WO2002099862A1 - Annealing method, ultra-shallow junction layer forming method and ultr-shallow junction layer forming device - Google Patents

Annealing method, ultra-shallow junction layer forming method and ultr-shallow junction layer forming device Download PDF

Info

Publication number
WO2002099862A1
WO2002099862A1 PCT/JP2002/005319 JP0205319W WO02099862A1 WO 2002099862 A1 WO2002099862 A1 WO 2002099862A1 JP 0205319 W JP0205319 W JP 0205319W WO 02099862 A1 WO02099862 A1 WO 02099862A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electromagnetic wave
ultra
junction layer
shallow junction
Prior art date
Application number
PCT/JP2002/005319
Other languages
French (fr)
Japanese (ja)
Inventor
Mitihiko Takase
Akihisa Yoshida
Bunji Mizuno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2002099862A1 publication Critical patent/WO2002099862A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species

Definitions

  • the present invention relates to an annealing method for reactivating atoms introduced into a substrate after recrystallizing the atoms to recover lattice defects generated in atoms constituting the substrate into which the impurities are introduced, and an ultra-shallow junction layer.
  • the present invention relates to a forming method and an ultra-shallow junction layer forming apparatus. Background art
  • LSIs ultra-large-scale integrated circuits
  • DRAM dynamic immediate memory device
  • a transistor having a gate with a gate length of about 50 nanometers is required to have a junction depth of a diffusion layer formed as small as about 10 nanometers.
  • a junction depth of a diffusion layer formed as small as about 10 nanometers.
  • Anneal technology is being considered.
  • One of the conventional annealing technologies is a solid-state diffusion process using infrared rapid heat treatment (RTA), which heats the entire substrate into which impurities have been implanted to approximately 100 ° C using an infrared lamp or the like.
  • RTA infrared rapid heat treatment
  • An activation method in a thermal equilibrium state using a technique is known.
  • a technique of irradiating a 310 nm XeC1 excimer laser to melt the surface of a silicon substrate and then recrystallizing silicon atoms is known as laser annealing.
  • Heat treatment is performed in combination with RTA of C 10 seconds (references Ken-ich Goto et al .; 9 31—93 3 3., International Electron Device Meeting 1999 at) Washington DC).
  • the above-described conventional annealing technique utilizing the solid-phase diffusion process by infrared rapid thermal processing (RTA) in a thermal equilibrium state is effective for activating the impurity-doped layer, but the entire substrate is 100,000. Since the substrate is heated to a high temperature of about ° C, there is a problem that the implanted impurities may diffuse deep into the substrate. For example, a boron atom implanted layer with a depth of 20 nanometers obtained by low energy can be heated to a depth of about 50 nanometers by performing rapid heating at 100 ° C for 10 seconds. There was a problem that it would be 2.5 times deeper.
  • the present invention has been made to solve the above-mentioned problem, and an object thereof is to provide an annealing method capable of preventing activated impurities from being unnecessarily diffused deep into a substrate. It is in.
  • Another object of the present invention is to provide an ultra-shallow junction layer forming method and an ultra-shallow junction layer forming apparatus capable of forming an ultra-thin junction layer having a shallow junction depth. Disclosure of the invention
  • the annealing method according to the present invention is an annealing method for annealing a substrate having impurities introduced therein, wherein the substrate is heated at a substrate temperature sufficiently low that the impurities introduced into the substrate are not activated.
  • a heat treatment of the substrate so as to be in a state of equilibrium, thereby recrystallizing atoms constituting the substrate, and after the recrystallization step, the substrate temperature is lowered to the sufficiently low substrate temperature.
  • an electromagnetic wave having a predetermined frequency band is applied to the substrate so as to directly excite lattice vibration (phonon) of the atoms. And irradiating an electromagnetic wave.
  • lattice vibration refers to the inter-atomic force that acts as a restoring force (pane force) according to Hooke's law for small displacement of atoms between atoms existing at the crystal lattice position due to thermal motion or forced vibration from the outside.
  • a coupled vibration in which the vibration of an atom caused by a force is transmitted to the next atom.
  • the method for forming an ultra-shallow junction layer comprises the steps of: A very shallow junction layer for forming an extremely shallow junction layer at a substrate temperature sufficiently low that the impurities introduced into the semiconductor substrate are not activated.
  • a predetermined lattice vibration (phonon) of the semiconductor element is directly excited. Irradiating the semiconductor substrate with an electromagnetic wave having a frequency band.
  • the extremely shallow junction layer is a diffusion layer formed in a transistor provided in a semiconductor device, and has a junction depth of about 20 nm or less and about 1 nm or more.
  • An ultra-shallow junction layer forming apparatus is an ultra-shallow junction layer forming apparatus for forming an ultra-shallow junction layer on a semiconductor substrate into which impurities are introduced, wherein the impurity introduced into the semiconductor substrate is Recrystallization means for subjecting the semiconductor substrate to heat treatment so that the semiconductor substrate is in a thermal equilibrium state at a substrate temperature sufficiently low that the semiconductor substrate is not activated, thereby recrystallizing semiconductor atoms constituting the semiconductor substrate.
  • FIG. 1 is a cross-sectional view of a semiconductor substrate into which an impurity according to the present embodiment has been introduced.
  • FIG. 2 is a cross-sectional view schematically showing an electric furnace for performing the recrystallization step according to the present embodiment.
  • FIG. 3 is a cross-sectional view schematically showing an electromagnetic wave irradiation device for performing the electromagnetic wave irradiation step according to the present embodiment. '
  • FIG. 4 is a cross-sectional view schematically showing an ultrashallow junction layer forming apparatus for performing both the recrystallization step and the electromagnetic wave irradiation step according to the present embodiment.
  • the semiconductor substrate is made of one of silicon and a silicon compound. This is because a semiconductor device formed over a silicon substrate can be obtained.
  • the semiconductor substrate is preferably heat-treated at a substrate temperature of 700 ° C. or less. This is because the substrate temperature is low enough that the impurities introduced into the semiconductor substrate are not activated in a thermal equilibrium state.
  • the semiconductor substrate is heat-treated by using either an electric furnace or a lamp heating furnace. This is because heat treatment can be performed with a simple configuration.
  • the coherent electromagnetic wave irradiated in the electromagnetic wave irradiation step preferably includes an ultrashort pulse laser beam having a pulse width of 10 to 1000 femtoseconds, and 10 GHz to 1 GHz. It preferably includes a continuous wave output laser beam having a frequency bandwidth of TH z or less, and has an oscillation frequency of 10 GHz or more and 100 GHz or less. It preferably contains a millimeter wave electromagnetic wave. It is preferable that the coherent electromagnetic wave irradiated in the electromagnetic wave irradiation step also has a frequency band corresponding to a binding energy between the semiconductor atom and the impurity. This is because the lattice vibration (phonon) of semiconductor atoms can be more reliably excited.
  • the semiconductor substrate is irradiated with the electromagnetic wave while cooling the semiconductor substrate so as to maintain the semiconductor substrate at the sufficiently low substrate temperature.
  • the cooling ensures that the semiconductor substrate is maintained at a substrate temperature sufficiently low that the impurities are not substantially activated in a thermal equilibrium state, so that the activated impurities are unnecessarily diffused deep into the semiconductor substrate. This is because this can be prevented more reliably.
  • FIG. 1 is a cross-sectional view of a silicon substrate 2 into which impurities according to the present embodiment have been introduced.
  • an impurity layer 3 is formed on the surface of the silicon substrate 2.
  • the impurity layer 3 is formed by introducing an impurity into the silicon substrate 2 by, for example, an ion implantation method or a plasma doping method.
  • FIG. 2 is a cross-sectional view schematically showing an electric furnace 4 for performing the recrystallization step according to the present embodiment.
  • the electric furnace 4 includes a chamber 14. Inside the chamber 114, a silicon substrate 2 on which an impurity layer 3 is formed in advance is accommodated. The chamber 114 is provided with a heater 7 for heating the silicon substrate 2 housed inside the chamber 114.
  • a gas introduction pipe 5 for introducing nitrogen (N 2 ) gas into the inside of the chamber 14 is provided on one side wall of the chamber 14, and the other side wall of the chamber 14 is provided with the chamber introduction pipe 5.
  • a gas exhaust pipe 6 for exhausting the gas inside the chamber 14 to the outside of the chamber 14 is provided.
  • the impurity layer 3 is formed in advance.
  • nitrogen (N 2 ) gas was introduced into the chamber 114 through the gas introduction pipe 5, and the gas existing in the chamber 114 was introduced.
  • the substrate temperature of the silicon substrate 2 becomes 700 ° C. or less, which is sufficiently low that impurities are not substantially activated in a thermal equilibrium state in which the silicon substrate 2 is in a thermal equilibrium state.
  • the silicon substrate 2 was heated by the heater 7.
  • the silicon substrate 2 was heated for about 5 hours so that the silicon substrate 2 was in a thermal equilibrium state at a substrate temperature of about 600 ° C.
  • the silicon atoms forming the heated silicon substrate 2 are recrystallized at a substrate temperature of about 600 ° C., and lattice defects generated in the silicon atoms forming the silicon substrate 2 into which impurities are introduced are recovered. did.
  • FIG. 3 is a cross-sectional view schematically showing an electromagnetic wave irradiation device 8 for performing the electromagnetic wave irradiation step according to the present embodiment.
  • the electromagnetic wave irradiation device 8 includes a chamber 9.
  • a mounting table 13 is provided inside the chamber 19.
  • the silicon substrate 2 heat-treated by the electric furnace 4 described above is mounted such that the impurity layer 3 is on the upper side.
  • the electromagnetic wave irradiation device 8 has a coherent electromagnetic wave source 10.
  • the coherent electromagnetic wave source 10 generates an incident coherent electromagnetic wave 12.
  • the irradiation optical system 11 is provided in the chamber 9 so as to face the impurity layer 3 formed on the silicon substrate 2 mounted on the mounting table 13.
  • Irradiation light ⁇ 1 converts the incident coherent electromagnetic wave 12 generated by the coherent electromagnetic wave source 10 into an irradiation coherent electromagnetic wave 1, and irradiates the silicon substrate 2 on which the impurity layer 3 is formed.
  • the irradiation optical system 11 is also configured by predetermined optical components necessary for ensuring irradiation uniformity of the irradiation coherent electromagnetic wave 1 irradiated to the silicon substrate 2.
  • the inside of the chamber 19 is maintained in an atmosphere of an inert gas such as nitrogen, helium, or argon.
  • the silicon substrate 2 that has been heat-treated at a substrate temperature of about 600 ° C. by the electric furnace 4 described above is placed inside the chamber 19 maintained in an inert gas atmosphere.
  • the substrate temperature of the silicon substrate 2 is kept at 500 ° C. or less, which is sufficiently low that impurities are not substantially activated in a thermal equilibrium state. I was drunk.
  • the incident coherent electromagnetic wave 12 was generated by the coherent electromagnetic wave source 10.
  • the irradiation optical system 1 1 converts the incident coherent electromagnetic wave 1 2 into the irradiation coherent electromagnetic wave 1 so that the silicon substrate 2 is irradiated with light so as to secure the irradiation uniformity of the irradiation coherent electromagnetic wave 1 applied to the silicon substrate 2.
  • the thermal non-equilibrium state which is a thermal non-equilibrium state
  • the silicon substrate 2 was irradiated with the irradiation coherent electromagnetic wave 1 having a predetermined frequency band so as to activate the impurities contained in the impurity layer 3.
  • the atoms are regularly arranged, and an interatomic force acts between the atoms existing at the crystal lattice position.
  • This interatomic force acts as a restoring force (pane force) according to Hooke's law with respect to minute displacement of an atom, so if an atom vibrates due to thermal motion or forced vibration from the outside, the vibration of the atom will be changed to the next atom To generate coupled vibration. This This is called lattice vibration and is called phonon because it is quantized in a solid.
  • the dispersion relations of phonons known in silicon single crystals references, for example, F. Fabotand AD Corso, Phys. Rev. B60, 1 1 4 2 7 (1 9 9 9 According to), the frequency of lattice vibration (phonon) exists between 10 GHz and 10 TH z
  • the incident coherent electromagnetic wave 12 generated by the coherent electromagnetic wave source 10 and the irradiation coherent electromagnetic wave 1 converted from the incident coherent electromagnetic wave 12 by the irradiation optical system 11 have an oscillation frequency of 10 GHz or more and 100 GHz or less. Of the millimeter-wave band. Millimeter wave electromagnetic waves could be generated by using a gyrotron oscillation tube, a klystron oscillation tube, or a traveling wave tube as the coherent electromagnetic wave source 10.
  • the millimeter-band electromagnetic wave constituting the irradiation coherent electromagnetic wave 1 applied to the silicon substrate 2 had a frequency band corresponding to the binding energy between the silicon atoms constituting the silicon substrate 2 and the impurities.
  • the coherent electromagnetic wave 1 composed of millimeter-wave electromagnetic waves having an oscillation frequency of 10 GHz or more and 100 GHz or less is irradiated on the silicon substrate 2
  • the lattice vibration (phonon) of silicon atoms is directly excited.
  • the impurities were activated in a thermally unbalanced state, and the activated impurities were diffused to form an ultrathin junction layer.
  • the activated impurities diffused at a substrate temperature of 500 ° C. or lower, which was sufficiently low that the impurities were not substantially activated in a thermal equilibrium state. Therefore, the impurities did not diffuse unnecessarily into the deep part of the silicon substrate. As a result, an ultra-shallow junction layer with a junction depth of about 20 nm or less and about 1 nm or more could be formed.
  • heat treatment is performed on silicon substrate 2 so that silicon substrate 2 is in a thermal equilibrium state at a substrate temperature sufficiently low that impurities introduced into silicon substrate 2 are not activated.
  • the recrystallization step of recrystallizing the silicon atoms constituting the silicon substrate 2 and the thermal non-equilibrium in the state where the silicon substrate 2 is maintained at a sufficiently low substrate temperature after the recrystallization step.
  • an electromagnetic wave having a predetermined frequency band is applied to the silicon substrate 2 so as to directly excite the lattice vibration (phonon) of silicon atoms. Irradiation step.
  • the impurities are activated at a substrate temperature sufficiently low that the impurities are not substantially activated in a thermal equilibrium state, and the activated impurities are no longer activated. At sufficiently low substrate temperatures.
  • the activated impurities can be prevented from being unnecessarily diffused into the deep portion of the silicon substrate 2, so that an ultra-shallow junction layer having a small junction depth can be formed.
  • a substrate formed of a glass material, a polymer material, or the like on which a silicon film or the like is formed may be used, or a compound semiconductor substrate such as GaAs may be used. Further, a mask material such as a photo resist may be used.
  • the irradiation coherent electromagnetic wave 1 is configured by a millimeter wave band electromagnetic wave, but the present invention is not limited to this.
  • the irradiation coherent electromagnetic wave 1 may be configured by a continuous wave output laser beam having a frequency bandwidth of 10 GHz or more and 1 THz or less.
  • the continuous wave output laser light can be generated, for example, by using a semiconductor laser device as the coherent electromagnetic wave source 10.
  • Irradiating coherent electromagnetic wave 1 is also the pulse width is constituted by a 0 femtosecond than the 1 0 0 0 ultrashort pulse laser beam Fuemuto seconds (frequency bandwidth 1 TH Z or ⁇ 1 0 0 TH z below) You may.
  • the ultrashort pulse laser light can be generated, for example, by using a titanium sapphire laser device as the coherent electromagnetic wave source 10.
  • the irradiation coherent electromagnetic wave 1 may be configured by further combining any two or more of the above-described ultrashort pulse laser light, continuous wave output laser light, and millimeter wave band electromagnetic waves.
  • the surface of the impurity layer 3 formed on the silicon substrate 2 is melted.
  • the pulse width of the irradiated ultrashort pulse is as short as 10 femtoseconds or more and less than 100 femtoseconds, so that the influence on the temperature of the entire silicon substrate 2 is affected. The sound is so small that it can be ignored.
  • the chamber 9 provided in the electromagnetic wave irradiation unit 8 is kept in inert gases atmosphere, it may be kept at a degree of vacuum below 1 X 1 0- 6 T orr.
  • lTorr 13.33.322Pa.
  • the heat treatment may be performed by a lamp annealing furnace.
  • the impurity layer 3 may be formed by introducing an impurity into the silicon substrate 2 before the impurity layer 3 is formed.
  • a plasma electrode is provided inside the chamber 14, diporane or the like is introduced as a gas containing impurities into the chamber 14, and impurities are introduced into the silicon substrate by plasma doping during discharge generated by the plasma electrode. 2 to form the impurity layer 3.
  • FIG. 4 is a cross-sectional view schematically showing an ultra-shallow junction layer forming apparatus 21 for performing both the heat treatment step and the electromagnetic wave irradiation step in the ultra-shallow junction layer forming method according to the present embodiment.
  • the same components as those of the electric furnace 4 described above with reference to FIG. 2 and the components of the electromagnetic wave irradiation device 8 described above with reference to FIG. 3 are denoted by the same reference numerals. Therefore, a detailed description of these components will be omitted.
  • the ultra-shallow junction layer forming apparatus 21 includes a chamber 9A.
  • a mounting table 13 A is provided inside the chamber 19 A.
  • the silicon substrate 2 is mounted on the mounting table 13 A such that the impurity layer 3 is on the upper side.
  • the silicon substrate 2 is set at a substrate temperature sufficiently low that the impurities introduced into the silicon substrate 2 are not activated in a thermal equilibrium state.
  • a flow path (not shown) through which liquid nitrogen for keeping the liquid nitrogen flows is formed.
  • the ultra-shallow junction layer forming device 21 is provided with a liquid nitrogen supply device 24 for supplying liquid nitrogen to the mounting table 13A.
  • the mounting table 13A is provided with a cooling device 23 for controlling the temperature of liquid nitrogen flowing through the flow path formed in the mounting table 13A.
  • a gas inlet pipe 5 for introducing nitrogen (N 2 ) gas into the inside of the chamber 9 A is provided on one side wall of the chamber 9 A, and a chamber 9 is provided on the other side wall of the chamber 9 A.
  • a gas exhaust pipe 6 for exhausting gas inside the chamber A to the outside of the chamber 9A is provided.
  • an infrared lamp 22 for heating the silicon substrate 2 placed on the mounting table 13A is provided inside the chamber 19A.
  • the ultra-shallow junction layer forming apparatus 21 has a coherent electromagnetic wave source 10.
  • the coherent electromagnetic wave source 10 generates an incident coherent electromagnetic wave 12.
  • the illumination optical system 11 is provided on the champer 9A so as to face the impurity layer 3 formed on the silicon substrate 2 mounted on the mounting table 13A.
  • Irradiation optical system 11 converts incident coherent electromagnetic wave 12 generated by coherent electromagnetic wave source 10 into irradiation coherent electromagnetic wave 1 and irradiates silicon substrate 2 on which impurity layer 3 is formed.
  • the silicon is set so that the substrate temperature of the silicon substrate 2 becomes 700 ° C. or less, which is sufficiently low that impurities are not substantially activated in a thermal equilibrium state.
  • the substrate 2 was heated by the infrared lamp 22.
  • the silicon substrate 2 was heated for about 5 hours so that the silicon substrate 2 was in thermal equilibrium at a substrate temperature of about 600 ° C.
  • the silicon atoms constituting the heated silicon substrate 2 were recrystallized at a substrate temperature of about 600 ° C., and the lattice defects generated in the silicon atoms constituting the silicon substrate 2 into which the impurities were introduced were recovered.
  • the silicon atoms constituting the silicon substrate 2 rearranged, and the lattice defects generated in the silicon atoms disappeared.
  • liquid nitrogen was supplied from the liquid nitrogen supply device 24 to the flow path formed on the mounting table 13A on which the silicon substrate 2 subjected to the heat treatment described above was mounted. Then, due to heat conduction from liquid nitrogen flowing through the channel formed on the mounting table 13 A on which the silicon substrate 2 is mounted, the temperature is sufficiently low that impurities are not substantially activated in a thermal equilibrium state. Liquid nitrogen flowing through the flow path formed in the mounting table 13A was cooled by the cooling device 23 so that the substrate temperature of the silicon substrate 2 was maintained at 500 ° C. or lower.
  • the incident coherent electromagnetic wave 12 was generated by the coherent electromagnetic wave source 10.
  • the irradiation optical system 1 1 converts the incident coherent electromagnetic wave 1 2 into the irradiation coherent electromagnetic wave 1 so that the irradiation coherent electromagnetic wave 1 irradiating the silicon substrate 2 can maintain the irradiation uniformity.
  • the cooling device 23 was used to maintain the substrate temperature at 500 ° C. or lower so as to activate the impurities contained in the impurity layer 3.
  • the silicon substrate 2 was irradiated with the irradiation coherent electromagnetic wave 1.
  • the irradiation coherent electromagnetic wave 1 was constituted by a millimeter-wave band electromagnetic wave having an oscillation frequency of 10 GHz or more and 100 GHz or less, similarly to the electromagnetic wave irradiation device 8 described above.
  • Irradiation coherent electromagnetic wave 1 composed of millimeter-band electromagnetic waves with an oscillation frequency of 10 GHz or more and 100 GHz or less is irradiated on silicon substrate 2.
  • the lattice vibration (phonon) of the silicon atoms was directly excited, and the impurities were activated in a thermally unbalanced state, and the activated impurities were diffused to form an ultrathin junction layer.
  • the activated impurities diffused at a substrate temperature of 500 ° C. or lower, which is sufficiently low that the impurities are not substantially activated in a thermal equilibrium state. For this reason, the impurities did not needlessly diffuse into the deep portion of the silicon substrate. As a result, an ultra-shallow junction layer with a junction depth of about 20 nm or less and about 1 nm or more could be formed.
  • the ultra-shallow junction layer could be formed by a single apparatus.
  • the cooling device 23 By cooling the liquid nitrogen flowing through the flow path formed on the mounting table 13 A on which the silicon substrate 2 is mounted by the cooling device 23, impurities are substantially activated in a thermal equilibrium state.
  • the substrate temperature of the silicon substrate 2 is maintained at 500 ° C. or less, which is sufficiently low to prevent the substrate temperature of the silicon substrate 2 from decreasing by 500 ° C. ° C or lower.
  • an annealing method capable of preventing activated impurities from being unnecessarily diffused into a deep portion of a substrate.
  • an ultra-shallow junction layer forming method and an ultra-shallow junction layer forming apparatus capable of forming an ultra-thin junction layer having a small junction depth.

Abstract

An annealing method for annealing an impurity-introduced substrate, comprising the recrystallizing step of heat treating a substrate at a substrate temperature low enough not to activate the impurities introduced into the substrate so as to bring the substrate into a thermal equilibrium to thereby recrystallize atoms constituting the substrate, and, after the recrystallizing step, the electromagnetic wave irradiation step of irradiating the substrate with an electromagnetic wave having a specified frequency band so as to excite directly the lattice vibration (phonon) of the atoms for the purpose of activating the impurities in a thermal non-equilibrium with the substrate kept at a sufficiently low temperature.

Description

明 細 書 ァニール方法、 極浅接合層形成方法および極浅接合層形成装置 技術分野  Description: Annealing method, ultra-shallow junction layer forming method and ultra-shallow junction layer forming apparatus
本発明は、 不純物が導入された基板を構成する原子に生じた格子欠陥 を回復させるために原子を再結晶化させた後、 基板に導入された不純物 を活性化するァニール方法、 極浅接合層形成方法および極浅接合層形成 装置に関する。 背景技術  The present invention relates to an annealing method for reactivating atoms introduced into a substrate after recrystallizing the atoms to recover lattice defects generated in atoms constituting the substrate into which the impurities are introduced, and an ultra-shallow junction layer. The present invention relates to a forming method and an ultra-shallow junction layer forming apparatus. Background art
近年、 シリ コン単結晶ゥ ハーを基板として形成される超大規模集積 回路 (L S I ) をはじめとする半導体装置においては、 半導体装置のデ ザィンルールの縮小に伴って、 ショートチャンネル効果を防止すると共 に半導体装置を高速に動作させるために、 半導体装置に設けられたトラ ンジスタに形成される拡散層の接合深さを浅くする必要性が生じている 。 このため、 ダイナミック即時呼び出し記憶装置 (D R AM) 等に用い られる M O S F E Tないしバイポーラ トランジスタにおいては、 例えば 、 グート長が 1 0 0ナノメータ程度のゲートを有する トランジスタに形 成される拡散層の接合深さは 5 0ナノメータ程度に浅くすることが要求 されている。 さらに、 ゲート長が 5 0ナノメータ程度のゲートを有する トランジスタ 形成される拡散層の接合深さは 1 0ナノメータ程度に浅 くすることが要求されている。 このため、 1 0ナノメータないし 5 0ナ ノメータ程度の深さを有する極浅接合層に不純物を高濃度にドーピング する技術と共に、 このような極浅接合層にドーピングされた不純物を活 性化させるためのァニール技術が検討されている。 このような従来のァニール技術の一つとして、 不純物が注入された基 板の全体を 1 0 0 o°c程度に赤外線ランプ等を用いて加熱する赤外線急 速熱処理 (RTA) による固相拡散過程を利用した熱平衡状態での活性 化法が知られている。 In recent years, in semiconductor devices such as ultra-large-scale integrated circuits (LSIs) formed using a silicon single crystal substrate as a substrate, along with the reduction in the design rule of the semiconductor device, the short channel effect is prevented and the semiconductor device is prevented. In order to operate the device at high speed, it is necessary to reduce the junction depth of a diffusion layer formed in a transistor provided in a semiconductor device. For this reason, in a MOSFET or a bipolar transistor used for a dynamic immediate memory device (DRAM) or the like, for example, a junction depth of a diffusion layer formed in a transistor having a gate having a gate length of about 100 nanometers is It is required to be as shallow as about 50 nanometers. Furthermore, a transistor having a gate with a gate length of about 50 nanometers is required to have a junction depth of a diffusion layer formed as small as about 10 nanometers. For this reason, in addition to the technology of doping impurities into a very shallow junction layer having a depth of about 10 nanometers to 50 nanometers at a high concentration, it is necessary to activate the impurities doped in such a very shallow junction layer. Anneal technology is being considered. One of the conventional annealing technologies is a solid-state diffusion process using infrared rapid heat treatment (RTA), which heats the entire substrate into which impurities have been implanted to approximately 100 ° C using an infrared lamp or the like. An activation method in a thermal equilibrium state using a technique is known.
又、 レーザを用いた従来技術としては、 3 0 8 n mの X e C 1エキシ マレーザを照射してシリコン基板の表面を溶融した後、 シリコン原子を 再結晶化する技術がレーザァニールとして知られている。 ここでは、 例 えば、 0. 35 J Z c m2のレーザァニーノレと 8 0 0。C 1 0秒、の R T A とを組み合わせて熱処理を行っている (参考文献 K e n— i c h G o t o他、 ; 9 3 1— 9 3 3. 、 I n t e r n a t i o n a l E l e c t r o n D e v i c e Me e t i n g 1 9 9 9 a t W a s h i n g t o n D C) 。 Also, as a conventional technique using a laser, a technique of irradiating a 310 nm XeC1 excimer laser to melt the surface of a silicon substrate and then recrystallizing silicon atoms is known as laser annealing. . Here, for example, a laser annealing of 0.35 JZ cm 2 and 800. Heat treatment is performed in combination with RTA of C 10 seconds (references Ken-ich Goto et al .; 9 31—93 3 3., International Electron Device Meeting 1999 at) Washington DC).
しかしながら、 熱平衡状態での赤外線急速熱処理 (RTA) による固 相拡散過程を利用する前述した従来のァニール技術は、 不純物ドープ層 を活性化させるためには有効であるけれども、 基板の全体が 1 00 0°C 程度の高温に加熱されるために、 注入された不純物が基板の深部へ拡散 してしまうおそれがあるという問題があった。 例えば、 低エネルギーに より得られた深さ 20ナノメータの硼素原子注入層は、 1 0 00度 °Cに おける急速加熱処理を 1 0秒間行うことにより、 深さが 5 0ナノメータ 程度となり、 加熱前の 2. 5倍の深さになってしまうという問題があつ た。  However, the above-described conventional annealing technique utilizing the solid-phase diffusion process by infrared rapid thermal processing (RTA) in a thermal equilibrium state is effective for activating the impurity-doped layer, but the entire substrate is 100,000. Since the substrate is heated to a high temperature of about ° C, there is a problem that the implanted impurities may diffuse deep into the substrate. For example, a boron atom implanted layer with a depth of 20 nanometers obtained by low energy can be heated to a depth of about 50 nanometers by performing rapid heating at 100 ° C for 10 seconds. There was a problem that it would be 2.5 times deeper.
また、 複数回の不純物導入プロセスを必要とする L S I製造工程にお いて、 従来の熱処理技術では基板の全体が、 不純物が拡散する高温に加 熱されるために、 拡散が不必要な位置に存在する不純物まで拡散するお それがあるという問題があった。  In addition, in the LSI manufacturing process that requires multiple impurity introduction processes, conventional heat treatment technology heats the entire substrate to a high temperature at which the impurities diffuse, and therefore exists at locations where diffusion is unnecessary. There was a problem that it could diffuse to impurities.
さらに、 エキシマレーザを照射する前述した従来技術では、 基板の深 部への不必要な拡散は相当程度抑制されるけれども、 不純物が導入され た基板を構成する原子に生じた格子欠陥を充分に回復させることができ ないために、 作成した半導体装置に形成されたトランジスタにおいて生 じる漏れ電流が大きくなるおそれがあるという問題があった。 Furthermore, in the above-described conventional technique of irradiating an excimer laser, Unnecessary diffusion into the part is suppressed to a considerable extent, but the lattice defects generated in the atoms that make up the substrate into which the impurities are introduced cannot be sufficiently recovered, so that the There is a problem that the leakage current generated in the transistor may increase.
本発明は前述した問題を解決するためになされたものであり、 その目 的は、 活性化した不純物が基板の深部へ不必要に拡散することを防止す ることができるァニール方法を提供することにある。  The present invention has been made to solve the above-mentioned problem, and an object thereof is to provide an annealing method capable of preventing activated impurities from being unnecessarily diffused deep into a substrate. It is in.
本発明の他の目的は、 接合深さの浅い極薄接合層を形成することがで きる極浅接合層形成方法およぴ極浅接合層形成装置を提供することにあ る。 発明の開示  Another object of the present invention is to provide an ultra-shallow junction layer forming method and an ultra-shallow junction layer forming apparatus capable of forming an ultra-thin junction layer having a shallow junction depth. Disclosure of the invention
本発明に係るァニール方法は、 不純物が導入された基板をァニールす るためのァユール方法であって、 前記基板に導入された前記不純物が活 性化しない程度に十分低い基板温度において前記基板が熱的平衡状態と なるように前記基板を熱処理することによって、 前記基板を構成する原 子を再結晶化させる再結晶化工程と、 前記再結晶化工程の後で、 前記十 分低い基板温度に前記基板を保った状態において、 熱的非平衡状態にお いて前記不純物を活性化するために、 前記原子の格子振動 (フオノン) を直接励起するように、 所定の周波数帯域を有する電磁波を前記基板に 照射する電磁波照射工程とを包含することを特徴とする。  The annealing method according to the present invention is an annealing method for annealing a substrate having impurities introduced therein, wherein the substrate is heated at a substrate temperature sufficiently low that the impurities introduced into the substrate are not activated. A heat treatment of the substrate so as to be in a state of equilibrium, thereby recrystallizing atoms constituting the substrate, and after the recrystallization step, the substrate temperature is lowered to the sufficiently low substrate temperature. In order to activate the impurities in a thermal non-equilibrium state while holding the substrate, an electromagnetic wave having a predetermined frequency band is applied to the substrate so as to directly excite lattice vibration (phonon) of the atoms. And irradiating an electromagnetic wave.
前記において格子振動 (フオノン) とは、 熱運動あるいは外部からの 強制振動によって、 結晶格子位置に存在する原子間に原子の微小変位に 対してフックの法則に従う復元力 (パネ力) として働く原子間力に起因 する原子の振動が隣の原子へ伝わる連成振動をいう。  In the above, lattice vibration (phonon) refers to the inter-atomic force that acts as a restoring force (pane force) according to Hooke's law for small displacement of atoms between atoms existing at the crystal lattice position due to thermal motion or forced vibration from the outside. A coupled vibration in which the vibration of an atom caused by a force is transmitted to the next atom.
本発明に係る極浅接合層形成方法は、 不純物が導入された半導体基板 に極浅接合層を形成するための極浅接合層形成方法であって、 前記半導 体基板に導入された前記不純物が活性化しない程度に十分低い基板温度 において前記半導体基板が熱的平衡状態となるように前記半導体基板を 熱処理することによって、 前記半導体基板を構成する半導体原子を再結 晶化させる再結晶化工程と、 前記再結晶化工程の後で、 前記十分低い基 板温度に前記半導体基板を保った状態において、 熱的非平衡状態におい て前記不純物を活性化して極浅接合層を形成するために、 前記半導体原 子の格子振動 (フオノン) を直接励起するように、 所定の周波数帯域を 有する電磁波を前記半導体基板に照射する電磁波照射工程とを包含する ことを特徴とする。 The method for forming an ultra-shallow junction layer according to the present invention comprises the steps of: A very shallow junction layer for forming an extremely shallow junction layer at a substrate temperature sufficiently low that the impurities introduced into the semiconductor substrate are not activated. A heat treatment of the semiconductor substrate so that the semiconductor atoms constituting the semiconductor substrate are recrystallized, and after the recrystallization step, the semiconductor substrate is cooled to the sufficiently low substrate temperature. While maintaining the semiconductor substrate, in order to activate the impurity in a thermal non-equilibrium state and form an ultra-shallow junction layer, a predetermined lattice vibration (phonon) of the semiconductor element is directly excited. Irradiating the semiconductor substrate with an electromagnetic wave having a frequency band.
前記において極浅接合層とは、 半導体装置に設けられたトランジスタ に形成される拡散層であって、 その接合深さが約 2 0ナノメータ以下約 1ナノメータ以上の拡散層をいう。  In the above, the extremely shallow junction layer is a diffusion layer formed in a transistor provided in a semiconductor device, and has a junction depth of about 20 nm or less and about 1 nm or more.
本発明に係る極浅接合層形成装置は、 不純物が導入された半導体基板 に極浅接合層を形成するための極浅接合層形成装置であって、 前記半導 体基板に導入された前記不純物が活性化しない程度に十分低い基板温度 において前記半導体基板が熱的平衡状態となるように前記半導体基板を 熱処理することによって、 前記半導体基板を構成する半導体原子を再結 晶化させる再結晶化手段と、 前記再結晶化手段によつて前記半導体原子 が再結晶化した前記半導体基板を前記十分低い基板温度に保った状態に おいて、 熱的非平衡状態において前記不純物を活性化して極浅接合層を 形成するために、 前記半導体原子の格子振動 (フオノン) を直接励起す るように、 所定の周波数帯域を有する電磁波を前記半導体基板に照射す る電磁波照射手段とを具備することを特徴とする。 図面の簡単な説明 図 1は、 本実施の形態に係る不純物が導入された半導体基板の断面図 である。 An ultra-shallow junction layer forming apparatus according to the present invention is an ultra-shallow junction layer forming apparatus for forming an ultra-shallow junction layer on a semiconductor substrate into which impurities are introduced, wherein the impurity introduced into the semiconductor substrate is Recrystallization means for subjecting the semiconductor substrate to heat treatment so that the semiconductor substrate is in a thermal equilibrium state at a substrate temperature sufficiently low that the semiconductor substrate is not activated, thereby recrystallizing semiconductor atoms constituting the semiconductor substrate. Activating the impurities in a thermal non-equilibrium state while maintaining the semiconductor substrate in which the semiconductor atoms have been recrystallized by the recrystallization means at the sufficiently low substrate temperature; Means for irradiating the semiconductor substrate with an electromagnetic wave having a predetermined frequency band so as to directly excite the lattice vibration (phonon) of the semiconductor atoms to form a layer; And characterized in that: BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a cross-sectional view of a semiconductor substrate into which an impurity according to the present embodiment has been introduced.
図 2は、 本実施の形態に係る再結晶化工程を実行するための電気炉を 模式的に示す断面図である。  FIG. 2 is a cross-sectional view schematically showing an electric furnace for performing the recrystallization step according to the present embodiment.
図 3は、 本実施の形態に係る電磁波照射工程を実行するための電磁波 照射装置を模式的に示す断面図である。 '  FIG. 3 is a cross-sectional view schematically showing an electromagnetic wave irradiation device for performing the electromagnetic wave irradiation step according to the present embodiment. '
図 4は、 本実施の形態に係る再結晶化工程および電磁波照射工程の双 方を実行するための極浅接合層形成装置を模式的に示す断面図である。 発明を実施するための最良の形態  FIG. 4 is a cross-sectional view schematically showing an ultrashallow junction layer forming apparatus for performing both the recrystallization step and the electromagnetic wave irradiation step according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る極浅接合層形成方法において、 前記半導体基板は、 シリ コンとシリコン化合物とのいずれかによつて構成されていることが好ま しい。 シリコン基板に形成された半導体装置を得ることができるからで ある。  In the method for forming an ultra-shallow junction layer according to the present invention, it is preferable that the semiconductor substrate is made of one of silicon and a silicon compound. This is because a semiconductor device formed over a silicon substrate can be obtained.
前記再結晶化工程において、 7 0 0 °C以下の基板温度において前記半 導体基板を熱処理することが好ましい。 半導体基板に導入された不純物 が熱的平衡状態において活性化しない程度に十分低い基板温度だからで ある。  In the recrystallization step, the semiconductor substrate is preferably heat-treated at a substrate temperature of 700 ° C. or less. This is because the substrate temperature is low enough that the impurities introduced into the semiconductor substrate are not activated in a thermal equilibrium state.
前記再結晶化工程において、 電気炉とランプ加熱炉とのいずれかによ つて前記半導体基板を熱処理することが好ましい。 簡単な構成によって 熱処理することができるからである。  In the recrystallization step, it is preferable that the semiconductor substrate is heat-treated by using either an electric furnace or a lamp heating furnace. This is because heat treatment can be performed with a simple configuration.
前記電磁波照射工程において照射される前記コヒーレント電磁波は、 1 0フエムト秒以上 1 0 0 0フエムト秒以下のパルス幅を有する超短パ ルスレーザ光を含んでいることが好ましく、 また 1 0 G H z以上 1 T H z以下の周波数帯域幅を有する連続波出力レーザ光を含んでいることが 好ましく、 また 1 0 G H z以上 1 0 0 G H z以下の発振周波数を有する ミリ波帯電磁波を含んでいることが好ましい。 前記電磁波照射工程にお いて照射される前記コヒーレント電磁波はまた、 前記半導体原子と前記 不純物との間の結合エネルギーに対応する周波数帯域を有していること が好ましい。 半導体原子の格子振動 (フオノン) をより確実に励起する ことができるからである。 The coherent electromagnetic wave irradiated in the electromagnetic wave irradiation step preferably includes an ultrashort pulse laser beam having a pulse width of 10 to 1000 femtoseconds, and 10 GHz to 1 GHz. It preferably includes a continuous wave output laser beam having a frequency bandwidth of TH z or less, and has an oscillation frequency of 10 GHz or more and 100 GHz or less. It preferably contains a millimeter wave electromagnetic wave. It is preferable that the coherent electromagnetic wave irradiated in the electromagnetic wave irradiation step also has a frequency band corresponding to a binding energy between the semiconductor atom and the impurity. This is because the lattice vibration (phonon) of semiconductor atoms can be more reliably excited.
前記電磁波照射工程は、 前記十分低い基板温度に前記半導体基板を保 つように前記半導体基板を冷却しながら、 前記電磁波を前記半導体基板 に照射することが好ましい。 冷却によって、 熱的平衡状態では不純物が 実質的に活性化しない程度に十分低い基板温度に半導体基板を確実に保 つことができるので、 活性化した不純物が半導体基板の深部へ不必要に 拡散することをより確実に防止することができるからである。  In the electromagnetic wave irradiation step, it is preferable that the semiconductor substrate is irradiated with the electromagnetic wave while cooling the semiconductor substrate so as to maintain the semiconductor substrate at the sufficiently low substrate temperature. The cooling ensures that the semiconductor substrate is maintained at a substrate temperature sufficiently low that the impurities are not substantially activated in a thermal equilibrium state, so that the activated impurities are unnecessarily diffused deep into the semiconductor substrate. This is because this can be prevented more reliably.
以下、 図面を参照して本実施の形態を説明する。 図 1は、 本実施の形 態に係る不純物が導入されたシリコン基板 2の断面図である。 シリコン 基板 2の表面には、 不純物層 3が形成されている。 不純物層 3は、 例え ばイオン注入法またはプラズマドーピング法によって不純物をシリコン 基板 2へ導入することにより形成される。  Hereinafter, the present embodiment will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a silicon substrate 2 into which impurities according to the present embodiment have been introduced. On the surface of the silicon substrate 2, an impurity layer 3 is formed. The impurity layer 3 is formed by introducing an impurity into the silicon substrate 2 by, for example, an ion implantation method or a plasma doping method.
図 2は、 本実施の形態に係る再結晶化工程を実行するための電気炉 4 を模式的に示す断面図である。 電気炉 4は、 チャンバ一 1 4を備えてい る。 チャンバ一 1 4の内部には、 不純物層 3が予め形成されたシリコン 基板 2が収容されている。 チャンバ一 1 4には、 チャンバ一 1 4の内部 に収容されたシリコン基板 2を加熱するためのヒータ 7が設けられてい る。 チャンバ一 1 4の一方の側壁にはチャンバ一 1 4の内部へ窒素 (N 2 ) ガスを導入するためのガス導入管 5が設けられており、 チャンバ一 1 4の他方の側壁にはチャンバ一 1 4の内部におけるガスをチャンバ一 1 4の外部へ排出するためのガス排出管 6が設けられている。 FIG. 2 is a cross-sectional view schematically showing an electric furnace 4 for performing the recrystallization step according to the present embodiment. The electric furnace 4 includes a chamber 14. Inside the chamber 114, a silicon substrate 2 on which an impurity layer 3 is formed in advance is accommodated. The chamber 114 is provided with a heater 7 for heating the silicon substrate 2 housed inside the chamber 114. A gas introduction pipe 5 for introducing nitrogen (N 2 ) gas into the inside of the chamber 14 is provided on one side wall of the chamber 14, and the other side wall of the chamber 14 is provided with the chamber introduction pipe 5. A gas exhaust pipe 6 for exhausting the gas inside the chamber 14 to the outside of the chamber 14 is provided.
このように構成された電気炉 4において、 不純物層 3が予め形成され たシリ コン基板 2をチャンバ一 1 4の中に収容した後、 窒素 (N 2 ) ガ スをガス導入管 5を通してチャンバ一 1 4の内部へ導入し、 チャンバ一 1 4の内部に存在するガスをガス排出管 6を通して排出することによつ て、 チャンバ一 1 4の内部を窒素 (N 2 ) ガス雰囲気とした。 In the electric furnace 4 thus configured, the impurity layer 3 is formed in advance. After the silicon substrate 2 was placed in the chamber 114, nitrogen (N 2 ) gas was introduced into the chamber 114 through the gas introduction pipe 5, and the gas existing in the chamber 114 was introduced. Was discharged through the gas discharge pipe 6 to make the inside of the chamber 14 a nitrogen (N 2 ) gas atmosphere.
そして、 シリ コン基板 2の基板温度が、 シリ コン基板 2が熱的に平衡 な状態である熱的平衡状態では不純物が実質的に活性化しない程度に十 分低い 7 0 0 °C以下になるように、 シリコン基板 2をヒータ 7によって 加熱した。 例えば、 シリコン基板 2が約 6 0 0 °Cの基板温度において熱 的平衡状態になるように約 5時間の間シリコン基板 2を加熱した。 加熱 されたシリ コン基板 2を構成するシリ コン原子は、 約 6 0 0 °Cの基板温 度において再結晶化し、 不純物が導入されたシリコン基板 2を構成する シリコン原子に生じた格子欠陥が回復した。  Then, the substrate temperature of the silicon substrate 2 becomes 700 ° C. or less, which is sufficiently low that impurities are not substantially activated in a thermal equilibrium state in which the silicon substrate 2 is in a thermal equilibrium state. As described above, the silicon substrate 2 was heated by the heater 7. For example, the silicon substrate 2 was heated for about 5 hours so that the silicon substrate 2 was in a thermal equilibrium state at a substrate temperature of about 600 ° C. The silicon atoms forming the heated silicon substrate 2 are recrystallized at a substrate temperature of about 600 ° C., and lattice defects generated in the silicon atoms forming the silicon substrate 2 into which impurities are introduced are recovered. did.
このような熱処理によって、 シリコン基板 2を構成するシリコン原子 が再配列し、 シリ コン原子に生じた格子欠陥が消滅した。 この熱処理に おける重要なポイントは、 シリ コン原子を再結晶化させる際の基板温度 を、 熱的平衡状態では不純物が実質的に活性化しない程度に十分低い 7 0 o °c以下とすることである。  By such heat treatment, the silicon atoms constituting the silicon substrate 2 rearranged, and the lattice defects generated in the silicon atoms disappeared. An important point in this heat treatment is to set the substrate temperature at which silicon atoms are recrystallized to 70 ° C or less, which is sufficiently low that impurities are not substantially activated in thermal equilibrium. is there.
図 3は、 本実施の形態に係る電磁波照射工程を実行するための電磁波 照射装置 8を模式的に示す断面図である。 電磁波照射装置 8は、 チャン バー 9を備えている。 チャンバ一 9の内部には、 载置台 1 3が設けられ ている。 載置台 1 3の上には、 前述した電気炉 4によって熱処理された シリコン基板 2が、 不純物層 3が上側になるように載置されている。 電磁波照射装置 8は、 コヒーレント電磁波源 1 0を有している。 コヒ 一レント電磁波源 1 0は、 入射コヒーレント電磁波 1 2を生成する。 チ ヤンバー 9には、 载置台 1 3に載置されたシリ コン基板 2に形成された 不純物層 3に対向するように照射光学系 1 1が設けられている。 照射光 ί 1は、 コヒーレント電磁波源 1 0によって生成された入射コヒー レント電磁波 1 2を照射コヒーレント電磁波 1に変換して、 不純物層 3 が形成されたシリ コン基板 2へ照射する。 照射光学系 1 1はまた、 シリ コン基板 2へ照射される照射コヒーレント電磁波 1の照射均一性を確保 するために必要な所定の光学部品によって構成されている。 チャンバ一 9の内部は、 例えば、 窒素、 ヘリウム、 アルゴン等の不活性ガス雰囲気 に保たれている。 FIG. 3 is a cross-sectional view schematically showing an electromagnetic wave irradiation device 8 for performing the electromagnetic wave irradiation step according to the present embodiment. The electromagnetic wave irradiation device 8 includes a chamber 9. A mounting table 13 is provided inside the chamber 19. On the mounting table 13, the silicon substrate 2 heat-treated by the electric furnace 4 described above is mounted such that the impurity layer 3 is on the upper side. The electromagnetic wave irradiation device 8 has a coherent electromagnetic wave source 10. The coherent electromagnetic wave source 10 generates an incident coherent electromagnetic wave 12. The irradiation optical system 11 is provided in the chamber 9 so as to face the impurity layer 3 formed on the silicon substrate 2 mounted on the mounting table 13. Irradiation light ί1 converts the incident coherent electromagnetic wave 12 generated by the coherent electromagnetic wave source 10 into an irradiation coherent electromagnetic wave 1, and irradiates the silicon substrate 2 on which the impurity layer 3 is formed. The irradiation optical system 11 is also configured by predetermined optical components necessary for ensuring irradiation uniformity of the irradiation coherent electromagnetic wave 1 irradiated to the silicon substrate 2. The inside of the chamber 19 is maintained in an atmosphere of an inert gas such as nitrogen, helium, or argon.
このように構成された電磁波照射装置 8において、 前述した電気炉 4 によって約 6 0 0 °Cの基板温度において熱処理されたシリコン基板 2を 、 不活性ガス雰囲気に保たれているチャンバ一 9の内部に設けられた载 置台 1 3の上に載置すると、 シリ コン基板 2の基板温度は、 熱的平衡状 態では不純物が実質的に活性化しない程度に十分低い 5 0 0 °C以下に保 たれた。  In the electromagnetic wave irradiation apparatus 8 configured as described above, the silicon substrate 2 that has been heat-treated at a substrate temperature of about 600 ° C. by the electric furnace 4 described above is placed inside the chamber 19 maintained in an inert gas atmosphere. When placed on a mounting table 13 provided in the semiconductor device, the substrate temperature of the silicon substrate 2 is kept at 500 ° C. or less, which is sufficiently low that impurities are not substantially activated in a thermal equilibrium state. I was drunk.
そして、 コヒーレント電磁波源 1 0によって、 入射コヒーレント電磁 波 1 2を生成した。 照射光学系 1 1は、 シリ コン基板 2へ照射される照 射コヒーレント電磁波 1の照射均一性を確保するように、 入射コヒーレ ント電磁波 1 2を照射コヒーレント電磁波 1に変換して、 シリコン基板 2が熱的に非平衡な状態である熱的非平衡状態において、 不純物層 3に 含まれる不純物を活性化するように、 所定の周波数帯域を有する照射コ ヒーレント電磁波 1をシリコン基板 2へ照射した。  The incident coherent electromagnetic wave 12 was generated by the coherent electromagnetic wave source 10. The irradiation optical system 1 1 converts the incident coherent electromagnetic wave 1 2 into the irradiation coherent electromagnetic wave 1 so that the silicon substrate 2 is irradiated with light so as to secure the irradiation uniformity of the irradiation coherent electromagnetic wave 1 applied to the silicon substrate 2. In the thermal non-equilibrium state, which is a thermal non-equilibrium state, the silicon substrate 2 was irradiated with the irradiation coherent electromagnetic wave 1 having a predetermined frequency band so as to activate the impurities contained in the impurity layer 3.
所定の周波数帯域を有する照射コヒーレント電磁波 1が照射されるシ リコン基板 2の固体結晶中においては、 原子は規則正しく配列しており 、 結晶格子位置に存在する原子間には原子間力が働いている。 この原子 間力は原子の微小変位に対してフックの法則に従う復元力 (パネ力) と して働くので、 熱運動あるいは外部からの強制振動によって原子が振動 すると、 その原子の振動は隣の原子へと伝わり連成振動を生じる。 これ を格子振動といい、 固体中では量子化されているためフオノンと呼ばれ る。 さらに、 原子の質量、 原子間距離ならぴに復元力のパネ定数に相当 する原子間力は、 個々の物質に応じて固有の値を持っため、 格子振動 ( フオノン) の振動数と波数は互いに依存関係にあり、 これを分散関係と レヽぅ σ In the solid crystal of the silicon substrate 2 irradiated with the irradiation coherent electromagnetic wave 1 having a predetermined frequency band, the atoms are regularly arranged, and an interatomic force acts between the atoms existing at the crystal lattice position. . This interatomic force acts as a restoring force (pane force) according to Hooke's law with respect to minute displacement of an atom, so if an atom vibrates due to thermal motion or forced vibration from the outside, the vibration of the atom will be changed to the next atom To generate coupled vibration. this This is called lattice vibration and is called phonon because it is quantized in a solid. In addition, since the atomic force, which is equivalent to the panel constant of the restoring force, as well as the atomic mass and interatomic distance, has a unique value according to each substance, the frequency and wave number of lattice vibration (phonon) are mutually different. There is a dependency, this dispersion relation and Rereu σ
固体結晶に電磁波を照射した場合、 局所的な温度上昇 (熱的結合) あ るいは誘電分極の擾乱 (光弾性結合) により、 光と結合した弾性歪みが 生じる。 この弾性歪みを外力として、 格子振動 (フオノン) の振動数の 領域にある光 (電磁波) を固体結晶に照射すると、 誘導ラマン散乱によ り位相のそろったコヒーレント格子振動 (フオノン) を励起することが できる。  When a solid crystal is irradiated with electromagnetic waves, a local temperature rise (thermal coupling) or a disturbance of dielectric polarization (photoelastic coupling) causes elastic strain coupled with light. When this elastic strain is used as an external force to irradiate a solid crystal with light (electromagnetic waves) in the frequency range of lattice vibration (phonon), stimulated coherent lattice vibration (phonon) is excited by stimulated Raman scattering. Can be done.
例えば、 シリ コン単結晶において知られているフオノンの分散関係 ( 参考文献、 例えば、 F. F a v o t a n d A. D. C o r s o、 P h y s . R e v. B 6 0、 1 1 4 2 7 ( 1 9 9 9) . ) によると、 格 子振動 (フオノン) の振動数は 1 0 GH z〜 1 0 TH zの間に存在する  For example, the dispersion relations of phonons known in silicon single crystals (references, for example, F. Fabotand AD Corso, Phys. Rev. B60, 1 1 4 2 7 (1 9 9 9 According to), the frequency of lattice vibration (phonon) exists between 10 GHz and 10 TH z
1 0 GH Z〜 1 0 0 GH zの周波数帯域 (ミリ波領域) 内におけるコ ヒーレント電磁波を得るためには、 ジャィ口 トロン等のミリ波発振管に より得られるミリ波領域のコヒーレント電磁波をシリコン単結晶に照射 し、 コヒーレン ト電磁波による交番電界によりシリ コン単結晶表面の誘 電分極をコヒーレントに振動させることによって、 格子振動 (フオノン ) を励起することができる。 1 0 GH Z ~ 1 0 0 in order to obtain a coherent electromagnetic wave in the frequency band (the millimeter wave region) of GH z, the silicon coherent electromagnetic wave of a millimeter wave region more obtained the millimeter-wave oscillator tube of Jai port Tron etc. By irradiating the single crystal and coherently oscillating the induced polarization on the surface of the silicon single crystal by an alternating electric field caused by coherent electromagnetic waves, lattice vibration (phonon) can be excited.
コヒーレント電磁波源 1 0によって生成される入射コヒーレント電磁 波 1 2および照射光学系 1 1によって入射コヒーレント電磁波 1 2から 変換された照射コヒーレント電磁波 1は、 発振周波数が 1 0 GH z以上 1 00 GH z以下のミリ波帯電磁波によって構成した。 ミリ波帯電磁波 は、 ジャイロ トロン発振管、 クライス トロン発振管ないしは進行波管を コヒーレント電磁波源 1 0に用いて発生することができた。 The incident coherent electromagnetic wave 12 generated by the coherent electromagnetic wave source 10 and the irradiation coherent electromagnetic wave 1 converted from the incident coherent electromagnetic wave 12 by the irradiation optical system 11 have an oscillation frequency of 10 GHz or more and 100 GHz or less. Of the millimeter-wave band. Millimeter wave electromagnetic waves Could be generated by using a gyrotron oscillation tube, a klystron oscillation tube, or a traveling wave tube as the coherent electromagnetic wave source 10.
シリコン基板 2へ照射した照射コヒーレント電磁波 1を構成するミリ 帯波電磁波は、 シリコン基板 2を構成するシリコン原子と不純物との間 の結合エネルギーに対応する周波数帯域を有していた。  The millimeter-band electromagnetic wave constituting the irradiation coherent electromagnetic wave 1 applied to the silicon substrate 2 had a frequency band corresponding to the binding energy between the silicon atoms constituting the silicon substrate 2 and the impurities.
発振周波数が 1 0 G H z以上 1 0 0 G H z以下のミリ帯波電磁波によ つて構成される照射コヒーレント電磁波 1がシリコン基板 2へ照射され ると、 シリコン原子の格子振動 (フオノン) が直接励起され、 熱的非平 衡状態において不純物が活性化し、 活性化した不純物が拡散して極薄接 合層が形成された。  When the coherent electromagnetic wave 1 composed of millimeter-wave electromagnetic waves having an oscillation frequency of 10 GHz or more and 100 GHz or less is irradiated on the silicon substrate 2, the lattice vibration (phonon) of silicon atoms is directly excited. As a result, the impurities were activated in a thermally unbalanced state, and the activated impurities were diffused to form an ultrathin junction layer.
活性化した不純物は、 熱的平衡状態では不純物が実質的に活性化しな い程度に十分低い 5 0 0 °C以下の基板温度において拡散した。 このため 、 不純物はシリ コン基板の深部へ不必要に拡散しなかった。 その結果、 接合深さが約 2 0ナノメータ以下約 1ナノメータ以上の極浅接合層を形 成することができた。  The activated impurities diffused at a substrate temperature of 500 ° C. or lower, which was sufficiently low that the impurities were not substantially activated in a thermal equilibrium state. Therefore, the impurities did not diffuse unnecessarily into the deep part of the silicon substrate. As a result, an ultra-shallow junction layer with a junction depth of about 20 nm or less and about 1 nm or more could be formed.
以上のように本実施の形態によれば、 シリコン基板 2に導入された不 純物が活性化しない程度に十分低い基板温度においてシリコン基板 2が 熱的平衡状態となるようにシリコン基板 2を熱処理することによって、 シリコン基板 2を構成するシリコン原子を再結晶化させる再結晶化工程 と、 再結晶化工程の後で、 十分低い基板温度にシリ コン基板 2を保った 状態において、 熱的非平衡状態において不純物を活性化して極浅接合層 を形成するために、 シリ コン原子の格子振動 (フオノン) を直接励起す るように、 所定の周波数帯域を有する電磁波をシリコン基板 2に照射す る電磁波照射工程とを包含する。  As described above, according to the present embodiment, heat treatment is performed on silicon substrate 2 so that silicon substrate 2 is in a thermal equilibrium state at a substrate temperature sufficiently low that impurities introduced into silicon substrate 2 are not activated. The recrystallization step of recrystallizing the silicon atoms constituting the silicon substrate 2 and the thermal non-equilibrium in the state where the silicon substrate 2 is maintained at a sufficiently low substrate temperature after the recrystallization step. In order to activate the impurity in the state and form an ultra-shallow junction layer, an electromagnetic wave having a predetermined frequency band is applied to the silicon substrate 2 so as to directly excite the lattice vibration (phonon) of silicon atoms. Irradiation step.
このため、 熱的平衡状態では不純物が実質的に活性化しない程度に十 分低い基板温度において不純物が活性化し、 活性化した不純物がこのよ うに十分低い基板温度において拡散する。 その結果、 活性化した不純物 がシリコン基板 2の深部へ不必要に拡散することを防止することができ るので、 接合深さの浅い極浅接合層を形成することができる。 For this reason, the impurities are activated at a substrate temperature sufficiently low that the impurities are not substantially activated in a thermal equilibrium state, and the activated impurities are no longer activated. At sufficiently low substrate temperatures. As a result, the activated impurities can be prevented from being unnecessarily diffused into the deep portion of the silicon substrate 2, so that an ultra-shallow junction layer having a small junction depth can be formed.
なお本実施の形態においては、 シリコン基板 2を使用する例を示した 、 本発明はこれに限定されない。 シリ コン膜等が形成されたガラス材 料、 高分子材料等によって構成される基板を使用してもよく、 G a A s 等の化合物半導体基板を使用してもよい。 さらに、 フォ トレジス ト等の マスク材料を使用してもよい。  In this embodiment, an example in which the silicon substrate 2 is used has been described, but the present invention is not limited to this. A substrate formed of a glass material, a polymer material, or the like on which a silicon film or the like is formed may be used, or a compound semiconductor substrate such as GaAs may be used. Further, a mask material such as a photo resist may be used.
また、 照射コヒーレント電磁波 1がミリ波帯電磁波によって構成され ている例を示したが、 本発明はこれに限定されない。 照射コヒーレント 電磁波 1は、 周波数帯域幅が 1 0 G H z以上 1 T H z以下の連続波出力 レーザ光によって構成してもよい。 連続波出力レーザ光は、 例えば、 半 導体レーザ装置をコヒーレント電磁波源 1 0に用いて発生することがで きる。 照射コヒーレント電磁波 1はまた、 パルス幅が 1 0フェム ト秒以 上 1 0 0 0フエムト秒以下 (周波数帯域幅が 1 T H Z以上〜 1 0 0 T H z以下) の超短パルスレーザ光によって構成してもよい。 超短パルスレ 一ザ光は、 例えば、 チタンサファイアレーザ装置をコヒーレント電磁波 源 1 0に用いて発生することができる。 照射コヒーレント電磁波 1はさ らに、 前述した超短パルスレーザ光、 連続波出力レーザ光およびミリ波 帯電磁波のいずれか 2つ以上を複合させて構成してもよい。 Further, an example has been shown in which the irradiation coherent electromagnetic wave 1 is configured by a millimeter wave band electromagnetic wave, but the present invention is not limited to this. The irradiation coherent electromagnetic wave 1 may be configured by a continuous wave output laser beam having a frequency bandwidth of 10 GHz or more and 1 THz or less. The continuous wave output laser light can be generated, for example, by using a semiconductor laser device as the coherent electromagnetic wave source 10. Irradiating coherent electromagnetic wave 1 is also the pulse width is constituted by a 0 femtosecond than the 1 0 0 0 ultrashort pulse laser beam Fuemuto seconds (frequency bandwidth 1 TH Z or ~ 1 0 0 TH z below) You may. The ultrashort pulse laser light can be generated, for example, by using a titanium sapphire laser device as the coherent electromagnetic wave source 10. The irradiation coherent electromagnetic wave 1 may be configured by further combining any two or more of the above-described ultrashort pulse laser light, continuous wave output laser light, and millimeter wave band electromagnetic waves.
1 0フエムト秒以上 1 0 0 0フエムト秒以下のパルス幅を有する前述 した超短パルスレーザ光をシリコン基板 2へ照射するときに、 シリ コン 基板 2に形成された不純物層 3の表面が溶融するとしても、 不純物層 3 の溶融固化現象は断熱的かつ局所的に生じるため問題はない。 これは、 照射される超短パルスのパルス幅が 1 0フエムト秒以上 1 0 0 0フエム ト秒以下と短いために、 シリ コン基板 2の全体における温度に与える影 響は無視できる程度に小さいためである。 When irradiating the silicon substrate 2 with the above-mentioned ultrashort pulse laser beam having a pulse width of not less than 100 femtoseconds and not more than 100 femtoseconds, the surface of the impurity layer 3 formed on the silicon substrate 2 is melted. However, there is no problem because the solidification of the impurity layer 3 occurs adiabatically and locally. This is because the pulse width of the irradiated ultrashort pulse is as short as 10 femtoseconds or more and less than 100 femtoseconds, so that the influence on the temperature of the entire silicon substrate 2 is affected. The sound is so small that it can be ignored.
電磁波照射装置 8に設けられたチャンバ 9の内部が不活性化ガス雰 囲気に保たれている例を示したが、 1 X 1 0— 6 T o r r以下の真空度 に保たれていてもよい。 ここで、 l T o r r = 1 3 3 . 3 2 2 P aであ る。 An example is shown in which the chamber 9 provided in the electromagnetic wave irradiation unit 8 is kept in inert gases atmosphere, it may be kept at a degree of vacuum below 1 X 1 0- 6 T orr. Here, lTorr = 13.33.322Pa.
電気炉 4によってシリコン基板 2.を熱処理する例を示したが、 ランプ ァニール炉によって熱処理してもよい。  Although the example in which the silicon substrate 2 is heat-treated by the electric furnace 4 has been described, the heat treatment may be performed by a lamp annealing furnace.
図 1および図 2に示すように、 予め不純物層 3が形成されたシリコン 基板 2を熱処理する例を示したが、 電気炉 4のチャンバ一 1 4の内部に イオン源を設け、 イオン源によって、 不純物層 3が形成される前のシリ コン基板 2に不純物を導入して不純物層 3を形成してもよい。 また、 チ ャンバー 1 4の内部にプラズマ電極を設け、 チャンバ 1 4の内部に不 純物を含む気体としてジポラン等を流入させ、 プラズマ電極によって発 生した放電中におけるプラズマドーピングによって不純物をシリコン基 板 2へ導入して、 不純物層 3を形成してもよい。  As shown in FIGS. 1 and 2, an example in which the silicon substrate 2 on which the impurity layer 3 is formed in advance has been heat-treated has been described, but an ion source is provided inside the chamber 14 of the electric furnace 4. The impurity layer 3 may be formed by introducing an impurity into the silicon substrate 2 before the impurity layer 3 is formed. In addition, a plasma electrode is provided inside the chamber 14, diporane or the like is introduced as a gas containing impurities into the chamber 14, and impurities are introduced into the silicon substrate by plasma doping during discharge generated by the plasma electrode. 2 to form the impurity layer 3.
図 4は、 本実施の形態に係る極浅接合層形成方法における熱処理工程 および電磁波照射工程の双方を実行するための極浅接合層形成装置 2 1 を模式的に示す断面図である。 図 2を参照して前述した電気炉 4の構成 要素および図 3を参照して前述した電磁波照射装置 8の構成要素と同一 の構成要素には同一の参照符号を付している。 従って、 これらの構成要 素の詳細な説明は省略する。  FIG. 4 is a cross-sectional view schematically showing an ultra-shallow junction layer forming apparatus 21 for performing both the heat treatment step and the electromagnetic wave irradiation step in the ultra-shallow junction layer forming method according to the present embodiment. The same components as those of the electric furnace 4 described above with reference to FIG. 2 and the components of the electromagnetic wave irradiation device 8 described above with reference to FIG. 3 are denoted by the same reference numerals. Therefore, a detailed description of these components will be omitted.
極浅接合層形成装置 2 1は、 チャンバ一 9 Aを備えている。 チャンバ 一 9 Aの内部には、 載置台 1 3 Aが設けられている。 載置台 1 3 Aの上 には、 シリコン基板 2が、 不純物層 3が上側になるように載置されてい る。 載置台 1 3 Aには、 シリコン基板 2に導入された不純物が熱的平衡 状態において活性化しない程度に十分低い基板温度にシリコン基板 2を 保っための液体窒素を流通させる図示しない流路が形成されている。 極 浅接合層形成装置 2 1には、 載置台 1 3 Aに液体窒素を供給するための 液体窒素供給装置 2 4が設けられている。 載置台 1 3 Aには、 載置台 1 3 Aに形成された流路を流通する液体窒素の温度を制御するための冷却 装置 2 3が設けられている。 The ultra-shallow junction layer forming apparatus 21 includes a chamber 9A. A mounting table 13 A is provided inside the chamber 19 A. The silicon substrate 2 is mounted on the mounting table 13 A such that the impurity layer 3 is on the upper side. On the mounting table 13 A, the silicon substrate 2 is set at a substrate temperature sufficiently low that the impurities introduced into the silicon substrate 2 are not activated in a thermal equilibrium state. A flow path (not shown) through which liquid nitrogen for keeping the liquid nitrogen flows is formed. The ultra-shallow junction layer forming device 21 is provided with a liquid nitrogen supply device 24 for supplying liquid nitrogen to the mounting table 13A. The mounting table 13A is provided with a cooling device 23 for controlling the temperature of liquid nitrogen flowing through the flow path formed in the mounting table 13A.
チャンバ一 9 Aの一方の側壁にはチャンバ一 9 Aの内部へ窒素 (N 2 ) ガスを導入するためのガス導入管 5が設けられており、 チャンバ一 9 Aの他方の側壁にはチヤンバー 9 Aの内部における.ガスをチャンバ一 9 Aの外部へ排出するためのガス排出管 6が設けられている。 A gas inlet pipe 5 for introducing nitrogen (N 2 ) gas into the inside of the chamber 9 A is provided on one side wall of the chamber 9 A, and a chamber 9 is provided on the other side wall of the chamber 9 A. A gas exhaust pipe 6 for exhausting gas inside the chamber A to the outside of the chamber 9A is provided.
チャンバ一 9 Aの内部には、 載置台 1 3 Aの上に载置されたシリ コン 基板 2を加熱するための赤外線ランプ 2 2が設けられている。  Inside the chamber 19A, an infrared lamp 22 for heating the silicon substrate 2 placed on the mounting table 13A is provided.
極浅接合層形成装置 2 1は、 コヒーレント電磁波源 1 0を有している 。 コヒーレント電磁波源 1 0は、 入射コヒーレント電磁波 1 2を生成す る。 チャンパ一 9 Aには、 载置台 1 3 Aに載置されたシリコン基板 2に 形成された不純物層 3に対向するように照射光学系 1 1が設けられてい る。 照射光学系 1 1は、 コヒーレント電磁波源 1 0によって生成された 入射コヒーレント電磁波 1 2を照射コヒーレント電磁波 1に変換して、 不純物層 3が形成されたシリコン基板 2へ照射する。  The ultra-shallow junction layer forming apparatus 21 has a coherent electromagnetic wave source 10. The coherent electromagnetic wave source 10 generates an incident coherent electromagnetic wave 12. The illumination optical system 11 is provided on the champer 9A so as to face the impurity layer 3 formed on the silicon substrate 2 mounted on the mounting table 13A. Irradiation optical system 11 converts incident coherent electromagnetic wave 12 generated by coherent electromagnetic wave source 10 into irradiation coherent electromagnetic wave 1 and irradiates silicon substrate 2 on which impurity layer 3 is formed.
このように構成された極浅接合層形成装置 2 1において、 不純物層 3 が予め形成されたシリコン基板 2をチャンバ一 9 Aの中の載置台 1 3 A の上に載置した後、 窒素 (N 2 ) ガスをガス導入管 5を通してチャンバ 一 9 Aの内部へ導入し、 チャンバ一 9 Aの内部に存在するガスをガス排 出管 6を通して排出することによって、 チャンバ一 9 Aの内部を窒素 ( N 2 ) ガス雰囲気とした。 In the ultra-shallow junction layer forming apparatus 21 configured as described above, after the silicon substrate 2 on which the impurity layer 3 is formed in advance is mounted on the mounting table 13A in the chamber 19A, nitrogen ( N 2 ) Gas is introduced into chamber 19A through gas introduction pipe 5 and gas existing in chamber 19A is exhausted through gas exhaust pipe 6, whereby nitrogen inside chamber 19A is discharged. (N 2 ) gas atmosphere.
そして、 シリコン基板 2の基板温度が、 熱的平衡状態では不純物が実 質的に活性化しない程度に十分低い 7 0 0 °C以下になるように、 シリコ ン基板 2を赤外線ランプ 2 2によって加熱した。 例えば、 シリ コン基板 2が約 6 0 0 °Cの基板温度において熱的平衡状態になるように約 5時間 の間シリコン基板 2を加熱した。 加熱されたシリコン基板 2を構成する シリコン原子は、 約 6 0 0 °Cの基板温度において再結晶化し、 不純物が 導入されたシリコン基板 2を構成するシリ コン原子に生じた格子欠陥が 回復した。 このような熱処理によって、 シリ コン基板 2を構成するシリ コン原子が再配列し、 シリコン原子に生じた格子欠陥が消滅した。 The silicon is set so that the substrate temperature of the silicon substrate 2 becomes 700 ° C. or less, which is sufficiently low that impurities are not substantially activated in a thermal equilibrium state. The substrate 2 was heated by the infrared lamp 22. For example, the silicon substrate 2 was heated for about 5 hours so that the silicon substrate 2 was in thermal equilibrium at a substrate temperature of about 600 ° C. The silicon atoms constituting the heated silicon substrate 2 were recrystallized at a substrate temperature of about 600 ° C., and the lattice defects generated in the silicon atoms constituting the silicon substrate 2 into which the impurities were introduced were recovered. By such heat treatment, the silicon atoms constituting the silicon substrate 2 rearranged, and the lattice defects generated in the silicon atoms disappeared.
次に、 前述した熱処理が施されたシリコン基板 2が載置された載置台 1 3 Aに形成された流路へ液体窒素供給装置 2 4から液体窒素を供給し た。 そして、 シリ コン基板 2が載置された载置台 1 3 Aに形成された流 路を流通する液体窒素からの熱伝導によって、 熱的平衡状態では不純物 が実質的に活性化しない程度に十分低い 5 0 0 °C以下にシリコン基板 2 の基板温度を保つように、 載置台 1 3 Aに形成された流路を流通する液 体窒素を冷却装置 2 3によって冷却した。  Next, liquid nitrogen was supplied from the liquid nitrogen supply device 24 to the flow path formed on the mounting table 13A on which the silicon substrate 2 subjected to the heat treatment described above was mounted. Then, due to heat conduction from liquid nitrogen flowing through the channel formed on the mounting table 13 A on which the silicon substrate 2 is mounted, the temperature is sufficiently low that impurities are not substantially activated in a thermal equilibrium state. Liquid nitrogen flowing through the flow path formed in the mounting table 13A was cooled by the cooling device 23 so that the substrate temperature of the silicon substrate 2 was maintained at 500 ° C. or lower.
その後、 コヒーレント電磁波源 1 0によって、 入射コヒーレント電磁 波 1 2を生成した。 照射光学系 1 1は、 シリ コン基板 2へ照射される照 射コヒーレント電磁波 1の照射均一性を確保するように、 入射コヒーレ ント電磁波 1 2を照射コヒーレント電磁波 1に変換して、 シリ コン基板 2が熱的に非平衡な状態である熱的非平衡状態において、 不純物層 3に 含まれる不純物を活性化するように、 冷却装置 2 3によって 5 0 0 °C以 下の基板温度に保たれたシリコン基板 2へ照射コヒーレント電磁波 1を 照射した。 照射コヒーレント電磁波 1は、 前述した電磁波照射装置 8と 同様に、 発振周波数が 1 0 G H z以上 1 0 0 G H z以下のミリ波帯電磁 波によって構成した。  After that, the incident coherent electromagnetic wave 12 was generated by the coherent electromagnetic wave source 10. The irradiation optical system 1 1 converts the incident coherent electromagnetic wave 1 2 into the irradiation coherent electromagnetic wave 1 so that the irradiation coherent electromagnetic wave 1 irradiating the silicon substrate 2 can maintain the irradiation uniformity. In a thermal non-equilibrium state where the substrate is in a thermal non-equilibrium state, the cooling device 23 was used to maintain the substrate temperature at 500 ° C. or lower so as to activate the impurities contained in the impurity layer 3. The silicon substrate 2 was irradiated with the irradiation coherent electromagnetic wave 1. The irradiation coherent electromagnetic wave 1 was constituted by a millimeter-wave band electromagnetic wave having an oscillation frequency of 10 GHz or more and 100 GHz or less, similarly to the electromagnetic wave irradiation device 8 described above.
発振周波数が 1 0 G H z以上 1 0 0 G H z以下のミリ帯波電磁波によ つて構成される照射コヒ レント電磁波 1がシリ コン基板 2へ照射され ると、 シリコン原子の格子振動 (フオノン) が直接励起され、 熱的非平 衡状態において不純物が活性化し、 活性化した不純物が拡散して極薄接 合層が形成された。 Irradiation coherent electromagnetic wave 1 composed of millimeter-band electromagnetic waves with an oscillation frequency of 10 GHz or more and 100 GHz or less is irradiated on silicon substrate 2. As a result, the lattice vibration (phonon) of the silicon atoms was directly excited, and the impurities were activated in a thermally unbalanced state, and the activated impurities were diffused to form an ultrathin junction layer.
前述した電磁波照射装置 8と同様に、 活性化した不純物は、 熱的平衡 状態では不純物が実質的に活性化しない程度に十分低い 5 0 0 °C以下の 基板温度において拡散した。 このため、 不純物はシリコン基板の深部へ 不必要に拡散しなかった。 その結果、 接合深さが約 2 0ナノメータ以下 約 1ナノメータ以上の極浅接合層を形成することができた。  As in the case of the electromagnetic wave irradiation device 8 described above, the activated impurities diffused at a substrate temperature of 500 ° C. or lower, which is sufficiently low that the impurities are not substantially activated in a thermal equilibrium state. For this reason, the impurities did not needlessly diffuse into the deep portion of the silicon substrate. As a result, an ultra-shallow junction layer with a junction depth of about 20 nm or less and about 1 nm or more could be formed.
このように、 極浅接合層形成装置 2 1によれば、 単一の装置によって 極浅接合層を形成することができた。 なお、 シリコン基板 2が載置され た載置台 1 3 Aに形成された流路を流通する液体窒素を冷却装置 2 3に よって冷却することによって、 熱的平衡状態では不純物が実質的に活性 化しない程度に十分低い 5 0 0 °C以下にシリ コン基板 2の基板温度を保 つ例を示したが、 チャンバ一 9 Aの全体を冷却することによってシリコ ン基板 2の基板温度を 5 0 0 °C以下に保つようにしてもよい。 産業上の利用可能性  Thus, according to the ultra-shallow junction layer forming apparatus 21, the ultra-shallow junction layer could be formed by a single apparatus. By cooling the liquid nitrogen flowing through the flow path formed on the mounting table 13 A on which the silicon substrate 2 is mounted by the cooling device 23, impurities are substantially activated in a thermal equilibrium state. Although the example in which the substrate temperature of the silicon substrate 2 is maintained at 500 ° C. or less, which is sufficiently low to prevent the substrate temperature of the silicon substrate 2 from decreasing by 500 ° C. ° C or lower. Industrial applicability
以上のように本発明によれば、 活性化した不純物が基板の深部へ不必 要に拡散することを防止することができるァニール方法を提供すること ができる。  As described above, according to the present invention, it is possible to provide an annealing method capable of preventing activated impurities from being unnecessarily diffused into a deep portion of a substrate.
また本発明によれば、 接合深さの浅い極薄接合層を形成することがで きる極浅接合層形成方法および極浅接合層形成装置を提供することがで さる。  Further, according to the present invention, it is possible to provide an ultra-shallow junction layer forming method and an ultra-shallow junction layer forming apparatus capable of forming an ultra-thin junction layer having a small junction depth.

Claims

請 求 の 範 囲 The scope of the claims
1 . 不純物が導入された基板をァニールするためのァニール方法であつ て、 1. An annealing method for annealing a substrate having impurities introduced therein,
前記基板に導入された前記不純物が活性化しない程'度に十分低い基板 温度において前記基板が熱的平衡状態となるように前記基板を熱処理す ることによって、 前記基板を構成する原子を再結晶化させる再結晶化工 程と、  By heat-treating the substrate so that the substrate is in a thermal equilibrium state at a substrate temperature sufficiently low that the impurities introduced into the substrate are not activated, the atoms constituting the substrate are recrystallized. Recrystallization process,
前記再結晶化工程の後で、 前記十分低い基板温度に前記基板を保った 状態において、 熱的非平衡状態において前記不純物を活性化するために After the recrystallization step, while maintaining the substrate at the sufficiently low substrate temperature, to activate the impurities in a thermal non-equilibrium state
、 前記原子の格子振動 (フオノン) を直接励起するように、 所定の周波 数帯域を有する電磁波を前記基板に照射する電磁波照射工程とを包含す ることを特徴とするァニール方法。 Irradiating the substrate with an electromagnetic wave having a predetermined frequency band so as to directly excite the lattice vibration (phonon) of the atom.
2 . 不純物が導入された半導体基板に極浅接合層を形成するための極浅 接合層形成方法であって、 2. A method of forming an ultra-shallow junction layer for forming an ultra-shallow junction layer on a semiconductor substrate into which impurities are introduced,
前記半導体基板に導入された前記不純物が活性化しない程度に十分低 い基板温度において前記半導体基板が熱的平衡状態となるように前記半 導体基板を熱処理することによって、 前記半導体基板を構成する半導体 原子を再結晶化させる再結晶化工程と、  Heat-treating the semiconductor substrate so that the semiconductor substrate is in a thermal equilibrium state at a substrate temperature sufficiently low that the impurities introduced into the semiconductor substrate are not activated; A recrystallization step of recrystallizing atoms,
前記再結晶化工程の後で、 前記十分低い基板温度に前記半導体基板を 保った状態において、 熱的非平衡状態において前記不純物を活性化して 極浅接合層を形成するために、 前記半導体原子の格子振動 (フオノン) を直接励起するように、 所定の周波数帯域を有する電磁波を前記半導体 基板に照射する電磁波照射工程とを包含することを特徴とする極浅接合 層形成方法。 After the recrystallization step, in a state where the semiconductor substrate is kept at the sufficiently low substrate temperature, the impurities are activated in a thermal non-equilibrium state to form an ultra-shallow junction layer. Irradiating the semiconductor substrate with an electromagnetic wave having a predetermined frequency band so as to directly excite lattice vibration (phonon).
3. 前記半導体基板は、 シリコンとシリ コン化合物とのいずれかによつ て構成されている、 請求の範囲 2記載の極浅接合層形成方法。 3. The method for forming an ultra-shallow junction layer according to claim 2, wherein the semiconductor substrate is made of one of silicon and a silicon compound.
4. 前記再結晶化工程において、 7 0 0°C以下の基板温度において前記 半導体基板を熱処理する、 請求の範囲 2記載の極浅接合層形成方法。 4. The method for forming an ultra-shallow junction layer according to claim 2, wherein in the recrystallization step, the semiconductor substrate is heat-treated at a substrate temperature of 700 ° C. or lower.
5. 前記再結晶化工程において、 電気炉とランプ加熱炉とのいずれかに よって前記半導体基板を熱処理する、 請求の範囲 2記載の極浅接合層形 成方法。 5. The method for forming an ultra-shallow junction layer according to claim 2, wherein in the recrystallization step, the semiconductor substrate is heat-treated by using either an electric furnace or a lamp heating furnace.
6. 前記電磁波照射工程において照射される前記電磁波は、 1 0フエム ト秒以上 1 00 0フエムト秒以下のパルス幅を有する超短パルスレーザ 光を含んでいる、 請求の範囲 2記載の極浅接合層形成方法。 6. The ultra-shallow junction according to claim 2, wherein the electromagnetic wave irradiated in the electromagnetic wave irradiation step includes ultra-short pulse laser light having a pulse width of 10 to 100 femtoseconds or less. Layer forming method.
7. 前記電磁波照射工程において照射される前記電磁波は、 1 0 GH z 以上 1 T H z以下の周波数帯域幅を有する連続波出力レーザ光を含んで いる、 請求の範囲 2記載の極浅接合層形成方法。 7. The ultrashallow junction layer formation according to claim 2, wherein the electromagnetic wave applied in the electromagnetic wave irradiation step includes a continuous wave output laser beam having a frequency bandwidth of 10 GHz or more and 1 THz or less. Method.
8. 前記電磁波照射工程において照射される前記電磁波は、 1 0 GH z 以上 1 0 0 GH Z以下の発振周波数を有するミリ波帯電磁波を含んでい る、 請求の範囲 2記載の極浅接合層形成方法。 8. The electromagnetic wave to be irradiated in the electromagnetic wave irradiation process, 1 0 GH z that include a millimeter wave band electromagnetic wave having a 1 0 0 GH Z following oscillation frequencies above, ultra-shallow junction layer according to claim 2, wherein Forming method.
9. 前記電磁波照射工程において照射される前記電磁波は、 前記半導体 原子と前記不純物との間の結合エネルギーに対応する周波数帯域を有し ている、 請求の範囲 2記載の極浅接合層形成方法。 9. The method for forming an ultra-shallow junction layer according to claim 2, wherein the electromagnetic wave irradiated in the electromagnetic wave irradiation step has a frequency band corresponding to a binding energy between the semiconductor atom and the impurity.
1 0 . 前記電磁波照射工程は、 前記十分低い基板温度に前記半導体基板 を保つように前記半導体基板を冷却しながら、 前記電磁波を前記半導体 基板に照射する、 請求の範囲 2記載の極浅接合層形成方法。 10. The ultra-shallow junction layer according to claim 2, wherein the electromagnetic wave irradiating step irradiates the electromagnetic wave to the semiconductor substrate while cooling the semiconductor substrate so as to maintain the semiconductor substrate at the sufficiently low substrate temperature. Forming method.
1 1 . 不純物が導入された半導体基板に極浅接合層を形成するための極 浅接合層形成装置であって、 11. An ultra-shallow junction layer forming apparatus for forming an ultra-shallow junction layer on a semiconductor substrate into which impurities are introduced,
前記半導体基板に導入された前記不純物が活性化しない程度に十分低 い基板温度において前記半導体基板が熱的平衡状態となるように前記半 導体基板を熱処理することによって、 前記半導体基板を構成する半導体 原子を再結晶化させる再結晶化手段と、  Heat-treating the semiconductor substrate so that the semiconductor substrate is in a thermal equilibrium state at a substrate temperature sufficiently low that the impurities introduced into the semiconductor substrate are not activated; Recrystallization means for recrystallizing atoms;
前記再結晶化手段によつて前記半導体原子が再結晶化した前記半導体 基板を前記十分低い基板温度に保った状態において、 熱的非平衡状態に おいて前記不純物を活性化して極浅接合層を形成するために、 前記半導 体原子の格子振動 (フオノン) を直接励起するように、 所定の周波数帯 域を有する電磁波を前記半導体基板に照射する電磁波照射手段とを具備 することを特徴とする極浅接合層形成装置。  In a state in which the semiconductor substrate in which the semiconductor atoms are recrystallized by the recrystallization means is kept at the sufficiently low substrate temperature, the impurity is activated in a thermal non-equilibrium state to form an ultra-shallow junction layer. An electromagnetic wave irradiating means for irradiating the semiconductor substrate with an electromagnetic wave having a predetermined frequency band so as to directly excite the lattice vibration (phonon) of the semiconductor atoms. Ultra-shallow junction layer forming equipment.
PCT/JP2002/005319 2001-06-04 2002-05-30 Annealing method, ultra-shallow junction layer forming method and ultr-shallow junction layer forming device WO2002099862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-167972 2001-06-04
JP2001167972 2001-06-04

Publications (1)

Publication Number Publication Date
WO2002099862A1 true WO2002099862A1 (en) 2002-12-12

Family

ID=19010271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005319 WO2002099862A1 (en) 2001-06-04 2002-05-30 Annealing method, ultra-shallow junction layer forming method and ultr-shallow junction layer forming device

Country Status (2)

Country Link
TW (1) TW541628B (en)
WO (1) WO2002099862A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303455A (en) * 1980-03-14 1981-12-01 Rockwell International Corporation Low temperature microwave annealing of semiconductor devices
JPS6245179A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Manufacture of semiconductor device
JPH03163822A (en) * 1989-11-22 1991-07-15 Sony Corp Junction forming method on semiconductor substrate
US6051483A (en) * 1996-11-12 2000-04-18 International Business Machines Corporation Formation of ultra-shallow semiconductor junction using microwave annealing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303455A (en) * 1980-03-14 1981-12-01 Rockwell International Corporation Low temperature microwave annealing of semiconductor devices
JPS6245179A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Manufacture of semiconductor device
JPH03163822A (en) * 1989-11-22 1991-07-15 Sony Corp Junction forming method on semiconductor substrate
US6051483A (en) * 1996-11-12 2000-04-18 International Business Machines Corporation Formation of ultra-shallow semiconductor junction using microwave annealing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAVOT FABIO ET AL.: "Phonon dispersions: Performance of the generalized gradient approximation", PHYSICAL REVIEW B, vol. 60, no. 16, 15 October 1999 (1999-10-15), pages 427 - 431, XP002956366 *

Also Published As

Publication number Publication date
TW541628B (en) 2003-07-11

Similar Documents

Publication Publication Date Title
US6130397A (en) Thermal plasma annealing system, and annealing process
US8426285B2 (en) Method of fabricating semiconductor device
JP2001338894A (en) Method for annealing solid state sample and method for forming semiconductor doped layer
JP2011119297A (en) Laser annealing device and laser annealing method
JPH02294027A (en) Method and device for annealing
JP2002198322A (en) Heat treatment method and its apparatus
JPH03266424A (en) Annealing process of semiconductor substrate
JPH0963974A (en) Formation of doped layer in semiconductor substrate
JP2003059857A (en) Annealing method and method and device for forming ultra-shallow junction layer
JP2010141103A (en) Method for manufacturing semiconductor device, and thermal processing apparatus
WO2002099862A1 (en) Annealing method, ultra-shallow junction layer forming method and ultr-shallow junction layer forming device
JP2002093738A (en) Manufacturing device for polycrystalline semiconductor film
KR100777198B1 (en) Wafer processing method, semiconductor device manufacturing method, and wafer processing apparatus
JP5013235B2 (en) Ion implantation apparatus and ion implantation method
US6423605B1 (en) Method and apparatus for forming ultra-shallow junction for semiconductor device
JPH02278720A (en) Plasma doping apparatus
JPH0376129A (en) Manufacture of electronic device using boron nitride
JP4363827B2 (en) Impurity diffusion method, semiconductor device, and manufacturing method of semiconductor device
EP0216933A1 (en) Method for fabricating an insulating oxide layer on semiconductor substrate surface.
JP3157911B2 (en) Heat treatment method for compound semiconductor substrate and heat treatment apparatus therefor
JP2004158621A (en) Doping method and device therefor
JPS603124A (en) Annealing method of compound semiconductor
JP2007274007A (en) Method for manufacturing semiconductor device
CN112385028A (en) Low thermal budget annealing
JP2006066686A (en) Method and apparatus for introducing impurities

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase