WO2002102925A1 - Polymeric fluorescent material, process for producing the same, and polymeric luminescent element - Google Patents

Polymeric fluorescent material, process for producing the same, and polymeric luminescent element Download PDF

Info

Publication number
WO2002102925A1
WO2002102925A1 PCT/JP2001/005219 JP0105219W WO02102925A1 WO 2002102925 A1 WO2002102925 A1 WO 2002102925A1 JP 0105219 W JP0105219 W JP 0105219W WO 02102925 A1 WO02102925 A1 WO 02102925A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
layer
light emitting
light
Prior art date
Application number
PCT/JP2001/005219
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Doi
Takanobu Noguchi
Yoshiaki Tsubata
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000384951A priority Critical patent/JP4940493B2/en
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to DE10197249T priority patent/DE10197249T5/en
Priority to PCT/JP2001/005219 priority patent/WO2002102925A1/en
Priority to US10/480,996 priority patent/US7357990B2/en
Publication of WO2002102925A1 publication Critical patent/WO2002102925A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Definitions

  • the present invention relates to a method for producing a polymer phosphor and a polymer light-emitting device using the same (hereinafter, may be referred to as a polymer LED). '
  • An object of the present invention is to provide a polymer phosphor excellent in solubility, a method for producing the polymer phosphor, and a high-performance polymer LED that can be driven with low voltage and high efficiency by using the polymer phosphor. It is in.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, by contacting a specific polymer fluorescent substance with an alkali, the solubility of the polymer fluorescent substance in an organic solvent has been improved, and the polymer fluorescent substance has been improved. The present inventors have found that a high-performance polymer LED that can be driven at a low voltage and with high efficiency can be obtained by using a body, and have led to the present invention.
  • the present invention 1) having fluorescence in the solid state, the number average molecular weight in terms of polystyrene is 1 0 4 to 1 0 8, and alkali crude polymeric fluorescent substance containing a repeating unit represented by the following formula (1) one or more
  • the present invention relates to a method for producing a polymeric fluorescent substance, which includes a step of contacting the polymeric fluorescent substance.
  • a ri is an arylene group or a heterocyclic compound group, and is unsubstituted or has one or more substituents. Is also good.
  • 1 1 ⁇ Pi 1 2 each independently represent a hydrogen atom, an alkyl group, Ariru group, a group selected from the group consisting of heterocyclic compound group and Shiano group.
  • the aryl group and the heterocyclic compound group may further have a substituent.
  • n is 0 or 1.
  • the present invention relates to 2) a polymeric fluorescent substance that can be produced by the production method of 1) above.
  • the present invention also provides 3) a polymer light-emitting device having at least a light-emitting layer between a pair of anodes and cathodes, at least one of which is transparent or translucent, wherein the light-emitting layer is as described in 2) above.
  • the present invention relates to a polymer light emitting device including a molecular phosphor.
  • the present invention relates to 4) a planar light source using the polymer light-emitting device of the above 3).
  • the present invention relates to 5) a segment display device using the polymer light-emitting device of the above 3).
  • the present invention relates to 6) a dot matrix display device using the polymer light emitting device of the above 3).
  • the present invention relates to 7) a liquid crystal display device using the polymer light-emitting device according to 3) as a backlight.
  • the method for producing a polymeric fluorescent substance of the present invention has fluorescence in a solid state, a polystyrene equivalent number average molecular weight of 10 4 to 10 8 , and one type of a repeating unit represented by the following formula (1).
  • the method is characterized in that it includes a step of contacting the crude polymer fluorescent material containing the above with an aluminum alloy. -Ar!-(CR ⁇ CRs) n- (1)
  • the organic solvent that can be used in the production method of the present invention is not particularly limited as long as it can dissolve the crude polymer fluorescent substance. In order to perform the treatment, it is preferable that the solvent is sufficiently dissolved. Therefore, it is preferable that the solvent be a good solvent for the crude polymer fluorescent substance.
  • Examples of good solvents for the crude polymer fluorescent substance include chloroform-form, dichloromethane, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, tetralin, decalin, ⁇ -butylbenzene, dioxane and the like.
  • these solvents can usually be dissolved in an amount of 0.1% by weight or more.
  • the alkali used in the production method of the present invention sigma> 1 & value preferably der shall of 10 or more.
  • alkali examples include metal alkoxide, metal hydroxide, metal amide compound, metal hydride compound, ammonia, and amines.
  • the metal hydroxides include LiOH, NaOH, KOH and the like.
  • metal hydride compounds include Li H, NaH, KH and the like.
  • the amines include triethylamine, pyridine, 4-dimethylaminopyridine, diazabisic oral decane, and the like.
  • L i O (t_C 4 H 9 ), Na O (t-C 4 H 9 ), KO (t-C 4 H 9 ), L i N (t C 3 H 7) 2, Na N (i one C 3 H 7) 2, KN (i one C 3 H 7) 2, ammonia, Amin are preferred.
  • ammonia and triethylamine are more preferable in that the fluorescence intensity becomes stronger, and ammonia is particularly preferable because it has high volatility and hardly remains after the treatment. preferable.
  • the method for producing a polymeric fluorescent substance of the present invention includes a step of bringing the crude polymeric fluorescent substance into contact with an alkali. This step may be included twice or more. In the step of bringing the crude polymer fluorescent substance into contact with the alkali, the crude polymer fluorescent substance dissolved in an organic solvent is preferably brought into contact with an alkali in view of the contact efficiency.
  • Examples of the method of contacting with an alkali include: (a) a method in which an alkali is directly added to a solution in which a crude polymer fluorescent substance is dissolved; (b) a solution in which an alkali is dissolved in a solvent to dissolve a coarse polymeric fluorescent substance (C) a method in which a solution in which a crude polymer fluorescent substance is dissolved is added to a solution in which the polymer is dissolved, and (d) a method in which the crude polymer fluorescent substance is dissolved in a solvent in which the polymer is dissolved. And a method of dispersing the body.
  • the solvent for dissolving the alkali may be an organic solvent or water.
  • the solvent in which the solvent is dissolved may be a solvent that is uniformly mixed with the dissolved organic solvent, or may be a solvent that is not uniformly mixed.
  • the same organic solvent as that in which the crude polymer fluorescent material is dissolved is preferred.
  • the contact efficiency between the alkali and the polymeric fluorescent substance can be improved by stirring and shaking the solution as necessary.
  • the time for contact with the alkali is not particularly limited, but is usually 30 minutes or more and 20 hours or less, preferably 1 hour or more and 20 hours or less in order to obtain a sufficient solubility improving effect.
  • the temperature for contacting with anorecali is usually from 10 ° C. to 200 ° C., and preferably from room temperature to less than the boiling point of the solvent. Although it depends on the solvent used, it is practically more preferable that the temperature is 30 ° C. or more and 150 ° C. or less, and it is more preferable that the temperature is 50 ° C. or more and 100 ° C. or less. However, when using a highly volatile solvent such as ammonia, treatment at around room temperature is preferred.
  • the treatment it is preferable to seal in an inert atmosphere in order to suppress the deterioration of the polymer fluorescent substance, and it is preferable to shield the light so that light of a wavelength absorbed by the polymer fluorescent substance solution is not irradiated. .
  • the step of bringing the crude high molecular weight phosphor into contact with an alkali may be performed continuously without separating the step of synthesizing the coarse high molecular weight phosphor.
  • a crude polymer fluorescent substance that exists as a solution is not separated as a precipitate, And the like.
  • the production method of the present invention may include, as necessary, neutralization, washing, reprecipitation, drying, and other steps in addition to the step of bringing into contact with an alkali.
  • the step of contacting the polymer phosphor it is preferable to provide a step of removing the polymer phosphor from the polymer phosphor.
  • a neutralization treatment it is necessary to carry out a neutralization treatment and then to wash sufficiently, or to wash sufficiently using a solvent that can dissolve the alcohol well.
  • the alkali can also be removed by dissolving the polymeric fluorescent substance obtained by bringing it into contact with an alkali and reprecipitating it with a solvent and a poor solvent.
  • a solvent and a poor solvent In order to remove highly volatile alcohol such as ammonia, drying under reduced pressure or heating in an inert atmosphere may be used.
  • Polymeric fluorescent substance of the present invention are typically, a molecular weight of 10 4 to polystyrene standards
  • the total number of those repeating structures varies depending on the repeating structures, their ratio, and the processing method after combining.
  • the total number of the repeating structures is preferably from 20 to 10,000, more preferably from 30 to 10,000, and particularly preferably from 50 to 5,000, from the viewpoint of film formability.
  • the polymer fluorescent substance of the present invention When used as a light emitting material for a polymer LED, its purity affects the light emitting properties.Therefore, after polymerization or alkali treatment, purification treatment such as reprecipitation purification, separation by chromatographic method, etc. should be performed. Is preferred.
  • the crude polymer fluorescent substance has fluorescence in a solid state, has a number average molecular weight of 10 4 to 10 8 in terms of polystyrene, and contains at least one kind of the repeating unit represented by the above formula (1).
  • the total amount of the repeating units is not more than 100 Mo ⁇ ⁇ % 10 mole 0/0 or more of the total repeating units, in order to obtain a sufficient effect of contacting with the alkali is not less than 30 mol% to 100 mol 0/0 or less Is more preferable, and it is further preferable that it is 50 mol% or more and 100 mol% or less.
  • Ar i is an arylene group or a heterocyclic compound group.
  • the arylene group usually has 6 to 60 carbon atoms in the main chain
  • the heterocyclic compound group usually has 4 or more carbon atoms in the main chain. It consists of 60 or less.
  • "number of carbon atoms contained in the main chain portion" also Alpha gamma iota can have a substituent group, the number of carbon atoms of Alpha gamma iota is that no such include the number of carbon atoms of the substituent means.
  • Ar ;! may be selected so as not to impair the fluorescent properties of the polymeric fluorescent substance, and specific examples include the following divalent groups.
  • R is independently a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylsilyl group, an alkylamino group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an aryl group.
  • Alkenyl group It represents a group selected from the group consisting of a reelalkynyl group, an arylamino group, a heterocyclic compound group and a cyano group.
  • one structural formula has a plurality of Rs, but they may be the same or different groups, and each is independently selected.
  • Ar has a plurality of substituents, they may be the same or different.
  • the compound preferably has at least one substituent that is not a hydrogen atom, and preferably has low symmetry in the shape of the repeating unit including the substituent.
  • the alkyl group may be straight-chain, branched or cyclic, and usually has about 1 to 20 carbon atoms. Specifically, methyl, ethyl, propyl, i-propyl, butyl, i Monobutyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, lauryl, etc.
  • a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, a decyl group, and a 3,7-dimethinoleoctyl group are preferred.
  • the alkoxy group may be straight-chain, branched or cyclic, and usually has about 1 to 20 carbon atoms.
  • methoxy, ethoxy, propyloxy, i-propyloxy, butoxy, i-butoxy group, t-butoxy group pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, otatyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyl
  • the alkylthio group may be linear, branched or cyclic, and usually has about 1 to 20 carbon atoms. Specifically, methylthio, ethylthio, propylthio, i-propylthio, butylthio, i —Butylthio, t-butyl ⁇ thio, pentylthio, hexylthio, cyclohexylthio, heptylthio, otatinolethio, 2-ethylhexylthio, nonylthio, decylthio, 3,71 Dimethyl otatyl thio group, lauryl thio group, etc., pentyl thio group, Hexylthio, octylthio, 2-ethylhexylthio, decylthio, and 3,7-dimethylotatylthio are preferred.
  • the alkylsilyl group may be linear, branched or cyclic, and usually has about 1 to 60 carbon atoms. Specifically, methylsilyl group, ethylsilyl group, propylsilyl group, i- propylsilyl group, butylsilyl group , I-butylsilyl, t-butylsilyl, pentylsilyl, hexylsilyl, cyclohexylsilyl, heptylsilyl, octylsilyl, 2-ethylhexylsilyl, nonylsilyl, decylsilyl, 3,7- Dimethyloctylsilyl group, laurylsilinole group, trimethylsilyl group, ethyldimethylsilyl group, propyldimethylsilyl group, i-propyldimethylsilyl group, butyldimethylsilyl group,
  • the alkylamino group may be linear, branched or cyclic, may be a monoalkylamino group or a dialkylamino group, and usually has about 1 to 40 carbon atoms. Specifically, a methylamino group, a dimethylamino group, Ethylamino, acetylamino, propylamino, i-propylamino, butylamino, i-butylamino, t-butylamino, pentylamino, hexinoleamino, cyclohexylamino, heptylamino, octylamino, 21-ethyl Hexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, etc., pentylamino group, hexylamino group, octylamino group, 2-
  • Ariru group has a carbon number of usually 6-6 0 degree, specifically, phenyl group, c i ⁇ c i 2 alkoxy phenylalanine group (c i to c i 2 is the number 1 to 1 2 carbon atoms the same is true. below indicate that.), C i ⁇ C 1 2 alkylphenyl group, 1-naphthyl group, 2-naphthyl group and the like, Ji ⁇ ⁇ Ji 2 alkoxy phenylalanine groups, C i C i 2 alkylphenyl group are preferable.
  • Ariruokishi group has a carbon number of usually 6-6 0 degree, specifically, Fuweno alkoxy group, C i ⁇ C 2 alkoxy phenoxyethanol group, C i ⁇ C 1 2 alkylphenoxy groups, 1- Examples include a naphthyloxy group and a 2-naphthyloxy group;
  • a C 12 alkoxy phenoxy group and a C i C jL 2 alkyl phenoxy group are preferred.
  • ⁇ reel alkyl group has a carbon number of usually 7-6 0 degree, specifically, Hue sulfonyl one C ⁇ 1 2 alkyl group, C E ⁇ C ⁇ 2 ⁇ Honoré Koki Schiff enyl one C. 1 to C 1 2 alkyl group, C E ⁇ i 2 Arukirufue two Lou C ⁇ ! 2- alkyl group, 1-naphthyl-C 1 ⁇ 2 1 alkyl group, 2-naphthyl-C-!
  • Such as 2-alkyl group is represented example, C i ⁇ C 1 2 Arukokishifue two Lou C I ⁇ C 1 2 alkyl group, C! Le Shi preferred is ⁇ C 1 2 alkyl Fe two Lou C ⁇ C i 2 alkyl groups ,.
  • ⁇ reel alkoxy group has a carbon number of usually 7-6 0 degree, specifically, full Eniru C ⁇ Ji 1 2 alkoxy, C -C 2 alkoxy phenylalanine one C-C 1 2 alkoxy group, C to ⁇ i 2 alkylphenyl C to C 12 alkoxy group,
  • Ariruamino group has a carbon number of usually 6-6 0 C.
  • Heterocyclic compound group has a carbon number of usually 4-6 0 degree, specifically, thienyl group, C 1 ⁇ ] L 2 alkyl chain group, a pyrrolyl group, a furyl group, a pyridyl group, C! ⁇ CJ 2 such alkyl pyridyl group are exemplified, thienyl group, C ⁇ CJ 2 Al Kirucheniru group, a pyridyl group, a C ⁇ C i 2 alkyl pyridyl group are preferable.
  • R in the substituent containing an alkyl chain, they may be linear, branched, or cyclic, or a combination thereof.
  • the substituent is not linear, for example, isoamyl group, 2-ethyl Hexyl group, 3,7-dimethyloctyl group, hexyl hexyl group, 41. Examples thereof include 2- alkylcyclohexyl group and the like.
  • at least one of the substituents of Ari contains a cyclic or branched alkyl chain.
  • a plurality of Rs may be linked to form a ring.
  • R is a group containing an alkyl chain
  • the alkyl chain may be interrupted by a group containing a hetero atom.
  • the hetero atom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • the group containing a hetero atom include the following groups.
  • examples of R 3 include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 60 carbon atoms, and a heterocyclic compound group having 4 to 60 carbon atoms. Further, among the examples of R, when a aryl group / heterocyclic compound group is contained in a part thereof, they may further have one or more substituents.
  • n is 0 or 1.
  • R 2 represents a group independently selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a heterocyclic compound group and a cyano group.
  • R i and R 2 are substituents other than a hydrogen atom or a cyano group will be described.
  • the alkyl group may be straight-chain, branched or cyclic, and usually has about 1 to 20 carbon atoms. Specifically, methyl, ethyl, propyl, i-propyl, Butyl, i-butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl A pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, a decyl group, and a 3,7-dimethyloctyl group.
  • Ariru group has a carbon number of usually 6-6 0 degree, specifically, Fuyuniru group, C I ⁇ C ⁇ 2 alkoxy phenylalanine group, C ⁇ Ji 2 alkylphenyl group, 1 one naphthyl group, Examples thereof include a 2-naphthyl group and the like, with preference given to C 1 -C 2 i-alkoxyphenyl groups and C i -C 2 -alkylphenyl groups.
  • the heterocyclic compound group usually has about 4 to 60 carbon atoms, and specifically includes a phenyl group.
  • ⁇ Ji 2 alkyl chain group, a pyrrolyl group, a furyl group, a pyridyl group, c. 1 to C 1 2 alkyl pyridyl group are exemplified, thienyl group, C I ⁇ C 2 Al Kirucheniru group, a pyridyl group, C ⁇ C i Two alkylpyridyl groups are preferred.
  • the terminal group of the crude polymer fluorescent substance may be protected with a stable group, since if the polymerization active group remains as it is, the light-emitting characteristics and life of the element may be reduced.
  • Those having a conjugate bond continuous with the conjugate structure of the main chain are preferable, and examples thereof include a structure bonded to an aryl group or a heterocyclic compound group via a vinylene group. Specific examples thereof include the substituents described in Chemical Formula 10 of JP-A-9-145478.
  • the polymeric fluorescent substance obtained by the production method of the present invention also has substantially the same repeating units as the crude polymeric fluorescent substance used in the production.
  • a method for synthesizing the crude polymer fluorescent substance when a main chain has a vinylene group, for example, a method described in Japanese Patent Application Laid-Open No. H5-220355 may be mentioned. That is, polymerization of a dialdehyde compound and a diphosphonium salt compound by a Wittig reaction, polymerization of a divinyl compound and a dihalogen compound or Heck reaction of a vinylamine compound alone, and polymerization of a dialdehyde compound and a diphosphorous acid.
  • a method of polymerizing the corresponding monomer by a Suzuki coupling reaction for example, a method of polymerizing by a Grignard reaction, a method of polymerizing by a Ni (0) catalyst, Fe method of polymerizing Ri by the oxidizing agent, such as C l 3, electrochemically methods oxidative polymerization, a method by decomposition of an intermediate polymer that have a suitable leaving group can be exemplified.
  • the polymer fluorescent substance of the present invention When the polymer fluorescent substance of the present invention is used as a light emitting material for a polymer LED, its purity affects the emission characteristics. Therefore, the monomer before polymerization of the crude polymer fluorescent substance is distilled, sublimated, purified and recrystallized. It is preferable to polymerize after purifying by such a method.
  • the crude polymer fluorescent material has a formula within a range that does not impair the fluorescence characteristics and the charge transport characteristics.
  • a repeating unit other than the repeating unit represented by (1) may be included. Further, the repeating unit represented by the formula (1) and other repeating units may be connected by a non-conjugated portion, or the repeating unit may include the non-conjugated portion.
  • Examples of the bonding structure containing the non-conjugated moiety include the following, a combination of the following and a vinylene group, and a combination of two or more of the following.
  • R is a group selected from the same substituents as described above, and Ar represents a hydrocarbon group having 6 to 60 carbon atoms.
  • the crude polymer fluorescent substance may be a random, block or graft copolymer, or a polymer having an intermediate structure between them, for example, a random copolymer having a block property.
  • a random copolymer-block or graft copolymer having a block property is preferable to a complete random copolymer. If the main chain is branched and has three or more terminal groups, ⁇ dendrimers are also included.
  • a crude polymer fluorescent material having fluorescence in a solid state is preferably used.
  • good solvents for the crude polymer fluorescent substance include chloroform form, methylene chloride, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, decalin, n-butylbenzene, dioxane and the like. Although it depends on the structure and molecular weight of the polymeric fluorescent substance, usually, it is possible to dissolve it in these solvents in an amount of 0.1% by weight or more.
  • the structure of the polymer LED of the present invention has a light emitting layer between a pair of anodes and cathodes, at least one of which is transparent or translucent.
  • a molecular phosphor is included in the light emitting layer.
  • the polymer LED of the present invention includes a polymer LED having an electron transport layer between a cathode and a light-emitting layer, a polymer LED having a hole transport layer between an anode and a light-emitting layer, and a cathode.
  • Polymer LED in which an electron transporting layer is provided between the light emitting layer and the anode, and a hole transporting layer is provided between the anode and the light emitting layer.
  • the light emitting layer is a layer having a function of emitting light
  • the hole transport layer is A layer having a function of transporting electrons.
  • An electron transporting layer has a function of transporting electrons.
  • Layer Note that the electron transport layer and the hole transport layer are collectively called a charge transport layer. Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.
  • the charge transport layers provided adjacent to the electrodes those having the function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the device are particularly suitable for the charge injection layer (hole injection layer).
  • the above-described charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode in order to improve adhesion to the electrode and improve charge injection from the electrode.
  • a thin buffer layer may be inserted at the interface between the charge transport layer and the light-emitting layer for the purpose of improvement and prevention of mixing.
  • the order and number of layers to be stacked and the thickness of each layer can be appropriately used in consideration of luminous efficiency and device life.
  • the polymer LED provided with a charge injection layer includes a polymer LED provided with a charge injection layer adjacent to a cathode, and a charge injection layer adjacent to an anode.
  • Polymer LED provided.
  • the charge injection layer include a layer containing a conductive polymer, an anode and a hole transport layer. Between the anode material and the hole transport material contained in the hole transport layer. A layer containing a material having an ionization potential of, and a layer provided between the cathode and the electron transport layer and containing a material having an electron affinity of an intermediate value between the P pole material and the electron transport material contained in the electron transport layer And the like.
  • the conductive polymer When the charge injection layer is a layer containing a conductive polymer, the conductive polymer preferably has an electric conductivity of 10 to 5 SZcm or more and 10 3 S / cm or less. 10 0 to make it smaller. S / cm or more 10 2 SZcm hereinafter more preferably, 10- 5 SZcm or more and 10 1 S / cm or less is more preferred. Normally in order to electrically conductivity 10- 5 S / cm or more 10 3 S / cm or less under the conducting polymer, a suitable amount of ions are doped into the conducting polymer.
  • the kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer.
  • anions include polystyrenesulfonate, alkylbenzenesulfonate, camphorsulfonate, and the like.
  • cations include lithium, sodium, potassium, and tetrabutylammonium. And the like.
  • the thickness of the charge injection layer is, for example, 1 nm to 100 nm, and preferably 2 nm to 50 nm.
  • the material used for the charge injection layer may be appropriately selected in relation to the material of the electrode and the adjacent layer.
  • the insulating layer having a thickness of 2 nm or less has a function of facilitating charge injection.
  • Examples of the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • S Polymer LEDs with an insulation layer of 2 nm or less in thickness include polymer LEDs with an insulation layer of 2 nm or less adjacent to the cathode, and insulation of 2 nm or less adjacent to the anode. A polymer LED having a layer is exemplified.
  • the optimum value of the thickness of the light emitting layer differs depending on the material used, and may be selected so that the driving voltage and the light emitting efficiency have appropriate values.
  • the thickness is 1 nm to 1 ⁇ m, and preferably 2 ⁇ ⁇ ! 5500 nm, more preferably 5 nm n200 nm.
  • a light-emitting material other than the above-described polymer fluorescent substance obtained by the production method of the present invention may be mixed and used in the light-emitting layer.
  • the invention of the present application In the molecular LED, a light emitting layer containing a light emitting material other than the polymer fluorescent substance may be laminated with the light emitting layer containing the polymer fluorescent substance.
  • the light emitting material known materials can be used.
  • low molecular compounds include naphthalene derivatives, anthracene or derivatives thereof, perylene or derivatives thereof, polymethine-based, xanthene-based, coumarin-based, and cyanine-based dyes, metal complexes of 8-hydroxyquinoline or derivatives thereof, and aromatics.
  • amine, tetraphenylcyclopentadiene or a derivative thereof, or tetraphenylbutadiene or a derivative thereof can be used.
  • JP-A-57-51781 and JP-A-59-194393 can be used.
  • the hole transport material used includes polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and an aromatic amine in a side chain or a main chain.
  • JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-209988 examples thereof include those described in JP-A-3-37992 and JP-A-3-152184.
  • a hole transporting material used for the hole transporting layer polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, or a polyaniline.
  • a high molecular weight hole transporting material such as phosphorus or a derivative thereof, polythiophene or a derivative thereof, poly (p-phenylenevinylene) or a derivative thereof, or poly (2,5-chenylenevinylene) or a derivative thereof is preferable. More preferably, polybulcarpazole or its derivative, polysilane or its derivative, side chain or main chain A polysiloxane derivative having an aromatic amine in the chain. In the case of a low molecular weight hole transporting material, it is preferable to use it by dispersing it in a high molecular binder.
  • Polyvinylcarbazole or a derivative thereof can be obtained, for example, from a Bier monomer by force polymerization or radical polymerization.
  • siloxane skeleton structure has little hole-transport property
  • those having the structure of the above-described low-molecular-weight hole-transport material in a side chain or a main chain are preferably used as the polysiloxane or a derivative thereof.
  • those having an aromatic amine having a hole transporting property in a side chain or a main chain are exemplified.
  • the method of forming the hole transport layer There is no limitation on the method of forming the hole transport layer.
  • a method of forming a film from a mixed solution with a polymer binder is exemplified.
  • a method of forming a film from a solution is exemplified.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the hole transport material.
  • the solvent include chlorinated solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone.
  • the solvent include ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate.
  • Solution coating methods include spin coating, casting, microgravure coating, gravure coating, percoating, roll coating, wire bar coating, dip coating, spray coating, and screen coating from solution.
  • Coating methods such as a printing method, a flexographic printing method, an offset printing method, and an ink jet printing method can be used.
  • polymer binder to be mixed those which do not extremely inhibit charge transport are preferable, and those which do not strongly absorb visible light are preferably used.
  • the polymer binder include polycarbonate, polyatarylate, and polymethyl atalay. , Polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane, and the like.
  • the optimal value of the thickness of the hole transport layer depends on the material used, and may be selected so that the driving voltage and the luminous efficiency are at appropriate values, but at least a thickness that does not cause pinholes is necessary. If the thickness is too large, the driving voltage of the device becomes high, which is not preferable. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 im, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • any known electron transporting material can be used, such as oxadiazole derivative, anthraquinodimethane or its derivative, benzoquinone or its derivative, naphthoquinone or its derivative.
  • Derivative, anthraquinone or its derivative, tetracyanoanthraquinodimethane or its derivative, fluorenone derivative, diphenyldicyanoethylene or its derivative, diphenoquinone derivative, or metal complex of 8-hydroxyquinoline or its derivative, polyquinoline or Derivatives thereof, polyquinoxaline or a derivative thereof, polyfluorene or a derivative thereof and the like are exemplified.
  • oxadiazole derivatives benzoquinone or its derivatives, anthraquinone or its derivatives, or metal complexes of 8-hydroxyquinoline or its derivatives, polyquinoline or its derivatives, polyquinoxaline or its derivatives, and polyfluorene or its derivatives are preferred.
  • 2- (4-biphenylyl) -5- (4-t-butylphenyl) 1,1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolino-mono) aluminum, and polyquinoline are more preferred.
  • the film formation method of the electron transport layer There is no particular limitation on the film formation method of the electron transport layer.
  • a vacuum deposition method from powder or a film formation method from a solution or a molten state is used.
  • the electron transport material a method by film formation from a solution or a molten state is exemplified.
  • a polymer binder may be used in combination.
  • the solvent used for film formation from a solution is not particularly limited as long as it can dissolve the electron transport material and / or the polymer binder.
  • the solvent examples include chlorinated solvents such as chlorophonolem, dimethyl chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, and acetic acid.
  • chlorinated solvents such as chlorophonolem, dimethyl chloride and dichloroethane
  • ether solvents such as tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as acetone and methyl ethyl ketone
  • ethyl acetate examples of the solvent
  • Ester solvents such as butyl and ethyl cellosolve acetate are exemplified.
  • An application method such as an ink-jet printing method, a flexographic printing method, an offset printing method, and an ink-jet printing method can be used.
  • polymer binder to be mixed, those which do not extremely inhibit charge transport are preferable, and those which do not strongly absorb visible light are preferably used.
  • Poly ( ⁇ ⁇ ⁇ -vinylcarbazole) is used as the polymer binder.
  • the thickness of the electron transporting layer depends on the material used, and may be selected so that the driving voltage and the luminous efficiency are appropriate. However, at least a thickness that does not cause pinholes is necessary. Yes, too thick is not desirable because the driving voltage of the device is high. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 im, preferably 2 nm to 500 nm, and more preferably 5 ⁇ ! ⁇ 200 nm.
  • the substrate on which the polymer LED of the present invention is formed may be any substrate as long as it does not change when an electrode is formed and an organic layer is formed.
  • the substrate on which the polymer LED of the present invention is formed may be any substrate as long as it does not change when an electrode is formed and an organic layer is formed.
  • glass, plastic, polymer And a silicon substrate In the case of an opaque substrate, the opposite electrode is preferably transparent or translucent.
  • the anode side is preferably transparent or translucent.
  • a conductive metal oxide film, a translucent metal thin film, or the like is used as the material of the anode. Specifically, it is made using conductive glass consisting of indium oxide, zinc oxide, tin oxide, and their composites, such as indium tin oxide (ITO), aluminum oxide, oxide, and oxide. Films (eg, NESA), gold, platinum, silver, copper, etc., are used, and ITO, indium oxide, zinc oxide, and tin oxide are preferred. Examples of the manufacturing method include a vacuum evaporation method, a sputtering method, an ion plating method, and a plating method.
  • An organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • the thickness of the anode can be appropriately selected in consideration of light transmittance and electric conductivity, and is, for example, from 10 nm to 10 ⁇ , preferably from 20 nm to 1 ⁇ m. And more preferably 50 nm to 500 nm.
  • a layer made of a phthalocyanine derivative, a conductive polymer, carbon, or the like, or an average film thickness made of a metal oxide, a metal fluoride, an organic insulating material, or the like is formed on the anode. Even if a layer of nm or less is provided.
  • a material having a small work function is preferable.
  • metals such as lithium, sodium, potassium, norebium, cesium, beryllium, magnesium, calcium, strontium, barium, anorenium, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, etc. ⁇ Alloys of two or more of them, or one or more of them, and one or more of gold, silver, platinum, copper, manganese, titanium, copanoleto, nickele, tungsten, and tin, graphs Aite or a graphite interlayer compound is used.
  • the cathode may have a laminated structure of two or more layers.
  • the thickness of the cathode can be appropriately selected in consideration of electric conductivity and durability, for example, 10 11 111 to 10 ⁇ , preferably 2 O nm to l / im, More preferably, it is 50 nm to 500 nm.
  • a vacuum evaporation method, a sputtering method, a lamination method of thermocompression bonding of a metal thin film, and the like are used as a method for producing the cathode.
  • a layer made of a conductive polymer or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like having an average thickness of 2 nm or less may be provided between the cathode and the organic material layer.
  • a protective layer for protecting the polymer LED may be attached. In order to use the polymer LED stably for a long period of time, it is preferable to attach a protective layer and Z or a protective cover to protect the element from the outside.
  • a polymer compound, a metal oxide, a metal fluoride, a metal boride and the like can be used.
  • a glass plate, a plastic plate whose surface has been subjected to a low water permeability treatment, or the like can be used, and the cover is bonded to the element substrate with a heat effect resin or a photocurable resin to seal the cover. Is preferably used. If the space is maintained using a spacer, it is easy to prevent the element from being damaged. By enclosing an inert gas such as nitrogen or argon in the space, it is possible to prevent oxidation of the cathode, and by installing a desiccant such as an oxidation slurry in the space. It becomes easy to suppress the moisture adsorbed in the manufacturing process from damaging the element. It is preferable to take one or more of these measures.
  • a planar anode and a planar cathode may be arranged so as to overlap.
  • a method in which a mask having a patterned window provided on the surface of the planar light emitting element is provided.
  • There is a method of emitting light a method of forming one or both of an anode and a cathode in a pattern.
  • both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other.
  • a method of applying different types of polymer phosphors with different emission colors, a color filter Depending on the method using one or a fluorescence conversion filter, partial color display and multi-color display can be realized.
  • the dot matrix element can be driven passively or may be driven actively in combination with a TFT or the like.
  • These display elements can be used as display devices for computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
  • planar light emitting element is a self-luminous thin type, and can be suitably used as a planar light source for packing in a liquid crystal display device or a planar illumination light source. Also, if a flexible substrate is used, it can be used as a curved light source or display device.
  • the number average molecular weight was determined by gel permeation chromatography (GPC) using the form of solvent as a solvent, and the number average molecular weight in terms of polystyrene was determined.
  • this polymer is dissolved in tetrahydrofuran, and this is poured into methanol. And purified by reprecipitation. After washing the precipitate with methanol, 50. It was dried under reduced pressure at C for 8 hours to obtain 4.41 g of a polymer.
  • the mixture was cooled to 50 ° C. and neutralized by adding a mixed solution of 1.1 g / l of acetic acid and 1.1 g of 4-dioxane. After allowing to cool to room temperature, the reaction solution was poured into stirred ion-exchanged water. Next, the deposited precipitate was separated by filtration and washed with methanol. This was dried under reduced pressure at 50 ° C for 4 hours to obtain 0.888 g of a polymer.
  • polymeric fluorescent substance 1 This was dissolved in tetrahydrofuran, poured into methanol, and purified by reprecipitation. The precipitate was washed with methanol and dried under reduced pressure at 50 ° C for 5.5 hours to obtain 85 g of a polymer. This polymer is referred to as polymeric fluorescent substance 1.
  • the 0.4% toluene solution of polymeric fluorescent substance 1 became a homogeneous solution when heated, and did not become entrapped even at room temperature.
  • polymer fluorescent substance 2 the crude polymer fluorescent substance before the initial processing is referred to as polymer fluorescent substance 2.
  • the number average molecular weight in terms of polystyrene of the polymeric fluorescent substance 2 is 4.3 X 1
  • a glass substrate on which an IT ⁇ film with a thickness of 150 nm was applied by sputtering was spin-coated with a solution of poly (ethylenedioxythiophene) / polystyrene sulfonic acid (Baytron, Baytron) by spin coating. Deposited to a thickness of nm and 120 on a hot plate. Dry at C for 5 minutes. Next, a film having a thickness of 100 nm was formed by spin coating using a polymer solution of 0.4 wt% of a polymeric fluorescent substance 1 in a pore form.
  • 9,9-dioctylfluorene-1,2,7-bis (ethylenpolonate) (900 mg, 1.641 mmo 1)
  • 2,7-dibromo-1,9,9-dioctylfluorene 914 mg, 1.723 mm o 1)
  • a 1 iquat 336 66 O mg
  • tetrakis (triphenylphosphine) palladium (57 mg, 0.0492 mmo 1) was added, and the mixture was heated under reflux for 20 hours. After allowing to cool, liquid separation was performed, and the organic layer was washed with water. The organic layer was dropped into methanol (300 ml), and the deposited precipitate was separated by filtration. The polymer was purified by silica gel chromatography (toluene) to obtain a polymer. The yield was 863 mg. The polystyrene-equivalent number average molecular weight of the polymer was 1.3 ⁇ 10 4 .
  • polymeric fluorescent substance 3 was soluble in solvents such as toluene and black-mouthed form.
  • a 0.4% chloroform solution of polymeric fluorescent substance 3 was spin-coated on a quartz plate to form a thin film of polymeric fluorescent substance 3.
  • the ultraviolet-visible absorption spectrum and the fluorescence spectrum of this thin film were measured using an ultraviolet-visible absorption spectrophotometer (Hitachi Ltd. UV3500) and a fluorescence spectrophotometer (Hitachi Ltd. 850), respectively.
  • the fluorescence spectrum when excited at 350 nm was used to calculate the fluorescence intensity.
  • the relative value of the fluorescence intensity was obtained by dividing the area of the fluorescence spectrum plotted with the wave number on the horizontal axis by the absorbance at 350 nm.
  • the fluorescent peak wavelength of polymeric fluorescent substance 3 was 428 ⁇ , and the relative value of the fluorescent intensity was 3.1.
  • the crude polymer fluorescent material before the initial processing is referred to as a polymer fluorescent material 4.
  • a polymeric fluorescent substance 4 the UV-visible absorption peak and the fluorescent spectrum were measured in the same manner as in Example 3, and the relative value of the fluorescent intensity was obtained.
  • the fluorescent peak wavelength of polymeric fluorescent substance 4 was 426 nm, and the relative value of the fluorescent intensity was 0.26.
  • the polymeric fluorescent substance obtained by the production method of the present invention has excellent solubility in an organic solvent and can be suitably used as a polymeric LED or a dye for laser.
  • the polymer LED using the polymer phosphor obtained by the manufacturing method has low voltage and high luminous efficiency. Therefore, the polymer LED has a curved or planar light source as a backlight, a segment type display element, and a dot matrix flat panel.
  • 'It can be used preferably for devices such as Ray.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Liquid Crystal (AREA)

Abstract

A process for producing a polymeric fluorescent material characterized by comprising a step in which a crude polymeric fluorescent material which fluoresces in a solid state, has a number-average molecular weight of 104 to 108 in terms of polystyrene, and comprises one or more kinds of repeating units represented by the following formula (1) is brought into contact with an alkali: -Ar1-(CR1=CR2)n- (1) (wherein Ar1 represents an arylene or heterocyclic compound group which optionally has one or more substituents; R1 and R2 each independently represents hydrogen or a group selected from the group consisting of alkyl, aryl, heterocyclic compound, and cyano groups, provided that the aryl and heterocyclic compound groups may be optionally substituted; and n is 0 or 1).

Description

明 細 書 高分子蛍光体、 その製造方法及び高分子発光素子 技術分野  Description Polymer fluorescent substance, manufacturing method thereof and polymer light emitting device
本発明は、 高分子蛍光体の製造方法及びそれを用いた高分子発光素子 (以下、 高分子 LEDということがある。 ) に関する。'  The present invention relates to a method for producing a polymer phosphor and a polymer light-emitting device using the same (hereinafter, may be referred to as a polymer LED). '
背景技術 Background art
高分子量の発光材料 (高分子蛍光体) は低分子量のそれとは異なり、 溶媒に可 溶で塗布法により発光素子における発光層を形成できることから、 種々検討され ている。 例えば、 ポリ (p—フエ二レンビニレン) (以下、 PPVとレヽうことが ある) (WO 901 3148号公開明細書、 特開平 3— 244630号公報、 了 プライド 'フィジックス 'レターズ (Ap p l . P h y s . Le t t. 第 58卷、 1 982頁 (1 991年) など) 、 ポリフルオレン (ジャパニーズ ·ジャーナノレ ·ォブ ·アプライド 'フィジックス ( J p n. J. Ap 1. Phy s. ) 第 3 0卷、 L 1 941頁 (1991年) ) 、 ポリパラフエ二レン誘導体 (アドバンス ト ·マテリアルズ (Ad v. Ma t e r. ) 第 4卷、 36頁 (1992年) ) な どが開示されている。  Unlike high-molecular-weight luminescent materials (polymer fluorescent materials), which are soluble in solvents and can form light-emitting layers in light-emitting elements by a coating method, various studies have been made on them. For example, poly (p-phenylene vinylene) (hereinafter sometimes referred to as PPV) (WO 901 3148 published specification, JP-A-3-244630, Ryo Pride 'Physics' Letters (Ap pl. Physs) Lett. Vol. 58, pp. 1 982 (1991), etc., Polyfluorene (Japanese / Giannano / Love / Applied / Physics) (Jpn. J. Ap 1. Phy s.) No. 30 Vol., L1941 (1991)) and polyparaphenylene derivatives (Advanced Materials (Ad v. Mater.) Vol. 4, page 36 (1992)).
溶媒に可溶で塗布法により発光層を形成できるという高分子蛍光体の特徴を活 かすため、 さらに溶解性に優れた高分子蛍光体が求められていた。  In order to take advantage of the characteristics of a polymer fluorescent substance that is soluble in a solvent and can form a light-emitting layer by a coating method, a polymer fluorescent substance having even higher solubility has been demanded.
発明の開示 Disclosure of the invention
本発明の目的は、 溶解性に優れた高分子蛍光体、 その製造方法及ぴ該高分子蛍 光体を用いて、 低電圧、 高効率で駆動できる高性能の高分子 LEDを提供するこ とにある。  An object of the present invention is to provide a polymer phosphor excellent in solubility, a method for producing the polymer phosphor, and a high-performance polymer LED that can be driven with low voltage and high efficiency by using the polymer phosphor. It is in.
本発明者等は、 上記課題を解決するため鋭意検討した結果、 特定の高分子蛍光 体をアルカリと接触させることで、 高分子蛍光体の有機溶媒に対する溶解性が改 善され、 該高分子蛍光体を用いることにより、 低電圧、 高効率で駆動できる高性 能の高分子 LEDが得られることを見出し、 本発明に至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, by contacting a specific polymer fluorescent substance with an alkali, the solubility of the polymer fluorescent substance in an organic solvent has been improved, and the polymer fluorescent substance has been improved. The present inventors have found that a high-performance polymer LED that can be driven at a low voltage and with high efficiency can be obtained by using a body, and have led to the present invention.
すなわち本発明は、 1) 固体状態で蛍光を有し、 ポリスチレン換算の数平均分子量が 1 04〜1 08 であり、 下記式 (1) で示される繰り返し単位を 1種類以上含む粗高分子蛍光体 をアルカリと接触させる工程を含む高分子蛍光体の製造方法に係るものである。 That is, the present invention 1) having fluorescence in the solid state, the number average molecular weight in terms of polystyrene is 1 0 4 to 1 0 8, and alkali crude polymeric fluorescent substance containing a repeating unit represented by the following formula (1) one or more The present invention relates to a method for producing a polymeric fluorescent substance, which includes a step of contacting the polymeric fluorescent substance.
-Ar !- (CR1=CR2) n— (1) ここで、 A r iは、 ァリ一レン基又は複素環化合物基であり、 無置換又は 1つ 以上の置換基を有していてもよい。 1 1及ぴ1 2は、 それぞれ独立に水素原子、 アルキル基、 ァリール基、 複素環化合物基及びシァノ基からなる群から選ばれる 基を示す。 ァリール基及ぴ複素環化合物基は、 さらに置換基を有していてもよい。 nは 0又は 1である。 -Ar!-(CR 1 = CR 2 ) n — (1) where A ri is an arylene group or a heterocyclic compound group, and is unsubstituted or has one or more substituents. Is also good. 1 1及Pi 1 2 each independently represent a hydrogen atom, an alkyl group, Ariru group, a group selected from the group consisting of heterocyclic compound group and Shiano group. The aryl group and the heterocyclic compound group may further have a substituent. n is 0 or 1.
また、 本発明は、 2) 上記 1) の製造方法で製造され得る高分子蛍光体に係る ものである。  Further, the present invention relates to 2) a polymeric fluorescent substance that can be produced by the production method of 1) above.
また、 本発明は、 3) 少なくとも一方が透明又は半透明である一対の陽極及び 陰極からなる電極間に、 少なくとも発光層を有する高分子発光素子であって、 該 発光層が上記 2) の高分子蛍光体を含む高分子発光素子に係るものである。  The present invention also provides 3) a polymer light-emitting device having at least a light-emitting layer between a pair of anodes and cathodes, at least one of which is transparent or translucent, wherein the light-emitting layer is as described in 2) above. The present invention relates to a polymer light emitting device including a molecular phosphor.
さらに本発明は、 4) 上記 3) の高分子発光素子を用いた面状光源に係るもの である。 次いで本発明は、 5) 上記 3) の高分子発光素子を用いたセグメント 表示装置に係るものである。 次に本発明は、 6) 上記 3) の高分子発光素子を用 いたドットマトリックス表示装置に係るものである。 さらに本発明は、 7) 前記 3) の高分子発光素子をバックライトとする液晶表示装置に係るものである。 発明を実施するための最良の形態  Furthermore, the present invention relates to 4) a planar light source using the polymer light-emitting device of the above 3). Next, the present invention relates to 5) a segment display device using the polymer light-emitting device of the above 3). Next, the present invention relates to 6) a dot matrix display device using the polymer light emitting device of the above 3). Further, the present invention relates to 7) a liquid crystal display device using the polymer light-emitting device according to 3) as a backlight. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の高分子蛍光体の製造方法及ぴそれを用いた高分子 L EDについ て詳細に説明する。  Hereinafter, the method for producing the polymer phosphor of the present invention and the polymer LED using the same will be described in detail.
本発明の高分子蛍光体の製造方法は、 固体状態で蛍光を有し、 ポリスチレン換 算の数平均分子量が 104〜108であり、 下記式 (1) で示される繰り返し単 位を 1種類以上含む粗高分子蛍光体をアル力リと接触させる工程を含むことを特 徵とする。 -Ar !- (CR^CRs) n - (1) 本発明の製造方法において用い得る有機溶媒としては、 粗高分子蛍光体を溶解 できるものであれば特に限定されないが、 均一にァ 力リで処理するためには、 十分に溶解していることが好ましいので、 粗高分子蛍光体に対する良溶媒である ことが好ましい。 The method for producing a polymeric fluorescent substance of the present invention has fluorescence in a solid state, a polystyrene equivalent number average molecular weight of 10 4 to 10 8 , and one type of a repeating unit represented by the following formula (1). The method is characterized in that it includes a step of contacting the crude polymer fluorescent material containing the above with an aluminum alloy. -Ar!-(CR ^ CRs) n- (1) The organic solvent that can be used in the production method of the present invention is not particularly limited as long as it can dissolve the crude polymer fluorescent substance. In order to perform the treatment, it is preferable that the solvent is sufficiently dissolved. Therefore, it is preferable that the solvent be a good solvent for the crude polymer fluorescent substance.
粗高分子蛍光体に対する良溶媒としては、 クロ口ホルム、 塩ィヒメチレン、 ジク ロロェタン、 テトラヒ ドロフラン、 トルエン、 キシレン、 メシチレン、 テトラリ ン、 デカリン、 η—ブチルベンゼン、 ジォキサンなどが例示される。 粗高分子蛍 光体の構造や分子量にもよるが、 通常はこれらの溶媒に 0. 1重量%以上溶角 さ せることができる。  Examples of good solvents for the crude polymer fluorescent substance include chloroform-form, dichloromethane, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, tetralin, decalin, η-butylbenzene, dioxane and the like. Depending on the structure and molecular weight of the crude polymer phosphor, these solvents can usually be dissolved in an amount of 0.1% by weight or more.
本発明の製造方法で用いるアルカリとしては、 >1 &値が10以上のものであ るものが好ましい。 The alkali used in the production method of the present invention, sigma> 1 & value preferably der shall of 10 or more.
アルカリとしては、 金属アルコキシド、 金属水酸化物、 金属アミド化合物、 金 属ハイドライド化合物、 アンモニア、 ァミン類が挙げられる。  Examples of the alkali include metal alkoxide, metal hydroxide, metal amide compound, metal hydride compound, ammonia, and amines.
金属アルコキシドとしては、 L i OCH3、 Na OCH3、 KOCH3、 L i 〇C2H5、 Na OC2H5、 KOC2H5、 L i O ( t -C4H9) 、 N a O (t -C4H9) 、 KO (t -C4H9) などが挙げられ、 金属水酸化物として は、 L i OH、 NaOH、 KOHなどが挙げられる。 また、 金属アミド化合物と しては、 L i NH2、 NaNH2、 KNH2、 L i N (i— C3H7) 2、 N a N (i— C3H7) 2、 KN ( i一 C 3H7) 2などが挙げられ、 金属ハイドライド 化合物としては、 L i H、 NaH、 KHなどが挙げられる。 アミン類としては、 トリェチルァミン、 ピリジン、 4 _ジメチルァミノピリジン、 ジァザビシク口ゥ ンデカンなどが拳げられる。 As the metal alkoxide, L i OCH 3, Na OCH 3, KOCH 3, L i 〇_C 2 H 5, Na OC 2 H 5, KOC 2 H 5, L i O (t -C 4 H 9), N a O (t-C 4 H 9 ), KO (t-C 4 H 9 ) and the like, and the metal hydroxides include LiOH, NaOH, KOH and the like. Further, as a metal amide compound, L i NH 2, NaNH 2 , KNH 2, L i N (i- C 3 H 7) 2, N a N (i- C 3 H 7) 2, KN (i C 3 H 7 ) 2 and the like; and metal hydride compounds include Li H, NaH, KH and the like. Examples of the amines include triethylamine, pyridine, 4-dimethylaminopyridine, diazabisic oral decane, and the like.
中でも、 有機溶媒への溶解性の点で、 L i O (t _C4H9) 、 Na O (t - C4H9) 、 KO (t一 C4H9) 、 L i N (卜 C3H7) 2、 Na N ( i一 C3H7) 2、 KN (i一 C3H7) 2、 アンモニア、 ァミン類が好ましい。 Among them, in terms of solubility in organic solvents, L i O (t_C 4 H 9 ), Na O (t-C 4 H 9 ), KO (t-C 4 H 9 ), L i N (t C 3 H 7) 2, Na N (i one C 3 H 7) 2, KN (i one C 3 H 7) 2, ammonia, Amin are preferred.
さらに、 蛍光強度がより強くなるという点で、 アンモニア、 トリェチルァミン がより好ましく、 揮発性が高く、 処理後に残存しにくい点で、 アンモニアが特に 好ましい。 Further, ammonia and triethylamine are more preferable in that the fluorescence intensity becomes stronger, and ammonia is particularly preferable because it has high volatility and hardly remains after the treatment. preferable.
本発明の高分子蛍光体の製造方法は、 粗高分子蛍光体をアルカリと接触させる 工程を含む。 この工程は、 二回以上含まれていてもよい。 粗高分子蛍光体をアル カリと接触させる工程においては、 粗高分子蛍光体を有機溶媒に溶解させた状態 で、 アルカリと接触させること力 接触効率の点で好ましい。  The method for producing a polymeric fluorescent substance of the present invention includes a step of bringing the crude polymeric fluorescent substance into contact with an alkali. This step may be included twice or more. In the step of bringing the crude polymer fluorescent substance into contact with the alkali, the crude polymer fluorescent substance dissolved in an organic solvent is preferably brought into contact with an alkali in view of the contact efficiency.
アルカリと接触させる方法としては、 (a ) アルカリをそのまま粗高分子蛍光 体を溶解させた溶液に添加する方法; (b ) アルカリを溶媒に溶解させて粗高分 子蛍光体を溶解させた溶液に添加する方法; ( c ) アル力リを溶解させた溶液に、 粗高分子蛍光体を溶解させた溶液を添加する方法、 ( d ) アル力リを溶解させた 溶媒に、 粗高分子蛍光体を分散させる方法などが挙げられる。  Examples of the method of contacting with an alkali include: (a) a method in which an alkali is directly added to a solution in which a crude polymer fluorescent substance is dissolved; (b) a solution in which an alkali is dissolved in a solvent to dissolve a coarse polymeric fluorescent substance (C) a method in which a solution in which a crude polymer fluorescent substance is dissolved is added to a solution in which the polymer is dissolved, and (d) a method in which the crude polymer fluorescent substance is dissolved in a solvent in which the polymer is dissolved. And a method of dispersing the body.
方法 (b ) 及び (c ) においてアルカリを溶解させる溶媒は、 有機溶媒であつ ても水であってもよい。 また粗高分子蛍光体を有機溶媒に溶解させる場合には、 アル力リを溶解させる溶媒は、 溶解させた有機溶媒と均一混合する溶媒でもよい . し、 均一混合しない溶媒であってもよい。 有機溶媒のなかでは、 粗高分子蛍光体 を溶解させた有機溶媒と同じ有機溶媒が好ましレヽ。  In the methods (b) and (c), the solvent for dissolving the alkali may be an organic solvent or water. When the crude polymeric fluorescent substance is dissolved in an organic solvent, the solvent in which the solvent is dissolved may be a solvent that is uniformly mixed with the dissolved organic solvent, or may be a solvent that is not uniformly mixed. Among the organic solvents, the same organic solvent as that in which the crude polymer fluorescent material is dissolved is preferred.
アルカリと接触させる工程においては、 必要に応じ、 溶液を攪拌 ·振とうする などして、 アルカリと高分子蛍光体の接触効率を向上させることができる。  In the step of bringing into contact with the alkali, the contact efficiency between the alkali and the polymeric fluorescent substance can be improved by stirring and shaking the solution as necessary.
アルカリと接触させる時間は、 特に制限はないが、 十分な溶解性向上効果を得 るためには、 通常 3 0分以上 2 0時間以下、 好ましくは 1時間以上 2 0時間以下 である。 また、 ァノレカリと接触させる温度は、 通常 1 0 °C以上 2 0 0 °C以下であ り、 室温以上溶媒の沸点未満であることが好ましい。 用いる溶媒にもよるが、 3 0 °C以上 1 5 0 °C以下が実用的でより好ましく、 5 0 °C以上 1 0 0 °C以下がさら に好ましい。 ただし、 アンモニアのような揮発性の高いアル力リを用いる場合は、 室温付近での処理が好ましい。 処理中は、 高分子蛍光体の変質を抑制するため、 不活性雰囲気でシールすることが好ましく、 また、 高分子蛍光体溶液に吸収され る波長の光が当たらないように、 遮光することが好ましい。  The time for contact with the alkali is not particularly limited, but is usually 30 minutes or more and 20 hours or less, preferably 1 hour or more and 20 hours or less in order to obtain a sufficient solubility improving effect. Further, the temperature for contacting with anorecali is usually from 10 ° C. to 200 ° C., and preferably from room temperature to less than the boiling point of the solvent. Although it depends on the solvent used, it is practically more preferable that the temperature is 30 ° C. or more and 150 ° C. or less, and it is more preferable that the temperature is 50 ° C. or more and 100 ° C. or less. However, when using a highly volatile solvent such as ammonia, treatment at around room temperature is preferred. During the treatment, it is preferable to seal in an inert atmosphere in order to suppress the deterioration of the polymer fluorescent substance, and it is preferable to shield the light so that light of a wavelength absorbed by the polymer fluorescent substance solution is not irradiated. .
また、 本発明において、 粗高分子蛍光体をアルカリと接触させる工程は、 粗高 分子蛍光体を合成する工程と、 工程を分けずに連続して実施してもよい。 例えば、 溶液として存在する粗高分子蛍光体を沈殿として分離せず、 溶液のまま、 アル力 リと接触させる方法などが挙げられる。 In the present invention, the step of bringing the crude high molecular weight phosphor into contact with an alkali may be performed continuously without separating the step of synthesizing the coarse high molecular weight phosphor. For example, a crude polymer fluorescent substance that exists as a solution is not separated as a precipitate, And the like.
本発明の製造方法においては、 アルカリと接触させる工程の他に、 必要に応じ、 中和、 洗浄、 再沈殿、 乾燥、 その他の工程を含んでいてもよい。  The production method of the present invention may include, as necessary, neutralization, washing, reprecipitation, drying, and other steps in addition to the step of bringing into contact with an alkali.
上記アル力リと接触させる工程の後、 高分子蛍光体からアル力リを除く工程を 設けることが好ましい。 アルカリを除くためには、 中和処理を行ってから十分に 洗浄するか、 アル力リをよく溶かす溶媒を用いて十分に洗浄すればよい。  After the step of contacting the polymer phosphor, it is preferable to provide a step of removing the polymer phosphor from the polymer phosphor. In order to remove the alkali, it is necessary to carry out a neutralization treatment and then to wash sufficiently, or to wash sufficiently using a solvent that can dissolve the alcohol well.
また、 アルカリと接触させて得られた高分子蛍光体を、 ー且良溶媒に溶かして 力 、 貧溶媒を用いて再沈する処理によっても、 アルカリを除くことができる。 アンモニアのように揮発性の高いアル力リを除くためには、 単に減圧乾燥する か、 不活性雰囲気で加熱するだけでもよい。  The alkali can also be removed by dissolving the polymeric fluorescent substance obtained by bringing it into contact with an alkali and reprecipitating it with a solvent and a poor solvent. In order to remove highly volatile alcohol such as ammonia, drying under reduced pressure or heating in an inert atmosphere may be used.
乾燥の際には、 残存する溶媒が十分に除去される条件であればよレ、。 高分子蛍 光体の変質を防止するために、 不活性な雰囲気で遮光して乾燥することが好まし レ、。 また、 高分子蛍光体が熱的に変質しない温度で乾燥することが好ましレ、。: 本発明の高分子蛍光体は、 典型的には、 分子量がポリスチレン換算で 104At the time of drying, it is sufficient that the remaining solvent is sufficiently removed. In order to prevent deterioration of the polymer phosphor, it is preferable to dry the polymer phosphor in a light-shielded atmosphere under an inert atmosphere. Further, it is preferable to dry at a temperature at which the polymeric fluorescent substance does not thermally deteriorate. : Polymeric fluorescent substance of the present invention are typically, a molecular weight of 10 4 to polystyrene standards
0 uであり、 それらの繰り返し構造の合計数は、 繰り返し構造やその割合、 合後の処理方法によっても変わる。 成膜性の点から一般には繰り返し構造の合計 数が、 好ましくは 20〜 10000、 さらに好ましくは 30〜 10000、 特に 好ましくは 50〜5000である。 It is 0 u , and the total number of those repeating structures varies depending on the repeating structures, their ratio, and the processing method after combining. In general, the total number of the repeating structures is preferably from 20 to 10,000, more preferably from 30 to 10,000, and particularly preferably from 50 to 5,000, from the viewpoint of film formability.
本発明の高分子蛍光体を高分子 LEDの発光材料として用いる場合、 その純度 が発光特性に影響を与えるため、 重合後やアルカリ処理後に、 再沈精製、 クロマ トグラフィ一による分別等の純化処理をすることが好ましい。  When the polymer fluorescent substance of the present invention is used as a light emitting material for a polymer LED, its purity affects the light emitting properties.Therefore, after polymerization or alkali treatment, purification treatment such as reprecipitation purification, separation by chromatographic method, etc. should be performed. Is preferred.
次に粗高分子蛍光体について説明する。  Next, the crude polymer phosphor will be described.
粗高分子蛍光体は、 固体状態で蛍光を有し、 ポリスチレン換算の数平均分子量 が 104〜108であり、 上記式 (1) で示される繰り返し単位を 1種類以上含 み、 通常それらの繰り返し単位の合計が全繰り返し単位の 10モル0 /0以上 100 モ^ ^%以下であり、 アルカリと接触させる効果を十分に得るためには、 30モル %以上 100モル0 /0以下であることがより好ましく、 50モル%以上 100モル %以下であることがさらに好ましい。 The crude polymer fluorescent substance has fluorescence in a solid state, has a number average molecular weight of 10 4 to 10 8 in terms of polystyrene, and contains at least one kind of the repeating unit represented by the above formula (1). the total amount of the repeating units is not more than 100 Mo ^ ^% 10 mole 0/0 or more of the total repeating units, in order to obtain a sufficient effect of contacting with the alkali is not less than 30 mol% to 100 mol 0/0 or less Is more preferable, and it is further preferable that it is 50 mol% or more and 100 mol% or less.
上記式 (1) において、 Ar iは、 ァリーレン基、 又は複素環ィ匕合物基である。 該ァリーレン基は、 主鎖部分に含まれる炭素原子数が通常、 6個以上 6 0個以下 からなり、 該複素環化合物基は、 主鎖部分に含まれる炭素原子数が通常、 4個以 上 6 0個以下からなる。 なお 「主鎖部分に含まれる炭素原子数」 とは、 Α Γ ιが 置換基を有していても、 Α Γ ιの炭素原子数は、 該置換基の炭素原子数を含まな いことを意味する。 In the above formula (1), Ar i is an arylene group or a heterocyclic compound group. The arylene group usually has 6 to 60 carbon atoms in the main chain, and the heterocyclic compound group usually has 4 or more carbon atoms in the main chain. It consists of 60 or less. Note that "number of carbon atoms contained in the main chain portion" also Alpha gamma iota can have a substituent group, the number of carbon atoms of Alpha gamma iota is that no such include the number of carbon atoms of the substituent means.
A r;!としては、 高分子蛍光体の蛍光特性を損なわないように選択すればよく、 具体的な例としては以下に例示された二価の基が挙げられる。  Ar ;! may be selected so as not to impair the fluorescent properties of the polymeric fluorescent substance, and specific examples include the following divalent groups.
Figure imgf000008_0001
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000009_0001
Figure imgf000008_0002
Figure imgf000009_0001
Figure imgf000010_0001
TZS0/I0df/X3d
Figure imgf000010_0001
TZS0 / I0df / X3d
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000011_0002
lZSO/lOdf/X3«I
Figure imgf000012_0001
Figure imgf000011_0002
lZSO / lOdf / X3 «I
Figure imgf000012_0001
Figure imgf000013_0001
ここで、 Rは、 それぞれ独立に、 水素原子、 アルキル基、 アルコキシ基、 アル キルチオ基、 アルキルシリル基、 アルキルアミノ基、 ァリール基、 ァリールォキ シ基、 ァリールアルキル基、 ァリールアルコキシ基、 ァリールアルケニル基、 ァ リールアルキニル基、 ァリールァミノ基、 複素環化合物基及ぴシァノ基からなる 群から選ばれる基を示す。 上記の例において、 1つの構造式中に複数の Rを有し ているが、 それらは同一であってもよいし、 異なる基であってもよく、 それぞれ 独立に選択される。 A rェが複数の置換基を有する場合、 それらは同一であって もよいし、 それぞれ異なっていてもよい。 溶媒への溶解性を高めるためには、 水 素原子でない置換基を少なくとも 1つ以上有していることが好ましく、 また置換 基を含めた繰り返し単位の形状の対称性が少ないことが好ましい。
Figure imgf000013_0001
Here, R is independently a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylsilyl group, an alkylamino group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an aryl group. Alkenyl group It represents a group selected from the group consisting of a reelalkynyl group, an arylamino group, a heterocyclic compound group and a cyano group. In the above example, one structural formula has a plurality of Rs, but they may be the same or different groups, and each is independently selected. When Ar has a plurality of substituents, they may be the same or different. In order to increase the solubility in a solvent, the compound preferably has at least one substituent that is not a hydrogen atom, and preferably has low symmetry in the shape of the repeating unit including the substituent.
R力 水素原子又はシァノ基以外の置換基である場合について述べる。  R force The case where the substituent is other than a hydrogen atom or a cyano group will be described.
アルキル基は、 直鎖、 分岐又は環状のいずれでもよく、 炭素数は通常 1〜 2 0 程度であり、 具体的には、 メチル基、 ェチル基、 プロピル基、 i—プロピル基、 ブチル基、 i一ブチル基、 t _ブチル基、 ペンチル基、 へキシル基、 シクロへ キシル基、 ヘプチル基、 ォクチル基、 2—ェチルへキシル基、 ノニル基、 デシル 基、 3, 7—ジメチルォクチル基、 ラウリル基などが挙げられ、 ペンチル基、 へ キシル基、 ォクチル基、 2—ェチルへキシル基、 デシル基、 3, 7—ジメチノレオ クチル基が好ましい。  The alkyl group may be straight-chain, branched or cyclic, and usually has about 1 to 20 carbon atoms. Specifically, methyl, ethyl, propyl, i-propyl, butyl, i Monobutyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, lauryl, etc. And a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, a decyl group, and a 3,7-dimethinoleoctyl group are preferred.
アルコキシ基は、 直鎖、 分岐又は環状のいずれでもよく、 炭素数は通常 1〜 2 0程度であり、 具体的には、 メ トキシ基、 エトキシ基、 プロピルォキシ基、 i一 プロピルォキシ基、 ブトキシ基、 iーブトキシ基、 t一ブトキシ基、 ペンチルォ キシ基、 へキシルォキシ基、 シク口へキシルォキシ基、 ヘプチルォキシ基、 オタ チルォキシ基、 2—ェチルへキシルォキシ基、 ノニルォキシ基、 デシルォキシ基、 3, 7 -ジメチルォクチルォキシ基、 ラウリルォキシ基などが挙げられ、 ペンチ ノレォキシ基、 へキシルォキシ基、 ォクチルォキシ基、 2—ェチルへキシルォキシ 基、 デシルォキシ基、 3, 7—ジメチルォクチルォキシ基が好ましい。  The alkoxy group may be straight-chain, branched or cyclic, and usually has about 1 to 20 carbon atoms.Specifically, methoxy, ethoxy, propyloxy, i-propyloxy, butoxy, i-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, otatyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyl And a pentoxy group, a hexyloxy group, an octyloxy group, a 2-ethylhexyloxy group, a decyloxy group, and a 3,7-dimethyloctyloxy group.
アルキルチオ基は、 直鎖、 分岐又は環状のいずれでもよく、 炭素数は通常 1〜 2 0程度であり、 具体的には、 メチルチオ基、 ェチルチオ基、 プロピルチォ基、 i一プロピルチオ基、 プチルチオ基、 i—ブチルチオ基、 t一ブチ^^チオ基、 ぺ ンチルチオ基、 へキシルチオ基、 シクロへキシルチオ基、 へプチルチオ基、 オタ チノレチォ基、 2—ェチルへキシルチオ基、 ノニルチオ基、 デシルチオ基、 3 , 7 一ジメチルオタチルチオ基、 ラウリルチオ基などが挙げられ、 ペンチルチオ基、 へキシルチオ基、 ォクチルチオ基、 2—ェチルへキシルチオ基、 デシルチオ基、 3, 7—ジメチルオタチルチオ基が好ましい。 The alkylthio group may be linear, branched or cyclic, and usually has about 1 to 20 carbon atoms. Specifically, methylthio, ethylthio, propylthio, i-propylthio, butylthio, i —Butylthio, t-butyl ^^ thio, pentylthio, hexylthio, cyclohexylthio, heptylthio, otatinolethio, 2-ethylhexylthio, nonylthio, decylthio, 3,71 Dimethyl otatyl thio group, lauryl thio group, etc., pentyl thio group, Hexylthio, octylthio, 2-ethylhexylthio, decylthio, and 3,7-dimethylotatylthio are preferred.
アルキルシリル基は、 直鎖、 分岐又は環状のいずれでもよく、 炭素数は通常 1 〜 6 0程度であり、 具体的には、 メチルシリル基、 ェチルシリル基、 プロビルシ リル基、 i—プロビルシリル基、 プチルシリル基、 i―プチルシリル基、 t—ブ チルシリル基、 ペンチルシリル基、 へキシルシリル基、 シクロへキシルシリル基、 ヘプチルシリル基、 ォクチルシリル基、 2—ェチルへキシルシリル基、 ノニルシ リル基、 デシルシリル基、 3, 7—ジメチルォクチルシリル基、 ラウリルシリノレ 基、 トリメチルシリル基、 ェチルジメチルシリル基、 プロピルジメチルシリル基、 i一プロピルジメチルシリル基、 プチルジメチルシリル基、 t -プチルジメチル シリノレ基、 ペンチルジメチノレシリル基、 へキシルジメチルシリノレ基、 ヘプチルジ メチルシリル基、 オタチルジメチルシリル基、 2 --ェチルへキシルージメチルシ リル基、 ノニルジメチルシリル基、 デシルジメチルシリル基、 3, 7 -ジメチノレ ォクチル一ジメチルシリル基、 ラウリルジメチルシリル基などが挙げられ、 ペン チルシリル基、 へキシルシリル基、 ォクチルシリル基、 2—ェチルへキシノレシリ ル基、 デシルシリル基、 3, 7一ジメチルォクチルシリル基、 ペンチノレジメチノレ シリル基、 へキシルジメチルシリル基、 ォクチルジメチルシリル基、 2—ェチル へキシルージメチルシリル基、 デシルジメチルシリル基、 3, 7—ジメチルォク チルージメチルシリル基が好ましレ、。  The alkylsilyl group may be linear, branched or cyclic, and usually has about 1 to 60 carbon atoms. Specifically, methylsilyl group, ethylsilyl group, propylsilyl group, i- propylsilyl group, butylsilyl group , I-butylsilyl, t-butylsilyl, pentylsilyl, hexylsilyl, cyclohexylsilyl, heptylsilyl, octylsilyl, 2-ethylhexylsilyl, nonylsilyl, decylsilyl, 3,7- Dimethyloctylsilyl group, laurylsilinole group, trimethylsilyl group, ethyldimethylsilyl group, propyldimethylsilyl group, i-propyldimethylsilyl group, butyldimethylsilyl group, t-butyldimethylsilinole group, pentyl dimethylinosilyl group, Hexyldimethylsilinole group, Hepti Dimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethinoleoctyl monodimethylsilyl group, lauryldimethylsilyl group, etc. Pentylsilyl group, hexylsilyl group, octylsilyl group, 2-ethylhexynolesilyl group, decylsilyl group, 3,71-dimethyloctylsilyl group, pentinoresmethynolesilyl group, hexyldimethylsilyl group, octyldimethyl Preferred are silyl, 2-ethylhexyldimethylsilyl, decyldimethylsilyl, and 3,7-dimethyloctyl-dimethylsilyl.
アルキルアミノ基は、 直鎖、 分岐又は環状のいずれでもよく、 モノアルキルァ ミノ基でもジアルキルアミノ基でもよく、 炭素数は通常 1〜4 0程度であり、 具 体的には、 メチルァミノ基、 ジメチルァミノ基、 ェチルァミノ基、 ジェチルアミ ノ基、 プロピルァミノ基、 i—プロピルァミノ基、 プチルァミノ基、 i一ブチル アミノ基、 t一プチルァミノ基、 ペンチルァミノ基、 へキシノレアミノ基、 シクロ へキシルァミノ基、 ヘプチルァミノ基、 ォクチルァミノ基、 2一ェチルへキシル アミノ基、 ノニルァミノ基、 デシルァミノ基、 3, 7—ジメチルォクチルァミノ 基、 ラウリルアミノ基などが挙げられ、 ペンチルァミノ基、 へキシルァミノ基、 ォクチルァミノ基、 2—ェチルへキシルァミノ基、 デシルァミノ基、 3, 7—ジ メチルオタチルァミノ基が好ましい。 ァリール基は、 炭素数は通常 6〜 6 0程度であり、 具体的には、 フエニル基、 c i ~ c i 2アルコキシフエニル基 (c i〜c i 2は、 炭素数 1〜1 2であること を示す。 以下も同様である。 ) 、 C i〜C 1 2アルキルフエニル基、 1—ナフチ ル基、 2—ナフチル基などが例示され、 じ ^〜じ 2アルコキシフエニル基、 C i C i 2アルキルフエニル基が好ましい。 The alkylamino group may be linear, branched or cyclic, may be a monoalkylamino group or a dialkylamino group, and usually has about 1 to 40 carbon atoms. Specifically, a methylamino group, a dimethylamino group, Ethylamino, acetylamino, propylamino, i-propylamino, butylamino, i-butylamino, t-butylamino, pentylamino, hexinoleamino, cyclohexylamino, heptylamino, octylamino, 21-ethyl Hexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, etc., pentylamino group, hexylamino group, octylamino group, 2-ethylhexylamino group, decylamino group, 3, 7—Dimethyl Tachiruamino group is preferred. Ariru group has a carbon number of usually 6-6 0 degree, specifically, phenyl group, c i ~ c i 2 alkoxy phenylalanine group (c i to c i 2 is the number 1 to 1 2 carbon atoms the same is true. below indicate that.), C i~C 1 2 alkylphenyl group, 1-naphthyl group, 2-naphthyl group and the like, Ji ^ ~ Ji 2 alkoxy phenylalanine groups, C i C i 2 alkylphenyl group are preferable.
ァリールォキシ基は、 炭素数は通常 6〜 6 0程度であり、 具体的には、 フヱノ キシ基、 C i〜C 2アルコキシフエノキシ基、 C i〜C 1 2アルキルフエノキシ 基、 1—ナフチルォキシ基、 2 _ナフチルォキシ基などが例示され、 〜Ariruokishi group has a carbon number of usually 6-6 0 degree, specifically, Fuweno alkoxy group, C i~C 2 alkoxy phenoxyethanol group, C i~C 1 2 alkylphenoxy groups, 1- Examples include a naphthyloxy group and a 2-naphthyloxy group;
C 1 2アルコキシフエノキシ基、 C i C jL 2アルキルフエノキシ基が好ましレ、。 ァリールアルキル基は、 炭素数は通常 7〜 6 0程度であり、 具体的には、 フエ ニル一 C丄〜〇 1 2アルキル基、 C ェ〜 C 丄 2ァノレコキシフエニル一 C 1〜C 1 2 アルキル基、 Cェ〜 i 2アルキルフエ二ルー C 〜 ! 2アルキル基、 1—ナフ チルー C 丄〜じ 1 2アルキル基、 2—ナフチルー C 丄〜じ ! 2アルキル基などが例 示され、 C i〜C 1 2アルコキシフエ二ルー C i〜C 1 2アルキル基、 C ! ~ C 1 2アルキルフェ二ルー C丄〜 C i 2アルキル基が好ましレ、。 A C 12 alkoxy phenoxy group and a C i C jL 2 alkyl phenoxy group are preferred. § reel alkyl group has a carbon number of usually 7-6 0 degree, specifically, Hue sulfonyl one C丄~〇 1 2 alkyl group, C E ~ C丄2 § Honoré Koki Schiff enyl one C. 1 to C 1 2 alkyl group, C E ~ i 2 Arukirufue two Lou C ~! 2- alkyl group, 1-naphthyl-C 1 ~ 2 1 alkyl group, 2-naphthyl-C-! Such as 2-alkyl group is represented example, C i~C 1 2 Arukokishifue two Lou C I~C 1 2 alkyl group, C! Le Shi preferred is ~ C 1 2 alkyl Fe two Lou C丄~ C i 2 alkyl groups ,.
ァリールアルコキシ基は、 炭素数は通常 7〜6 0程度であり、 具体的には、 フ ェニルー C 丄〜じ 1 2アルコキシ基、 C 〜C 2アルコキシフエニル一 C 〜 C 1 2アルコキシ基、 C 〜〇 i 2アルキルフエ二ルー C 〜C 1 2アルコキシ基、§ reel alkoxy group has a carbon number of usually 7-6 0 degree, specifically, full Eniru C丄~ Ji 1 2 alkoxy, C -C 2 alkoxy phenylalanine one C-C 1 2 alkoxy group, C to 〇i 2 alkylphenyl C to C 12 alkoxy group,
1—ナフチルー C 丄〜じ 1 2アルコキシ基、 2—ナフチルー C 〜C 1 2アルコキ シ基などが例示され、 C i〜C 1 2アルコキシフエ二ルー C i〜C 1 2ァノレコキシ 基、 C 〜C 2アルキルフエ二ルー C 〜〇 1 2アルコキシ基が好ましい。 1- Nafuchiru C丄~ Ji 1 2 alkoxy group, 2-Nafuchiru C etc. -C 1 2 an alkoxy group and the like, C I~C 1 2 Arukokishifue two Lou C I~C 1 2 Anorekokishi group, C -C A 2- alkylphenyl C 1 -〇 12 alkoxy group is preferred.
ァリールアミノ基は、 炭素数は通常 6〜 6 0程度であり、 フエニルァミノ基、 ジフエニルァミノ基、 C i〜C 1 2アルコキシフエニルァミノ基、 ジ ( C ! ~ C! 2アルコキシフエニル) アミノ基、 ジ (C 丄〜 2アルキルフエニル) アミ ノ基、 1 _ナフチルァミノ基、 2—ナフチルァミノ基などが例示され、 Ariruamino group has a carbon number of usually 6-6 0 C., Fueniruamino group, Jifueniruamino group, C i~C 1 2 alkoxy phenylalanine § amino group, di (C! ~ C! 2 alkoxy phenylpropyl) amino group, di (C丄1-2 alkylphenyl) amino groups, 1 _ Nafuchiruamino group, such as 2-Nafuchiruamino group and the like,
C! 2アルキルフエニルァミノ基、 ジ ( C 〜 C i 2アルキルフェニル) アミノ基 が好ましい。 C! 2 alkylphenyl § amino group, di (C ~ C i 2 alkylphenyl) amino group are preferable.
複素環化合物基は、 炭素数は通常 4〜 6 0程度であり、 具体的には、 チェニル 基、 C 1〜◦ ]L 2アルキルチェニル基、 ピロリル基、 フリル基、 ピリジル基、 C ! ~ C J 2アルキルピリジル基などが例示され、 チェニル基、 C 〜 C J 2アル キルチェニル基、 ピリジル基、 C丄〜 C i 2アルキルピリジル基が好ましい。 Heterocyclic compound group has a carbon number of usually 4-6 0 degree, specifically, thienyl group, C 1~◦] L 2 alkyl chain group, a pyrrolyl group, a furyl group, a pyridyl group, C! ~ CJ 2 such alkyl pyridyl group are exemplified, thienyl group, C ~ CJ 2 Al Kirucheniru group, a pyridyl group, a C丄~ C i 2 alkyl pyridyl group are preferable.
Rの例のうち、 アルキル鎖を含む置換基においては、 それらは直鎖、 分岐又は 環状のいずれか又はそれらの組み合わせであってもよく、 直鎖でない場合、 例え ば、 ィソァミル基、 2—ェチルへキシル基、 3, 7—ジメチルォクチル基、 シク 口へキシル基、 4一。丄〜じ 丄 2アルキルシクロへキシル基などが例示される。 高分子蛍光体の溶媒への溶解性を高めるためには、 A r iの置換基のうちの 1つ 以上に環状又は分岐のあるアルキル鎖が含まれることが好ましい。 Among the examples of R, in the substituent containing an alkyl chain, they may be linear, branched, or cyclic, or a combination thereof. When the substituent is not linear, for example, isoamyl group, 2-ethyl Hexyl group, 3,7-dimethyloctyl group, hexyl hexyl group, 41. Examples thereof include 2- alkylcyclohexyl group and the like. In order to enhance the solubility of the polymeric fluorescent substance in the solvent, it is preferable that at least one of the substituents of Ari contains a cyclic or branched alkyl chain.
また、 複数の Rが連結して環を形成していてもよい。 さらに、 Rがアルキル鎖 を含む基の場合は、 該アルキル鎖は、 ヘテロ原子を含む基で中断されていてもよ レ、。 ここに、 ヘテロ原子としては、 酸素原子、 硫黄原子、 窒素原子などが例示さ れる。 ヘテロ原子を含む基としては、 例えば、 以下の基が挙げられる。  Further, a plurality of Rs may be linked to form a ring. Further, when R is a group containing an alkyl chain, the alkyl chain may be interrupted by a group containing a hetero atom. Here, examples of the hetero atom include an oxygen atom, a sulfur atom, and a nitrogen atom. Examples of the group containing a hetero atom include the following groups.
I3 ^3 Ο I 3 ^ 3 Ο
-0- -S - -N - -B - -Si- -C-  -0- -S--N--B--Si- -C-
O 0 0 0 O 0 0 0
II II II II  II II II II
-C-O- — O— C— — N— C— -C-N- -C-O- — O— C— — N— C— -C-N-
R3 R3 R 3 R 3
ここで、 R 3としては、 例えば、 水素原子、 炭素数 1〜2 0のアルキル基、 炭 素数 6〜6 0のァリール基、 炭素数 4〜 6 0の複素環化合物基が挙げられる。 さらに、 Rの例のうち、 ァリ一ル基ゃ複素環化合物基をその一部に含む場合は、 それらがさらに 1つ以上の置換基を有していてもよい。 Here, examples of R 3 include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 60 carbon atoms, and a heterocyclic compound group having 4 to 60 carbon atoms. Further, among the examples of R, when a aryl group / heterocyclic compound group is contained in a part thereof, they may further have one or more substituents.
上記式 (1 ) において、 nは 0又は 1である。 上記式 (1 ) における 及ぴ R 2は、 それぞれ独立に水素原子、 アルキル基、 ァリール基、 複素環化合物基及 びシァノ基からなる群から選ばれる基を示す。 In the above formula (1), n is 0 or 1. In the above formula (1), R 2 represents a group independently selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a heterocyclic compound group and a cyano group.
R i及ぴ R 2が、 水素原子又はシァノ基以外の置換基である場合について述べ る。 The case where R i and R 2 are substituents other than a hydrogen atom or a cyano group will be described.
アルキル基は、 直鎖、 分岐又は環状のいずれでもよく、 炭素数は通常 1〜2 0 程度であり、 具体的には、 メチル基、 ェチル基、 プロピル基、 i—プロピル基、 ブチル基、 i一ブチル基、 t一ブチル基、 ペンチル基、 へキシル基、 シクロへキ シル基、 ヘプチル基、 ォクチル基、 2 _ェチルへキシル基、 ノニル基、 デシル基、 3 , 7—ジメチルォクチル基、 ラウリル基などが挙げられ、 ペンチル基、 へキシ ル基、 ォクチル基、 2—ェチルへキシル基、 デシル基、 3 , 7—ジメチルォクチ ル基が好ましい。 The alkyl group may be straight-chain, branched or cyclic, and usually has about 1 to 20 carbon atoms. Specifically, methyl, ethyl, propyl, i-propyl, Butyl, i-butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl A pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, a decyl group, and a 3,7-dimethyloctyl group.
ァリール基は、 炭素数は通常 6〜 6 0程度であり、 具体的には、 フユニル基、 C i〜C 丄 2アルコキシフエニル基、 C 〜じ 2アルキルフエニル基、 1一ナフ チル基、 2—ナフチル基などが例示され、 Cェ〜じ i 2アルコキシフエニル基、 C i〜C 2アルキルフエニル基が好ましレ、。 Ariru group has a carbon number of usually 6-6 0 degree, specifically, Fuyuniru group, C I~C丄2 alkoxy phenylalanine group, C ~ Ji 2 alkylphenyl group, 1 one naphthyl group, Examples thereof include a 2-naphthyl group and the like, with preference given to C 1 -C 2 i-alkoxyphenyl groups and C i -C 2 -alkylphenyl groups.
複素環化合物基は、 炭素数は通常 4〜 6 0程度であり、 具体的には、 チェニル 基、 。 〜じ 2アルキルチェニル基、 ピロリル基、 フリル基、 ピリジル基、 c 1〜 C 1 2アルキルピリジル基などが例示され、 チェニル基、 C i〜C 2アル キルチェニル基、 ピリジル基、 C 〜 C i 2アルキルピリジル基が好ましい。 The heterocyclic compound group usually has about 4 to 60 carbon atoms, and specifically includes a phenyl group. ~ Ji 2 alkyl chain group, a pyrrolyl group, a furyl group, a pyridyl group, c. 1 to C 1 2 alkyl pyridyl group are exemplified, thienyl group, C I~C 2 Al Kirucheniru group, a pyridyl group, C ~ C i Two alkylpyridyl groups are preferred.
また、 粗高分子蛍光体の末端基は、 重合活性基がそのまま残っていると、 素子 にしたときの発光特性や寿命が低下する可能性があるので、 安定な基で保護され ていてもよい。 主鎖の共役構造と連続した共役結合を有しているものが好ましく、 例えば、 ビニレン基を介してァリール基又は複素環化合物基と結合している構造 が例示される。 具体的には、 特開平 9一 4 5 4 7 8号公報の化 1 0に記載の置換 基等が例示される。  In addition, the terminal group of the crude polymer fluorescent substance may be protected with a stable group, since if the polymerization active group remains as it is, the light-emitting characteristics and life of the element may be reduced. . Those having a conjugate bond continuous with the conjugate structure of the main chain are preferable, and examples thereof include a structure bonded to an aryl group or a heterocyclic compound group via a vinylene group. Specific examples thereof include the substituents described in Chemical Formula 10 of JP-A-9-145478.
なお、 本発明の製造方法で得られた高分子蛍光体も製造に使用した粗高分子蛍 光体と実質的に同じ繰り返し単位を有する。  The polymeric fluorescent substance obtained by the production method of the present invention also has substantially the same repeating units as the crude polymeric fluorescent substance used in the production.
該粗高分子蛍光体の合成法としては、 主鎖にビニレン基を有する場合には、 例 えば特開平 5— 2 0 2 3 5 5号公報に記載の方法が挙げられる。 すなわち、 ジァ ルデヒド化合物とジホスホニゥム塩ィヒ合物との W i t t i g反応による重合、 ジ ビニル化合物とジハロゲン化合物との若しくはビニルノヽ口ゲン化合物単独での H e c k反応による重合、 ジァルデヒド化合物とジ亜燐酸エステル化合物との H o r n e r一 W a d s w o r t h— E mm o n s法による重合、 ノヽロゲンィ匕メ チル基を 2つ有する化合物の脱ハロゲン化水素法による重縮合、 スルホ二ゥム塩 基を 2つ有する化合物のスルホニゥム塩分解法による重縮合、 ジアルデヒド化合 物とジァセトニトリル化合物との Kn o e v e n a g e l反応による重合などの 方法 oen、 ジアルデヒド化合物の McMu r r y反応による重合などの方法が例示さ れる。 As a method for synthesizing the crude polymer fluorescent substance, when a main chain has a vinylene group, for example, a method described in Japanese Patent Application Laid-Open No. H5-220355 may be mentioned. That is, polymerization of a dialdehyde compound and a diphosphonium salt compound by a Wittig reaction, polymerization of a divinyl compound and a dihalogen compound or Heck reaction of a vinylamine compound alone, and polymerization of a dialdehyde compound and a diphosphorous acid. Polymerization with ester compound by Horner-W adsworth-Emmons method, polycondensation of compound having two methyl groups by hydrogen dehydrohalogenation method, polymerization of compound having two sulfonium salt groups Polycondensation by sulfonium salt decomposition method, dialdehyde compound Examples include methods such as polymerization of a compound and a diacetonitrile compound by a Kn oevenagel reaction, and methods such as polymerization of a dialdehyde compound by a McMurry reaction.
また、 主鎖にビニレン基を有しない場合には、 例えば該当するモノマーから S u z u k iカップリング反応により重合する方法、 G r i g n a r d反応により 重合する方法、 N i (0) 触媒により重合する方法、 F e C l 3等の酸化剤によ り重合する方法、 電気化学的に酸化重合する方法、 あるいは適当な脱離基を有す る中間体高分子の分解による方法などが例示される。 When the main chain does not have a vinylene group, for example, a method of polymerizing the corresponding monomer by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, a method of polymerizing by a Ni (0) catalyst, Fe method of polymerizing Ri by the oxidizing agent, such as C l 3, electrochemically methods oxidative polymerization, a method by decomposition of an intermediate polymer that have a suitable leaving group can be exemplified.
本発明の高分子蛍光体を高分子 LEDの発光材料として用いる場合、 その純度 が発光特"生に影響を与えるため、 粗高分子蛍光体の重合前のモノマーを蒸留、 昇 華精製、 再結晶等の方法で精製したのちに重合することが好ましい。  When the polymer fluorescent substance of the present invention is used as a light emitting material for a polymer LED, its purity affects the emission characteristics. Therefore, the monomer before polymerization of the crude polymer fluorescent substance is distilled, sublimated, purified and recrystallized. It is preferable to polymerize after purifying by such a method.
なお、 該粗高分子蛍光体は、 蛍光特性や電荷輸送特性を損なわない範囲で、 式 Note that the crude polymer fluorescent material has a formula within a range that does not impair the fluorescence characteristics and the charge transport characteristics.
(1) で示される繰り返し単位以外の繰り返し単位を含んでいてもよい。 また、 式 (1) で示される繰り返し単位や他の繰り返し単位が、 非共役部分で連結され ていてもよいし、 繰り返し単位にそれらの非共役部分が含まれていてもよい。 上 記非共役部分を含む結合構造としては、 以下に示すもの、 以下に示すものとビニ レン基を組み合わせたもの、 及ぴ以下に示すもののうち 2つ以上を組み合わせた ものなどが例示される。 ここで、 Rは前記のものと同じ置換基から選ばれる基で あり、 A rは炭素数 6〜 60個の炭化水素基を示す。 A repeating unit other than the repeating unit represented by (1) may be included. Further, the repeating unit represented by the formula (1) and other repeating units may be connected by a non-conjugated portion, or the repeating unit may include the non-conjugated portion. Examples of the bonding structure containing the non-conjugated moiety include the following, a combination of the following and a vinylene group, and a combination of two or more of the following. Here, R is a group selected from the same substituents as described above, and Ar represents a hydrocarbon group having 6 to 60 carbon atoms.
Figure imgf000019_0001
Figure imgf000019_0001
o o o o  o o o o
II II II II  II II II II
-c-o- 一 o-c— — N - C一 — C-N- -c-o- one o-c— — N-C one — C-N-
R R R R
-C≡C一
Figure imgf000019_0002
また、 該粗高分子蛍光体は、 ランダム、 ブロック又はグラフト共重合体であつ てもよいし、 それらの中間的な構造を有する高分子、 例えばプロック性を帯びた ランダム共重合体であってもよい。 蛍光の量子収率の高い高分子蛍光体を得る観 点からは完全なランダム共重合体よりプロック性を帯びたランダム共重合体ゃブ ロック又はグラフト共重合体が好ましい。 主鎖に枝分かれがあり、 末端部が 3つ 以上ある場合ゃデンドリマーも含まれる。
-C≡C-I
Figure imgf000019_0002
Further, the crude polymer fluorescent substance may be a random, block or graft copolymer, or a polymer having an intermediate structure between them, for example, a random copolymer having a block property. Good. From the viewpoint of obtaining a polymer fluorescent substance having a high quantum yield of fluorescence, a random copolymer-block or graft copolymer having a block property is preferable to a complete random copolymer. If the main chain is branched and has three or more terminal groups, ゃ dendrimers are also included.
また、 高分子 L E Dの発光材料として用いる場合は、 薄膜からの発光を利用す るので該粗高分子蛍光体は、 固体状態で蛍光を有するものが好適に用いられる。 該粗高分子蛍光体に対する良溶媒としては、 クロ口ホルム、 塩化メチレン、 ジ クロロェタン、 テトラヒドロフラン、 トルエン、 キシレン、 メシチレン、 デカリ ン、 n—プチルベンゼン、 ジォキサンなどが例示される。 高分子蛍光体の構造や 分子量にもよるが、 通常はこれらの溶媒に 0 . 1重量%以上溶解させることがで さる。  When used as a light emitting material for a polymer LED, light emission from a thin film is used, and therefore, a crude polymer fluorescent material having fluorescence in a solid state is preferably used. Examples of good solvents for the crude polymer fluorescent substance include chloroform form, methylene chloride, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, decalin, n-butylbenzene, dioxane and the like. Although it depends on the structure and molecular weight of the polymeric fluorescent substance, usually, it is possible to dissolve it in these solvents in an amount of 0.1% by weight or more.
次に、 本発明の高分子 L E Dについて説明する。  Next, the polymer LED of the present invention will be described.
本発明の高分子 L E Dの構造としては、 少なくとも一方が透明又は半透明であ る一対の陽極及ぴ陰極からなる電極間に発光層を有しており、 本発明の製造方法 で得られた高分子蛍光体が、 該発光層中に含まれることを特徴とする。  The structure of the polymer LED of the present invention has a light emitting layer between a pair of anodes and cathodes, at least one of which is transparent or translucent. A molecular phosphor is included in the light emitting layer.
また、 本発明の高分子 L E Dとしては、 陰極と発光層との間に電子輸送層を設 けた高分子 L E D、 陽極と発光層との間に正孔輸送層を設けた高分子 L E D、 陰 極と発光層との間に電子輸送層を設け、 かつ陽極と発光層との間に正孔輸送層を 設けた高分子 L E D等が挙げられる。  The polymer LED of the present invention includes a polymer LED having an electron transport layer between a cathode and a light-emitting layer, a polymer LED having a hole transport layer between an anode and a light-emitting layer, and a cathode. Polymer LED in which an electron transporting layer is provided between the light emitting layer and the anode, and a hole transporting layer is provided between the anode and the light emitting layer.
例えば、 具体的には、 以下の a ) 〜d ) の構造が例示される。  For example, the following structures a) to d) are specifically exemplified.
a ) 陽極 Z発光層/陰極 a) Anode Z light emitting layer / cathode
b ) 陽極/正孔輸送層 Z発光層/陰極 b) Anode / hole transport layer Z light-emitting layer / cathode
c ) 陽極 Z発光層 Z電子輸送層 Z陰極 c) Anode Z Light-emitting layer Z Electron transport layer Z Cathode
d ) 陽極/正孔輸送層 Z発光層ノ電子輸送層/陰極 d) Anode / hole transport layer Z light-emitting layer electron transport layer / cathode
(ここで、 Zは各層が隣接して積層されていることを示す。 以下同じ。 ) ここで、 発光層とは、 発光する機能を有する層であり、 正孔輸送層とは、 正孔 を輸送する機能を有する層であり、 電子輸送層とは、 電子を輸送する機能を有す る層である。 なお、 電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。 発光層、 正孔輸送層、 電子輸送層は、 それぞれ独立に 2層以上用いてもよい。 また、 電極に隣接して設けた電荷輸送層のうち、 電極からの電荷注入効率を改 善する機能を有し、 素子の駆動電圧を下げる効果を有するものは、 特に電荷注入 層 (正孔注入層、 電子注入層) と一般に呼ばれることがある。 (Here, Z indicates that the respective layers are stacked adjacent to each other. The same applies hereinafter.) Here, the light emitting layer is a layer having a function of emitting light, and the hole transport layer is A layer having a function of transporting electrons. An electron transporting layer has a function of transporting electrons. Layer. Note that the electron transport layer and the hole transport layer are collectively called a charge transport layer. Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently. Among the charge transport layers provided adjacent to the electrodes, those having the function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the device are particularly suitable for the charge injection layer (hole injection layer). Layer, electron injection layer).
さらに電極との密着性向上や電極からの電荷注入の改善のために、 電極に隣接 して前記の電荷注入層又は膜厚 2 n m以下の絶縁層を設けてもよく、 また、 界面 の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファ 一層を挿入してもよい。  Further, the above-described charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode in order to improve adhesion to the electrode and improve charge injection from the electrode. A thin buffer layer may be inserted at the interface between the charge transport layer and the light-emitting layer for the purpose of improvement and prevention of mixing.
積層する層の順番や数、 及ぴ各層の厚さについては、 発光効率や素子寿命を勘 案して適宜用いることができる。  The order and number of layers to be stacked and the thickness of each layer can be appropriately used in consideration of luminous efficiency and device life.
本発明において、 電荷注入層 (電子注入層、 正孔注入層) を設けた高分子 L E Dとしては、 陰極に隣接して電荷注入層を設けた高分子 L E D、 陽極に隣接して 電荷注入層を設けた高分子 L E Dが挙げられる。  In the present invention, the polymer LED provided with a charge injection layer (electron injection layer, hole injection layer) includes a polymer LED provided with a charge injection layer adjacent to a cathode, and a charge injection layer adjacent to an anode. Polymer LED provided.
例えば、 具体的には、 以下の e ) 〜p ) の構造が挙げられる。  For example, the following structures e) to p) are specifically mentioned.
e ) 陽極 Z電荷注入層/発光層 Z陰極 e) Anode Z charge injection layer / emission layer Z cathode
f ) 陽極 Z発光層/電荷注入層/陰極 f) Anode Z light emitting layer / charge injection layer / cathode
g ) 陽極 Z電荷注入層 Z発光層 Z電荷注入層/陰極 g) Anode Z charge injection layer Z light emitting layer Z charge injection layer / cathode
h ) 陽極 Z電荷注入層 Z正孔輸送層 Z発光層 Z陰極 h) anode Z charge injection layer Z hole transport layer Z light emitting layer Z cathode
i ) 陽極/正孔輸送層 Z発光層 Z電荷注入層/陰極  i) Anode / Hole transport layer Z Light emitting layer Z Charge injection layer / Cathode
j ) 陽極 Z電荷注入層 Z正孔輸送層 Z発光層/電荷注入層/陰極 j) anode Z charge injection layer Z hole transport layer Z light emitting layer / charge injection layer / cathode
k ) 陽極/電荷注入層/発光層 Z電子輸送層ノ陰極 k) Anode / charge injection layer / emission layer Z electron transport layer
1 ) 陽極 Z発光層 Z電子輸送層 Z電荷注入層/陰極  1) Anode Z light emitting layer Z electron transport layer Z charge injection layer / cathode
m) 陽極/電荷注入層/発光層 Z電子輸送層/電荷注入層/陰極 m) Anode / charge injection layer / emission layer Z electron transport layer / charge injection layer / cathode
n ) 陽極 Z電荷注入層 Z正孔輸送層 Z発光層 Z電子輸送層/陰極 n) anode Z charge injection layer Z hole transport layer Z light emitting layer Z electron transport layer / cathode
o ) 陽極/正孔輸送層 Z発光層 z電子輸送層/電荷注入層/陰極 o) Anode / hole transport layer Z light-emitting layer z electron transport layer / charge injection layer / cathode
P ) 陽極/電荷注入層/正孔輸送層 Z発光層 Z電子輸送層/電荷注入層ノ陰極 電荷注入層の具体的な例としては、 導電性高分子を含む層、 陽極と正孔輸送層 との間に設けられ、 陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値 のイオン化ポテンシャルを有する材料を含む層、 陰極と電子輸送層との間に設け られ、 P倉極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力 を有する材料を含む層などが例示される。 P) Anode / Charge injection layer / Hole transport layer Z Emitting layer Z Electron transport layer / Charge injection layer Negative cathode Specific examples of the charge injection layer include a layer containing a conductive polymer, an anode and a hole transport layer. Between the anode material and the hole transport material contained in the hole transport layer. A layer containing a material having an ionization potential of, and a layer provided between the cathode and the electron transport layer and containing a material having an electron affinity of an intermediate value between the P pole material and the electron transport material contained in the electron transport layer And the like.
上記電荷注入層が導電性高分子を含む層の場合、 該導電性高分子の電気伝導度 は、 10一5 SZcm以上 103 S/cm以下であることが好ましく、 発光画素 間のリーク電流を小さくするためには、 1 0—。 S/cm以上 102 SZcm以 下がより好ましく、 10— 5 SZcm以上 101 S/c m以下がさらに好ましい。 通常は該導電性高分子の電気伝導度を 10— 5 S / c m以上 103 S / c m以 下とするために、 該導電性高分子に適量のイオンをドープする。 When the charge injection layer is a layer containing a conductive polymer, the conductive polymer preferably has an electric conductivity of 10 to 5 SZcm or more and 10 3 S / cm or less. 10 0 to make it smaller. S / cm or more 10 2 SZcm hereinafter more preferably, 10- 5 SZcm or more and 10 1 S / cm or less is more preferred. Normally in order to electrically conductivity 10- 5 S / cm or more 10 3 S / cm or less under the conducting polymer, a suitable amount of ions are doped into the conducting polymer.
ドープするイオンの種類は、 正孔注入層であればァニオン、 電子注入層であれ ばカチオンである。 ァニオンの例としては、 ポリスチレンスルホン酸イオン、 ァ ルキルベンゼンスルホン酸イオン、 樟脳スルホン酸イオンなどが例示され、 カチ オンの例としては、 リチウムイオン、 ナトリウムイオン、 カリウムイオン、 テト ラプチルァンモニゥムイオンなどが例示される。  The kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer. Examples of anions include polystyrenesulfonate, alkylbenzenesulfonate, camphorsulfonate, and the like.Examples of cations include lithium, sodium, potassium, and tetrabutylammonium. And the like.
電荷注入層の膜厚としては、 例えば 1 nm〜l 00 nmであり、 2 nm〜50 nmが好ましレ、。  The thickness of the charge injection layer is, for example, 1 nm to 100 nm, and preferably 2 nm to 50 nm.
電荷注入層に用いる材料は、 電極や隣接する層の材料との関係で適宜選択すれ ばよく、 ポリアニリン及ぴその誘導体、 ポリチォフエン及ぴその誘導体、 ポリピ ローノレ及ぴその誘導体、 ポリフエ二レンビニレン及ぴその誘導体、 ポリチェニレ ンビニレン及びその誘導体、 ポリキノリン及びその誘導体、 ポリキノキサリン及 びその誘導体、 芳香族ァミン構造を主鎖又は側鎖に含む重合体などの導電性高分 子、 金属フタロシアニン (銅フタロシアニンなど) 、 カーボンなどが例示される。 膜厚 2 nm以下の絶縁層は電荷注入を容易にする機能を有するものである。 上 記絶縁層の材料としては、 金属フッ化物、 金属酸化物、 有機絶縁材料等が挙げら れる。 S莫厚 2 nm以下の絶縁層を設けた高分子 LEDとしては、 陰極に隣接して 膜厚 2 nm以下の絶縁層を設けた高分子 LED、 陽極に隣接して膜厚 2 n m以下 の絶縁層を設けた高分子 L E Dが挙げられる。  The material used for the charge injection layer may be appropriately selected in relation to the material of the electrode and the adjacent layer.Polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylenevinylene and its Derivatives, polyphenylene vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain, metal phthalocyanines (such as copper phthalocyanine), carbon And the like. The insulating layer having a thickness of 2 nm or less has a function of facilitating charge injection. Examples of the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials. S Polymer LEDs with an insulation layer of 2 nm or less in thickness include polymer LEDs with an insulation layer of 2 nm or less adjacent to the cathode, and insulation of 2 nm or less adjacent to the anode. A polymer LED having a layer is exemplified.
具体的には、 例えば、 以下の q) 〜a b) の構造が挙げられる。  Specifically, for example, the following structures q) to ab) are mentioned.
q) 陽極 Z膜厚 2 nm以下の絶縁層 Z発光層ノ陰極 r ) 陽極/発光層/膜厚 2 n m以下の絶縁層/陰極 q) Anode Z Insulation layer with a thickness of 2 nm or less r) Anode / Emitting layer / Insulating layer with thickness less than 2 nm / Cathode
s ) 陽極 Z膜厚 2 n m以下の絶縁層 Z発光層 Z膜厚 2 n m以下の絶縁層/陰極 t ) 陽極/膜厚 2 n m以下の絶縁層/正孔輸送層 Z発光層 Z陰極  s) Anode Z Insulating layer with thickness less than 2 nm Z Emitting layer Z Insulating layer with thickness less than 2 nm / cathode t) Anode / Insulating layer with thickness less than 2 nm / hole transport layer Z emitting layer Z cathode
u ) 陽極 Z正孔輸送層 Z発光層/膜厚 2 n m以下の絶縁層 Z陰極  u) Anode Z Hole transport layer Z Luminescent layer / insulating layer 2 nm or less in thickness Z Cathode
V ) 陽極ノ膜厚 2 n m以下の絶縁層/正孔輸送層 Z発光層 Z膜厚 2 n m以下の絶 w) 陽極/膜厚 2 n m以下の絶縁層 Z発光層/電子輸送層 Z陰極  V) Anode / Insulation layer with a thickness of 2 nm or less / Hole transport layer Z Luminescent layer Z Absolute with a thickness of 2 nm or less w) Anode / Insulation layer with a thickness of 2 nm or less Z Luminescent layer / Electron transport layer Z Cathode
x ) 陽極ノ発光層 Z電子輸送層/膜厚 2 n m以下の絶縁層 Z陰極  x) Anode emission layer Z Electron transport layer / Insulation layer with thickness of 2 nm or less Z cathode
y ) 陽極 Z膜厚 2 n m以下の絶縁層/発光層 Z電子輸送層 Z膜厚 2 n m以下の絶 縁層 Z陰極 y) Anode Z Insulation layer / light-emitting layer with a thickness of 2 nm or less Z Electron transport layer Z Insulation layer with a thickness of 2 nm or less Z cathode
z ) 陽極 Z膜厚 2 n m以下の絶縁層/正孔輸送層/発光層 Z電子輸送層 Z陰極 a a ) 陽極/正孔輸送層 Z発光層/電子輸送層/膜厚 2 n m以下の絶縁層ノ陰極 a b ) 陽極 Z膜厚 2 n m以下の絶縁層 Z正孔輸送層 Z発光層/電子輸送層/膜厚 2 n m以下の絶縁層 Z陰極  z) Anode Z Insulation layer / Hole transport layer / Emitting layer with thickness less than 2 nm / Electron transport layer Z Electron transport layer / Z cathode aa) Anode / Hole transport layer Z Emitting layer / Electron transport layer / Insulation layer with thickness less than 2 nm A cathode) Anode Z Insulation layer with a thickness of 2 nm or less Z Hole transport layer Z Emission layer / Electron transport layer / Insulation layer with a thickness of 2 nm or less Z Cathode
高分子 L E D作成の際に、 本発明の製造方法で得られた、 これらの有機溶媒可 溶性の高分子蛍光体を用いることにより、 溶液から成膜する場合、 この溶液を塗 布後乾燥により溶媒を除去するだけでよく、 また電荷輸送材料や発光材料を混合 した場合においても同様な手法が適用でき、 製造上非常に有利である。 溶液から の成膜方法としては、 スピンコート法、 キャスティング法、 マイクログラビアコ —ト法、 グラビアコート法、 パーコート法、 ロールコート法、 ワイアーパーコー ト法、 ディップコート法、 スプレーコート法、 スクリーン印刷法、 フレキソ印刷 法、 オフセット印刷法、 ィンクジェットプリント法等の塗布法を用いることがで さる。  When forming a polymer LED, by using these organic solvent-soluble polymer fluorescent materials obtained by the manufacturing method of the present invention and forming a film from a solution, the solution is applied and dried to form a solvent. The same method can be applied to the case where a charge transporting material or a luminescent material is mixed, which is very advantageous in manufacturing. Spin coating, casting, microgravure coating, gravure coating, percoating, roll coating, wire coating, dip coating, spray coating, screen printing, etc. It is possible to use a coating method such as flexographic printing, offset printing, and ink jet printing.
発光層の膜厚としては、 用いる材料によって最適値が異なり、 駆動電圧と発光 効率が適度な値となるように選択すればよいが、 例えば 1 n mから 1 μ mであり、 好ましくは 2 η π!〜 5 0 0 n mであり、 さらに好ましくは 5 n m〜2 0 0 n で ある。  The optimum value of the thickness of the light emitting layer differs depending on the material used, and may be selected so that the driving voltage and the light emitting efficiency have appropriate values. For example, the thickness is 1 nm to 1 μm, and preferably 2 η π ! 5500 nm, more preferably 5 nm n200 nm.
本願発明の高分子 L E Dにおいては、 発光層に本発明の製造方法で得られた上 記高分子蛍光体以外の発光材料を混合して使用してもよい。 また、 本願発明の高 分子 LEDにおいては、 上記高分子蛍光体以外の発光材料を含む発光層が、 上記 高分子蛍光体を含む発光層と積層されていてもよレ、。 In the polymer LED of the present invention, a light-emitting material other than the above-described polymer fluorescent substance obtained by the production method of the present invention may be mixed and used in the light-emitting layer. In addition, the invention of the present application In the molecular LED, a light emitting layer containing a light emitting material other than the polymer fluorescent substance may be laminated with the light emitting layer containing the polymer fluorescent substance.
該発光材料としては、 公知のものが使用できる。 低分子化合物では、 例えば、 ナフタレン誘導体、 アントラセン若しくはその誘導体、 ペリレン若しくはその誘 導体、 ポリメチン系、 キサンテン系、 クマリン系、 シァニン系などの色素類、 8 ーヒドロキシキノリン若しくはその誘導体の金属錯体、 芳香族ァミン、 テトラフ ェニルシクロペンタジェン若しくはその誘導体、 又はテトラフェニルブタジエン 若しくはその誘導体などを用いることができる。  As the light emitting material, known materials can be used. Examples of low molecular compounds include naphthalene derivatives, anthracene or derivatives thereof, perylene or derivatives thereof, polymethine-based, xanthene-based, coumarin-based, and cyanine-based dyes, metal complexes of 8-hydroxyquinoline or derivatives thereof, and aromatics. For example, amine, tetraphenylcyclopentadiene or a derivative thereof, or tetraphenylbutadiene or a derivative thereof can be used.
具体的には、 例えば特開昭 57— 51781号、 同 59— 1 94393号公報 に記載されているもの等、 公知のものが使用可能である。  Specifically, known materials such as those described in JP-A-57-51781 and JP-A-59-194393 can be used.
.本発明の高分子 LEDが正孔輸送層を有する場合、 使用される正孔輸送材料と しては、 ポリビニルカルバゾール若しくはその誘導体、 ポリシラン若しくはその 誘導体、 側鎖若しくは主鎖に芳香族ァミンを有するポリシロキサン誘導体、 ビラ ゾリン誘導体、 ァリールァミン誘導体、 スチルベン誘導体、 トリフエニノレジアミ ン誘導体、 ポリア二リン若しくはその誘導体、 ポリチォフェン若しくはその誘導 体、 ポリピロール若しくはその誘導体、 ポリ (p—フエ二レンビニレン) 若しく はその誘導体、 又はポリ (2, 5—チェ二レンビニレン) 若しくはその誘導体な どが例示される。  When the polymer LED of the present invention has a hole transport layer, the hole transport material used includes polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and an aromatic amine in a side chain or a main chain. Polysiloxane derivative, virazoline derivative, arylamine derivative, stilbene derivative, triphenylenoresamine derivative, polyaniline or its derivative, polythiophene or its derivative, polypyrrole or its derivative, poly (p-phenylenevinylene) Is exemplified by a derivative thereof, or poly (2,5-Chenylene vinylene) or a derivative thereof.
具体的には、 該正孔輸送材料として、 特開昭 63-70257号公報、 同 63 - 175860号公報、 特開平 2—135359号公報、 同 2—135361号 公報、 同 2— 209988号公報、 同 3— 37992号公報、 同 3— 1521 8 4号公報に記載されているもの等が例示される。  Specifically, as the hole transport material, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-209988, Examples thereof include those described in JP-A-3-37992 and JP-A-3-152184.
これらの中で、 正孔輸送層に用いる正孔輸送材料として、 ポリビニルカルバゾ ール若しくはその誘導体、 ポリシラン若しくはその誘導体、 側鎖若しくは主鎖に 芳香族ァミン化合物基を有するポリシロキサン誘導体、 ポリア二リン若しくはそ の誘導体、 ポリチォフェン若しくはその誘導体、 ポリ (p—フエ二レンビニレ ン) 若しくはその誘導体、 又はポリ (2, 5—チェ二レンビニレン) 若しくはそ の誘導体等の高分子正孔輸送材料が好ましく、 さらに好ましくはポリビュルカル パゾール若しくはその誘導体、 ポリシラン若しくはその誘導体、 側鎖若しくは主 鎖に芳香族ァミンを有するポリシロキサン誘導体である。 低分子の正孔輸送材料 の場合には、 高分子バインダーに分散させて用いることが好ましい。 Among these, as a hole transporting material used for the hole transporting layer, polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, or a polyaniline. A high molecular weight hole transporting material such as phosphorus or a derivative thereof, polythiophene or a derivative thereof, poly (p-phenylenevinylene) or a derivative thereof, or poly (2,5-chenylenevinylene) or a derivative thereof is preferable. More preferably, polybulcarpazole or its derivative, polysilane or its derivative, side chain or main chain A polysiloxane derivative having an aromatic amine in the chain. In the case of a low molecular weight hole transporting material, it is preferable to use it by dispersing it in a high molecular binder.
ポリビニルカルバゾール若しくはその誘導体は、 例えばビエルモノマーから力 チォン重合又はラジカル重合によって得られる。  Polyvinylcarbazole or a derivative thereof can be obtained, for example, from a Bier monomer by force polymerization or radical polymerization.
ポリシラン若しくはその誘導体としては、 ケミカル ' レビュー ( C h e m. R e v . ) 第 8 9卷、 1 3 5 9頁 (1 9 8 9年) 、 英国特許 G B 2 3 0 0 1 9 6号 公開明細書に記載の化合物等が例示される。 合成方法もこれらに記載の方法を用 いることができるが、 特にキッビング法が好適に用いられる。  As polysilane or a derivative thereof, Chemical 'Review (Chem. Rev.), Vol. 89, pp. 139 (1989), British Patent No. GB 2 301 196 Compounds described in this document are exemplified. The method described in these methods can be used for the synthesis method, but the Kibbing method is particularly preferably used.
ポリシロキサン若しくはその誘導体は、 シロキサン骨格構造には正孔輸送性が ほとんどないので、 側鎖又は主鎖に上記低分子正孔輸送材料の構造を有するもの が好適に用いられる。 特に正孔輸送性の芳香族ァミンを側鎖又は主鎖に有するも のが例示される。  Since the siloxane skeleton structure has little hole-transport property, those having the structure of the above-described low-molecular-weight hole-transport material in a side chain or a main chain are preferably used as the polysiloxane or a derivative thereof. Particularly, those having an aromatic amine having a hole transporting property in a side chain or a main chain are exemplified.
正孔輸送層の成膜の方法に制限はないが、 低分子正孔輸送材料では、 高分子パ インダ一との混合溶液からの成膜による方法が例示される。 また、 高分子正孔輸 送材料では、 溶液からの成膜による方法が例示される。  There is no limitation on the method of forming the hole transport layer. For the low molecular weight hole transport material, a method of forming a film from a mixed solution with a polymer binder is exemplified. In the case of a polymer hole transporting material, a method of forming a film from a solution is exemplified.
溶液からの成膜に用いる溶媒としては、 正孔輸送材料を溶解させるものであれ ば特に制限はない。 該溶媒として、 クロ口ホルム、 塩化メチレン、 ジクロロエタ ン等の塩素系溶媒、 テトラヒ ドロフラン等のエーテル系溶媒、 トルエン、 キシレ ン等の芳香族炭化水素系溶媒、 アセトン、 メチルェチルケトン等のケトン系溶媒、 酢酸ェチル、 酢酸ブチル、 ェチルセルソルブアセテート等のエステル系溶媒が例 示される。  The solvent used for film formation from a solution is not particularly limited as long as it dissolves the hole transport material. Examples of the solvent include chlorinated solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone. Examples of the solvent include ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate.
溶液からの成膜方法としては、 溶液からのスピンコート法、 キャスティング法、 マイクログラビアコート法、 グラビアコート法、 パーコート法、 ロールコート法、 ワイア一バーコート法、 ディップコート法、 スプレーコート法、 スクリーン印刷 法、 フレキソ印刷法、 オフセット印刷法、 インクジェットプリント法等の塗布法 を用いることができる。  Solution coating methods include spin coating, casting, microgravure coating, gravure coating, percoating, roll coating, wire bar coating, dip coating, spray coating, and screen coating from solution. Coating methods such as a printing method, a flexographic printing method, an offset printing method, and an ink jet printing method can be used.
混合する高分子バインダーとしては、 電荷輸送を極度に阻害しないものが好ま しく、 また可視光に対する吸収が強くないものが好適に用いられる。 該高分子パ インダ一として、 ポリカーボネート、 ポリアタリレート、 ポリメチルアタリレー ト、 ポリメチルメタタリレート、 ポリスチレン、 ポリ塩化ビニル、 ポリシロキサ ン等が例示される。 As the polymer binder to be mixed, those which do not extremely inhibit charge transport are preferable, and those which do not strongly absorb visible light are preferably used. Examples of the polymer binder include polycarbonate, polyatarylate, and polymethyl atalay. , Polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane, and the like.
正孔輸送層の膜厚としては、 用いる材料によって最適値が異なり、 駆動電圧と 発光効率が適度な値となるように選択すればよいが、 少なくともピンホールが発 生しないような厚さが必要であり、 あまり厚いと、 素子の駆動電圧が高くなり好 ましくない。 従って、 該正孔輸送層の莫厚としては、 例えば 1 nmから 1 imで あり、 好ましくは 2 n m〜 500 n mであり、 さらに好ましくは 5 n m〜 200 n mでめる。  The optimal value of the thickness of the hole transport layer depends on the material used, and may be selected so that the driving voltage and the luminous efficiency are at appropriate values, but at least a thickness that does not cause pinholes is necessary. If the thickness is too large, the driving voltage of the device becomes high, which is not preferable. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 im, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
本発明の高分子 L E Dが電子輸送層を有する場合、 使用される電子輸送材料と しては公知のものが使用でき、 ォキサジァゾール誘導体、 アントラキノジメタン 若しくはその誘導体、 ベンゾキノン若しくはその誘導体、 ナフトキノン若しくは その誘導体、 アントラキノン若しくはその誘導体、 テトラシァノアンスラキノジ メタン若しくはその誘導体、 フルォレノン誘導体、 ジフェニルジシァノエチレン 若しくはその誘導体、 ジフエノキノン誘導体、 又は 8—ヒドロキシキノリン若し くはその誘導体の金属錯体、 ポリキノリン若しくはその誘導体、 ポリキノキサリ ン若しくはその誘導体、 ポリフルオレン若しくはその誘導体等が例示される。 具体的には、 特開昭 63— 70257号公報、 同 63— 175860号公報、, 特開平 2— 135359号公報、 同 2— 1 35361号公報、 同 2— 20998 8号公報、 同 3— 37992号公報、 同 3— 152184号公報に記載されてい るもの等が例示される。  When the polymer LED of the present invention has an electron transporting layer, any known electron transporting material can be used, such as oxadiazole derivative, anthraquinodimethane or its derivative, benzoquinone or its derivative, naphthoquinone or its derivative. Derivative, anthraquinone or its derivative, tetracyanoanthraquinodimethane or its derivative, fluorenone derivative, diphenyldicyanoethylene or its derivative, diphenoquinone derivative, or metal complex of 8-hydroxyquinoline or its derivative, polyquinoline or Derivatives thereof, polyquinoxaline or a derivative thereof, polyfluorene or a derivative thereof and the like are exemplified. Specifically, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-135351, JP-A-2-209998, JP-A-3-37992 And Japanese Patent Publication No. 3-152184.
これらのうち、 ォキサジァゾール誘導体、 ベンゾキノン若しくはその誘導体、 アントラキノン若しくはその誘導体、 又は 8—ヒドロキシキノリン若しくはその 誘導体の金属錯体、 ポリキノリン若しくはその誘導体、 ポリキノキサリン若しく はその誘導体、 ポリフルオレン若しくはその誘導体が好ましく、 2— (4—ビフ ェニリル) - 5 - (4一 t一ブチルフエニル) 一 1, 3, 4一ォキサジァゾール、 ベンゾキノン、 アントラキノン、 トリス (8—キノリノ一ノレ) アルミニウム、 ポ リキノリンがさらに好ましい。  Of these, oxadiazole derivatives, benzoquinone or its derivatives, anthraquinone or its derivatives, or metal complexes of 8-hydroxyquinoline or its derivatives, polyquinoline or its derivatives, polyquinoxaline or its derivatives, and polyfluorene or its derivatives are preferred. 2- (4-biphenylyl) -5- (4-t-butylphenyl) 1,1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolino-mono) aluminum, and polyquinoline are more preferred.
電子輸送層の成膜法としては特に制限はなレヽが、 低分子電子輸送材料では、 粉 末からの真空蒸着法、 又は溶液若しくは溶融状態からの成膜による方法が、 高分 子電子輸送材料では溶液又は溶融状態からの成膜による方法がそれぞれ例示され る。 溶液又は溶融状態からの成膜時には、 高分子バインダーを併用してもよい。 溶液からの成膜に用いる溶媒としては、 電子輸送材料及び/又は高分子バイン ダーを溶解させるものであれば特に制限はなレ、。 該溶媒として、 クロロホノレム、 塩ィヒメチレン、 ジクロロェタン等の塩素系溶媒、 テトラヒドロフラン等のエーテ ル系溶媒、 トルエン、 キシレン等の芳香族炭化水素系溶媒、 アセトン、 メチルェ チルケトン等のケトン系溶媒、 酢酸ェチル、 酢酸プチル、 ェチルセルソルブァセ テート等のエステル系溶媒が例示される。 There is no particular limitation on the film formation method of the electron transport layer. For low molecular weight electron transport materials, a vacuum deposition method from powder or a film formation method from a solution or a molten state is used. For the electron transport material, a method by film formation from a solution or a molten state is exemplified. When forming a film from a solution or a molten state, a polymer binder may be used in combination. The solvent used for film formation from a solution is not particularly limited as long as it can dissolve the electron transport material and / or the polymer binder. Examples of the solvent include chlorinated solvents such as chlorophonolem, dimethyl chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, and acetic acid. Ester solvents such as butyl and ethyl cellosolve acetate are exemplified.
溶液又は溶融状態からの成膜方法としては、 スピンコート法、 キャスティング 法、 マイクログラビアコート法、 グラビアコート法、 バーコート法、 ロールコー ト法、 ワイアーパーコート法、 ディップコート法、 スプレーコート法、 スクリー ン印刷法、 フレキソ印刷法、 オフセット印刷法、 インクジェットプリント法等の '塗布法を用いることができる。  Spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire-coating, dip coating, spray coating, screen coating, etc. An application method such as an ink-jet printing method, a flexographic printing method, an offset printing method, and an ink-jet printing method can be used.
'混合する高分子バインダーとしては、 電荷輸送を極度に阻害しないものが好ま しく、 また、 可視光に対する吸収が強くないものが好適に用いられる ώ 該高分子 バインダーとして、 ポリ (Ν—ビニルカルバゾール) 、 ポリアニリン若しくはそ の誘導体、 ポリチォフェン若しくはその誘導体、 ポリ (ρ—フエ二レンビニレ ン) 若しくはその誘導体、 ポリ (2, 5—チェ二レンビニレン) 若しくはその誘 導体、 ポリカーボネート、 ポリアタリレート、 ポリメチルァクリレート、 ポリメ チルメタクリレート、 ポリスチレン、 ポリ塩化ビエル、 又はポリシロキサンなど が例示される。 'As the polymer binder to be mixed, those which do not extremely inhibit charge transport are preferable, and those which do not strongly absorb visible light are preferably used. Poly ( と し て -vinylcarbazole) is used as the polymer binder. , Polyaniline or a derivative thereof, polythiophene or a derivative thereof, poly (ρ-phenylenevinylene) or a derivative thereof, poly (2,5-chenylenevinylene) or a derivative thereof, polycarbonate, polyatarylate, polymethylacrylic Rate, polyethylene methacrylate, polystyrene, polyvinyl chloride, or polysiloxane.
電子輸送層の膜厚としては、 用いる材料によって最適値が異なり、 駆動電圧と 発光効率が適度な値となるように選択すればよいが、 少なくともピンホールが発 生しないような厚さが必要であり、 あまり厚いと、 素子の駆動電圧が高くなり好 ましくない。 従って、 該電子輸送層の膜厚としては、 例えば 1 n mから 1 i mで あり、 好ましくは 2 n m〜 5 0 0 n mであり、 さらに好ましくは 5 η π!〜 2 0 0 n mである。  The optimum value of the thickness of the electron transporting layer depends on the material used, and may be selected so that the driving voltage and the luminous efficiency are appropriate. However, at least a thickness that does not cause pinholes is necessary. Yes, too thick is not desirable because the driving voltage of the device is high. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 im, preferably 2 nm to 500 nm, and more preferably 5 ηπ! ~ 200 nm.
本発明の高分子 L E Dを形成する基板は、 電極を形成し、 有機物の層を形成す る際に変化しないものであればよく、 例えばガラス、 プラスチック、 高分子フィ ルム、 シリコン基板などが例示される。 不透明な基板の場合には、 反対の電極が 透明又は半透明であることが好ましい。 The substrate on which the polymer LED of the present invention is formed may be any substrate as long as it does not change when an electrode is formed and an organic layer is formed. For example, glass, plastic, polymer And a silicon substrate. In the case of an opaque substrate, the opposite electrode is preferably transparent or translucent.
本発明において、 陽極側が透明又は半透明であることが好ましいが、 該陽極の 材料としては、 導電性の金属酸化物膜、 半透明の金属薄膜等が用いられる。 具体 的には、 酸化インジウム、 酸化亜鉛、 酸化スズ、 及ぴそれらの複合体であるイン ジゥム ·スズ ·ォキサイド ( I T O) 、 ィンジゥム ·亜口、 ·ォキサイド等からな る導電性ガラスを用いて作成された膜 (N E S Aなど) や、 金、 白金、 銀、 銅等 が用いられ、 I T O、 インジウム ·亜 |0 ·ォキサイド、 酸化スズが好ましい。 作 製方法としては、 真空蒸着法、 スパッタリング法、 イオンプレーティング法、 メ ツキ法等が挙げられる。 また、 該陽極として、 ポリア二リン若しくはその誘導体、 ポリチォフェン若しくはその誘導体などの有機の透明導電膜を用いてもよい。 陽極の膜厚は、 光の透過性と電気伝導度とを考慮して、 適宜選択することがで きるが、 例えば 1 0 n mから 1 0 μ ιηであり、 好ましくは 2 0 n m〜l μ mであ り、 さらに好ましくは 5 0 n m〜5 0 0 n mである。  In the present invention, the anode side is preferably transparent or translucent. As the material of the anode, a conductive metal oxide film, a translucent metal thin film, or the like is used. Specifically, it is made using conductive glass consisting of indium oxide, zinc oxide, tin oxide, and their composites, such as indium tin oxide (ITO), aluminum oxide, oxide, and oxide. Films (eg, NESA), gold, platinum, silver, copper, etc., are used, and ITO, indium oxide, zinc oxide, and tin oxide are preferred. Examples of the manufacturing method include a vacuum evaporation method, a sputtering method, an ion plating method, and a plating method. An organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode. The thickness of the anode can be appropriately selected in consideration of light transmittance and electric conductivity, and is, for example, from 10 nm to 10 μιη, preferably from 20 nm to 1 μm. And more preferably 50 nm to 500 nm.
また、 陽極上に、 電荷注入を容易にするために、 フタロシアニン誘導体、 導電 性高分子、 カーボンなどからなる層、 あるいは金属酸ィ匕物や金属フッ化物、 有機 絶縁材料等からなる平均膜厚 2 n m以下の層を設けてもょレ、。  In order to facilitate charge injection, a layer made of a phthalocyanine derivative, a conductive polymer, carbon, or the like, or an average film thickness made of a metal oxide, a metal fluoride, an organic insulating material, or the like is formed on the anode. Even if a layer of nm or less is provided.
本発明の高分子 L E Dで用いる陰極の材料としては、 仕事関数の小さレ、材料が 好ましい。 例えば、 リチウム、 ナトリウム、 カリウム、 ノレビジゥム、 セシウム、 ベリリウム、 マグネシウム、 カルシウム、 ストロンチウム、 バリウム、 ァノレミニ ゥム、 スカンジウム、 バナジウム、 亜鉛、 イットリウム、 インジウム、 セリウム、 サマリウム、 ユーロピウム、 テルビウム、 イッテルビウムなどの金属、 及ぴそれ らのうち 2つ以上の合金、 あるいはそれらのうち 1つ以上と、 金、 銀、 白金、 銅、 マンガン、 チタン、 コパノレト、 二ッケノレ、 タングステン、 錫のうち 1つ以上との 合金、 グラフアイト又はグラフアイト層間化合物等が用いられる。 合金の例とし ては、 マグネシウム一銀合金、 マグネシウム—ィンジゥム合金、 マグネシウム一 アルミニウム合金、 インジウム一銀合金、 リチウム一アルミニウム合金、 リチウ ムーマグネシウム合金、 リチウム一インジウム合金、 カルシウム一アルミニウム 合金などが挙げられる。 陰極を 2層以上の積層構造としてもよい。 陰極の膜厚は、 電気伝導度や耐久性を考慮して、 適宜選択することができるが、 例えば 1 0 11 111から1 0 μ πιであり、 好ましくは 2 O n m〜l /i mであり、 さら に好ましくは 5 0 n m〜5 0 0 n mである。 As the material of the cathode used in the polymer LED of the present invention, a material having a small work function is preferable. For example, metals such as lithium, sodium, potassium, norebium, cesium, beryllium, magnesium, calcium, strontium, barium, anorenium, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, etc.合金 Alloys of two or more of them, or one or more of them, and one or more of gold, silver, platinum, copper, manganese, titanium, copanoleto, nickele, tungsten, and tin, graphs Aite or a graphite interlayer compound is used. Examples of alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium magnesium alloy, lithium-indium alloy, calcium-aluminum alloy, etc. . The cathode may have a laminated structure of two or more layers. The thickness of the cathode can be appropriately selected in consideration of electric conductivity and durability, for example, 10 11 111 to 10 μπι, preferably 2 O nm to l / im, More preferably, it is 50 nm to 500 nm.
陰極の作製方法としては、 真空蒸着法、 スパッタリング法、 また金属薄膜を熱 圧着するラミネート法等が用いられる。 また、 陰極と有機物層との間に、 導電性 高分子からなる層、 あるいは金属酸化物や金属フッ化物、 有機絶縁材料等からな る平均膜厚 2 n m以下の層を設けても良く、 陰極作製後、 該高分子 L E Dを保護 する保護層を装着していてもよい。 該高分子 L E Dを長期安定的に用いるために は、 素子を外部から保護するために、 保護層及び Z又は保護カバーを装着するこ とが好ましい。  As a method for producing the cathode, a vacuum evaporation method, a sputtering method, a lamination method of thermocompression bonding of a metal thin film, and the like are used. A layer made of a conductive polymer or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like having an average thickness of 2 nm or less may be provided between the cathode and the organic material layer. After fabrication, a protective layer for protecting the polymer LED may be attached. In order to use the polymer LED stably for a long period of time, it is preferable to attach a protective layer and Z or a protective cover to protect the element from the outside.
該保護層としては、 高分子化合物、 金属酸化物、 金属フッ化物、 金属ホウ化物 などを用いることができる。 また、 保護カバーとしては、 ガラス板、 表面に低透 水率処理を施したプラスチック板などを用いることができ、 該カパーを熱効果樹 脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。 ス ぺーサ一を用いて空間を維持すれば、 素子がキズつくのを防ぐことが容易である。 該空間に窒素やアルゴンのような不活性なガスを封入すれば、 陰極の酸ィ匕を防止 することができ、 さらに酸ィ匕パリゥム等の乾燥剤を該空間内に設置することによ り製造工程で吸着した水分が素子にダメージを与えるのを抑制することが容易と なる。 これらのうち、 いずれか 1つ以上の方策をとることが好ましい。  As the protective layer, a polymer compound, a metal oxide, a metal fluoride, a metal boride and the like can be used. Further, as the protective cover, a glass plate, a plastic plate whose surface has been subjected to a low water permeability treatment, or the like can be used, and the cover is bonded to the element substrate with a heat effect resin or a photocurable resin to seal the cover. Is preferably used. If the space is maintained using a spacer, it is easy to prevent the element from being damaged. By enclosing an inert gas such as nitrogen or argon in the space, it is possible to prevent oxidation of the cathode, and by installing a desiccant such as an oxidation slurry in the space. It becomes easy to suppress the moisture adsorbed in the manufacturing process from damaging the element. It is preferable to take one or more of these measures.
本発明の高分子 L E Dを用いて面状の発光を得るためには、 面状の陽極と陰極 が重なり合うように配置すればよい。 また、 パターン状の発光を得るためには、 前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、 非 発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、 陽極又は陰極 のいずれか一方、 又は両方の電極をパターン状に形成する方法がある。 これらの いずれかの方法でパターンを形成し、 いくつかの電極を独立に O N/O F Fでき るように配置することにより、 数字や文字、 簡単な記号などを表示できるセグメ ントタイプの表示素子が得られる。 更に、 ドットマトリックス素子とするために は、 陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。 複数の種類の発光色の異なる高分子蛍光体を塗り分ける方法や、 カラーフィルタ 一又は蛍光変換フィルターを用いる方法により、 部分カラー表示、 マルチカラー 表示が可能となる。 ドットマトリックス素子は、 パッシブ駆動も可能であるし、 T F Tなどと組み合わせてアクティブ駆動してもよい。 これらの表示素子は、 コ ンピュータ、 テレビ、 携帯端末、 携帯電話、 カーナビゲーシヨン、 ビデオカメラ のビューファインダーなどの表示装置として用いることができる。 In order to obtain planar light emission using the polymer LED of the present invention, a planar anode and a planar cathode may be arranged so as to overlap. Further, in order to obtain patterned light emission, a method in which a mask having a patterned window provided on the surface of the planar light emitting element is provided. There is a method of emitting light, a method of forming one or both of an anode and a cathode in a pattern. By forming a pattern using one of these methods and arranging several electrodes so that they can be turned on and off independently, a segment-type display element that can display numbers, letters, simple symbols, etc. can be obtained. . Further, in order to form a dot matrix element, both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. A method of applying different types of polymer phosphors with different emission colors, a color filter Depending on the method using one or a fluorescence conversion filter, partial color display and multi-color display can be realized. The dot matrix element can be driven passively or may be driven actively in combination with a TFT or the like. These display elements can be used as display devices for computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
さらに、 前記面状の発光素子は、 自発光薄型であり、 液晶表示装置のパックラ ィト用の面状光源、 あるいは面状の照明用光源として好適に用いることができる。 また、 フレキシブルな基板を用いれば、 曲面状の光源や表示装置としても使用で さる。  Further, the planar light emitting element is a self-luminous thin type, and can be suitably used as a planar light source for packing in a liquid crystal display device or a planar illumination light source. Also, if a flexible substrate is used, it can be used as a curved light source or display device.
以下、 本発明をさらに詳細に説明するために実施例を示すが、 本発明はこれら に限定されるものではない。  Hereinafter, examples will be shown in order to explain the present invention in further detail, but the present invention is not limited to these.
ここで、 数平均分子量については、 クロ口ホルムを溶媒として、 ゲルパーミエ ーシヨンクロマトグラフィー (G P C) によりポリスチレン換算の数平均分子量 を求めた。  Here, the number average molecular weight was determined by gel permeation chromatography (GPC) using the form of solvent as a solvent, and the number average molecular weight in terms of polystyrene was determined.
実施例 1 Example 1
<高分子蛍光体 1の合成 >  <Synthesis of polymeric fluorescent substance 1>
2—メ トキシ一 5— ( 2ーェチルへキシルォキシ) - p—キシレンジクロリ ド 0 . 1 6 6 gと 4— ( 3, 7—ジメチルォクチルォキシ) フエニル _ p—キシリ レンジクロリ ド 9 . 7 7 gとを乾燥 1, 4一ジォキサン 1 8 5 0 gに溶解し、 1 5分間窒素でパブリングし脱気した後、 反応溶液を 9 5 °Cまで昇温した。 この溶 液に、 t一ブトキシカリゥム 7 . 4 g /乾燥 1, 4—ジォキサン 1 0 0 gの溶液 を 5分で滴下した。 さらにこの溶液を 9 7 °Cに昇温した後、 t _ブトキシカリウ ム 5 . 6 g /乾燥 1 , 4—ジォキサン 1 0 0 gの溶液を滴下した。 そのまま 9 7 〜 9 8 °Cで 2時間反応させた。 反応後、 5 0 °Cに冷却し、 酢酸 Ί · 0 g / 1, 4 —ジォキサン 7 . 0 gの混合液を加えて中和した。 室温に放冷後、 この反応液を 攪拌したメタノール中に注ぎこんだ。 次に析出した沈殿をろ別し、 メタノールで 洗浄する工程を 2回繰り返した。 得られた沈殿を 5 0 °Cで 8時間減圧乾燥して重 合体を得た。  2-Methoxy-5- (2-ethylhexyloxy) -p-xylene dichloride 0.166 g and 4- (3,7-dimethyloctyloxy) phenyl _p-xylylene dichloride 9.7 7 g was dissolved in 180 g of dried 1,4-dioxane, and the reaction solution was heated to 95 ° C. after degassing by bubbling with nitrogen for 15 minutes. To this solution, a solution of 7.4 g of t-butoxycalide / 100 g of dried 1,4-dioxane was added dropwise in 5 minutes. After the temperature of the solution was further raised to 97 ° C., a solution of 5.6 g of t_butoxy potassium / 100 g of dried 1,4-dioxane was added dropwise. The reaction was allowed to proceed at 97 to 98 ° C for 2 hours. After the reaction, the mixture was cooled to 50 ° C, and neutralized by adding a mixed solution of acetic acidΊ0 g / 1,4-dioxane 7.0 g. After allowing to cool to room temperature, the reaction solution was poured into stirred methanol. Next, the step of separating the deposited precipitate by filtration and washing with methanol was repeated twice. The obtained precipitate was dried under reduced pressure at 50 ° C for 8 hours to obtain a polymer.
次に、 この重合体をテトラヒドロフランに溶解し、 これをメタノール中に注ぎ 込み、 再沈精製した。 この沈殿をメタノールで洗浄した後、 5 0。Cで 8時間減圧 乾燥して重合体 4 . 4 1 gを得た。 Next, this polymer is dissolved in tetrahydrofuran, and this is poured into methanol. And purified by reprecipitation. After washing the precipitate with methanol, 50. It was dried under reduced pressure at C for 8 hours to obtain 4.41 g of a polymer.
<アルカリ処理 > <Alkali treatment>
該重合体のうち 0 . 9 3 gを乾燥 1, 4一ジォキサン 3 2◦ gに溶解し、 1 5 分間窒素でバブリングし脱気した後、 溶液を 9 0 °Cまで昇温した。 この溶液に、 t—ブトキシカリゥム 1 . 3 g Z乾燥 1, 4—ジォキサン 2 0 gの溶液を 5分で 滴下した。 さらにこの溶液を 9 3 °Cに昇温し、 9時間攪拌を続けた。  0.93 g of the polymer was dissolved in 32 g of dry 1,4-dioxane, bubbled with nitrogen for 15 minutes, degassed, and the solution was heated to 90 ° C. To this solution, a solution of 1.3 g of t-butoxy potassium and 20 g of dried 1,4-dioxane was added dropwise over 5 minutes. The temperature of the solution was further increased to 93 ° C, and stirring was continued for 9 hours.
その後、 5 0 °Cに冷却し、 酢酸 1 . 1 g / 1 , 4一ジォキサン 1 . l gの混合 液を加えて中和した。 室温に放冷後、 この反応液を攪拌したイオン交換水中に注 ぎこんだ。 次に析出した沈殿をろ別し、 メタノールで洗浄した。 これを 5 0 °Cで 4時間減圧乾燥して重合体 0 . 8 8 gを得た。  Thereafter, the mixture was cooled to 50 ° C. and neutralized by adding a mixed solution of 1.1 g / l of acetic acid and 1.1 g of 4-dioxane. After allowing to cool to room temperature, the reaction solution was poured into stirred ion-exchanged water. Next, the deposited precipitate was separated by filtration and washed with methanol. This was dried under reduced pressure at 50 ° C for 4 hours to obtain 0.888 g of a polymer.
さらに、 これをテトラヒドロフランに溶解し、 これをメタノール中にそそぎ込 み、 再沈精製した。 この沈殿をメタノールで洗浄した後、 5 0 °Cで 5 . 5時間減 圧乾燥して、 重合体◦. 8 5 gを得た。 該重合体を高分子蛍光体 1と呼ぶ。  This was dissolved in tetrahydrofuran, poured into methanol, and purified by reprecipitation. The precipitate was washed with methanol and dried under reduced pressure at 50 ° C for 5.5 hours to obtain 85 g of a polymer. This polymer is referred to as polymeric fluorescent substance 1.
該高分子蛍光体 1のポリスチレン換算の数平均分子量は、 1 . 6 X 1 0 5であ つた。 高分子蛍光体 1の 0 . 4 %トルェン溶液は、 加熱すると均一な溶液となり、 室温にもどしてもゲノレ化しなかつた。 The polystyrene equivalent number average molecular weight of polymeric fluorescent substance 1, 1. 6 X 1 0 5 der ivy. The 0.4% toluene solution of polymeric fluorescent substance 1 became a homogeneous solution when heated, and did not become entrapped even at room temperature.
比較例 1 Comparative Example 1
実施例 1において、 アル力リ処理を行う前の粗高分子蛍光体を高分子蛍光体 2 と呼ぶ。 該高分子蛍光体 2のポリスチレン換算の数平均分子量は、 4 . 3 X 1 In the first embodiment, the crude polymer fluorescent substance before the initial processing is referred to as polymer fluorescent substance 2. The number average molecular weight in terms of polystyrene of the polymeric fluorescent substance 2 is 4.3 X 1
0。であった。 高分子蛍光体 2の 0 . 4 %トルェン溶液は、 加熱すると均一な溶 液となったが、 室温にもどるとゲル化した。 0. Met. The 0.4% toluene solution of polymeric fluorescent substance 2 became a homogeneous solution when heated, but gelled when returned to room temperature.
実施例 2 Example 2
<素子の作成及び評価 >  <Preparation and evaluation of device>
スパッタ法により 1 5 0 n mの厚みで I T〇膜を付けたガラス基板に、 ポリ (エチレンジォキシチォフェン) /ポリスチレンスルホン酸の溶液 (バイエル社、 B a y t r o n ) を用いてスピンコートにより 5 0 n mの厚みで成膜し、 ホット プレート上で 1 2 0。Cで 5分間乾燥した。 次に、 高分子蛍光体 1の 0 . 4 w t % クロ口ホルム溶液を用いてスピンコートにより 1 0 0 n mの厚みで成膜した。 さ らに、 これを減圧下 80°Cで 1時間乾燥した後、 陰極バッファ一層として、 フッ ィ匕リチウムを 0. 4nm、 陰極として、 カルシウムを 25 nm、 次いでアルミ二 ゥムを 40 nm蒸着して、 高分子 LEDを作製した。 蒸着のときの真空度は、 す ベて 1〜8 X 10— 6T o r rであった。 得られた素子に電圧を印加することに より、 高分子蛍光体 1からの EL発光が得られた。 発光開始電圧は、 約 3Vであ り、 発光効率は最大約 6. 8 c d /Aであった。 A glass substrate on which an IT〇 film with a thickness of 150 nm was applied by sputtering was spin-coated with a solution of poly (ethylenedioxythiophene) / polystyrene sulfonic acid (Baytron, Baytron) by spin coating. Deposited to a thickness of nm and 120 on a hot plate. Dry at C for 5 minutes. Next, a film having a thickness of 100 nm was formed by spin coating using a polymer solution of 0.4 wt% of a polymeric fluorescent substance 1 in a pore form. Sa After drying at 80 ° C for 1 hour under reduced pressure, 0.4 nm of lithium fluoride as a cathode buffer layer, 25 nm of calcium as a cathode, and then 40 nm of aluminum were deposited. A polymer LED was fabricated. The degree of vacuum in vapor deposition, to base Te was 1~8 X 10- 6 T orr. By applying a voltage to the obtained device, EL light emission from polymeric fluorescent substance 1 was obtained. The luminescence starting voltage was about 3 V, and the luminous efficiency was up to about 6.8 cd / A.
実施例 3 Example 3
ぐ高分子蛍光体 3の合成 > Synthesis of fluorescent polymer 3>
不活性雰囲気下にて、 9, 9ージォクチルフルオレン一 2, 7一ビス (ェチレ ンポロネート) (900mg、 1. 641 mmo 1 ) 、 2, 7—ジブロモ一 9, 9ージォクチルフルオレン (914mg、 1. 723 mm o 1 ) 、 及び a 1 i q u a t 336 (66 Omg) をトルエン (30ml) に溶解させ、 これに炭酸力 リウム (680mg、 4. 923 mm o 1 ) の水溶液 (30ml) を加えた。 さ らにテトラキス (トリフエニルホスフィン) バラジウム (57mg、 0. 049 2mmo 1) を加え、 20時間加熱環流した。 放冷後分液し、 有機層を水洗した。 この有機層をメタノール (300ml) に滴下し、 析出した沈殿を濾別した。 シ リカゲルクロマトグラフィー (トルエン) にて精製し、 重合体を得た。 収量は、 863mgであった。 該重合体のポリスチレン換算の数平均分子量は、 1. 3 X 104であった。 Under an inert atmosphere, 9,9-dioctylfluorene-1,2,7-bis (ethylenpolonate) (900 mg, 1.641 mmo 1), 2,7-dibromo-1,9,9-dioctylfluorene ( 914 mg, 1.723 mm o 1) and a 1 iquat 336 (66 O mg) were dissolved in toluene (30 ml), and an aqueous solution (30 ml) of potassium carbonate (680 mg, 4.923 mm o 1) was added thereto. Was. Further, tetrakis (triphenylphosphine) palladium (57 mg, 0.0492 mmo 1) was added, and the mixture was heated under reflux for 20 hours. After allowing to cool, liquid separation was performed, and the organic layer was washed with water. The organic layer was dropped into methanol (300 ml), and the deposited precipitate was separated by filtration. The polymer was purified by silica gel chromatography (toluene) to obtain a polymer. The yield was 863 mg. The polystyrene-equivalent number average molecular weight of the polymer was 1.3 × 10 4 .
<アルカリ処理 > <Alkali treatment>
次に、 得られた重合体のうち 50 m gをトルエンに溶解させて 4 gの溶液とし た。 この溶液と 25 %アンモニア水 2 m 1とを密閉容器中で混合し、 室温で 3時 間攪拌した。 静置してトルエンと水に分離した後、 分液してトルエン部分を回収 した。 この溶液をメタノール 100 m 1中へ添加して攪拌し、 生じた沈殿を濾別 した。 これをメタノールで洗浄した後、 減圧下、 50 で 2時間乾燥して、 重合 体 38 m gを得た。 該重合体を高分子蛍光体 3と呼ぶ。 高分子蛍光体 3は、 トル ェン、 クロ口ホルムなどの溶媒に可溶であつた。  Next, 50 mg of the obtained polymer was dissolved in toluene to obtain a 4 g solution. This solution and 2 ml of 25% aqueous ammonia were mixed in a closed vessel, and the mixture was stirred at room temperature for 3 hours. After standing and separating into toluene and water, the liquid was separated and the toluene portion was recovered. This solution was added to 100 ml of methanol and stirred, and the resulting precipitate was separated by filtration. This was washed with methanol, and dried under reduced pressure at 50 for 2 hours to obtain 38 mg of a polymer. This polymer is referred to as polymeric fluorescent substance 3. Polymeric fluorescent substance 3 was soluble in solvents such as toluene and black-mouthed form.
ぐ溶解性 > Solubility>
高分子蛍光体 3の 1. 5%トルエン溶液を冷蔵庫 (約 10°C) に一晩保管する と柔らかいゲル状になったが、 室温に戻すとすぐに均一な溶液になった。 Store 1.5% toluene solution of polymeric fluorescent substance 3 in refrigerator (about 10 ° C) overnight It turned into a soft gel, but soon returned to room temperature and became a homogeneous solution.
<蛍光特性 > <Fluorescence properties>
高分子蛍光体 3の 0. 4 %クロロホルム溶液を石英板上にスピンコートし て、 高分子蛍光体 3の薄膜を作成した。 この薄膜の紫外可視吸収スペクトルと蛍 光スぺク トルとを、 それぞれ紫外可視吸収分光光度計 (日立製作所 UV350 0) 及び蛍光分光光度計 (日立製作所 850) を用いて測定した。 蛍光強度の算 出には、 350 nmで励起した時の蛍光スぺクトルを用いた。 横軸に波数をとつ てプロットした蛍光スぺクトルの面積を、 350 nmでの吸光度で割ることによ り蛍光強度の相対値を求めた。  A 0.4% chloroform solution of polymeric fluorescent substance 3 was spin-coated on a quartz plate to form a thin film of polymeric fluorescent substance 3. The ultraviolet-visible absorption spectrum and the fluorescence spectrum of this thin film were measured using an ultraviolet-visible absorption spectrophotometer (Hitachi Ltd. UV3500) and a fluorescence spectrophotometer (Hitachi Ltd. 850), respectively. The fluorescence spectrum when excited at 350 nm was used to calculate the fluorescence intensity. The relative value of the fluorescence intensity was obtained by dividing the area of the fluorescence spectrum plotted with the wave number on the horizontal axis by the absorbance at 350 nm.
高分子蛍光体 3の蛍光ピーク波長は、 428η で、 蛍光強度の相対値は 3. 1であった。  The fluorescent peak wavelength of polymeric fluorescent substance 3 was 428η, and the relative value of the fluorescent intensity was 3.1.
比較例 2 Comparative Example 2
実施例 3において、 アル力リ処理を行う前の粗高分子蛍光体を高分子蛍光体 4 と呼ぶ。 該高分子蛍光体 4を用い、 実施例 3と同じ方法で紫外可視吸収スぺタト ルと蛍光スペクトルを測定し、 蛍光強度の相対値を求めた。  In the third embodiment, the crude polymer fluorescent material before the initial processing is referred to as a polymer fluorescent material 4. Using this polymeric fluorescent substance 4, the UV-visible absorption peak and the fluorescent spectrum were measured in the same manner as in Example 3, and the relative value of the fluorescent intensity was obtained.
高分子蛍光体 4の蛍光ピーク波長は、 426 nmで、 蛍光強度の相対値は 0. 26であった。  The fluorescent peak wavelength of polymeric fluorescent substance 4 was 426 nm, and the relative value of the fluorescent intensity was 0.26.
また、 高分子蛍光体 4の 1. 5%トルエン溶液を冷蔵庫 (約 10°C) に一晩保 管するとゲル状になり、 室温に戻してもすぐには均一な溶液にならなかった。 産業上の利用可能性  When a 1.5% toluene solution of polymeric fluorescent substance 4 was stored in a refrigerator (approximately 10 ° C) overnight, it became gel-like, and did not immediately become a homogeneous solution even after returning to room temperature. Industrial applicability
本発明の製造方法により得られる高分子蛍光体は、 有機溶媒に対する溶解性が 優れており、 高分子 LEDやレーザー用色素として好適に用いることができる。 また、 該製造方法で得られる高分子蛍光体を用いた高分子 LEDは、 低電圧、 高 発光効率である。 したがって、 該高分子 LEDは、 バックライトとしての曲面状 や面状光源、 セグメントタイプの表示素子、 ドットマトリックスのフラットパネ  The polymeric fluorescent substance obtained by the production method of the present invention has excellent solubility in an organic solvent and can be suitably used as a polymeric LED or a dye for laser. The polymer LED using the polymer phosphor obtained by the manufacturing method has low voltage and high luminous efficiency. Therefore, the polymer LED has a curved or planar light source as a backlight, a segment type display element, and a dot matrix flat panel.
'レイ等の装置に好ましく使用できる。  'It can be used preferably for devices such as Ray.

Claims

請求の範囲 4 Claim 4
1. 固体状態で蛍光を有し、 ポリスチレン換算の数平均分子量が 1 01. It has fluorescence in the solid state and has a polystyrene equivalent number average molecular weight of 10
08であり、 下記式 (1) で示される繰り返し単位を 1種類以上含む粗高分子蛍 光体をアルカリと接触させる工程を含むことを特徴とする高分子蛍光体の製造方 法 0 is 8, producing how the polymeric fluorescent substance, characterized in that the crude polymer fluorescent body comprising repeating units of one or more comprising the step of contacting with alkali represented by the following formula (1)
-Ar !- (CR1 = CR2) n - (1) (ここで、 A r iは、 ァリーレン基又は複素環化合物基であり、 無置換又は 1 つ以上の置換基を有していてもよく、 !^及び!^は、 それぞれ独立に水素原子、 アルキル基、 ァリール基、 複素環ィヒ合物基及びシァノ基からなる群から選ばれる 基を示し、 上記ァリール基及ぴ複素環化合物基は、 さらに置換基を有していても よく、 nは 0又は 1である) 。 -Ar!-(CR 1 = CR 2 ) n- (1) (where, A ri is an arylene group or a heterocyclic compound group, and may be unsubstituted or have one or more substituents. ,! ^ And! ^ Each independently represent a group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a heterocyclic compound group and a cyano group, and the aryl group and the heterocyclic compound group are And may further have a substituent, and n is 0 or 1.).
2. アルカリ力 金属アルコキシド、 アンモニア又はアミン類である請求項 1記載の方法。  2. The method according to claim 1, which is an alkali metal alkoxide, ammonia or an amine.
3. 粗高分子蛍光体をアル力リと接触させる温度が 10°C以上 200°C以下で ある請求項 1又は 2記載の方法。  3. The method according to claim 1, wherein the temperature at which the crude polymer fluorescent substance is brought into contact with the aluminum alloy is 10 ° C. or more and 200 ° C. or less.
4. 請求項 1〜 3のいずれか一項に記載の製造方法で製造され得る高分子蛍 光体。  4. A polymer phosphor that can be produced by the production method according to any one of claims 1 to 3.
5. 少なくとも一方が透明又は半透明である一対の陽極及ぴ陰極からなる電 極間に、 少なくとも発光層を有する高分子発光素子であって、 該発光層が請求項 4記載の高分子蛍光体を含むことを特徴とする高分子発光素子。  5. A polymer light-emitting device having at least a light-emitting layer between electrodes consisting of a pair of anodes and cathodes, at least one of which is transparent or translucent, wherein the light-emitting layer is the polymer phosphor according to claim 4. A polymer light emitting device comprising:
6. 陰極と発光層との間に、 該発光層に隣接して電子輸送性化合物からなる 層を設けた請求項 5記載の高分子発光素子。  6. The polymer light emitting device according to claim 5, wherein a layer made of an electron transporting compound is provided between the cathode and the light emitting layer, adjacent to the light emitting layer.
7. 陽極と発光層との間に、 該発光層に隣接して正孔輸送性ィヒ合物からなる 層を設けた請求項 5記載の高分子発光素子。  7. The polymer light emitting device according to claim 5, wherein a layer made of a hole transporting compound is provided between the anode and the light emitting layer, adjacent to the light emitting layer.
8. 陰極と発光層との間に、 該発光層に隣接して電子輸送性ィ匕合物からなる 層、 及び陽極と発光層との間に、 該発光層に隣接して正孔輸送性化合物からなる 層を設けた請求項 5記載の高分子発光素子。 8. a layer comprising an electron transporting compound adjacent to the light emitting layer between the cathode and the light emitting layer; and a hole transporting layer adjacent to the light emitting layer between the anode and the light emitting layer. Consisting of compounds 6. The polymer light emitting device according to claim 5, wherein a layer is provided.
9 . 請求項 5〜 8のいずれか一項に記載の高分子発光素子を用いたことを特 徴とする面状光源。  9. A planar light source characterized by using the polymer light-emitting device according to any one of claims 5 to 8.
1 0 . 請求項 5〜 8のいずれか一項に記載の高分子発光素子を用いたことを特 徴とするセグメント表示装置。  10. A segment display device using the polymer light-emitting device according to any one of claims 5 to 8.
1 1 . 請求項 5〜 8のいずれか一項に記載の高分子発光素子を用いたことを特 徴とするドットマトリックス表示装置。  11. A dot matrix display device characterized by using the polymer light emitting device according to any one of claims 5 to 8.
1 2 . 請求項 5〜8のいずれか一項に記載の高分子発光素子をパックライトと することを特徴とする液晶表示装置。  12. A liquid crystal display device comprising the polymer light-emitting device according to any one of claims 5 to 8 as a pack light.
PCT/JP2001/005219 1999-12-20 2001-06-19 Polymeric fluorescent material, process for producing the same, and polymeric luminescent element WO2002102925A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000384951A JP4940493B2 (en) 1999-12-20 2000-12-19 Polymer phosphor, method for producing the same, and polymer light emitting device
DE10197249T DE10197249T5 (en) 1999-12-20 2001-06-19 Polymer fluorescent substance, manufacturing method therefor and polymer light emitting device
PCT/JP2001/005219 WO2002102925A1 (en) 1999-12-20 2001-06-19 Polymeric fluorescent material, process for producing the same, and polymeric luminescent element
US10/480,996 US7357990B2 (en) 1999-12-20 2001-06-19 Polymeric fluorescent material, process for producing the same, and polymeric luminiscent element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36072999 1999-12-20
JP2000384951A JP4940493B2 (en) 1999-12-20 2000-12-19 Polymer phosphor, method for producing the same, and polymer light emitting device
PCT/JP2001/005219 WO2002102925A1 (en) 1999-12-20 2001-06-19 Polymeric fluorescent material, process for producing the same, and polymeric luminescent element

Publications (1)

Publication Number Publication Date
WO2002102925A1 true WO2002102925A1 (en) 2002-12-27

Family

ID=27278781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005219 WO2002102925A1 (en) 1999-12-20 2001-06-19 Polymeric fluorescent material, process for producing the same, and polymeric luminescent element

Country Status (3)

Country Link
JP (1) JP4940493B2 (en)
DE (1) DE10197249T5 (en)
WO (1) WO2002102925A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649077B2 (en) 2002-10-30 2010-01-19 Ciba Specialty Chemicals Corporation Polymers for use in optical devices

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297415B2 (en) 1999-12-27 2007-11-20 Sumitomo Chemical Company, Limited Processes for producing polymeric fluorescent material and polymeric luminescent element
JP4482994B2 (en) * 1999-12-27 2010-06-16 住友化学株式会社 Polymer phosphor manufacturing method and polymer light emitting device
SG125077A1 (en) 2001-12-19 2006-09-29 Sumitomo Chemical Co Copolymer, polymer composition and polymer light-emitting device
US7531619B2 (en) 2002-07-18 2009-05-12 Satoru Obara Process for producing dendrimer, building block compound, and process for producing thiophene compound
WO2004101682A1 (en) * 2003-05-16 2004-11-25 Sumitomo Chemical Company, Limited Composition and polymer light-emitting device
CN1849380B (en) * 2003-09-12 2011-04-27 住友化学株式会社 Luminescent material and luminescent element comprising the same
TW200619300A (en) * 2004-08-31 2006-06-16 Sumitomo Chemical Co Luminescent-polymer composition and luminescent -polymer device
TW200724558A (en) 2005-10-07 2007-07-01 Sumitomo Chemical Co Polymer compound and polymer light-emitting device using the same
JP2008056911A (en) * 2006-07-31 2008-03-13 Sumitomo Chemical Co Ltd Method for producing polymeric compound
WO2008016090A1 (en) * 2006-07-31 2008-02-07 Sumitomo Chemical Company, Limited Method for producing polymer compound
US8217387B2 (en) 2006-07-31 2012-07-10 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
EP2154174A4 (en) * 2007-05-11 2010-06-09 Sumitomo Chemical Co Polymer compound and method for producing the same, and light-emitting material, liquid composition, thin film, polymer light-emitting device, surface light source, display device, organic transistor and solar cell, each using the polymer compound
EP2154172A4 (en) * 2007-05-11 2010-05-05 Sumitomo Chemical Co Polymer compound and method for producing the same, and light-emitting material, liquid composition, thin film, polymer light-emitting device, surface light source, display device, organic transistor and solar cell, each using the polymer compound
EP2159243A4 (en) * 2007-05-23 2011-11-09 Sumitomo Chemical Co Polymer compound and method for producing the same, and light-emitting material, liquid composition, thin film, polymer light-emitting device, surface light source, display device, organic transistor and solar cell, each using the polymer compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273848A (en) * 1986-05-22 1987-11-27 三井東圧化学株式会社 Hetero-penta-cyclic compound polymer multilayer film and manufacture thereof
JPH02242816A (en) * 1989-03-16 1990-09-27 Showa Denko Kk Polymer having isothianaphthene structure and production thereof
EP0443861A2 (en) * 1990-02-23 1991-08-28 Sumitomo Chemical Company, Limited Organic electroluminescence device
JPH06279572A (en) * 1993-03-29 1994-10-04 Tokyo Inst Of Technol Poly(2,2'-bipyridine-5,5'-diyl) polymer having alkyl substituent and production and use thereof
JP2001076880A (en) * 1999-08-31 2001-03-23 Sumitomo Chem Co Ltd Organic exectroluminescent element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028213A (en) * 1988-06-28 1990-01-11 Ryuichi Yamamoto Novel polymerization process using zero-valent nickel complex
JP2987865B2 (en) * 1990-02-23 1999-12-06 住友化学工業株式会社 Organic electroluminescence device
JP3534445B2 (en) * 1993-09-09 2004-06-07 隆一 山本 EL device using polythiophene
DE69834259T2 (en) * 1997-03-11 2007-04-26 The Ohio State University Research Foundation, Columbus BIPOLAR / AC LIGHT EMITTING DEVICES WITH VARIABLE COLOR
JP3272284B2 (en) * 1997-11-04 2002-04-08 科学技術振興事業団 Poly (substituted biphenylene vinylenes) and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273848A (en) * 1986-05-22 1987-11-27 三井東圧化学株式会社 Hetero-penta-cyclic compound polymer multilayer film and manufacture thereof
JPH02242816A (en) * 1989-03-16 1990-09-27 Showa Denko Kk Polymer having isothianaphthene structure and production thereof
EP0443861A2 (en) * 1990-02-23 1991-08-28 Sumitomo Chemical Company, Limited Organic electroluminescence device
JPH06279572A (en) * 1993-03-29 1994-10-04 Tokyo Inst Of Technol Poly(2,2'-bipyridine-5,5'-diyl) polymer having alkyl substituent and production and use thereof
JP2001076880A (en) * 1999-08-31 2001-03-23 Sumitomo Chem Co Ltd Organic exectroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649077B2 (en) 2002-10-30 2010-01-19 Ciba Specialty Chemicals Corporation Polymers for use in optical devices

Also Published As

Publication number Publication date
JP4940493B2 (en) 2012-05-30
DE10197249T5 (en) 2004-10-14
JP2001247861A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP4830186B2 (en) Polymer phosphor and polymer light emitting device using the same
JP4622022B2 (en) Polymer light-emitting device, display device using the same, and planar light source
JP4341212B2 (en) Polymer phosphor and polymer light emitting device using the same
JP3747686B2 (en) Polymer phosphor and polymer light emitting device using the same
JP4934888B2 (en) Polymer phosphor and polymer light emitting device using the same
JP4934889B2 (en) Polymer phosphor and polymer light emitting device using the same
JP4940495B2 (en) Polymer phosphor and polymer light emitting device
JP4724944B2 (en) Method for producing polymer light emitting device and polymer light emitting device
JP4147778B2 (en) Polymer compound, method for producing the same, and polymer light emitting device
JP4940493B2 (en) Polymer phosphor, method for producing the same, and polymer light emitting device
JP2008056910A (en) Polymeric compound and polymeric light-emitting device using the same
JP4045883B2 (en) Polymer phosphor and polymer light emitting device using the same
US7357990B2 (en) Polymeric fluorescent material, process for producing the same, and polymeric luminiscent element
KR20020015279A (en) Polymeric fluorescent substance and polymer light emitting device
JP4211203B2 (en) Polymer phosphor and polymer light emitting device using the same
WO2006070911A1 (en) Polymer and polymeric luminescent element employing the same
JP2002038142A (en) Polymer fluorescent substance and polymer luminous element using the same
JP4035995B2 (en) Copolymer and polymer light emitting device using the same
JP4045848B2 (en) Polymer phosphor and polymer light emitting device using the same
JP3900897B2 (en) Polymer phosphor and polymer light emitting device using the same
JP3922005B2 (en) Polymer phosphor and polymer light emitting device using the same
JP2002155274A (en) Polymeric fluorophor and polymeric light-emitting device
JP4747427B2 (en) Polymer phosphor and polymer light emitting device using the same
JP4078474B2 (en) Polymer light emitting device
JP2002075642A (en) Organic electroluminescent device and production process thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10480996

Country of ref document: US

122 Ep: pct application non-entry in european phase