cooling effect by the cooling cylinder cannot be obtained.
  • the material of the cooling cylinder is graphite material with relatively high thermal conductivity, stainless steel
  • metal such as steel or molybdenum promotes heat removal by heat transfer and improves the cooling effect, but the effect is not always sufficient.
  • the diameter of the single crystal to be produced tends to increase to 30 O mm or 40 O mm, and the heat capacity becomes extremely large. Is desired.
  • the heater that heats the raw material melt consumes considerable energy because a large amount of raw material needs to be heated to a high temperature. Therefore, there is also a need for a heating structure that can efficiently concentrate the heat generated by the heater on the raw material so that more raw material can be melted and kept warm with less energy.
  • An object of the present invention is to provide a semiconductor single crystal capable of efficiently controlling radiant heat from a heat source disposed in a growth furnace, and thereby improving the quality of a manufactured semiconductor single crystal or reducing manufacturing costs by saving energy.
  • An object of the present invention is to provide a manufacturing apparatus and a method for manufacturing a semiconductor single crystal using the same. Disclosure of the invention
  • the first of the semiconductor single crystal manufacturing apparatuses is to store a raw material melt in a crucible arranged in a growth furnace, and to perform a semiconductor by the Chioklarsky method from the raw material melt.
  • the heat reflection layer is a laminate of a plurality of element reflection layers made of a material having a property of transmitting infrared radiation from a heat source, and the two adjacent layers of the element reflection layers are refracted by the radiation infrared. It is characterized by being made of materials having different rates.
  • the method for producing a semiconductor single crystal according to the present invention is characterized in that the semiconductor single crystal is produced by pulling up the semiconductor single crystal by the Cjochralski method using the apparatus for producing a semiconductor single crystal according to the present invention. I do.
  • the heat reflecting layer formed on the surface of the furnace internal has a property of transmitting infrared radiation from a heat source, and has a different refractive index with respect to the radiation infrared. It is composed of a combination of element reflection layers made of a material. As a result, the heat reflection layer can reflect radiant infrared rays at a much higher reflectivity than a metal layer or the like. Radiant heat can be controlled efficiently. As a result, it is possible to improve the quality of the manufactured semiconductor single crystal or reduce the manufacturing cost by saving energy.
  • the material of the element reflection layer has a high transmittance to radiant infrared rays, that is, a material with low infrared absorption, it is advantageous in increasing the reflectance of the heat reflection layer to radiant infrared rays.
  • transparent layer means a force that means that the transmittance for radiated infrared rays is 80% or more.
  • the transmittance is more preferably 90% or more, and is substantially 100%. Even better.
  • the heat reflection layer may have a structure in which a laminate of two or more element reflection layers having different refractive indexes with respect to radiant infrared rays is used as a laminate cycle unit and the laminate cycle unit is laminated two or more cycles. it can.
  • the second of the semiconductor single crystal production apparatus according to the present invention is to accommodate a raw material melt in a crucible arranged in a growth furnace, pull up the semiconductor single crystal from the raw material melt by the Czochralski method, An apparatus for manufacturing a semiconductor single crystal in which a heat reflection layer for reflecting radiant heat from a heat source disposed in a growth furnace is formed on a surface of a furnace internal structure,
  • the heat reflection layer is made of a material that has a property of transmitting infrared radiation from a heat source, and that two or more lamination period units whose refractive index changes stepwise or continuously in the thickness direction are laminated.
  • the refractive index of the heat reflecting layer is periodically changed in the layer thickness direction as described above.
  • the number of element reflection layers constituting the laminated period unit may be three or more, or the laminated period unit may be a grating layer whose refractive index changes continuously as in the second configuration described above. Good.
  • the heat reflecting layer employs a combination of materials having a refractive index change width of 1.1 or more, preferably 1.2 or more, and more preferably 1.4 or more in one cycle of the lamination cycle unit, the reflection will be described later.
  • a heat reflection layer having a large heat ray reflectivity close to 100% can be easily realized with a relatively small number of formation cycles of a lamination cycle unit, specifically, 5 cycles or less.
  • the above-described large heat ray reflectance can be realized even when the number of forming cycles is about four, three, or two.
  • the heat reflecting layer for example S i, S i 0 2, S i C, BN, A 1 N, S i 3 N 4, A 1 2 0 3, T i 0 2, T i N and It can be composed of a combination of two or more types selected from CN and the like.
  • Si, Sic, and Tio2 can be exemplified as the high refraction material (refractive index: 2.5 or more).
  • various III-V group compound semiconductors for example, GaAs, AlGaAs, GaP, GaAsP, InGaAsP, InP, A1GaInP, GaN Etc.
  • a high refractive index material for example, GaAs, AlGaAs, GaP, GaAsP, InGaAsP, InP, A1GaInP, GaN Etc.
  • the low refractive index material reffractive index 2. less than 5
  • a 1 N, BN , the A 1 2 0 3, S I_ ⁇ 2, CN and the like In order to obtain a laminated structure with high reflectivity, it is desirable to select and combine materials from each of the above-described high refractive index material group and low refractive index material group, and the refractive index difference between the layers to be combined is 1.
  • Table 1 summarizes the refractive index values of the above materials. Strictly speaking, the refractive index slightly varies depending on the wavelength, but can be almost ignored in the range of about 0.8 to 4 ⁇ . The table shows the average heat ray refractive index in this band.
  • Si has a value of 3.5, which is by far the highest in comparison with the refractive index of other materials. Therefore, when the heat reflection layer is configured to include the Si layer (single-crystal Si, polycrystalline Si, or amorphous Si), the refractive index difference with the low-refractive-index material combined therewith increases. This is advantageous in realizing a laminated structure having high reflectivity.
  • the lamination period unit employed in the present invention has a band structure similar to the electron energy in the crystal (hereinafter referred to as photonic) in the direction of the layer thickness where the refractive index changes periodically, with respect to the photoquantized electromagnetic wave energy.
  • a band structure is formed, and an electromagnetic wave of a specific wavelength corresponding to the period of the change in the refractive index is prevented from penetrating into the laminate structure.
  • This phenomenon means that the existence of electromagnetic waves in a certain energy range (that is, a certain wavelength range) is prohibited in the photo-Yuck band structure, and is also called a photonic band gap in relation to the electron band theory. You.
  • the refractive index change is formed only in the layer thickness direction, it is also called a one-dimensional photonic band gap in a narrow sense.
  • the thickness and the number of periods of each layer for forming the photonic band gap can be calculated or experimentally determined depending on the range of the wavelength band to be reflected. It is desirable that the thickness of one cycle be smaller than the center wavelength of the radiated infrared rays applied to the heat reflection layer. More preferably, assuming that the center wavelength of the photonic band gap is m, the thickness 1 of one cycle is equal to half the wavelength of the heat ray of the wavelength; lm (or an integral multiple thereof, but it may be an integral multiple thereof). It is necessary to have a large film thickness.
  • the lamination period unit can be a two-layer structure of a first element reflection layer and a second element reflection layer having different refractive indices for radiant infrared rays.
  • the larger the difference between the refractive indices of the two layers the more the number of lamination period units required for ensuring a sufficiently high reflectance of radiated infrared rays can be reduced.
  • the wavelength of the heat ray incident on the layer becomes shorter in inverse proportion to the refractive index of the layer.
  • the thickness of the high refractive index layer of the first element reflection layer and the second element reflection layer is t1
  • the thickness of the low refractive index layer is t1.
  • the reflectance of the specific wavelength band with respect to heat rays is further increased.
  • the bandwidth of the high reflectance band where the reflectance is 95% or more can be extended.
  • the converted thickness ⁇ in one cycle is represented by tl Xnl + t2 Xn2.
  • the reflectance is almost 100%, which is almost bilaterally symmetrical around the wavelength twice the reduced thickness 0 ′. (Refer to 99% or more in this specification for clarity of the description.) A perfect reflection band is formed, and the effect of the present invention is maximized.
  • the thickness and the number of periods of each layer can be calculated or experimentally determined depending on the range of the wavelength band to be reflected. .
  • a layer made of a semiconductor or an insulator having a refractive index of 3 or more can be configured to be included as the first element reflecting layer to be a high refractive index layer.
  • a semiconductor or an insulator having a refractive index of 3 or more as the first element reflection layer, it becomes easy to secure a large difference in the refractive index between the first element reflection layer and the second element reflection layer combined therewith.
  • Refractive index 3 or more As the material, S i, Ge, 6 h- S i C illustrative, and S b 2 S 3, BP, A 1 P, A 1 A S, A ] S b, Ga P, a compound semiconductor such as ZnT e it can.
  • the aforementioned Si is relatively inexpensive, easy to thin, and has a high refractive index of 3.5. Therefore, by using the Si layer as the first element reflection layer, a laminated structure having high reflectivity can be realized at low cost.
  • the low refractive index material constituting the second element reflecting layer can be exemplified S i 0 2, BN, A 1 N, A 1 2 0 3, S i 3 N 4 , and CN or the like.
  • the material of the second element reflection layer it is necessary to select the material of the second element reflection layer so that the refractive index difference becomes 1.1 or more according to the selected material type of the first element reflection layer.
  • Table 1 below summarizes the refractive index values of the above materials. Of these, it is particularly advantageous to employ a SiO 2 layer, a BN layer or a Si 3 N 4 layer in order to secure a large difference in refractive index.
  • S I_ ⁇ two layers having a refractive index 1.5 and lower, in particular to impart a large refractive index difference between eg the first element reflective layer of S i layer.
  • the Si layer can be easily formed by thermal oxidation or CVD.
  • the BN layer has a difference depending on the crystal structure and orientation, but its refractive index is in the range of 1.65 to 2.1.
  • the Si 3 N 4 layer shows a refractive index of about 1.6 to 2.1, though it varies depending on the quality of the film. These may be but a multi little larger value when compared with S i 0 2, still imparting 1.4 to 1.85 ones large refractive index difference between the S i.
  • the wavelength of radiation that can be completely reflected If the band is selected within the range of 1 to 5 ⁇ m, preferably 1 to 3 m, the spectrum of the semiconductor material melt or the radiant infrared spectrum from the heater for maintaining the material melt in the molten state is maintained. The main part can be covered almost, and the reflection control of these radiated infrared rays can be performed efficiently. In this case, it is effective to set the thickness of the unit of the lamination period smaller than the upper limit of the selected wavelength band in order to increase the reflectance.
  • the range of the wavelength band to be reflected depends on the temperature of the heat source.
  • the radiant energy radiated from the unit area of the object surface per unit time at a certain temperature in the unit time is the monochromatic radioactivity radiated from a perfect black body. This can be expressed by the following equation (Planck's law).
  • E b; i monochromatic radioactivity of a black body [W / ( ⁇ ) 2 ], ⁇ : wavelength [/ im], ⁇ : absolute temperature of the object surface [ ⁇ :], A: 3.7404 1 X 10 16 [W 'm 2], B: 1. 438 8 X 10- 2 Cm - a K].
  • Figure 9 is a graph showing the relationship between the monochromatic radioactivity ( Ebil ) of a black body and the wavelength when the absolute temperature ⁇ of the object surface is changed. It can be seen that as T decreases, the peak of monochromatic radioactivity decreases and shifts to longer wavelengths.
  • a semiconductor single crystal to be manufactured is S i monocrystalline
  • the radiant heat at the time of manufacturing the Si single crystal may be configured to include at least one of the layers, for example, to include the Si layer and the SiO 2 layer and / or the BN layer as the element reflection layer. Is effective in efficiently reflecting light. Note that 81 ⁇ is considerably higher than the melting point 3 1_Rei 2 and, when such is positioned immediately above the application (e.g., the raw material melt for UHT: For S i single crystal manufacturing 1400 ° C or higher ).
  • Si has a refractive index of about 3.5, and its thin film is transparent to light in the infrared region with a wavelength of about 1.1 to 10 / zm.
  • S I_ ⁇ 2 is about 1.5 refractive index, the film is transparent to light having a wavelength of about 0.
  • FIG. 4 is a cross-sectional view of a heat reflection layer in which four lamination period units each composed of two layers are formed. With such a structure, as shown in Fig. 4, the reflectance of infrared rays in the 1 to 2 m band is almost 100%, and transmission of infrared rays is prohibited.
  • the maximum intensity of a heat source at 1600 ° C is a force in the 1-2 ⁇ band, and a 2111-3111 band (radiation infrared radiation from a heat source of about 1100-1200 ° C). (Equivalent to the peak wavelength range of the spectrum), it is only necessary to add another periodic combination with different wavelength bands that can be reflected. That is, when the thickness of each layer was increased to 100 nm (S i) / 2 33 ⁇ m (S i ⁇ 2 ) as described above (A / B in FIG. 3),
  • the configuration shown in FIG. 5 may be obtained by adding a combination of 7 nm (S i) / 366 nm (S i 0 2 ) (A ′ / ⁇ ′ in FIG. 5).
  • the above-mentioned four-period structure of 100 nm (S i) / 233 m (S i 0 2 ) reflects infrared rays in the 1-2 / zm band. While the reflectance is almost 100%, the four-period structure of 157 nm (S i) / 366 nm (S i 0 2 ) has an infrared reflectance in the 2-3 ⁇ band. It is almost 100%. Therefore, in the structure of FIG. 5 in which these are superposed, a material having a reflectance of approximately 100 ° / 0 in the 1 to 3 / X m band can be obtained.
  • the 5 / im band may be formed 4 periodic structure by appropriately selecting the combination of S i layer and S ⁇ 0 2 layers both still have a thickness in the film.
  • a combination of layers having a smaller refractive index difference than the refractive index difference between S i and S i 0 2 it is necessary to increase the required number of periods.
  • it is advantageous that the two layers to be selected have a large difference in refractive index.
  • the thickness of the entire layer is 1.3 ⁇ m, and the band of 1-2 ⁇ m is almost completely reflected. '
  • FIG. 7 shows that, like S i and S i 0 2 , 6 h-S i C (refractive index 3.2) and h—BN (refractive index 1.65) This is the calculation result of the reflectance of the heat reflection layer having a 4-period structure of 94 layers (S i C) / 182 nm (BN). In this case, the reflectivity of light (heat ray) in the 1 to 1.5 ⁇ m band is almost 100%.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor single crystal manufacturing apparatus according to the present invention.
  • FIG. 2 is an enlarged schematic view showing a main part of FIG.
  • Figure 3 is a schematic sectional view illustrating an example of a heat reflecting layer having a 4 periodic structure of S i layer and S i 0 2 layers.
  • FIG. 4 is a diagram showing infrared reflectance characteristics of the heat reflection layer having the structure of FIG.
  • Figure 5 is a schematic sectional view of a heat reflecting layer laminated on the et to 4 periodic structure of the 4 periodic structure, the S i and S i 0 2 having different thicknesses in FIG.
  • FIG. 6 is a diagram showing infrared reflectance characteristics of the heat reflection layer having the structure of FIG.
  • FIG. 7 is a view showing a thermal infrared reflectance characteristic of a heat reflecting layer having a four-period structure of a 6 h—SiC layer and an h—BN layer.
  • FIG. 8A is a diagram showing an example of a production flow of a heat reflection layer.
  • FIG. 8B is a diagram following FIG. 8A.
  • FIG. 8C is a diagram following FIG. 8B.
  • FIG. 8D is a diagram following FIG. 8C.
  • Figure 9 shows the monochromatic radioactivity (E b J and E b J) of the black body when the absolute temperature T of the object surface is changed.
  • 4 is a graph showing a relationship with a wavelength.
  • FIG. 10 is a schematic cross-sectional view of a main part showing a modification of the mode of forming the heat reflection layer with respect to the cooling cylinder of the apparatus of FIG.
  • FIG. 11 is a schematic cross-sectional view of a main part showing a modification of the mode of forming the cylindrical main body with respect to the cooling cylinder of the apparatus of FIG.
  • FIG. 12 is a schematic cross-sectional view of a main part showing a modified example in which a heat reflecting plate is provided on the cooling cylinder of the apparatus of FIG.
  • FIG. 13 is a schematic cross-sectional view of a main part showing a modification in which a forced cooling cylinder is provided in the cooling cylinder of the apparatus of FIG.
  • FIG. 14 is a schematic cross-sectional view showing an example of an apparatus in which a heat reflection layer is provided on the inner peripheral surface of a heat insulating member arranged around a heater.
  • FIG. 1 is a schematic sectional view showing an Si single crystal manufacturing apparatus 1 which is an embodiment of the semiconductor single crystal manufacturing apparatus of the present invention.
  • the apparatus 1 contains a rutupo 12 filled with a Si melt 14, and the growing furnace is composed of a growing furnace main body 2 on which an Si single crystal 23 is grown and an upper part of the growing furnace main body 2. And a recovery space forming part 4 for accommodating and holding the Si single crystal 23 pulled up by 14 ⁇ m from the Si melt.
  • a crucible 12a made of quartz is placed inside and a crucible 12 made of graphite 12b is placed outside via a crucible support shaft 13.
  • the crucible 12 can be rotated and moved up and down in accordance with the growth condition and work process of the Si single crystal 23 by the crucible drive mechanism 19 attached to the lower end of the crucible support shaft 13. ing.
  • a heater 15 is provided to heat the Si melt (raw material melt) 14 in the crucible so as to surround the crucible 12, and graphite or the like is provided between the heater 15 and the furnace inner wall.
  • the arranged cylindrical heat insulating member 16 is arranged. Above the Si melt 14 accommodated in the crucible 12, the lower part of the cooling cylinder 3 1 force itself, It is arranged so as to be located in the crucible 12 above the Si melt surface 14a.
  • the cooling cylinder 31 is arranged so as to surround the Si single crystal (semiconductor single crystal) 23 pulled up from the Si melt (raw material melt) 14 serving as a heat source. As shown in FIG. 2, at least a part of the outer peripheral surface of the cooling cylinder 31 is covered with a heat reflecting layer 34 as a furnace internal structure according to the present invention.
  • the heat reflection layer 34 has already been described in detail in the section of the disclosure of the invention, and specifically has a laminated structure as shown in FIG. 3 or FIG.
  • Such a heat reflecting layer 34 reflects radiant infrared rays from the Si melt 14 or the heater 15 toward the cooling cylinder 31 and suppresses the temperature rise of the cooling cylinder 31 due to the infrared rays. .
  • the cooling cylinder 31 is composed of a quartz cylindrical base 33 having a heat reflection layer 34 formed on the outer peripheral surface thereof, and a graphite cylinder disposed inside the cylindrical base 33.
  • Main body 32 Quartz has relatively high heat resistance and easily forms a smooth surface, and is therefore excellent as a base material for uniformly forming the heat reflection layer 34.
  • the cylindrical main body 32 is made of graphite having high thermal conductivity and heat capacity, and thereby plays a role of promoting cooling of the pulled-up Si single crystal 23.
  • a graphite cooling cylinder has been used in a conventional Si single crystal pulling apparatus, but according to the present invention, a cylindrical base 33 having a heat reflection layer 34 formed thereon is disposed outside thereof. As a result, the temperature rise due to radiant heat from the Si melt / heater or the like is suppressed, so that the cooling efficiency can be further improved.
  • the heat reflecting layer 34 may be selectively formed only on the lower part of the outer peripheral surface of the cooling cylinder 31 which is particularly susceptible to radiant heat from the Si melt 14.
  • the lower part of the cylindrical main body 32 is formed with a heat reflection layer 34 so that the Si melt 14 and the heat Since a rise in temperature due to radiant heat from the heater 15 is suppressed, it is possible to reduce the thickness or, in some cases, to omit only the lower part of the cylindrical main body 32 as shown in FIG.
  • the substrate 33 here, quartz
  • the substrate 33 of the heat ray reflective material is processed into a required shape, here a cylindrical shape (FIG. 8A).
  • S i the substrate of the heat-resistant with a mechanical strength S i 0 2
  • S i, S i C or BN are used for substrates for fabricating semiconductor devices, reaction tubes and heat treatment jigs for general heat treatment equipment for heat treating those substrates, and have high versatility and various shapes. Processing is possible.
  • element reflection layers here, Si layers A and C and Si ⁇ two layers B which are transparent to heat rays radiated from a heat source and have different refractive indices are sequentially formed.
  • Fig. 8B to Fig. 8D The method for forming these layers is not particularly limited, but if a CVD method is used, Si, Si 2 , Si C, .BN, Si 3 N 4 , and CN (eg, 3—C 3 N 4 ) can be used. Any of various types of layers can be formed. In addition to the CVD method, various vapor phase growth methods such as high-frequency sputtering sputtering plating can be employed.
  • the S i layer as C, which can form a S i ⁇ 2 layer by thermally oxidizing the S i layer, S i layer by CVD (polycrystalline S i
  • the SiO 2 layer is also formed by the CVD method, the flatness of the interface between the two layers is improved.
  • the heat reflecting layer 34 having a periodic structure is formed (FIG. 8D).
  • quartz (Si 2 ) was used as the material of the base 33, a stratification was formed.
  • the Si layer C is formed.
  • the same characteristics as the structure of FIG. 8D can be obtained by a four-period laminated structure in which a pair of the Si layer A and the Sio 2 layer 8 is a laminated period unit.
  • a heater 15 for maintaining the Si melt 14 at a desired temperature is provided upright on the bottom surface of the growth furnace main body 2 with a heater electrode portion (not shown) as a support. At the time of growing a single crystal, electric power is supplied from the heater electrode portion to the heater 15 so that the heater 15 generates heat and the Si melt 14 is kept at a high temperature.
  • the recovery space forming section 4 has a gas inlet 9a for introducing an inert gas such as Ar gas into the breeding furnace, and an inert gas connected to the gas inlet 9a during operation. After the flow rate of the inert gas is adjusted by the gas flow rate control device 122 on the inert gas pipe 9 via the gas pipe 9, the inert gas is introduced into the growth furnace main body 2.
  • the heat insulating member 16 and the lower heat insulating material 3 described above are provided inside the growth furnace main body 2. These serve to efficiently keep the inside of the growth furnace main body 2 warm and to protect the furnace wall.
  • a gas outlet 11 for exhausting the inert gas introduced into the breeding furnace is provided on the bottom portion of the breeding furnace main body 2. From the growth furnace through the exhaust gas pipe 7.
  • a conductance valve 18 is installed in the exhaust gas pipe 7, and a vacuum pump is provided beyond the conductance valve 18 to assist the evacuation of the inert gas from the growth furnace.
  • the inside of the breeding furnace is kept at a reduced pressure.
  • a wire winding and unwinding mechanism is provided above the recovery space forming part 4, not shown.
  • a seed holder 20 is attached to the tip of the wire 22 unwound from the wire winding and unwinding mechanism, and the seed crystal is locked to the seed holder 20.
  • a polycrystalline Si raw material is filled in a quartz crucible 12a provided in the single crystal manufacturing apparatus 1, and the raw material is melted by heating the heater 15 to obtain a Si melt 14
  • the wire winding and unwinding described above is performed. Operate the mechanism to unwind the wire 22 and gently bring the tip of the seed crystal locked in the seed holder 20 into contact with the surface of the Si melt 14.
  • the wire 22 is wound up and pulled up while rotating the crucible 12 and the seed crystal in directions opposite to each other, whereby the Si single crystal 23 can be grown below the seed crystal.
  • a heat reflecting plate 35 can be provided on the lower end surface of the cooling cylinder 31 so as to bulge radially outward. Then, the heat reflection plate 35 can be formed on a surface facing the Si melt (raw material melt) 14 using the heat reflection plate 35 as a furnace internal structure. In this way, the radiant heat from the Si melt (raw material melt) 14 toward the cooling cylinder 31 can be more effectively reflected, and the temperature rise of the cooling cylinder 31 can be further effectively reduced. Can be suppressed.
  • the heat reflecting plate 35 also serves to shield radiant heat from the Si melt 14, enhance the heat retention effect of the melt, and reduce the temperature fluctuation of the melt 14.
  • the base of the heat reflection plate 35 is also made of quartz. Further, the form is a tapered member whose diameter becomes larger toward the outside in the radial direction, but it may be a horizontal disk ring form.
  • a cooling fluid (water, etc.) W flows through the upper end of the cooling cylinder 31 to improve the cooling efficiency of the pulled-up Si single crystal 23 and thus to increase productivity.
  • the forced cooling cylinder 50 to be provided can be arranged together with the cooling cylinder 31 so as to surround the Si single crystal.
  • the furnace internal structure on which the heat reflection layer 34 is formed is the cooling cylinder 31 or the heat reflection plate 35, and the heat source serving as a source of radiated infrared rays is mainly Si melt 14
  • the present invention is not limited to this case.
  • the heater 15 is regarded as a main heat source, and the heat insulating member 16 is provided.
  • a heat reflection layer 34 can be formed on the inner peripheral surface of the heat insulating member 16, thereby effectively radiating heat from the heater 15 toward the inner wall (furnace inner wall) of the growth furnace main body 2. Can be cut off, and the temperature rise of the growth furnace main body 2 can be suppressed.
  • heater 1 Radiant heat from 5 toward the inner wall of the growth furnace body 2 can be reflected to the crucible 12 side, so the heat generated by the heater 15 can be more efficiently concentrated by the Si melt 14 As a result, energy can be saved.
  • the main body of the heat insulating member 16 may be made of graphite, a cylindrical base made of BN or the like may be arranged inside the heat insulating member 16, and the heat reflecting layer 34 may be formed on the inner peripheral surface of the base. Further, in order to suppress the temperature rise of the growth furnace main body 2, it is possible to form a heat reflection layer 34 on the inner wall surface.
  • the present invention is not limited to the growth of Si single crystals only.
  • the apparatus of the present invention can be used for growing other semiconductor single crystals such as GaAs and other compound semiconductors. What is available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書 半導体単結晶の製造装置及びそれを用いた半導体単結晶の製造方法 技術分野
本発明は、 チヨクラルスキー法 . (以下、 C Z法と称する) により半導体単結晶を 育成するための単結晶製造装置及びそれを用いた半導体単結晶の製造方法に関する, 背景技術
従来、 C Z法により育成された S iあるは G a A s等の半導体単結晶は半導体ゥ エーハに加工され、 半導体素子の基板として数多く使用されている。 特に S i単結 晶は、 集積回路や種々のディスクリ一ト部品製造用に大量に使用されている。 例え ば、 C Z法による S i単結晶の製造においては、特開平 3— 9 7 6 8 8号公報等に、 ルツポに収容された原料融液から引き上げられた S i単結晶の輻射熱を除去し、 成 長速度の高速化を図るため、 原料融液の直上に育成した単結晶を取り囲むように、 円筒状あるいは円錐状の部材を配設して、 S i単結晶の引上げを行なう方法が開示 されている。
上記のような半導体単結晶の製造装置において、 引き上げられた単結晶を取り囲 むように配置される冷却筒は、 融液面上方から下流される不活性ガスの整流作用を 大きくさせ、 原料融液からの蒸発物を効率よく育成炉外へと排出し、 蒸発物等によ る育成結晶の有転位化を防止できるので、 例えば S i単結晶の製造装置において広 く採用されている。 しかし、 該冷却筒は、 1 4 0 0 °C以上にもなる高温の原料融液 の直上に配置されるため、 原料融液を加熱するヒータや原料融液からの輻射熱によ り冷却筒自体の温度が上昇すると、 冷却筒による十分な冷却効果が得られなくなる 欠点がある。 例えば、 冷却筒の材質を、 比較的熱伝導率の高い黒鉛材ゃステンレス 鋼あるいはモリプデンなどの金属製とすることにより、伝熱による熱引きを促進し、 冷却効果を改善することも行なわれているが、効果は必ずしも十分ではない。特に、 S i単結晶の分野では、 製造される単結晶の直径が 3 0 O mmあるいは 4 0 O mm へと大型化傾向が著しく、 熱容量もきわめて大きくなるため、 より効率的な冷却方 式が望まれている。
他方、 原料融液を加熱するヒータは、 大量の原料を高温に加熱する必要があるた め、 相当のエネルギーを消費する。 従って、 より多くの原料を少ないエネルギーで 溶融■保温できるように、 ヒータによる発熱を効率よく原料に集中できる加熱構造 も求められている。
本発明の課題は、 育成炉内に配置された熱源からの輻射熱を効率的に制御でき、 ひいては製造される半導体単結晶の品質向上あるいは省エネルギーによる製造コス ト削減を図ることができる半導体単結晶の製造装置と、 それを用いた半導体単結晶 の製造方法とを提供することにある。 発明の開示
上記の課題を解決するために、 本発明に係る半導体単結晶の製造装置の第一は、 育成炉内に配置されたルツボに原料融液を収容し、 その原料融液からチヨクラルス キー法により半導体単結晶を引き上げるとともに、 炉内構造物の表面に、 育成炉内 に配置された熱源からの輻射熱を反射する熱反射層が形成された半導体単結晶の製 造装置であって、
熱反射層は、 熱源からの輻射赤外線に対する透光性を有した材料からなる複数の 要素反射層の積層体であり、 かつ、 それら要素反射層は、 互いに隣接する 2層が、 輻射赤外線に対する屈折率が互いに異なる材料からなることを特徴とする。
また、 本発明の半導体単結晶の製造方法は、 本発明の半導体単結晶の製造装置を 用レ、、 チヨクラルスキー法により半導体単結晶を引き上げて製造することを特徴と する。
上記本発明の製造装置の第一においては、 炉内構造物の表面に形成する熱反射層 を、 熱源からの輻射赤外線に対して透光性を有し、 かつ該輻射赤外線に対する屈折 率の異なる材質からなる要素反射層の組合せにより構成している。 これにより、 熱 反射層は、 輻射赤外線を、 金属層等と比較してはるかに高い反射率にて反射するこ とができるので、 これを利用して、 育成炉内に配置された熱源からの輻射熱を効率 的に制御することができる。 その結果、 製造される半導体単結晶の品質向上あるい は省エネルギーによる製造コスト削減を図ることができる。
要素反射層の材料が、 輻射赤外線に対して透過率が高いもの、 つまり赤外線吸収 が少ないものであれば、 熱反射層の輻射赤外線に対する反射率を高める上で有利で あるので、 要素反射層は、 輻射赤外線に対して透明な層として構成することが望ま しい。 ここでいう 「透明な層」 とは、 輻射赤外線に対する透過率が 8 0 %以上であ ることを意味する力 該透過率は 9 0 %以上がより好ましく、 実質的に 1 0 0 %で あればさらにょい。
熱反射層は、 具体的には、 輻射赤外線に対する屈折率が互いに異なる 2以上の要 素反射層の積層体を積層周期単位として、 該積層周期単位を 2周期以上積層した構 造とすることができる。 また、 本発明に係る半導体単結晶の製造装置の第二は、 育 成炉内に配置されたルツボに原料融液を収容し、 その原料融液からチヨクラルスキ 一法により半導体単結晶を引き上げるとともに、 炉内構造物の表面に、 育成炉内に 配置された熱源からの輻射熱を反射する熱反射層が形成された半導体単結晶の製造 装置であって、
熱反射層は、熱源からの輻射赤外線に対する透光性を有した材料からなり、かつ、 層厚方向に屈折率が段階的又は連続的に変化する積層周期単位を 2周期以上積層し たことを特徴とする。
熱反射層の屈折率を、 上記のように層厚方向において周期的に変化させること より、 輻射赤外線の反射率を高めることがで 、 ひいては製造される半導体単結晶 の品質向上あるいは省エネルギーによる製造コス ト削減といつた効果を一層高める ことができる。 この場合、 積層周期単位を構成する複数種類の材料の屈折率差が大 きいほど反射率をより高めることができる。 なお、 積層周期単位を構成する要素反 射層の層数は 3層以上であってもよいし、 前記した第二の構成のように、 積層周期 単位を屈折率が連続変化するグレーティング層としてもよい。
熱反射層は、積層周期単位 1周期内の屈折率変化幅が 1. 1以上、好ましくは 1. 2以上、 より好ましくは 1. 4以上となる材料の組合せを採用すれば、 後述する反 射率 100%に近いような大きな熱線反射率を有する熱反射層を、 比較的小さい積 層周期単位の形成周期数、 具体的には、 5周期以下にて簡便に実現することができ る。 特に、 屈折率差が 1. 5以上の組合せを用いると、 4周期、 3周期、 あるいは 2周期程度の形成周期数でも上記のような大きな熱線反射率を実現できるようにな る。
熱反射層を構成する材料は、 高温に対して安定な材料であって、 かつ赤外線反射 のために必要十分な屈折率差を確保できる材質の組合せを選択することが望ましい。 具体的には、 熱反射層は、 例えば S i、 S i 02、 S i C、 BN、 A 1 N、 S i 3N 4、 A 1203、 T i 02、 T i N及び CN等から選ばれる 2種以上の組合せにて構成 することができる。 このうち、 高屈折材料 (屈折率 2. 5以上) としては S i、 S i C、 T i 02を例示できる。 また、 種々の I I I一 V族化合物半導体 (例えば、 GaA s、 A l G aA s、 G a P、 GaA s P、 I nG aA s P、 I n P、 A 1 G a I n P、 G aN等) も高屈折率材料として本発明に好適に使用できる。 他方、 低 屈折率材料 (屈折率 2. 5未満) としては、 A 1 N、 BN、 A 1203、 S i〇2、 CN等を例示できる。 高反射率の積層構造を得るには、 上記の高屈折材料群と低屈 折率材料群との各々から材料を選択して組み合わせることが望ましく、 また、 組み 合わせる層間の屈折率差は 1. 1以上、好ましくは 1. 2以上、 より好ましくは 1. 4以上確保されていることが望ましい。 なお、 下記表 1は、 上記材質の屈折率の値 をまとめたものである。 屈折率は、 厳密には波長により多少の変化があるが、 0. 8〜4 μιη程度の範囲であればほぼ無視できる。 表中には、 この帯域での平均的な 熱線の屈折率を示している。
Figure imgf000007_0001
半導体の屈折率
禁制帯幅 [eV] 屈折率
化合物 遷移型 η
300 K 、η ν ~E g )
S i 1. 2 間接 3. 5
G e 0. 7 間接 4. 0
6 h— S i C 3. 2 間接 3. 2
h-BN 2. 1
B P 2. 0 間接 3. 5
A I N 6. 2 2. 2
A I P 2. 4 間接 3. 0
A 1 A s 2. 2 間接 3. 2
A 1 S b 1. 6 間接 3. 4
G a N 3. 4 直接 2. 2
G a P 2. 3 間接 3. 5
Z n S 3. 8 直接 2. 5
Z n S e 2. 7 2. 6
Z n T e 2. 3 3. 2
C d S 2. 4 直接 2. 5 前記した高屈折率材料の中でも、 S iは 3 . 5と、 他の材料の屈折率と比較して も群を抜いて高い屈折率を示す。 従って、 熱反射層を、 S i層 (単結晶 S i、 多結 晶 S i、 またはアモルファス S i ) を含むように構成すると、 これと組み合わされ る低屈折率材料との屈折率差を大きく確保することができ、 ひいては反射率の高い 積層構造を実現する上で有利となる。
本発明において採用する積層周期単位は、 周期的に屈折率が変化するその層厚方 向に、 光量子化された電磁波エネルギーに対し、 結晶内の電子エネルギーと類似し たバンド構造 (以下、 フォトニックバンド構造どいう) が形成され、 屈折率変化の 周期に応じた特定波長の電磁波が積層体構造中に侵入することが妨げられる。 この 現象は、 フォトユックバンド構造において、 一定エネルギー域 (つまり、 一定波長 域) の電磁波の存在自体が禁止されることを意味し、 電子のバンド理論との関連か らフォトニックバンドギャップとも称される。 上記積層体の場合、 屈折率変化が層 厚方向にのみ形成されるので、 狭義には一次元フォ トニックバンドギャップともい う。
フォトニックバンドギャップを形成するための、 各層の厚さおよび周期数は、 反 射すべき波長帯の範囲により、 計算または実験的に決定することができる。 1周期 の厚さは、 熱反射層に照射される輻射赤外線の中心波長よりも小さくすることが望 ましい。 そして、 より望ましくは、 フォトニックパンドギャップの中心波長を m としたとき、 1周期の厚さ Θは、 波長; l mの熱線が 1 / 2波長分 (あるいはその整 数倍でもよいが、 その分膜厚が多く必要である。 以下、 1 Z 2波長の場合で代表さ せる) だけ存在できるように設定する。 これは、 層の 1周期内に入射した熱線ある いは紫外線が定在波を形成するための条件であり、 結晶中の電子波が定在波を形成 するブラッグ反射条件と同様である。 電子のバンド理論では、 このブラッグ反射条 件を満足する逆格子の境界位置にエネルギーギャップが現れるが、 フォトニックバ ンド理論でもこれは全く同様である。 例えば、 積層周期単位を最も簡単に構成するには、 輻射赤外線に対する屈折率が 互いに異なる第一要素反射層と第二要素反射層との 2層構造とすることができる。 この場合、 両層の屈折率の差が大きいほど、 輻射赤外線の反射率を十分に高く確保 する上での、 必要な積層周期単位数を削減することができる。
層中に入射した熱線は、 層の屈折率にほぼ逆比例して波長が短くなる。 熱反射層 を、 前記した積層周期単位の積み重ねにより形成する場合、 第一の要素反射層と第 二の要素反射層のうち、高屈折率層の厚さを t 1、低屈折率層の厚さを t 2として、
1 < t 2に設定する、 すなわち高屈折率層の厚さを低屈折率層の厚さよりも大き く設定すると、 熱線に対する特定波長帯の反射率がさらに高められる。 また、 反射 率 9 5 %以上となる高反射率帯の帯域幅を拡張することができる。
次に、熱反射層においては、反射すべき熱線に対する高屈折率層の屈折率を n 1、 同じく低屈折率層の屈折率を n 2とすれば、 熱線の波長を基準とした換算厚さは t l X n lとなり、 同じく低屈折率層の換算厚さほ t 2 X n 2となる。 従って、 一周 期の換算厚さ Θ, は t l X n l + t 2 X n 2にて表される。 この値が、 反射させる べき熱線の波長; の 1 / 2に等しくなつているとき、 λを含む一定波長域にフォ 1、 ユックバンドギャップに基づく高反射率帯が現れる。 特に、 t 1 X η 1 = t 2 X η 2の条件を満たす場合は、 換算厚さ 0 ' の 2倍の波長を中心として、 ほぼ左右対称 対称な形で、 反射率がほぼ 1 0 0 %に近い (記載を明確化するために、 本明細書で は 9 9 %以上と定義しておく) 完全反射帯域が形成され、 本発明の効果が最大限に 高められる。 各層の厚さおよび周期数は、 反射すべき波長帯の範囲により、 計算ま たは実験的に決定することができる。 .
屈折率が 3以上の半導体又は絶縁体からなる層を、 高屈折率層となる第一の要素 反射層として含むものとして構成することができる。 屈折率が 3以上の半導体又は 絶縁体を第一の要素反射層として用いることにより、 これと組み合わされる第二の 要素反射層との間の屈折率差を大きく確保することが容易となる。 屈折率が 3以上 の物質として、 S i、 Ge、 6 h— S i C、 及び S b2S3、 BP、 A 1 P、 A 1 A S、 A】 S b、 Ga P、 ZnT e等の化合物半導体を例示できる。 半導体及び絶掾 体の場合、 反射すべき熱線のフォトンエネルギーに近いバンドギヤップエネルギー を有する直接遷移型のものは、 熱線吸収を起こしやすいので、 熱線のフオトンエネ ルギ一よりも十分大きいバンドギヤップエネルギー (例えば 2 e V以上) を有する ものを使用することが望ましい。 他方、 これよりもバンドギャップエネルギーが小 さいものであっても、 間接遷移型のもの (例えば S iや Geなど) であれば熱線吸 収を低くとどめることができ、 本発明に好適に使用できる。
このうち前述の S iは比較的安価で薄層化も容易であり、 屈折率も 3. 5と高い 値を示す。 従って、 第一の要素反射層を S i層とすることで、 反射率の高い積層構 造を安価に実現することができる。
次に、 第二の要素反射層を構成する低屈折率材料としては、 S i 02、 BN、 A 1 N、 A 1203、 S i 3N4及び CN等を例示できる。 この場合、 選択した第一の要 素反射層の材料種別に応じて、 屈折率差が 1. 1以上となるように、 第二の要素反 射層の材料選定を行なう必要がある。 なお、 下記表 1は、 上記材質の屈折率の値を まとめたものである。 このうち、 特に S i 02層、 BN層あるいは S i 3N4層を採 用することが、 屈折率差を大きく確保する上で有利である。 S i〇2層は屈折率が 1. 5と低く、 例えば S i層からなる第一の要素反射層との間に特に大きな屈折率 差を付与することができる。 また、 S i層の熱酸化や CVD法等により形成が容易 である利点がある。 他方、 BN層は、 結晶構造や方位により差を生ずるが、 その屈 折率は 1. 65〜2. 1の範囲である。 また、 S i 3N4層は、 膜の品質によっても 異なるが、 1. 6〜2. 1程度の屈折率を示す。 これらは S i 02と比較すれば多 少大きい値であるが、 それでも S iとの間には 1. 4〜1. 85もの大きな屈折率 差を付与することができる。
半導体単結晶の製造においては、 完全に反射することができる輻射赤外線の波長 帯を 1〜 5 μ m、 好ましくは 1〜 3 mの範囲内から選択すれば、 半導体の原料融 液あるいはその原料融液を溶融状態に維持するためのヒータからの輻射赤外線のス ぺクトルの要部をおおむねカバーでき、 これら輻射赤外線の効率的に反射制御が可 能となる。 この場合、 この選択される波長帯の上限値よりは積層周期単位の厚さを 小さく設定しておくことが、 反射率を高める上で有効である。
なお、 反射すべき波長帯の範囲は、 熱源の温度に依存する。 すなわち、 ある一定 温度の下において物体表面の単位面積から単位時間に放射される放射エネルギーの うち、 最大限度の大きさを示すものは完全黒体から放射される単色放射能である。 これを式で表すと次式となる (プランクの法則)。
Εύ λ = Αλ-5 (eB ιτ- 1) - 1 〔WZ ( zra) 2
ここで、 Eb ;i:黒体の単色放射能 〔W/ (μτα) 2〕、 λ :波長 〔/im〕、 Τ:物体 表面の絶対温度 〔Κ:〕、 A: 3. 7404 1 X 10 16 〔W ' m2〕、 B: 1. 438 8 X 10— 2 Cm - K] である。 図 9は、 物体表面の絶対温度 Τを変化させたときの 黒体の単色放射能 (Eb il) と波長との関係を示すグラフである。 Tが低くなるにつ れて、 単色放射能のピークが低下し、 長波長側にシフトすることがわかる。
特に、 製造対象となる半導体単結晶が S i単結晶である場合、 S i融液ゃヒータ の温度域を考慮すると、 前記熱反射層が S i層を必須としてさらに S i 02層及び B N層の少なくともいずれかを含むように構成すること、 例えば要素反射層として S i層と S i 02層及び/又は BN層とを含むように構成することが、 S i単結晶 製造時の輻射熱を効率的に反射する上で有効である。 なお、 81^は融点が3 1〇2 と比較して相当高く、 超高温用の用途 (たとえば原料融液の直上に配置されるよう な場合: S i単結晶製造の場合は 1400°C以上) に好適である。 さらに BNは、 高温で分解されてもガスとして出てくるのは N2であって、 ホウ素はメタルとして 表面に残存するため、 S iゥエーハ等の半導体ゥエーハの電気特性に影響を及ぼさ ない利点がある。 以下、 S i と S i o2を用いて一次元フォトニックバンドギャップ構造を形成す ることにより、 赤外領域をほぼ完全に反射することができる条件を、 計算により検 討した結果について説明する。 S iは屈折率が約 3. 5であり、 その薄膜は波長約 1. 1〜1 0 /zmの赤外領域の光に対して透明である。 また、 S i〇2は屈折率が 約 1. 5で、 その薄膜は波長約 0. 2〜8 //m (可視から赤外領域) の光に対して 透明である。 図 3は、 S i層 Cにて被覆した基体 1 0 0 (例えば石英 (S i〇2)) 上に、 1 00 nmの S i層 Aと 2 3 3 nmの S i 02層;6の 2層からなる積層周期 単位を 4周期形成した熱反射層の断面図である。 このような構造であれば、 図 4の ように 1〜 2 m帯での赤外線の反射率がほぼ 1 00 %となり、 赤外線の透過は禁 止さ Lる。
例えば、 1 6 0 0°Cの熱源の最大強度は 1〜2 μ πι帯にある力、 2 111〜3 111 帯 (1 0 00〜 1 20 0°C程度の熱源からの、 輻射赤外線スぺクトルのピーク波長 域に相当する) までカバーしょうとすると、 反射可能な波長帯の異なる別の周期性 のある組合せを付加すればよい。 すなわち、 前述の 1 0 0 nm (S i ) /2 3 3 η m (S i〇2) の糸且合せ (図 3の A/B) に、 それぞれの層厚さを増加させた 1 5
7 nm (S i ) / 3 6 6 n m (S i 02) の組合せ (図 5の A' /Β ') を付加した 図 5のような構成とすればよい。
このような構成にすると、 図 6に示すように、 前述の 1 00 nm (S i ) /2 3 3 nm (S i 02)の 4周期構造が 1〜2 /z m帯での赤外線の反射率がほぼ 1 0 0% となるのに対して、 1 5 7 nm (S i ) /3 6 6 nm (S i 02) の 4周期構造は 2〜3 μπι帯での赤外線の反射率がほぼ 1 0 0%となる。 従って、 これらを重ねた 図 5の構造では、 1〜 3 /X m帯の反射率がほぼ 1 00 °/0の材料が得られる。
同様に、 3〜4. 5 /im帯については、 S i層および S ί 02層ともにさらに厚 い膜の組合せを適宜選択して 4周期構造を形成すればよい。 S iと S i 02の屈折 率差よりも屈折率差の小さい層の組合せでは、 必要な周期数を増加させる必要が生 ずる場合もあるため、選択する 2つの層としては屈折率差が大きい方が有利である。 上記組合せでは全体の層の厚さは 1. 3 μ mで 1〜 2 μ m帯が、 3. 4 μ mで 1〜 3 μ m帯をほぼ完全に反射する。 '
一方、図 7は、 S iと S i 02同様に、比較的屈折率差の大きい 6 h - S i C (屈 折率 3. 2) と h— B N (屈折率 1. 6 5)· とを選択し、 94請 (S i C) /1 8 2 nm (BN) の 4周期構造を形成した熱反射層の反射率の計算結果である。 こ の場合は、 1〜 1. 5 μ m帯での光 (熱線) の反射率がほぼ 1 00 %となることカ わ力る。 図面の簡単な説明
図 1は、 本発明に係る半導体単結晶製造装置の一例を示す断面模式図。
図 2は、 図 1の要部を示す拡大模式図。
図 3は、 S i層と S i 02層の 4周期構造を有する熱反射層の例を示す断面模式 図。
図 4は、 図 3の構造を有する熱反射層の赤外線反射率特性を示す図。
図 5は、 図 3の 4周期構造に、 厚さの異なる S iと S i 02との 4周期構造をさ らに積層した熱反射層の断面模式図。
図 6は、 図 5の構造を有する熱反射層の赤外線反射率特性を示す図。
図 7は、 6 h— S i C層と h— BN層の 4周期構造を有する熱反射層の熱赤外線 反射率特性を示す図。
図 8 Aは、 熱反射層の製造フローの一例を示す図。
図 8 Bは、 図 8 Aに続く図。
図 8 Cは、 図 8 Bに続く図。
図 8 Dは、 図 8 Cに続く図。
図 9は、 物体表面の絶対温度 Tを変化させたときの黒体の単色放射能 (EbJ と 波長との関係を示すグラフ。
図 1 0は、 図 1の装置の冷却筒に対する、 熱反射層の形成態様の変形例を示す要 部断面模式図。
図 1 1は、 図 1の装置の冷却筒に対する、 筒状本体部の形成態様の変形例を示す 要部断面模式図。
図 1 2は、図 1の装置の冷却筒に熱反射板を設けた変形例を示す要部断面模式図。 図 1 3は、 図 1の装置の冷却筒に強制冷却筒を設けた変形例を示す要部断面模式 図。
図 1 4は、 ヒータの周囲に配置する断熱部材の内周面に熱反射層を設けた装置の 例を示す断面模式図。 発明を実施するための最良の形態
以下に本発明を実施するための最良の形態を、 添付の図面を参照して説明する。 図 1は、 本発明の半導体単結晶製造装置の一実施形態である、 S i単結晶製造装置 1を示す断面概略図である。 該装置 1は、 S i融液 1 4を満たしたルツポ 1 2を収 容し、 その育成炉は、 S i単結晶 2 3が育成される育成炉本体 2と、 該育成炉本体 2の上方に一体形成され、 S i融液 1 4カゝら引き上げられた S i単結晶 2 3を収容 保持する回収空間形成部 4を有する。 育成炉本体 2内部の略中央には、 ルツボ支持 軸 1 3を介して内側に石英製ルツボ 1 2 aを、 外側に黒鉛製ルツポ 1 2 bを配した ルツポ 1 2が置かれている。 このルツボ 1 2は、 ルツポ支持軸 1 3の下端に取り付 けられているルツボ駆動機構 1 9により、 S i単結晶 2 3の育成条件や作業工程に 合わせて回転及び上下動が可能となっている。 また、 ルツボ 1 2を取り囲む形でル ッボ内 S i融液 (原料融液) 1 4を加熱するヒータ 1 5が設けられ、 そのヒータ 1 5と炉内壁との間に、 黒鉛等で構成された筒状の断熱部材 1 6が配置されている。 ルツボ 1 2に収容された S i融液 1 4の上方には、冷却筒 3 1力 自身の下部が、 S i融液面 1 4 aの上方にてルツボ 1 2内に位置するように配置されている。 この 冷却筒 3 1は、 熱源となる S i融液 (原料融液) 1 4から引き上げられた S i単結 晶 (半導体単結晶) 2 3を取り囲む形で配置されている。 該冷却筒 3 1を本発明で いう炉内構造物として、 図 2に示すように、 その外周面の少なくとも一部を熱反射 層 3 4にて覆っている。 該熱反射層 3 4は、 発明の開示の欄にて既に詳しく説明し たものであり、 具体的には図 3あるいは図 5のような積層構造を有するものとして 構成される。
このような熱反射層 3 4は、 S i融液 1 4あるいはヒータ 1 5から冷却筒 3 1に 向かう輻射赤外線を反射して、 冷却筒 3 1が該赤外線により昇温することを抑制す る。 その結果、 引き上げられる S i単結晶 2 3の冷却ムラの防止及び冷却効率の向 上を図ることができ、 ひいては高品質の S i単結晶 2 3を高能率にて製造すること が可能となる。
本実施形態においては、 冷却筒 3 1は、 熱反射層 3 4が外周面に形成される石英 製の筒状基体 3 3と、 その筒状基体 3 3の内側に配置される黒鉛製の筒状本体部 3 2とを有する。 石英は比較的耐熱性が高く、 かつ平滑な表面を形成しやすいので、 熱反射層 3 4を均一に形成する基体材質として優れる。 他方、 筒状本体部 3 2は、 熱伝導性と熱容量の高い黒鉛にて構成されることにより、 引き上げられた S i単結 晶 2 3の冷却を促進する役割を果たす。 このような黒鉛製の冷却筒は従来の S i単 結晶引上装置においても使用されていたが、 本発明により、 その外側に熱反射層 3 4を形成した筒状の基体 3 3を配置することで、 S i融液ゃヒータ等からの輻射熱 による温度上昇が抑制されることで、 冷却効率の一層の向上を図ることができるよ うになる。
なお、 熱反射層 3 4は、 図 1 0に示すように、 S i融液 1 4からの輻射熱を特に 受けやすい冷却筒 3 1の外周面下部にのみ選択的に形成するようにしてもよい。 ま た、 筒状本体部 3 2の下部は、 熱反射層 3 4の形成により、 S i融液 1 4及びヒー タ 15からの輻射熱による温度上昇が抑制されるので、 その厚みを減じたり、 場合 により、 図 1 1に示すように、 筒状本体部 32の下部のみを省略したりする構成も 可能である。
図 8 A〜図 8 Dは、 熱反射層 34の製造フローを示している。 まず、 熱線反射材 料の基体 33 (ここでは石英) を必要な形状、 ここでは筒状に加工する (図 8A)。 なお、 基体 33の材料としては、 機械的強度のある耐熱性の基体であれば S i 02 以外にも、 S i、 S i Cあるいは BNなどを用いることができる。 これらは、 半導 体デバイスを作製するための基板や、 それらの基板を熱処理する一般的な熱処理装 置の反応管や熱処理治具等に用いられており、 汎用性が高く、 様々な形状に加工が 可能である。
次に、 この基体 33の表面に熱源から放射される熱線に対して透明であり、 屈折 率の互いに異なる要素反射層 (ここでは S i層 A, Cと S i〇2層 B) を順次形成 する (図 8 B〜図 8D)。 これらの層の形成方法は特に限定されないが、 CVD法を 用いれば S i、 S i〇2、 S i C、 .BN、 S i 3N4、 CN (例えば ]3— C3N4) な どの様々な種類の層を形成することができる。 CVD法以外にも、 高周波スパッタ リングゃィオンプレーティング等の種々の気相成長法を採用することができる。 ま た、 A, Cとして S i層を形成する場合には、 S i層を熱酸化することにより S i ◦ 2層を形成することができるが、 CVD法により S i層 (多結晶 S i層) を形成 した場合には、 S i 02層も CVD法により形成すれば、 両層の界面の平坦性が良 好となる。こうして、周期構造を有する熱反射層 34が形成される(図 8D)。なお、 ここでは基体 33の材質として石英 (S i〇2) を使用したので、 層じを形成 したが、基体 33として S iなどの他の材料を使用すれば、 S i層 Cを形成せずに、 S i層 Aと S i 02層8とのペアを積層周期単位とする 4周期積層構造により、 図 8 Dの構造と同一の特性を得ることができる。
図 1に戻り、 ルツボ 12の外側には、 ルツボ 12に入れられた多結晶原料を融解 し、 S i融液 1 4を所望の温度に保っためのヒータ 1 5が図示しないヒータ電極部 を支えとして育成炉本体 2の底面上に立設されている。 単結晶育成時においては、 そのヒータ電極部からヒータ 1 5に電力を供給することによりヒータ 1 5を発熱さ せ、 S i融液 1 4を高温に保つようにする。
また、 回収空間形成部 4には、 育成炉に A rガス等の不活性ガスを導入するため のガス導入口 9 aがあり、 操業時においては、 ガス導入口 9 aに接続された不活性 ガス管 9を介して不活性ガスが、 該不活性ガス管 9上にあるガス流量制御装置 1 2 2により流量調整された後、 育成炉本体 2内に導入される。
育成炉本体 2の内部には、 前記した断熱部材 1 6及び下部保温材 3が設けられて いる。 これらは、 該育成炉本体 2の内部を効率よく保温するとともに、 炉壁を保護 する役割を果たす。 そして、 育成炉本体 2の底面部には、 育成炉内に導入された不 活性ガスを排気するためのガス排出口 1 1が設けられ、 育成炉内の不活性ガスはこ の排ガス口 1 1から排ガス管 7を経由して育成炉外へと排出される。 なお、 排ガス 管 7の途中にはコンダクタンスバルブ 1 8が設置され、 さらにその先には、 育成炉 からの不活性ガスの排気を補助するための図示しな!/、真空ポンブが設けられており 育成炉の内部が減圧状態に保たれるようになっている。
回収空間形成部 4の上方には、 S i融液 1 4から S i単結晶 2 3を引き上げるた めにワイヤー 2 2を巻き取ったり、 単結晶育成時に結晶を回転させたりするための 図示しないワイヤー卷取り卷出し機構が設けられている。 そして、 そのワイヤー巻 取り巻出し機構から巻き出されたワイヤー 2 2の先端には、 種ホルダー 2 0が取り 付けられ、 該種ホルダー 2 0に種結晶が係止されている。
以下、 上記単結晶製造装置 1を用いた S i単結晶の製造方法の例について説明す る。 始めに、 単結晶製造装置 1内に設けられた石英製ルツボ 1 2 aに多結晶 S i原 料を充填し、 ヒータ 1 5を発熱させることによりこれを融解して、 S i融液 1 4と する。 そして、 所望の温度で融液 1 4が安定した後、 前述のワイヤー卷取り卷出し 機構を操作してワイヤー 2 2を巻き出し、 種ホルダー 2 0に係止されている種結晶 先端を S i融液 1 4の表面に静かに接触させる。 その後、 ルツボ 1 2と種結晶とを 互いに反対方向に回転させながらワイヤー 2 2を巻き取り、 引き上げることによつ て、 種結晶の下方に S i単結晶 2 3を育成することができる。
なお、 図 1 2に示すように、 冷却筒 3 1の下端面には、 半径方向外向きに膨出す る形で熱反射板 3 5を設けることができる。 そして、 その熱反射板 3 5を炉内構造 物として、 その S i融液 (原料融液) 1 4に面する表面に熱反射層 3 4を形成する ことができる。 このようにすると、 S i融液 (原料融液) 1 4から冷却筒 3 1に向 力 う輻射熱をより効果的に反射することができ、 冷却筒 3 1の温度上昇をさらに効 果的に抑制することができる。 また、 熱反射板 3 5は、 S i融液 1 4からの輻射熱 を遮蔽し、 融液の保温効果を高めて融液 1 4の温度変動をより小さくする役割も果 たす。 本実施形態では、 この熱反射板 3 5の基体も石英にて構成している。 また、 その形態は、 半径方向において外側に向かうほど径大となるテーパ状部材としてい るが、 水平円板リング形態としてもよい。
また、 図 1 3に示すように、 冷却筒 3 1の上端部には、 引き上げられた S i単結 晶 2 3の冷却効率ひいては生産性を高めるために、 冷却流体 (水等) Wが流通され る強制冷却筒 5 0を、 冷却筒 3 1とともに S i単結晶を取り囲む形態で配置するこ とができる。
上記実施形態においては、 熱反射層 3 4の形成対象となる炉内構造物を冷却筒 3 1あるいは熱反射板 3 5とし、 輻射赤外線の発生源となる熱源が主に S i融液 1 4 及ぴヒータ 1 5である場合を考えていたが、本発明はこれに限られるものではない < 例えば、 図 1 4に示すように、 ヒータ 1 5を主な熱源とみなし、 断熱部材 1 6を炉 内構造物として、該断熱部材 1 6の内周面に熱反射層 3 4を形成することができる, これにより、 ヒータ 1 5から育成炉本体 2の内壁 (炉内壁) に向かう輻射熱を効果 的に遮断でき、 育成炉本体 2の温度上昇を抑制することができる。 また、 ヒータ 1 5から育成炉本体 2の内壁側へ向かおうとする輻射熱をルツボ 1 2側へ反射させる ことができるので、 ヒータ 1 5の発熱を S i融液 1 4により効率的に集中させるこ とが可能となり、 ひいては省エネルギーを図ることができる。 この場合、 断熱部材 1 6の本体部を黒鉛製とし、その内側に B N等で構成された筒状の基体を配置して, その基体内周面に熱反射層 3 4を形成するとよい。 また、 育成炉本体 2の温度上昇 を抑制するために、 その内壁面に熱反射層 3 4を形成することも可能である。
さらに、 本発明は S i単結晶の成長のみに限定されるものではなく、 例えば、 本 発明の装置は、 G a A sをはじめとする化合物半導体等、 他の半導体単結晶育成に おいても利用可能なものである。

Claims

請 求 の 範 囲
1 . 育成炉内に配置されたルツボに原料融液を収容し、 その原料融液からチヨ クラルスキー法により半導体単結晶を引き上げるとともに、 炉内構造物の表面に、 育成炉内に配置された熱源からの輻射熱を反射する熱反射層が形成された半導体単 結晶の製造装置であって、
前記熱反射層は、 前記熱源からの輻射赤外線に対する透光性を有した材料からな る複数の要素反射層の積層体であり、 かつ、 それら要素反射層は、 互いに隣接する 2層が、 前記輻射赤外線に対する屈折率が互いに異なる材料からなることを特徴と する半導体単結晶の製造装置。
2 . 前記熱反射層は、 前記輻射赤外線に対する屈折率が互いに異なる 2以上の 要素反射層の積層体を積層周期単位として、 該積層周期単位を 2周期以上の複数組 積層した構造を有することを特徴とする請求の範囲第 1項記載の半導体単結晶の製
3 . 育成炉内に配置されたルツポに原料融液を収容し、 その原料融液からチヨ クラルスキー法により半導体単結晶を引き上げるとともに、 炉内構造物の表面に、 育成炉内に配置された熱源からの輻射熱を反射する熱反射層が形成された半導体単 結晶の製造装置であって、
前記熱反射層は、 前記熱源からの輻射赤外線に対する透光性を有した材料からな り、 かつ、 層厚方向に屈折率が段階的又は連続的に変化する積層周期単位を 2周期 以上積層したことを特徴とする半導体単結晶の製造装置。
4 . 前記積層周期単位の 1周期内の屈折率の変化幅が 1 . 1以上となるように 設定されていることを特徴とする請求の範囲第 2項又は第 3項に記載の半導体単結
5 . 前記熱反射層の構成材質は、 S i、 S i 0 ,、 S i C、 B N、 A 1 N、 S 3N4、 A 1203、 T i〇2、 T i N及び CNから選ばれる 2種以上が選択される .とを特徴とする請求の範囲第 1項ないし第 4項のいずれか 1項に記載の半導体単
6. 前記炉内構造物の前記熱反射層が形成される基体が、 S i、 S i 02、 S i C、 BN、 A 1 N、 S i 3N4、 A 1203、 T i 02及び T i Nのいずれかからな ることを特徴とする請求の範囲第 1項ないし第 5項のいずれか 1項に記載の半導体
7. 前記熱反射層が S i層を含むことを特徴とする請求の範囲第第 5項に記載 の半導体単結晶の製造装置。
8. 前記半導体単結晶が S i単結晶であり、 前記熱反射層が S i層を必須とし てさらに S i 02層及び BN層の少なくともいずれかを含むことを特徴とする請求 の範囲第 7項記載の半導体単結晶の製造装置。
9. 前記積層周期単位は、 前記輻射赤外線に対する屈折率が互いに異なる第一 要素反射層と第二要素反射層との 2層構造からなることを特徴とする請求の範囲第 2項記載の半導体単結晶の製造装置。
10. 前記積層周期単位をなす前記第一の要素反射層と前記第二の要素反射層 のうち、 高屈折率層の厚さを t 1、 低屈折率層の厚さを t 2として、 t 1 < t 2に 設定される請求の範囲第 9項に記載の半導体単結晶の製造装置。
1 1. 反射すべき熱線に対する前記高屈折率層の屈折率を n 1、 同じく前記低 屈折率層の屈折率を 112として、 t 1 X n 1と t 2 X n 2とがほぼ等しくなるよう に、 前記高屈折率層の厚さ t 1と、 前記低屈折率層の厚さ t 2とが各々定められて いる請求の範囲第 10項に記載の半導体単結晶の製造装置。
12. 前記積層周期単位は、 屈折率が 3以上の半導体又は絶縁体からなる層を 前記第一の要素反射層として含むことを特徴とする請求の範囲第 9項ないし第 1 1 項のいずれか 1項に記載の半導体単結晶の製造装置。
1 3 . 前記第一の要素反射層が S i層である請求の範囲第 1 2項記載の半導体 単結晶の製造装置。
1 4 . 前記第二の要素反射層として、 S i 0 2、 B N、 A 1 N、 S i 3 N 4、 A 1 2 0 3、 T i〇2、 T i N、 C Nのいずれかからなる層を含む請求の範囲第 1 2項 又は第 1 3項に記載の半導体単結晶の製造装置。
1 5 . 前記輻射赤外線の波長帯が 1〜 5 mの範囲内であることを特徴とする 請求の範囲第 1項ないし第 1 4項のいずれか 1項に記載の半導体単結晶の製造装置。
1 6 . 前記炉内構造物は、 前記熱源となる原料融液から引き上げられた半導体 単結晶を取り囲む冷却筒であり、 該冷却筒の外周面の少なくとも一部を前記熱反射 層にて覆ったことを特徴とする請求の範囲第 1項ないし第 1 5項のいずれか 1項に 記載の半導体単結晶の製造装置。
1 7 . 前記冷却筒は、前記熱反射層が外周面に形成される石英製の筒状基体と、 その筒状基体の内側に配置される黒鈴製の筒状本体部とを有することを特徴とする 請求の範囲第 1 6項記載の半導体単結晶の製造装置。
1 8 . 前記炉内構造物は、 前記熱源となる原料融液より引き上げられた半導体 単結晶を取り囲む冷却筒の下端面に、 半径方向外向きに膨出する形で一体化された 熱反射板であり、 その熱反射板の原料融液に面する表面に前記熱反射層が形成され ていることを特徴とする請求の範囲第 1項ないし第 1 7項のいずれか 1項に記載の 半導体単結晶の製造装置。
1 9 . 前記ルツポを取り囲む形でルツボ内の原料融液を加熱するヒータが設け られ、 そのヒータと育成炉内壁との間に筒状の断熱部材が配置され、 該ヒータを前 記熱源とし、 前記断熱部材を前記炉内構造物として、 該断熱部材の内周面に前記熱 反射層が形成されていることを特徴とする請求の範囲第 1項ないし第 1 8項のいず れか 1項に記載の半導体単結晶の製造装置。
2 0 . 請求の範囲第 1項ないし第 1 9項のいずれか 1項に記載の半導体単結晶 の製造装置を用い、 チヨクラルスキー法により半導体単結晶を引き上げて製造する ことを特徴とする半導体単結晶の製造方法。
PCT/JP2002/005840 2001-06-14 2002-06-12 Dispositif permettant la production d'un monocristal semi-conducteur et procede permettant de produire un monocristal semi-conducteur au moyen de ce dispositif WO2002103092A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003505398A JP4244010B2 (ja) 2001-06-14 2002-06-12 半導体単結晶の製造装置及びそれを用いた半導体単結晶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001180482 2001-06-14
JP2001-180482 2001-06-14

Publications (1)

Publication Number Publication Date
WO2002103092A1 true WO2002103092A1 (fr) 2002-12-27

Family

ID=19020897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005840 WO2002103092A1 (fr) 2001-06-14 2002-06-12 Dispositif permettant la production d'un monocristal semi-conducteur et procede permettant de produire un monocristal semi-conducteur au moyen de ce dispositif

Country Status (2)

Country Link
JP (1) JP4244010B2 (ja)
WO (1) WO2002103092A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000265T5 (de) 2011-01-19 2013-09-26 Shin-Etsu Handotai Co., Ltd. Einkristallherstellungsvorrichtung und Verfahren zum Herstellen eines Einkristalls
US20220002903A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Heat shield device for single crystal production furnace, control method thereof and single crystal production furnace
US20220002900A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Thin-film heat insulation sheet for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
US20220002902A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Heat shield device for insulating heat and smelting furnace
US20220002901A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Heat shield device and smelting furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319293A (ja) * 1987-06-22 1988-12-27 Nec Corp シリコン単結晶引上成長炉
JPH0397688A (ja) * 1989-09-09 1991-04-23 Shin Etsu Handotai Co Ltd 単結晶引上装置用整流筒
JPH08175896A (ja) * 1994-12-22 1996-07-09 Tdk Corp 単結晶の製造方法及び装置
US6071341A (en) * 1996-05-22 2000-06-06 Komatsu Electronic Metals Co., Ltd. Apparatus for fabricating single-crystal silicon
JP2000193810A (ja) * 1998-12-28 2000-07-14 Nitto Koki Kk 反射ミラ―
US6181727B1 (en) * 1999-04-19 2001-01-30 General Electric Company Coating for reducing operating temperatures of chamber components of a coating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319293A (ja) * 1987-06-22 1988-12-27 Nec Corp シリコン単結晶引上成長炉
JPH0397688A (ja) * 1989-09-09 1991-04-23 Shin Etsu Handotai Co Ltd 単結晶引上装置用整流筒
JPH08175896A (ja) * 1994-12-22 1996-07-09 Tdk Corp 単結晶の製造方法及び装置
US6071341A (en) * 1996-05-22 2000-06-06 Komatsu Electronic Metals Co., Ltd. Apparatus for fabricating single-crystal silicon
JP2000193810A (ja) * 1998-12-28 2000-07-14 Nitto Koki Kk 反射ミラ―
US6181727B1 (en) * 1999-04-19 2001-01-30 General Electric Company Coating for reducing operating temperatures of chamber components of a coating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000265T5 (de) 2011-01-19 2013-09-26 Shin-Etsu Handotai Co., Ltd. Einkristallherstellungsvorrichtung und Verfahren zum Herstellen eines Einkristalls
US20220002903A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Heat shield device for single crystal production furnace, control method thereof and single crystal production furnace
US20220002900A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Thin-film heat insulation sheet for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
US20220002902A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Heat shield device for insulating heat and smelting furnace
US20220002901A1 (en) * 2020-07-01 2022-01-06 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Heat shield device and smelting furnace

Also Published As

Publication number Publication date
JPWO2002103092A1 (ja) 2004-09-30
JP4244010B2 (ja) 2009-03-25

Similar Documents

Publication Publication Date Title
US7368870B2 (en) Radiation emitting structures including photonic crystals
US7085038B1 (en) Apparatus having a photonic crystal
US8337616B2 (en) Apparatus and method for producing single crystal
TW200305713A (en) Temperature measuring system, heating device using it; lamp, heat ray insulating translucent member, visible light reflection member, exposure system-use reflection mirror and semiconductor device produced by using them and vertical heat treating device
US9275846B2 (en) Light source device and filament
US11808955B2 (en) Plasmonic metal nitride and transparent conductive oxide nanostructures for plasmon assisted catalysis
JP2013134875A (ja) 白熱電球、および、フィラメント
KR20170132450A (ko) 전선 구조체 및 이의 제조 방법
WO2002103092A1 (fr) Dispositif permettant la production d&#39;un monocristal semi-conducteur et procede permettant de produire un monocristal semi-conducteur au moyen de ce dispositif
JPH06201915A (ja) 酸化タンタル−シリカ干渉フィルタおよびそれを用いたランプ
JP2005532697A (ja) 大口径SiCウェハおよびその製造方法
CN109075018A (zh) 热辐射光源
US6815645B2 (en) Heat reflecting material and heating device using the material
JP4144268B2 (ja) 縦型熱処理装置
TW201006017A (en) Alxga(1-x)as substrate, epitaxial wafer for infrared LED, infrared LED, method for production of alxga(1-x)as substrate, method for production of epitaxial wafer for infrared LED, and method for production of infrared LED
JP3783234B2 (ja) 温度測定システム、それを用いた加熱装置及びシリコン単結晶ウェーハの製造方法
JP2015050001A (ja) 近赤外ヒーター
CN112701197A (zh) 一种图形化复合衬底、制备方法及led外延片
CN104919094B (zh) 用于光伏器件或类似等的多晶硅厚膜及制备其的方法
US20220005766A1 (en) Composite heat insulation structure for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
TWI430327B (zh) 熱輻射發射器及其製法
JP6253313B2 (ja) フィラメント、および、それを用いた光源
JP5989442B2 (ja) 量子ドット粒子およびその製造方法、ならびに太陽電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003505398

Country of ref document: JP

122 Ep: pct application non-entry in european phase