JP2002093738A - Manufacturing device for polycrystalline semiconductor film - Google Patents

Manufacturing device for polycrystalline semiconductor film

Info

Publication number
JP2002093738A
JP2002093738A JP2000281451A JP2000281451A JP2002093738A JP 2002093738 A JP2002093738 A JP 2002093738A JP 2000281451 A JP2000281451 A JP 2000281451A JP 2000281451 A JP2000281451 A JP 2000281451A JP 2002093738 A JP2002093738 A JP 2002093738A
Authority
JP
Japan
Prior art keywords
semiconductor film
laser beam
polycrystalline semiconductor
local shield
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000281451A
Other languages
Japanese (ja)
Inventor
Junsei Tsutsumi
純 誠 堤
Shinichi Kawamura
村 真 一 河
Takashi Fujimura
村 尚 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000281451A priority Critical patent/JP2002093738A/en
Publication of JP2002093738A publication Critical patent/JP2002093738A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laser anneal device for manufacturing a polycrystalline semiconductor film, whereby a highly reliable transistor free of characteristic variations can be obtained by preventing inclusion of impurities to a polycrystalline semiconductor film and reducing projection of a grain part of polycrystalline silicon, when a polycrystalline semiconductor film is formed by laser annealing method. SOLUTION: The manufacturing apparatus of a polycrystalline semiconductor film for crystallizing an amorphous semiconductor film formed on an insulated substrate by means of a beam anneal method has a local shield which can control the atmosphere of the surface of a substrate, which is subjected to beam irradiation in the periphery of laser beam, when laser beam is directed to an amorphous semiconductor film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁基板上に形成
された非晶質半導体膜をレーザー照射することにより多
結晶半導体膜を製造する多結晶半導体膜の製造装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a polycrystalline semiconductor film by irradiating an amorphous semiconductor film formed on an insulating substrate with a laser to produce a polycrystalline semiconductor film.

【0002】[0002]

【従来の技術】高精細液晶ディスプレイと共に周辺回路
も同一基板上に形成した駆動回路一体型の、薄膜トラン
ジスタ(TFT)を有する液晶ディスプレイ(LCD)
を製造する目的で、ガラス、石英等の絶縁基板上に多結
晶シリコン膜を形成する様々な技術が研究されている。
2. Description of the Related Art A liquid crystal display (LCD) having a thin film transistor (TFT) integrated with a driving circuit in which peripheral circuits are formed on the same substrate together with a high definition liquid crystal display.
Various techniques for forming a polycrystalline silicon film on an insulating substrate made of glass, quartz, or the like have been studied for the purpose of manufacturing.

【0003】この多結晶シリコン膜を用いて上記駆動回
路ならびに薄膜トランジスタ(TFT)が形成される。
なかでも、ガラス絶縁基板上に形成された非晶質シリコ
ン半導体膜に対して均一な強度を持つレーザビームを非
晶質シリコン半導体膜の表側から照射しシリコンの溶融
再結晶化を図るレーザアニール法が知られている。この
レーザアニール法は、短軸方向を走査方向とする細い長
いビームパルスを用いるためシリコンの瞬時加熱・冷却
が行われガラス基板に与える熱的影響が少なく、安価な
ガラスを用いることができるとともに、移動度の高い薄
膜トランジスタが形成できる等の利点があり、盛んに研
究がなされている。
The driving circuit and the thin film transistor (TFT) are formed using the polycrystalline silicon film.
In particular, a laser annealing method for irradiating the amorphous silicon semiconductor film formed on a glass insulating substrate with a laser beam having a uniform intensity from the front side of the amorphous silicon semiconductor film to melt and recrystallize silicon. It has been known. This laser annealing method uses a thin and long beam pulse whose scanning direction is the short axis direction, so that instantaneous heating and cooling of silicon is performed and the thermal effect on the glass substrate is small, so that inexpensive glass can be used, It has an advantage that a thin film transistor having high mobility can be formed, and has been actively studied.

【0004】またレーザアニール法は、図5に示すよう
にライン状のレーザビーム12を形成し、ガラス基板上
に形成された非晶質シリコン薄膜13に対してレーザビ
ーム12をその短軸方向に沿って矢印方向に走査させな
がら照射することで、大面積の非晶質シリコン薄膜13
を短時間に結晶化して多結晶シリコンを形成することが
できるという利点も兼ね備えている。
In the laser annealing method, a linear laser beam 12 is formed as shown in FIG. 5, and the laser beam 12 is applied to an amorphous silicon thin film 13 formed on a glass substrate in the short axis direction. By irradiating the amorphous silicon thin film 13 in the direction indicated by the arrow in FIG.
Can be crystallized in a short time to form polycrystalline silicon.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこの方法
で形成される多結晶シリコンは、非晶質シリコン半導体
膜の表面汚染に非常に敏感である。また大気中でレーザ
アニールを行うと、雰囲気中の酸素がシリコン中に溶け
込んで多結晶シリコンの粒界部に偏析し、シリコンが酸
化されることで体積膨張を起こすことにより、多結晶シ
リコンの表面の突起高さ(表面粗さ)が増大される。突
起高さが増大すると、ゲート絶縁膜の被覆性が悪くなる
とともに突起先端に電界が集中するためにゲート絶縁膜
の信頼性低下を招く。これを防ぐために真空中でレーザ
アニールを行う多結晶半導体膜の製造装置が考案され使
用されているが、この従来の製造装置はチャンバを設け
る必要があるために装置のコストが非常に高くなるとい
う問題点がある。
However, polycrystalline silicon formed by this method is very sensitive to surface contamination of the amorphous silicon semiconductor film. Also, when laser annealing is performed in the atmosphere, oxygen in the atmosphere dissolves into silicon and segregates at the grain boundaries of the polycrystalline silicon, which causes volume expansion due to oxidation of the silicon, thereby increasing the surface of the polycrystalline silicon. The height (surface roughness) of the projections is increased. When the height of the protrusion increases, the coverage of the gate insulating film deteriorates, and an electric field concentrates on the tip of the protrusion, which causes a decrease in the reliability of the gate insulating film. In order to prevent this, a polycrystalline semiconductor film manufacturing apparatus that performs laser annealing in a vacuum has been devised and used. However, this conventional manufacturing apparatus requires a chamber to be provided, resulting in a very high apparatus cost. There is a problem.

【0006】本発明は、上記事情を考慮してなされたも
のであって、可及的に安価でかつ良好な多結晶半導体膜
を製造することのできる多結晶半導体膜の製造装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a polycrystalline semiconductor film manufacturing apparatus capable of manufacturing a good polycrystalline semiconductor film as inexpensively as possible. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明による多結晶半導
体膜の製造装置は、絶縁基板上に形成された非晶質半導
体膜をビームアニール法によって結晶化する多結晶半導
体膜の製造装置において、レーザビームを非晶質半導体
膜に照射するときに、レーザビームが照射される基板の
表面の雰囲気を制御できる局所シールド部を備えている
ことを特徴とする。
According to the present invention, there is provided an apparatus for manufacturing a polycrystalline semiconductor film for crystallizing an amorphous semiconductor film formed on an insulating substrate by a beam annealing method. When the amorphous semiconductor film is irradiated with the laser beam, a local shield portion which can control an atmosphere of a surface of the substrate to be irradiated with the laser beam is provided.

【0008】なお、前記局所シールド部は、前記レーザ
ビームを透過する材料から構成されていて上面に前記レ
ーザビームを受け、不活性ガスを導入できる導入口が設
けられているとともに、底面に前記不活性ガスを排気す
るための排気口が設けられているように構成しても良
い。
The local shield portion is made of a material that transmits the laser beam, has an upper surface provided with an inlet through which the laser beam can be received and an inert gas can be introduced, and has a lower surface provided with the inlet. An exhaust port for exhausting the active gas may be provided.

【0009】なお、前記局所シールド部の側面に設けら
れた、基板表面の前記不活性ガスを強制的に排出する強
制排気口部と、この強制排気口部の外側に設けられ前記
レーザビームが照射される基板領域を大気から前記不活
性ガスで遮蔽するエアカーテン部とを備えるように構成
しても良い。
In addition, a forced exhaust port provided on a side surface of the local shield portion for forcibly discharging the inert gas on the substrate surface, and the laser beam provided outside the forced exhaust port is irradiated with the laser beam. And an air curtain section for shielding the substrate region to be protected from the atmosphere with the inert gas.

【0010】なお、前記局所シールド部の前記排気口
は、幅が前記レーザの光線束の幅よりも広く、長さが前
記レーザの光線束の長さよりも長いことが好ましい。
It is preferable that the exhaust port of the local shield has a width wider than a width of the laser beam and a length longer than a length of the laser beam.

【0011】このように構成された本発明の多結晶半導
体膜の製造装置によれば、安価な装置で基板表面の雰囲
気を制御できるために、レーザアニール中の不純物汚染
を防止でき、かつ酸素分圧を所定値(例えば0.1Pa
以下)に制御することで、粒界部の酸素偏析を防止し
て、多結晶半導体膜の表面突起高さを低減でき、良好な
多結晶半導体膜を得ることができる。
According to the apparatus for manufacturing a polycrystalline semiconductor film of the present invention thus configured, since the atmosphere on the substrate surface can be controlled with an inexpensive apparatus, impurity contamination during laser annealing can be prevented and oxygen content can be reduced. Pressure to a predetermined value (for example, 0.1 Pa
By controlling to (1) below, oxygen segregation at the grain boundary portion can be prevented, the height of surface protrusions of the polycrystalline semiconductor film can be reduced, and a favorable polycrystalline semiconductor film can be obtained.

【0012】[0012]

【発明の実施の形態】本発明による多結晶半導体膜の製
造装置の実施形態を図を参照して以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a polycrystalline semiconductor film manufacturing apparatus according to the present invention will be described below with reference to the drawings.

【0013】(第1実施形態)本発明による多結晶半導
体膜の製造装置の第1の実施形態を図1に示す。この実
施形態の製造装置は、エキシマレーザ光源6と、光学レ
ンズ7と、局所シールド部9と、ミラー15とを備えて
いる。エキシマレーザ光源6から発生されたエキシマレ
ーザ光8はミラー15によって反射された後、レーザ光
学レンズ7を介して局所シールド部9に送られる。な
お、局所シールド部9に入射するレーザ光は断面が細長
い長方形状の光線束である。局所シールド部9は、図2
に示すようにレーザ光を透過する材料からなる中が空洞
の箱であって、窒素ガスまたは窒素ガスを主成分とする
所定の濃度の酸素を含む処理ガスを導入するための導入
口10が側面に設けられているとともに、底面に上記処
理ガスを排出するための排気口9aが設けられている。
この排気口9aは、細長い長方形の形状をしており、こ
の長方形の長さが局所シールド9に入射するレーザの光
線束の長さよりも長く、かつ幅が局所シールド9に入射
するレーザの光線束の幅よりも広くなるように構成され
ている。また、上記導入口10を介して局所シールド部
9に導入される処理ガスは図示しない流量調整手段によ
って流量が調整可能である。
(First Embodiment) FIG. 1 shows a first embodiment of an apparatus for manufacturing a polycrystalline semiconductor film according to the present invention. The manufacturing apparatus of this embodiment includes an excimer laser light source 6, an optical lens 7, a local shield 9, and a mirror 15. The excimer laser light 8 generated from the excimer laser light source 6 is reflected by a mirror 15 and then sent to a local shield 9 via a laser optical lens 7. The laser light incident on the local shield part 9 is a rectangular light beam having a thin and long cross section. The local shield 9 is shown in FIG.
As shown in FIG. 3, a hollow box is formed of a material that transmits laser light, and an inlet 10 for introducing a processing gas containing nitrogen gas or a predetermined concentration of oxygen containing nitrogen gas as a main component is provided on a side surface. And an exhaust port 9a for exhausting the processing gas is provided on the bottom surface.
The exhaust port 9 a has an elongated rectangular shape, and the length of the rectangle is longer than the length of the beam of the laser beam incident on the local shield 9 and the width of the beam of the laser beam incident on the local shield 9. It is configured to be wider than the width of. The flow rate of the processing gas introduced into the local shield unit 9 through the inlet 10 can be adjusted by a flow rate adjusting unit (not shown).

【0014】次に、この実施形態の製造装置の動作を、
多結晶シリコン膜を製造する場合を例に取って説明す
る。図3は非晶質シリコン膜が形成された半導体基板の
断面図である。まず図3において、例えば無アルカリガ
ラスからなる絶縁基板1上に、プラズマCVD法により
アンダーコート層としてSiN膜2とSiOx膜3を順
次形成し、さらに活性層として非晶質シリコン膜4を成
膜する。その後、この非晶質シリコン膜4が形成された
基板全体を500℃のN2雰囲気中で1時間のアニール
を行い、非晶質シリコン膜4内部の水素濃度を所定濃度
まで低減させる。
Next, the operation of the manufacturing apparatus of this embodiment will be described.
The case of manufacturing a polycrystalline silicon film will be described as an example. FIG. 3 is a sectional view of a semiconductor substrate on which an amorphous silicon film is formed. First, in FIG. 3, an SiN film 2 and a SiOx film 3 are sequentially formed as an undercoat layer by an plasma CVD method on an insulating substrate 1 made of, for example, alkali-free glass, and an amorphous silicon film 4 is formed as an active layer. I do. Thereafter, the entire substrate on which the amorphous silicon film 4 is formed is annealed for 1 hour in an N2 atmosphere at 500 ° C. to reduce the hydrogen concentration inside the amorphous silicon film 4 to a predetermined concentration.

【0015】次にこの基板を図1に示す本実施形態の製
造装置にセットする。局所シールド部9の内部に窒素ガ
スを導入口10より導入し、基板1の表面の雰囲気を制
御する。多結晶シリコンの表面突起低減を目的とする場
合は、酸素分圧0.1Pa以下に制御できるように窒素
ガスの流量を調整することが必要であることが実験結果
からわっかている。エキシマレーザ光源6から発射され
たエキシマレーザ光8がミラー15およびレーザ光学レ
ンズ7を介して局所シールド部9の上面に入射される。
そして局所シールド部9の上面に入射したレーザ光8
は、局所シールド部9を直進し、底面に設けられた排出
口を通って非晶質シリコン膜4に照射される。
Next, this substrate is set in the manufacturing apparatus of this embodiment shown in FIG. A nitrogen gas is introduced into the local shield part 9 from the inlet 10 to control the atmosphere on the surface of the substrate 1. From the experimental results, it is necessary to adjust the flow rate of the nitrogen gas so that the oxygen partial pressure can be controlled to 0.1 Pa or less when the purpose is to reduce the surface protrusion of the polycrystalline silicon. Excimer laser light 8 emitted from the excimer laser light source 6 is incident on the upper surface of the local shield 9 via the mirror 15 and the laser optical lens 7.
Then, the laser light 8 incident on the upper surface of the local shield portion 9
Irradiates the amorphous silicon film 4 through the local shield part 9 and through an outlet provided on the bottom surface.

【0016】本実施形態では、波長308nm、パルス
幅25nsecのエキシマレーザを用いて細長いレーザビー
ム8を形成し、このレーザビーム8で1ヶ所あたり20
パルス照射されるように基板1を走査しながら非晶質シ
リコン膜4をレーザアニールして多結晶シリコン膜を形
成した。レーザアニールは照射エネルギー密度を280
mJ/cm2に設定した。また絶縁基板であるガラス基
板1を加熱しながらレーザ光を照射してもよい。なお、
走査方向は従来技術の場合と同様にレーザビーム8の短
軸方向である。
In this embodiment, an elongated laser beam 8 is formed using an excimer laser having a wavelength of 308 nm and a pulse width of 25 nsec.
The amorphous silicon film 4 was laser-annealed while scanning the substrate 1 so as to be irradiated with a pulse to form a polycrystalline silicon film. Laser annealing increases the irradiation energy density to 280
It was set to mJ / cm2. Alternatively, the laser light may be irradiated while heating the glass substrate 1 which is an insulating substrate. In addition,
The scanning direction is the short axis direction of the laser beam 8 as in the case of the related art.

【0017】図1に示すように本実施形態の製造装置は
局所シールド9を備えているために、レーザ光が照射さ
れる非晶質シリコン膜4の表面の雰囲気を所望の雰囲気
に制御すること可能となり、レーザアニール中の不純物
汚染を防止できる。また窒素ガス中に含まれる酸素の分
圧を0.1Pa以下に制御することで、多結晶シリコン
膜4中への酸素溶け込みを防止することが可能となり、
粒界部の酸素偏析を防止して、多結晶シリコンの表面突
起高さを低減できるために、信頼性の高いトランジスタ
が得られる。
As shown in FIG. 1, since the manufacturing apparatus of the present embodiment includes the local shield 9, it is necessary to control the atmosphere on the surface of the amorphous silicon film 4 to be irradiated with the laser beam to a desired atmosphere. This makes it possible to prevent impurity contamination during laser annealing. Further, by controlling the partial pressure of oxygen contained in the nitrogen gas to 0.1 Pa or less, it becomes possible to prevent oxygen from dissolving into the polycrystalline silicon film 4,
Oxygen segregation at the grain boundary can be prevented and the height of the surface protrusions of polycrystalline silicon can be reduced, so that a highly reliable transistor can be obtained.

【0018】また、局所シールド部9は中が空洞の箱で
あるから、製造コストは高くなく、可及的に安価な多結
晶半導体膜の製造装置を得ることができる。
Further, since the local shield 9 is a hollow box, the manufacturing cost is not high, and an apparatus for manufacturing a polycrystalline semiconductor film which is as inexpensive as possible can be obtained.

【0019】以上説明したように、本実施形態の製造装
置は、可及的に安価で、かつ不純物による局所的な特性
変動がなく特性の良好な多結晶半導体膜を得ることがで
きる。
As described above, the manufacturing apparatus of the present embodiment can obtain a polycrystalline semiconductor film which is as inexpensive as possible and has good characteristics without local characteristic fluctuation due to impurities.

【0020】なお、本実施形態では、局所シールド部9
に導入口10より処理ガスとして窒素ガスまたは窒素ガ
スを主成分とするガスを導入したが、窒素ガスの他の不
活性ガスを用いても良い。また、本実施形態において
は、導入口10は局所シールド部9の側面に設けられて
いたが上面に設けても良い。
In the present embodiment, the local shield 9
Although nitrogen gas or a gas containing nitrogen gas as a main component is introduced as a processing gas from the inlet port 10, another inert gas other than nitrogen gas may be used. Further, in the present embodiment, the inlet 10 is provided on the side surface of the local shield part 9, but may be provided on the upper surface.

【0021】(第2の実施形態)次に本発明による多結
晶半導体膜の製造装置の構成を図4に示す。この実施形
態の製造装置は、第1の実施形態の製造装置に、強制排
気口部21,22と、エアカーテン部23,24とを設
けた構成となっている。強制排気口部21,22はそれ
ぞれ、局所シールド部9側面に設けられた、直方体形状
の中が空洞の箱であって、底面全体が処理ガス(窒素ガ
スまたは窒素ガスを主成分とするガス)を吸入するため
の吸入口となっており、上面に上記処理ガスを排気する
ための排気口が設けられた構造となっている。
(Second Embodiment) Next, FIG. 4 shows the configuration of an apparatus for manufacturing a polycrystalline semiconductor film according to the present invention. The manufacturing apparatus according to this embodiment has a configuration in which forced exhaust ports 21 and 22 and air curtain sections 23 and 24 are provided in the manufacturing apparatus according to the first embodiment. Each of the forced exhaust ports 21 and 22 is a hollow box inside a rectangular parallelepiped provided on the side surface of the local shield section 9, and the entire bottom surface is a processing gas (nitrogen gas or gas mainly containing nitrogen gas). And an exhaust port for exhausting the processing gas is provided on the upper surface.

【0022】また、エアカーテン部23,24はそれぞ
れ、強制排気口部21,22の、局所シールド部9が設
けられた側面と反対側の側面に設けられた、直方体形状
の中が空洞の箱であって、側面または上面に処理ガスを
導入するための導入口(図示せず)が設けられていると
ともに、底面には上記処理ガスを排気するための排気口
が設けられた構造となっている。このため、局所シール
ド部9を介してレーザビームが照射される非晶質シリコ
ン膜の領域の周囲を処理ガスによって大気から遮蔽する
ことができる。
The air curtain sections 23 and 24 are provided on the side faces of the forced exhaust ports 21 and 22 opposite to the side face on which the local shield section 9 is provided. An inlet (not shown) for introducing the processing gas is provided on the side surface or the upper surface, and an exhaust port for exhausting the processing gas is provided on the bottom surface. I have. For this reason, the periphery of the region of the amorphous silicon film irradiated with the laser beam via the local shield part 9 can be shielded from the atmosphere by the processing gas.

【0023】第2の実施形態の製造装置においては、基
板表面近くの処理ガスを強制的に排気する強制排気口部
21,22と、エアカーテン部23,24とを備えた構
成となっているため、局所シールド部9内部の気流制御
が第1の実施形態よりも容易となるとともに基板表面の
酸素分圧を低くすることが容易になる。本実施形態で
は、窒素ガスを局所シールド内部9に導入し、基板表面
での酸素分圧0.1Pa以下になるように排気量を調整
した。また本実施形態では、窒素ガスを用いたが、その
他の不活性ガスを用いても良い。
The manufacturing apparatus according to the second embodiment has forced exhaust ports 21 and 22 for forcibly exhausting a processing gas near the substrate surface, and air curtains 23 and 24. Therefore, the airflow control inside the local shield part 9 becomes easier than in the first embodiment, and the oxygen partial pressure on the substrate surface can be easily lowered. In the present embodiment, nitrogen gas is introduced into the inside of the local shield 9 and the exhaust amount is adjusted so that the oxygen partial pressure on the substrate surface becomes 0.1 Pa or less. Further, in the present embodiment, nitrogen gas is used, but another inert gas may be used.

【0024】以上説明したように本実施の形態の製造装
置を用いることで、第1の実施形態の場合よりも良好な
多結晶半導体膜を得ることができる。また、第1の実施
形態と同様に可及的に安価な製造装置とすることができ
る。
As described above, by using the manufacturing apparatus of the present embodiment, a better polycrystalline semiconductor film can be obtained than in the case of the first embodiment. Further, as in the case of the first embodiment, the manufacturing apparatus can be made as inexpensive as possible.

【0025】[0025]

【発明の効果】以上述べたように、本発明によれば、可
及的に安価で、かつ良好な多結晶半導体膜を製造するこ
とができる。
As described above, according to the present invention, a favorable polycrystalline semiconductor film can be manufactured as inexpensively as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による多結晶半導体膜の第1の実施形態
の構成を示す図。
FIG. 1 is a diagram showing a configuration of a first embodiment of a polycrystalline semiconductor film according to the present invention.

【図2】第1の実施形態にかかる局所シールド部の構成
を示す斜視図。
FIG. 2 is an exemplary perspective view showing the configuration of a local shield unit according to the first embodiment;

【図3】非晶質シリコン膜が形成された基板の断面図。FIG. 3 is a cross-sectional view of a substrate on which an amorphous silicon film is formed.

【図4】本発明による多結晶半導体膜の第2の実施形態
の構成を示す図。
FIG. 4 is a diagram showing a configuration of a second embodiment of the polycrystalline semiconductor film according to the present invention.

【図5】非晶質半導体膜から多結晶半導体膜を形成する
際のビーム走査方法を示す図。
FIG. 5 is a diagram showing a beam scanning method when forming a polycrystalline semiconductor film from an amorphous semiconductor film.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 SiN膜 3 SiOx膜 4 非晶質シリコン膜 6 エキシマレーザ光源 7 レーザ光学レンズ 8 レーザビーム 9 局所シールド部 9a 排気口 10 導入口 12 ライン状レーザビーム 13 非晶質シリコン薄膜 15 ミラー 21,22 強制排気口部 23,24 エアカーテン部 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 SiN film 3 SiOx film 4 Amorphous silicon film 6 Excimer laser light source 7 Laser optical lens 8 Laser beam 9 Local shield part 9a Exhaust port 10 Inlet 12 Linear laser beam 13 Amorphous silicon thin film 15 Mirror 21 , 22 forced exhaust port 23,24 air curtain

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤 村 尚 埼玉県深谷市幡羅町1−9−2 株式会社 東芝深谷工場内 Fターム(参考) 5F052 AA02 BA07 BB07 CA04 CA08 DA02 DB03 EA15 JA01 5F072 AA06 JJ09 KK05 KK30 RR05 SS06 YY08 5F110 AA30 BB01 DD02 DD03 DD13 DD14 GG02 GG13 PP03 PP04 PP05 PP06 PP10 PP35  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor: Takashi Fujimura 1-9-2, Hara-cho, Fukaya-shi, Saitama F-term in the Toshiba Fukaya factory (reference) 5F052 AA02 BA07 BB07 CA04 CA08 DA02 DB03 EA15 JA01 5F072 AA06 JJ09 KK05 KK30 RR05 SS06 YY08 5F110 AA30 BB01 DD02 DD03 DD13 DD14 GG02 GG13 PP03 PP04 PP05 PP06 PP10 PP35

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に形成された非晶質半導体膜を
ビームアニール法によって結晶化する多結晶半導体膜の
製造装置において、レーザビームを非晶質半導体膜に照
射するときに、レーザビームが照射される基板の表面の
雰囲気を制御できる局所シールド部を備えていることを
特徴とする多結晶半導体膜の製造装置。
In an apparatus for manufacturing a polycrystalline semiconductor film for crystallizing an amorphous semiconductor film formed on an insulating substrate by a beam annealing method, a laser beam is applied to the amorphous semiconductor film when the amorphous semiconductor film is irradiated with the laser beam. An apparatus for manufacturing a polycrystalline semiconductor film, comprising: a local shield portion capable of controlling an atmosphere on a surface of a substrate irradiated with light.
【請求項2】前記局所シールド部は、前記レーザビーム
を透過する材料から構成されていて上面に前記レーザビ
ームを受け、不活性ガスを導入できる導入口が設けられ
ているとともに、底面に前記不活性ガスを排気するため
の排気口が設けられていることを特徴とする請求項1記
載の多結晶半導体膜の製造装置。
2. The local shield section is made of a material that transmits the laser beam. The local shield section has an inlet on an upper surface through which the laser beam is received and through which an inert gas can be introduced. 2. The apparatus for manufacturing a polycrystalline semiconductor film according to claim 1, wherein an exhaust port for exhausting the active gas is provided.
【請求項3】前記局所シールド部の側面に設けられた、
基板表面の前記不活性ガスを強制的に排出する強制排気
口部と、この強制排気口部の外側に設けられ前記レーザ
ビームが照射される基板領域を大気から前記不活性ガス
で遮蔽するエアカーテン部とを備えたことを特徴とする
請求項1または2記載の多結晶半導体膜の製造装置。
3. The method according to claim 1, wherein the local shield is provided on a side surface of the local shield.
A forced exhaust port for forcibly discharging the inert gas on the substrate surface, and an air curtain provided outside the forced exhaust port to shield a substrate region irradiated with the laser beam from the atmosphere with the inert gas. 3. The apparatus for producing a polycrystalline semiconductor film according to claim 1, further comprising:
【請求項4】前記局所シールド部の前記排気口は、幅が
前記レーザの光線束の幅よりも広く、長さが前記レーザ
の光線束の長さよりも長いことを特徴とする請求項1乃
至3のいずれかに記載の多結晶半導体膜の製造装置。
4. The laser device according to claim 1, wherein the outlet of the local shield has a width greater than a width of the laser beam and a length longer than a length of the laser beam. 3. The apparatus for manufacturing a polycrystalline semiconductor film according to any one of 3.
JP2000281451A 2000-09-18 2000-09-18 Manufacturing device for polycrystalline semiconductor film Pending JP2002093738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281451A JP2002093738A (en) 2000-09-18 2000-09-18 Manufacturing device for polycrystalline semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281451A JP2002093738A (en) 2000-09-18 2000-09-18 Manufacturing device for polycrystalline semiconductor film

Publications (1)

Publication Number Publication Date
JP2002093738A true JP2002093738A (en) 2002-03-29

Family

ID=18766105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281451A Pending JP2002093738A (en) 2000-09-18 2000-09-18 Manufacturing device for polycrystalline semiconductor film

Country Status (1)

Country Link
JP (1) JP2002093738A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342785A (en) * 2003-05-15 2004-12-02 Sony Corp Method of manufacturing semiconductor, and semiconductor manufacturing equipment
JP2006108271A (en) * 2004-10-04 2006-04-20 Ulvac Japan Ltd Method and device for converting amorphous silicon film into polysilicon film
US7247812B2 (en) 2002-11-22 2007-07-24 Au Optronics Corporation Laser annealing apparatus
US7253032B2 (en) 2001-04-20 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Method of flattening a crystallized semiconductor film surface by using a plate
WO2007148476A1 (en) * 2006-06-21 2007-12-27 Hightec Systems Corporation Semiconductor heat treatment method
WO2008152873A1 (en) * 2007-06-12 2008-12-18 The Japan Steel Works, Ltd. Laser processing device
US7655513B2 (en) 2001-03-29 2010-02-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7709302B2 (en) 2001-04-27 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP2014022605A (en) * 2012-07-19 2014-02-03 Phoeton Corp Laser anneal device
KR20180012090A (en) 2016-07-26 2018-02-05 에이피시스템 주식회사 Heat treatment equipment and method for heat treatment the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192289A (en) * 1995-01-12 1996-07-30 Toshiba Corp Laser beam machining device
JPH09102467A (en) * 1995-10-05 1997-04-15 Japan Steel Works Ltd:The Laser annealing treatment apparatus
WO1997028559A1 (en) * 1996-01-30 1997-08-07 Seiko Epson Corporation High-energy body supplying device, method of forming crystalline film, and method of producing thin-film electronic appliance
JPH116086A (en) * 1997-06-13 1999-01-12 Japan Steel Works Ltd:The Device for removing unnecessary stuff on surface using laser beam
JPH118205A (en) * 1997-04-25 1999-01-12 Sharp Corp Manufacture of semiconductor device and laser beam irradiation device
JP2000150410A (en) * 1998-01-13 2000-05-30 Toshiba Corp Laser annealing furnace and laser annealing method
JP2001314985A (en) * 2000-05-09 2001-11-13 Hokkaido Univ Laser beam welding method and laser beam welding device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192289A (en) * 1995-01-12 1996-07-30 Toshiba Corp Laser beam machining device
JPH09102467A (en) * 1995-10-05 1997-04-15 Japan Steel Works Ltd:The Laser annealing treatment apparatus
WO1997028559A1 (en) * 1996-01-30 1997-08-07 Seiko Epson Corporation High-energy body supplying device, method of forming crystalline film, and method of producing thin-film electronic appliance
JPH118205A (en) * 1997-04-25 1999-01-12 Sharp Corp Manufacture of semiconductor device and laser beam irradiation device
JPH116086A (en) * 1997-06-13 1999-01-12 Japan Steel Works Ltd:The Device for removing unnecessary stuff on surface using laser beam
JP2000150410A (en) * 1998-01-13 2000-05-30 Toshiba Corp Laser annealing furnace and laser annealing method
JP2001314985A (en) * 2000-05-09 2001-11-13 Hokkaido Univ Laser beam welding method and laser beam welding device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655513B2 (en) 2001-03-29 2010-02-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7253032B2 (en) 2001-04-20 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Method of flattening a crystallized semiconductor film surface by using a plate
US7485586B2 (en) 2001-04-20 2009-02-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiating apparatus and method of manufacturing semiconductor apparatus
US8389342B2 (en) 2001-04-27 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7709302B2 (en) 2001-04-27 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7247812B2 (en) 2002-11-22 2007-07-24 Au Optronics Corporation Laser annealing apparatus
JP2004342785A (en) * 2003-05-15 2004-12-02 Sony Corp Method of manufacturing semiconductor, and semiconductor manufacturing equipment
JP2006108271A (en) * 2004-10-04 2006-04-20 Ulvac Japan Ltd Method and device for converting amorphous silicon film into polysilicon film
JPWO2007148476A1 (en) * 2006-06-21 2009-11-12 株式会社ハイテック・システムズ Semiconductor heat treatment method
WO2007148476A1 (en) * 2006-06-21 2007-12-27 Hightec Systems Corporation Semiconductor heat treatment method
JP5467238B2 (en) * 2006-06-21 2014-04-09 株式会社ハイテック・システムズ Semiconductor heat treatment method
JP2008311249A (en) * 2007-06-12 2008-12-25 Japan Steel Works Ltd:The Laser processing apparatus
WO2008152873A1 (en) * 2007-06-12 2008-12-18 The Japan Steel Works, Ltd. Laser processing device
JP2014022605A (en) * 2012-07-19 2014-02-03 Phoeton Corp Laser anneal device
KR20180012090A (en) 2016-07-26 2018-02-05 에이피시스템 주식회사 Heat treatment equipment and method for heat treatment the same

Similar Documents

Publication Publication Date Title
US8835801B2 (en) Laser processing method
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
JP5540476B2 (en) Laser annealing equipment
JP2002093738A (en) Manufacturing device for polycrystalline semiconductor film
JP4974416B2 (en) Laser annealing equipment
JPH118205A (en) Manufacture of semiconductor device and laser beam irradiation device
JP2004006703A (en) Treatment method and its apparatus for annealing and doping semiconductor
JP4845267B2 (en) Laser annealing apparatus and laser annealing method
JP4001647B2 (en) Method for manufacturing crystalline semiconductor film
JP3735394B2 (en) Method for manufacturing thin film semiconductor device
JP2004039660A (en) Method for manufacturing polycrystalline semiconductor film, method for manufacturing thin film transistor, display device, and pulse laser annealing apparatus
JPH09162124A (en) Semiconductor treating method
JP4959876B2 (en) apparatus
KR100935850B1 (en) Apparatus and method for manufacturing of Poly Silicon layer used a Laser Crystallization Process
KR100777198B1 (en) Wafer processing method, semiconductor device manufacturing method, and wafer processing apparatus
JP4268700B2 (en) Excimer laser annealing apparatus, method for manufacturing polycrystalline thin film transistor, and method for manufacturing liquid crystal display element
JP2831006B2 (en) Method for manufacturing thin film transistor
JPS6325913A (en) Manufacuture of semiconductor thin film
JP4317332B2 (en) Method for manufacturing substrate for active matrix display device
US20200388493A1 (en) Laser crystallization system and laser crystallization method
JPH11195613A (en) Device and method for ultraviolet annealing
JP4271453B2 (en) Semiconductor crystallization method and thin film transistor manufacturing method
JP2003324067A (en) Laser annealer, its method and method of manufacturing polysilicon film
JP3534069B2 (en) Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus
JPH09186342A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110422