WO2002099086A1 - Micro-organismes utiles a echelle industrielles - Google Patents

Micro-organismes utiles a echelle industrielles Download PDF

Info

Publication number
WO2002099086A1
WO2002099086A1 PCT/JP2002/005201 JP0205201W WO02099086A1 WO 2002099086 A1 WO2002099086 A1 WO 2002099086A1 JP 0205201 W JP0205201 W JP 0205201W WO 02099086 A1 WO02099086 A1 WO 02099086A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
genus
gene
useful substance
group
Prior art date
Application number
PCT/JP2002/005201
Other languages
English (en)
French (fr)
Inventor
Hideo Mori
Tatsuro Fujio
Masao Nishihara
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to JP2003502196A priority Critical patent/JPWO2002099086A1/ja
Publication of WO2002099086A1 publication Critical patent/WO2002099086A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/18Erwinia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/22Klebsiella
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/37Proteus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/42Salmonella
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/425Serratia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/425Serratia
    • C12R2001/43Serratia marcescens

Definitions

  • the present invention relates to a microorganism useful for industrial production, and a method for producing a useful substance using the microorganism.
  • microorganisms used in this case are not only aerobic microorganisms but also those that exhibit facultative anaerobicity [Appl. Environ. Microbiol., III, 1445-1452 (1983)].
  • the biosynthetic pathway of the target useful substance was strengthened, and the microbial system in which the decomposition system of the useful substance was reduced or eliminated was obtained. Attempts have been made to use it and it has been successful.
  • the gram-negative bacterium Serratia marcescens in which the prolinolytic enzyme gene has been inactivated, is produced by i-purin (Appl, Environ. Micorbiol., Al, 782-786 (1985)), and Escherichia coli. Production of hydroxyproline using 12 strains in which the proline-degrading enzyme gene has been inactivated [Biosci. Biotech. Biochem., Q ⁇ , 746-750 (2000)].
  • the present invention provides a method for inactivating or deleting a specific gene, which is effective for producing aerobic useful substances using a facultatively anaerobic microorganism (hereinafter referred to as a facultatively anaerobic microorganism).
  • a facultatively anaerobic microorganism hereinafter referred to as a facultatively anaerobic microorganism.
  • Microorganism and method for aerobically producing useful substance using the microorganism The purpose is to provide.
  • the present invention provides the following (1) to (7).
  • the gene is fdhD ⁇ fdhE ⁇ fdhF ⁇ fdnG, fdnH, fdnl, fdoG, fdoH ⁇ fdoh haA hyaB, hyaC, hyaD, hyaE, hyaF, hybA, hybB, hybC, hybD, hybE hybF, hybG, hybO.
  • microorganism (3) The microorganism according to (1) or (2) above, wherein the microorganism belongs to a family selected from the group consisting of Enterobacteriaceae and Corynebacteriaceae.
  • the microorganism according to any one of the above.
  • the microorganism is a microorganism selected from Klebsiella aerogenes Erwinia berbicola ⁇ Erwinia amylovora ⁇ Serratia marcescens Serratia ficaria Serratia font i col a Serratia liquefaciens ⁇ Escherichia coli ⁇ Salmonella typhi muriumte
  • Serratia marcescens Serratia ficaria
  • Serratia font i col a Serratia liquefaciens ⁇ Escherichia coli ⁇ Salmonella typhi muriumte
  • the microorganism according to any one of the above (1) to (5) is cultured in a medium, a useful substance is produced and accumulated in the culture, and the useful substance is collected. Aerobic production of useful substances.
  • the useful substance is a useful substance selected from the group consisting of proteins, amino acids, nucleic acids, vitamins, sugars, organic acids, lipids and analogs thereof.
  • any microorganism can be used as long as it is a facultatively anaerobic microorganism that can be used industrially.
  • Facultative anaerobic microorganisms are microorganisms that have a respiratory system other than the respiratory system that uses oxygen as the final electron acceptor.
  • Microorganisms belonging to the genus Corynebacterium and the like can be mentioned.
  • the microorganism may be a wild-type microorganism or an industrially useful improved microorganism.
  • any of the above-mentioned microorganisms may be a mutant strain, a cell fusion strain, a transduced strain, or a recombinant strain created using a gene recombination technique.
  • a more effective microorganism of the present invention can be constructed by the following method.
  • the microorganism described in (1) above is cultured according to a conventional method. After culturing, cells are obtained from the obtained culture by centrifugation. After washing the cells with an appropriate buffer, for example, 0.05 M tris-maleic acid buffer (pH 6.0) or the like, the cells are added to the same buffer so that the cell concentration becomes 10 4 to 10 1 ⁇ cells / ml. Suspend. Mutation treatment is carried out using the suspension by a conventional method. As a normal method, for example, N-methyl-N-nitro-N-nitrosoguanidine (NTG) is added to the suspension to a final concentration of 600 mg / l, and mutagenesis is performed by keeping the suspension at room temperature for 20 minutes. There are ways to do this.
  • NTG N-methyl-N-nitro-N-nitrosoguanidine
  • the mutagenized suspension is applied to a complete medium and cultured at 15 to 38 ° C for 1 to 4 days. After cultivation, the grown and formed colonies are applied to a minimum of two agar media, and one is anaerobically cultured in an anaerobic culture device under the aerobic condition. A strain that can grow under aerobic conditions but cannot grow under anaerobic conditions is selected as the target mutant strain.
  • a temperature-sensitive plasmid incorporating a suicide gene is used.
  • the temperature-sensitive plasmid those in which the protein essential for plasmid replication has become temperature-sensitive can be used, and specific examples include pK03 and pKD20.
  • Suicide genes include sa ⁇ from Bacillus subtilis. DNA, which is obtained by linking two DNA fragments homologous to a region of about 1 to 3 kbp at both ends of the target gene region, is introduced into a temperature-sensitive plasmid containing a suicide gene. The plasmid is inserted on the microbial chromosome under the limiting temperature.
  • the obtained recombinant strain is cultured under conditions in which a suicide gene acts, and the grown strain is obtained as a strain in which the plasmid has dropped off from the chromosome.
  • the culture conditions under which the suicide gene acts include conditions for culturing in a medium containing sucrose.
  • the chromosome structure of the obtained strain is analyzed, and a strain lacking the target gene region is selected. Chromosome structure analysis can be performed according to a conventional method. For example, there is a method in which the chromosome of the strain is transformed into a chromosome, the structure around the gene region to be disrupted is used as a primer, and the structure of the peripheral region is analyzed by PCR. be able to.
  • a linear DNA is prepared by PCR using a drug-resistant gene and DNA homologous to a region of about 1 to 3 kbp at both ends of the target gene region.
  • the DNA is integrated into the chromosome of the microorganism by homologous recombination using the human Red recombination system.
  • Purpose A strain in which the gene region to be replaced with a drug resistance gene can be selected as a drug resistant strain. Analyze the chromosome structure of the obtained strain to confirm that it is a strain lacking the target gene region. Chromosome structure analysis can be performed according to the above method.
  • the target gene may be any gene as long as it is a gene related to anaerobic respiration. Specifically, fdhD ⁇ fdhE, fdhF ⁇ fdnG, fdnH ⁇ fdnl, fdoG, fdoH, fdoL hyaA, hyaB, hyaC, hyaD, hyaE, hyaF, hybA, hybB, hybC, hybD ⁇ hybE, hybF, hybG, hybO, hycAs hycB, hycC, hycD, hycE, hycF, hycG, hycH, hyck hydG, hydH, hy ki hyfA, hyfB, hyf
  • facultative anaerobic microorganisms can grow efficiently in the human body, such as in the intestinal tract. Therefore, microorganisms constructed by the above-described method, in which one or more genes required only for anaerobic growth of the present invention have been deleted or inactivated, are microorganisms with reduced or no viability in the human body. Therefore, it can be used as a safer industrially useful microorganism.
  • Production of a useful substance using the microorganism of the present invention created in the above item I can be carried out using a usual microorganism culturing method.
  • Such useful substances include proteins, amino acids, nucleic acids, vitamins, sugars, Organic acids, lipids and their analogs can be mentioned.
  • any synthetic medium or natural medium can be used as long as it contains a carbon source, a nitrogen source, an inorganic salt, and a trace amount of nutrients required by the microorganism used. is there.
  • Any carbon source can be used as long as each microorganism can assimilate it, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolyzate, acetic acid, propionic acid, etc.
  • Organic acids and alcohols such as ethanol and propanol.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate and other inorganic acids and ammonium salts of organic acids, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, etc. 1. Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof are used.
  • potassium potassium phosphate potassium potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used.
  • the culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture (the culture temperature is preferably 15 to 40 ° C, and the culture time is generally 16 hours to 7 days.
  • the pH is 3 Keep the pH between 0 and 9.0 Adjust the pH with an inorganic or organic acid, alkali solution, urea, calcium carbonate, ammonia, etc.
  • an antibiotic such as ampicillin tetracycline may be added to the medium during the culture.
  • an inducer may be added to the medium as needed when culturing.
  • an inducer may be added to the medium as needed when culturing.
  • isopropyl-1 /?-D-thiogalactobyranoside (IPTG) or the like is transformed with an expression vector using ip promoter overnight.
  • IPTG isopropyl-1 /?-D-thiogalactobyranoside
  • IAA indoleacrylic acid
  • the objective useful substance can be isolated and purified from the culture solution.
  • the cells are recovered from the culture solution and then disrupted by an appropriate method such as mechanical or chemical method.
  • the target useful substance can be isolated and purified from the cell lysate by using an ion exchange treatment, a concentration method, a salting-out method or the like in combination with the cell lysate.
  • K-12 strain Escherichia coli MG1655 parent strain
  • continuous genes on the chromosome involved in respiration under anaerobic conditions ⁇ b hybB, hybC, hybD, hybE, hybF, hybG and hybO
  • ⁇ b hybB, hybC, hybD, hybE, hybF, hybG and hybO A fragment obtained by ligating two DNA fragments homologous to a region of about 2 kbp adjacent to both ends of the gene is introduced into a temperature-sensitive plasmid PK03 having sacB, a suicide gene.
  • the plasmid is introduced into the chromosome of K-12 strain Escherichia coli MG1655 to obtain a recombinant strain.
  • the recombinant strain is cultured in a medium containing sucrose, and the grown strain is obtained as a recombinant strain in which the plasmid region has been eliminated from the chromosome.
  • the target genes hybA, hybB, hybC, hybD, hybE, Strains lacking hybF, IiybG and hybO
  • [36 strains of 0C whose genotype is [rps ;, poL12, A (yqJA-yaC) :: Knf] are available from Junichi Kato, Faculty of Science, Tokyo Metropolitan University].
  • the parent strain and the defective strain were liquid-cultured overnight at 30 ° C. Completely obtain the obtained culture solution Inoculate 1% in 8 ml of culture medium, culture at 30 ° C, and sample over time.
  • the turbidity was measured using a spectrophotometer.
  • the amount of protein derived from bacterial cells at 23 hours of culture was measured by the following method.
  • a 1% SDS solution of was added to the washed cells or the cells obtained by thawing the cryopreserved cells, and the cells were suspended, followed by heating at 100 ° C. for 5 minutes to dissolve the cells.
  • the resulting lysate was serially diluted using 1% SDS.
  • the amount of protein in the diluent was measured using a DC Protein Atsushi Kit 1 manufactured by Biorad in accordance with the instructions attached to the kit, and the amount of protein in the cells per 1 ml of the culture solution was calculated.
  • the deficient strain showed higher turbidity than the parent strain, indicating that the growth was better than that of the parent strain under aerobic conditions.
  • the defective strain significantly increased the amount of bacterial protein per medium volume as compared with the parent strain.
  • the growth ability in the human body under anaerobic conditions is reduced, or a microorganism having no growth ability, which is safe and is useful for producing useful substances, and an efficient method using the microorganism It is possible to provide a method for producing a useful substance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書
工業的生産に有用な微生物
本発明は、 工業的生産に有用な微生物、 該微生物を用いた有用物質の 製造法に関する。
アミノ酸、 核酸、 ビタミン、 糖、 有機酸、 脂質あるいはそれらの類縁 体などの有用物質の、 微生物を利用した工業的生産は、 一般的には好気 的な条件下で行われる。 その際に使用される微生物は、 好気性微生物の みならず通性嫌気性を示す微生物も積極的に利用されている 〔Appl. Environ. Microbiol., ϋ, 1445-1452 (1983)〕 。
目的とする有用物質の生産性を向上させるために、 目的とする有用物 質の生合成経路を強化、 有用物質の分解系を軽減あるいは削除した微生 物を取得し、 該微生物を工業生産に利用することが試みられ、 実績を上 げている。 具体的な例として、 プロ リ ン分解酵素遺伝子 を不活化 した、グラム陰性細菌 Serratia marcescensを甩ぃ i プ ϋ リン生産〔Appl, Environ. Micorbiol. , Al, 782-786 (1985)〕 、 大腸菌 Κ-12株のプロ リ ン分解酵素遺伝子 を不活化した菌株を用いたヒ ドロキシプロ リ ン 生産 〔Biosci. Biotech. Biochem., Q±, 746-750 (2000)〕 等をあげる ことができる。
しかしながら、 嫌気的な生育に関わる遺伝子を操作することによる、 好気的条件下における目的有用物質の生産性への影響についての報告 はこれまでにない。 日月の HI示
本発明は、 通性嫌気性を示す微生物 (以下、 通性嫌気性微生物と略す) を用いた好気的な有用物質の生産に有効な、 特定の遺伝子を不活性化あ るいは欠失させた微生物、 該微生物を用いる有用物質の好気的製造方法 を提供することを目的とする。
タンパク質、 アミノ酸、 核酸、 ビタ ミン、 糖、 有機酸、 脂質あるいは それらの類縁体等の有用物質の、 微生物を利用した製造は、 通常、 該微 生物の好気的な撹袢培養により行われる。 従って、 本発明者らは、 通性 嫌気性を示す微生物において、 嫌気的な生育のみに関わる遺伝子群は、 好気的な条件下で該有用物質の製造には必ずしも必要ではないと考え、 該微生物の嫌気的な生育のみに係わる様々な遺伝子を不活性化あるい は欠失させ、 該有用物質の生産効率を比較検討した。
その結果、 通性嫌気性菌に分類される微生物において、 嫌気的な生育 のみに必要な 1以上の遺伝子を欠失または不活性化させることによ り、 好気的な条件下での有用物質の生産効率を向上させることができるこ とを見出し本発明を完成させるに至った。
即ち、 本発明は下記 ( 1 ) 〜 ( 7 ) を提供するものである。
( 1 ) 通性嫌気性を示す微生物において、 嫌気的な生育のみに必要な 1以上の遺伝子を欠失または不活性化させた微生物。
( 2 ) 遺伝子が、 fdhDヽ fdhEヽ fdhFヽ fdnG、 fdnH、 fdnl、 fdoG、 fdoHヽ fdoh h aA hyaB、 hyaC、 hyaD、 hyaE、 hyaF、 hybA、 hybB、 hybC、 hybD、 hybE hybF、 hybG、 hybO、 hycA^ hycB、 hycC、 hycD、 hycE、 hycF、 hycG、 hycH hycL hydG、 hydH、 hydN、 IiyfAヽ hyfB、 hyfCヽ hyfD、 hyfE、 hyfF hyfG、 hyfHヽ hyfk hyfJ、 hyfRヽ hypA、 hypB、 hypC、 hypD、 hypE、 hypF, nikA、 nikB、 nikC、 nikD、 nikE、 nikR、 pflA、 pflBヽ pflC、 pflDヽ adhC、 adhEヽ dmsA dmsBヽ dmsCヽ frdA、 frdBヽ frdCヽ frdDヽ imp Aヽ napBヽ n&pCヽ napD napF napGヽ napHヽ narGヽ narHヽ narh narJ^ narKヽ nar narP narQ、 narll narK narffヽ narX、 narY^ narZ、 nirBヽ nirCヽ nirD、 nrfA^ nrfB nrfC、 nrfD、 nrfE、 nrfF、 /?/^ および f/ ^からなる遺伝子群およ びそれらのホモログ遺伝子群より選ばれる遺伝子である、 上記 ( 1 ) の 微生物。
( 3 ) 微生物が、 ェンテロバクテリア科 ( En terobacteriaceae) およ びコリネバクテリア科 ( Corynebacteriaceae) からなる群より選ばれる 科に属する微生物である、 上記 ( 1 ) または ( 2 ) の微生物。 ( 4 ) 微生物が、 Klebsiella鳳、 Erwinia属、 Serratia属、 Salmonella 属、 Escherichia鳳、 Proteus属ぉ び Corynebacterium属からなる群 よ り選ばれる属に属する微生物である、 上記 ( 1 ) 〜 ( 3 ) のいずれか 1つに記載の微生物。
( 5 ) 微生物が、 Klebsiella aerogenes Erwinia berbicola^ Erwinia amylovoraヽ Serratia marcescens Serratia ficaria Serratia font i col a Serratia liquefaciensヽ Escherichia coliヽ Salmonella typhi muriumヽ Proteus rettgeriヽ 'Corynebacteriuin glutamicumおよび Coryn ebacterium ammoniagenesからなる群より選ばれる微生物である、 上記( 1 )〜 ( 4 ) のいずれか 1つに記載の微生物。
( 6 ) 上記 ( 1 ) ~ ( 5 ) のいずれか 1つに記載の微生物を培地中で 培養し、 該培養物中に有用物質を生成、 蓄積させ、 該有用物質を採取す ることを特徴とする有用物質の好気的な製造法。
( 7 ) 有用物質が、 タンパク質、 アミノ酸、 核酸、 ビタミ ン、 糖、 有 機酸、 脂質およびそれらの類縁体からなる群より選ばれる有用物質であ る、 上記 ( 6 ) の製造法。
以下、 本発明を詳細に説明する。
I . 本発明の微生物の造成
( 1 ) 造成のために用いることのできる微生物
本発明の微生物を造成するために用いることのできる微生物として は、 産業上利用できる通性嫌気性微生物であればいかなる微生物も用い ることができる。
通性嫌気性微生物とは、 酸素を最終の電子受容体とする呼吸系以外の 呼吸系を持つ微生物をいう。
このような微生物として、 ェンテロバクテリア科
( Enterobacteriaceae) 、 コ リ 不ノ クテリア科 ( Corynebacteriaceae) 等に属する微生物をあげることができ、例えば、 Klebsiella属、 Erwinia 属、 Serratia Salmonella s Escherichia属ヽ Proteus属、
Corynebac terium属等に属する微生物をあげることができる。
具体的には、 Klebsiel la aerogeness Erwinia berbicola、 Erwinia amylovora Serratia marcescens Serra tia ficaria Serratia fonticola Serratia liquefaciens^ Escherichia col i Salmonella typhinmrium Proteus rettgeri Corynebacterium glutajnicuin 谷称で Brevibacterium flavum^ Brevibacterium Jactofennenti と呼ばれるものを含む) 、 Corynebacterium uycetoides Corynebacterium variabilis^
Corynebacterium ammoniagenes等をあけること力5でさる。
上記微生物は野生型の微生物であっても、 産業上有用な改良を施され た微生物であってもよい。
即ち、 上記微生物の変異株、 細胞融合株、 形質導入株あるいは遺伝子 組換え技術を用いて造成した組換え株のいずれであってもよい。 工業的 に既に利用されている上記微生物であれば、 下記方法により、 より有効 な本発明の微生物を造成することができる。
( 2 ) 本発明の微生物の造成
( a ) 変異処理による方法
上記 ( 1 ) 記載の微生物を、 常法に従って培養する。 培養後、 得られ た培養液より遠心分離により菌体を取得する。該菌体を、適切な緩衝剤、 例えば、 0.05M ト リスーマレイ ン酸緩衝液 (pH6.0) 等で洗浄後、 菌体 濃度が 104〜10細胞/ mlになるように同緩衝液に懸濁する。該懸濁液を 用いて常法により変異処理を行う。 常法として、 例えば、 該懸濁液に N- メチル -N -ニトロ- N-ニ トロソグァ二ジン (NTG) を終濃度が 600mg/lに なるように加え、室温で 20分間保持して変異処理する方法をあげること ができる。 該変異処理懸濁液を完全培地に塗布し、 15〜38°Cで、 1〜4日 間培養する。 培養後、 生育し形成されたコロニーを、 最少寒天培地 2枚 に塗布し、 1枚は好気的条件下で、 もう 1枚を嫌気培養装置内で嫌気的 に培養する。 好気的条件下では生育できるが、 嫌気的条件下では生育で きない株を目的の変異株として選択する。
( b ) 遺伝子組換えによる方法
微生物の染色体上の目的とする遺伝子を欠失あるいは不活性化させ る方法として、 Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) (以下、 モレ キュラー ' クローニング第 2版と略す) に記載の方法、 G . M. Church ら の方法 〔Journal of Bacteriology, 179, 6228-6237 ( 1997) 〕 、 B . L . Wanner らの方法 〔Proc . Natl . Acad. Sc i . USA, l, 6640 ( 2000 )〕 等 の公知の方法を用いることができる。 トランスポゾンを利用して染色体 上の遺伝子を欠失させることもできる 〔Gene, 21, 131 - 149 ( 1984 )〕 。
また大腸菌においては、 目的とする遺伝子を破壊するための直鎖 DNA 断片を in W 0で作成した後、 エレク トロポレーションで菌体内に導 入し、 遺伝子置換によって目的遺伝子を破壊する方法も知られている CNuc le ic Ac ids Research, Zl, 1296-1299 ( 1999 )〕 。
以下、 G. M. Church らの方法に関して詳述する。
該方法においては、 自殺遺伝子を組み込んだ温度感受性プラスミ ドを 用いる。 温度感受性プラスミ ドとしてはプラスミ ドの複製に必須の夕ン パク質が温度感受性になつたもの等を利用でき、具体的には pK03、pKD20 等をあげることができる。 自殺遺伝子としては、 枯草菌由来の sa^等 をあげることができる。 目的とする遺伝子領域の両末端 l〜3kbp程度の 領域と相同な二つの DNA断片を結合した DNAを、 自殺遺伝子を組み込ん だ温度感受性プラスミ ドに導入する。 制限温度下で該プラスミ ドを微生 物染色体上へ挿入する。 得られた組換え株を自殺遺伝子が作用する条件 下で培養し、 生育してきた株を、 該プラスミ ドが染色体上から脱落した 株として取得する。 例えば、 自殺遺伝子として sac^を利用した場合に は、 自殺遺伝子が作用する培養条件としては、 シユークロースを含む培 地で培養する条件をあげることができる。 取得された株における染色体 の構造解析を行い、 目的の遺伝子領域が欠落した株を選抜する。 染色体 の構造解析は常法に従って行うことができ、 例えば、 該株の染色体を鎵 型とし、破壊したい遺伝子領域周辺の配列をプライマーとして用い、 PCR にて周辺領域の構造を解析する方法等をあげることができる。
次に、 B . L . Wanner らの方法に関して以下に詳述する。
薬剤耐性遺伝子に、 目的とする遺伝子領域の両末端 l〜3kbp程度の領 域と相同な DNAを付加した直鎖 DNAを PCR法で作製する。該 DNAを人 Red 組換え系を利用し、 微生物染色体上に相同組換えにより組み込む。 目的 とする遺伝子領域が薬剤耐性遺伝子で置き換わった株を、 薬剤耐性株と して選抜することができる。 取得された株における染色体の構造解析を 行い、 目的の遺伝子領域が欠落した株であることを確認する。 染色体の 構造解析は上記方法に準じて行うことができる。
目的とする遺伝子としては、 嫌気呼吸に関わる遺伝子であればいずれ の遺伝子でも良い。 具体的には、 fdhDヽ fdhE、 fdhFヽ fdnG、 fdnHヽ fdnl、 fdoG、 fdoH、 fdoL hyaA, hyaB、 hyaC、 hyaD、 hyaE、 hyaF、 hybA、 hybB, hybC、 hybDヽ hybE、 hybF、 hybG、 hybO、 hycAs hycB、 hycC、 hycD、 hycE、 hycF, hycG、 hycH, hyck hydG、 hydH、 hy氣 hyfA、 hyfB、 hyfCヽ hyfD hyfEヽ hyfF、 hyfGヽ hyfH、 hyfk hyfJ、 hyfR、 hypA、 hypB、 hypC、 hypD、 hypEヽ hypF、 nikA、 nikB、 nikC、 nikD、 nikE、 nikR、 pflA、 pflBヽ pflCヽ pflDヽ adhCs adhE、 dmsA、 dmsB、 dmsC、 frdA、 frdB frdC, frdD、 napA、 napBs napC napD napFヽ napGヽ napHヽ rG、 narHヽ nar narJヽ narKヽ narL narPヽ narQ^ narUヽ narV、 nar narX、 narY^ narZ nirBヽ nirCヽ nirD、 nrfAヽ nrfB、 nrfC、 nrfD、 nrfEヽ nrfF、 nrfG、 f/jrあるいはこれ らのホモログ遺伝子 ( Escherichia coli and Salmonella, Cellulara and Molecular Biology Volume I and II, Second Edition, ASM Press、 あるいは http:〃 genolist.pasteur.fr/Colibri/を参照) 等をあげるこ とができる。 欠失または不活性化させる、 嫌気的な生育のみに必要な遺 伝子の数は 1以上であればよい。
通性嫌気性微生物は、 一般的に、 腸管内部などの人体内で効率的な生 育をすることが可能である。 従って、 上記の方法で造成される、 本発明 の嫌気的な生育のみに必要な 1以上の遺伝子を欠失または不活性化さ せた微生物は、 人体内での生育能の低下もしくは持たない微生物である ため、 より安全な産業上有用な微生物として使用することができる。
II. 本発明の微生物を用いた有用物質の製造
上記 Iで造成した本発明の微生物を用いる有用物質の生産は、 通常の 微生物の培養法を用いて行うことができる。
該有用物質としては、 タンパク質、 アミノ酸、 核酸、 ビタ ミ ン、 糖、 有機酸、 脂質またはそれらの類縁体等をあげることができる。
有用物質の生産に用いる培地としては、 炭素源、 窒素源、 無機塩、 そ の他使用する微生物の必要とする微量の栄養素を程よく含有するもの ならば、 合成培地または天然培地いずれも使用可能である。
炭素源としては、 それそれの微生物が資化し得るものであればよく、 グルコース、 フラク ト一ス、 スクロース、 これらを含有する糖蜜、 デン プンあるいはデンプン加水分解物等の炭水化物、 酢酸、 プロビオン酸等 の有機酸、エタノール、 プロパノールなどのアルコール類が用いられる。 窒素源としては、アンモニア、塩化アンモニゥム、硫酸アンモニゥム、 酢酸アンモニゥム、 リン酸アンモニゥム等の各種無機酸や有機酸のアン モニゥム塩、 その他含窒素化合物、 並びに、 ペプトン、 肉エキス、 酵母 エキス、 コーンスチープリカ一、 カゼイン加水分解物、 大豆粕および大 豆粕加水分解物、 各種発酵菌体およびその消化物等が用いられる。
無機塩としては、 リン酸第一カリウム、 リ ン酸第二カリウム、 リ ン酸 マグネシウム、 硫酸マグネシウム、 塩化ナト リウム、 硫酸第一鉄、 硫酸 マンガン、 硫酸銅、 炭酸カルシウム等が用いられる。
培養は、 振盪培養または深部通気撹拌培養などの好気的条件下で行う ( 培養温度は 15〜40°Cがよく、培養時間は、通常 16時間〜 7日間である。 培養中 pHは、 3 . 0〜9. 0に保持する。 pHの調整は、 無機あるいは有機の 酸、 アルカリ溶液、 尿素、 炭酸カルシウム、 アンモニアなどを用いて行 ラ。
また培養中必要に応じて、 アンピシリ ンゃテ トラサイク リン等の抗生 物質を培地に添加してもよい。
造成に用いた微生物が、 誘導性のプロモーターを用いた発現ベクター で形質転換した微生物である場合には、 培養するときには、 必要に応じ てインデューサ一を培地に添加してもよい。 例えば、 7acプロモーター を用いた発現べクタ一で形質転換した微生物を培養するときにはイソ プロピル一 /?— D—チォガラク トビラノシ ド ( IPTG) 等を、 i pプロモ 一夕一を用いた発現ベクターで形質転換した微生物を培養するときに はイン ドールァク リル酸 (IAA) 等を培地に添加してもよい。 有用物質が菌体外に生成、 蓄積される場合には、 培養終了後、 培養液 から菌体などの沈殿物を除去し、 イオン交換処理法、 濃縮法、 塩析法な どを併用することにより、 培養液から目的とする該有用物質を単離、 精 製することができる。
有用物質が菌体内に生成、 蓄積される場合には、 培養終了後、 培養液 から菌体を回収した後、 機械的あるいは化学的方法等の適切な方法で破 砕する。 該菌体破砕液から、 イオン交換処理法、 濃縮法、 塩析法などを 併用することにより、 該菌体破砕液から目的とする該有用物質を単離、 精製することができる。 昍》荬施する めの慕 [jの形熊
実施例
K-12系統大腸菌 MG1655株 (親株) の、 嫌気条件下での呼吸に関与 する、染色体上に連続して存在する遺伝子群(Λ bん hybB、 hybC、 hybD、 hybE, hybF、 hybGおよび hybO) の両末端に隣接する約 2kbpの領域と 相同な二つの DNA断片を結合したものを、 自殺遺伝子である sacBを有 する温度感受性プラスミ ド PK03に導入する。 G. M. Church らの方法 Journal of Bacteriology, 119, 6228-6237 (1997)〕 に準じて、 該 プラスミ ドを K- 12系統大腸菌 MG1655株の染色体上に導入し、 組換え 株を取得する。 該組換え株をシュ一クロースを含む培地で培養し、 生 育してきた株を、 プラスミ ド領域が染色体よ り脱離した組換え株とし て取得する。 PCR法により組換え株染色体の構造を確認することによ り、 取得された組換え株の中から、 プラスミ ドが脱離するさいに目的 の遺伝子群 ( hybA、 hybB、 hybC、 hybD、 hybE、 hybF、 IiybGおよび hybO) が欠落した菌株 (欠損株) を選抜した。 〔遺伝型が [rps;、 poL 12、 A(yqJA-y aC): :Knf] である 0Cい 36株は、 都立大学理学部加藤潤一教 授ょり入手可能〕 。
完全培地 (Difco 社製の Antibioticmedium3 にジアミノビメ リン酸 を終濃度 50 /g/mlで添加したもの) 8ml を用い、 親株および欠損株を それそれ 30°Cで終夜、 液体培養した。 得られた培養液をそれそれ完全 培地 8ml に 1 %植菌し、 30°Cで培養を行い、 経時的にサンプリ ングし — o
取得したサンプルを、 660nm の吸光度の値が 0. 03〜0 . 3 程度になる ように希釈した後、 分光光度計を用いて、 濁度を測定した。
また、培養 23時間目における菌体由来のタンパク質量を下記方法に より測定した。
サンプル 200〃1 を 16,000 X gにて 6分間遠心分離した後、 注意深 く上清を捨てた。 得られた菌体 (沈殿画分) に 1ml の生理食塩水を加 え、 該菌体を撹拌洗浄した。洗浄後、 16 , 000 x gで 5分間遠心分離し、 上清を注意深く捨てた。 さらに 16,000 X gで 4分間遠心分離し、 上清 を注意深く捨て、 壁面等に付着していた洗浄液を取り除き、 洗浄菌体 を取得した。 該洗浄菌体は -30°Cで保存することが可能であったため、 まとめてタンパク量を測定する場合には凍結保存した洗浄菌体を用い た。該洗浄菌体または凍結保存菌体を融解させた菌体に、 の 1 % SDS溶液を添加し、 該菌体を懸濁した後、 100°Cで 5分間加熱すること で菌を溶解した。 得られた溶解液を、 1 % SDSを用いて段階的に希釈し た。 該希釈液中の夕ンパク量を、 バイオラッ ド社製の D Cプロテイン アツセィキッ ト 1 を用い、 キッ ト添付の指示書に従って測定し、 培養 液 1mlあたりの菌体内夕ンパク量を算出した。
結果を第 1表に示した。
親株に比べ、 欠損株はより高い濁度を示すことより、 好気的な条件 下において、 親株よ り生育の向上していることが示された。 また該欠 損株は、 親株に比べ、 有為に培地体積あたりの菌体タンパク量も増大 していた。
以上の結果から、 大腸菌を用いたタンパク質の生産において、 嫌気 条件下での呼吸に関与する遺伝子群を破壊することにより得られた大 腸菌を用いることにより、 夕ンパク質の生産効率を有為に向上させる ことができることがわかった。 第 1表 濁度変化と培養液中の菌体夕ンパク量 濁度 (0D660nm) 菌体内夕ンパク量
Oh 2h 4h 6h 23h (mg/ml培養液) 親株 0.02 0.30 1.12 2.39 2.41 0.71 欠損株 0.03 0.28 1.28 2.58 2.80 0.73
Figure imgf000011_0001
本発明によれば、 嫌気的条件である人体内での生育能が低下した、 ま たは生育能を有しない安全で、 有用物質の生産に有用な微生物、 該微生 物を用いた効率的な有用物質の製造法を提供することができる。

Claims

請求の範囲
1 . 通性嫌気性を示す微生物において、 嫌気的な生育のみに必要な 1 以上の遺伝子を欠失または不活性化させた微生物。
2 . 遺伝子が、 fdhDヽ fdhEヽ fdhFヽ fdnG、 fdnH、 fdnh fdoG、 fdoHヽ fdoI、 hyaA、 hyaB、 hyaC、 hyaD、 hyaE、 hyaF、 hybA、 hybB、 hybC、 hybD、 hybE hybFヽ hybG、 hybO、 hycA^ hycB、 hycC^ hycD、 hycE、 hycF、 hycG hycH、 hyc hydG、 hydH、 hy氣 hyfAヽ hyfB hyfCヽ hyfDヽ hyfE、 hyfFヽ hyfG、 hyfHヽ hyfh hyfJヽ hyfR、 hypA、 hypB、 hypC、 hypD、 hypE、 hypF、 nikA nikB nikC、 nikD、 nikE、 nikRヽ pflA、 pflBヽ pflC、 pflDヽ adhC、 adhEヽ dmsAヽ dmsB、 dmsCヽ frdA frdBヽ frdCヽ frdDヽ nap A napBヽ i pCヽ napDヽ napF napGヽ napHヽ narGヽ narHヽ nar narJヽ narKヽ nar narPヽ narQ narllヽ narV^ narW^ narXヽ narY^ narZヽ nirBヽ nirC、 nirD、 nrfAヽ nrfB、 nrfC、 nrfD、 nrfE、 nrfF、 nrfGおよび fflrからなる遺伝子群およ びそれらのホモログ遺伝子群より選ばれる遺伝子である、 請求項 1記載 の微生物。
3. 微生物が、 ェンテロバクテリア科 ( En terobacteriacea および コ リネバクテリア科 ( Corynebac teriaceae) よりなる群より選ばれる科 に属する微生物である、 請求項 1 または 2記載の微生物。
4. 微生物が、 Klebsiella Erwinia属、 Serra ti a Salmonel la 属、 Escherichia属、 Proteus属ぉよび Corynebac terium属からなる群 より選ばれる属に属する微生物である、 請求項 1 ~ 3のいずれか 1項に 記載の微生物。
5 . 微生物が、 Klebsiella aerogenesヽ Erwmia berbicola、 Erwinia amylovoraヽ Serra tia marcescens Serra tia ficari a^ Serra ti a fon t i co la-, Serra tia liquefaciens^ Escherichia coliヽ Salmonel la typhi murium^ Proteus re ttgeriヽ Corynebac terium glu tamicum、 Corynebac terium myce toidesヽ Corynebac terium variabilis X Corynebac terium ammoniagenesからなる群よ り選ばれる微生物である、 請求項 1〜 4のいずれか 1項に記載の微生物。
6 . 請求項 1〜 5のいずれか 1項に記載の微生物を培地中で培養し、 該培養物中に有用物質を生成、 蓄積させ、 該有用物質を採取することを 特徴とする有用物質の好気的な製造法。
7. 有用物質が、 タンパク質、 アミ ノ酸、 核酸、 ビタミ ン、 糖、 有機 酸、 脂質およびそれらの類縁体からなる群よ り選ばれる有用物質である、 請求項 6記載の製造法。
PCT/JP2002/005201 2001-05-29 2002-05-29 Micro-organismes utiles a echelle industrielles WO2002099086A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003502196A JPWO2002099086A1 (ja) 2001-05-29 2002-05-29 工業的生産に有用な微生物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001159840 2001-05-29
JP2001-159840 2001-05-29

Publications (1)

Publication Number Publication Date
WO2002099086A1 true WO2002099086A1 (fr) 2002-12-12

Family

ID=19003352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005201 WO2002099086A1 (fr) 2001-05-29 2002-05-29 Micro-organismes utiles a echelle industrielles

Country Status (2)

Country Link
JP (1) JPWO2002099086A1 (ja)
WO (1) WO2002099086A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
JP2015503353A (ja) * 2012-01-06 2015-02-02 シージェイ チェイルジェダン コーポレーション L−アミノ酸を産生する微生物及びこれを用いてl−アミノ酸を産生する方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016530A1 (en) * 1995-10-30 1997-05-09 Korea Green Cross Corporation New e.coli mutant with suppressed organic acid production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016530A1 (en) * 1995-10-30 1997-05-09 Korea Green Cross Corporation New e.coli mutant with suppressed organic acid production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LINK A.J. ET AL.: "Methods for generating precise deletions and insertions in the genome of wild-type escherichia coli: application to open reading frame characterization", J. BACTERIOL., vol. 179, no. 20, 1997, pages 6228 - 6237, XP000890089 *
MENON N.K. ET AL.: "Cloning, sequencing and mutational analysis of the hyb operon encoding escherichia coli hydrogenase 2", J. BACTERIOL., vol. 176, no. 14, 1994, pages 4416 - 4423, XP002953870 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
JP2015503353A (ja) * 2012-01-06 2015-02-02 シージェイ チェイルジェダン コーポレーション L−アミノ酸を産生する微生物及びこれを用いてl−アミノ酸を産生する方法
JP2017042167A (ja) * 2012-01-06 2017-03-02 シージェイ チェイルジェダン コーポレーション L−アミノ酸を産生する微生物及びこれを用いてl−アミノ酸を産生する方法
US10041099B2 (en) 2012-01-06 2018-08-07 Cj Cheiljedang Corporation L-threonine and L-tryptophan producing bacteria strain and method of making same
US10787692B2 (en) 2012-01-06 2020-09-29 Cj Cheiljedang Corporation L-threonine and L-tryptophan producing bacteria strain and method of making same

Also Published As

Publication number Publication date
JPWO2002099086A1 (ja) 2004-09-16

Similar Documents

Publication Publication Date Title
US5602030A (en) Recombinant glucose uptake system
WO2007118162A1 (en) Insertion sequence-free bacteria
JP2004049237A (ja) 微生物株、プラスミド、微生物株の製造方法及びホスホグリセレート−ファミリーのアミノ酸の製造方法
US20090093030A1 (en) fadR KNOCK-OUT MICROORGANISM AND METHODS FOR PRODUCING L-THREONINE
CN107406864A (zh) 用于使用缺乏丝氨酸降解途径的基因工程微生物生产l‑丝氨酸的方法
CN108463546A (zh) 用于无抗生素发酵制备低分子量物质和蛋白质的微生物菌株和方法
CN107075454B (zh) 细胞内能量水平提高的微生物和用其生产l-氨基酸的方法
KR101089054B1 (ko) 엔테로박테리아세애 과에서 자발적으로 복제할 수 있는신규 플라스미드
TWI547558B (zh) 生產l-胺基酸的微生物和使用其的l-胺基酸的生產方法
KR101751968B1 (ko) 박테리아 변이 균주의 발린 생산능의 증가 방법
WO2002097086A1 (fr) Micro-organismes utiles a echelle industrielle
JP3399993B2 (ja) プラスミドを安定化するための微生物
WO2002101027A1 (fr) Microorganismes utilises dans l'industrie
WO2002099086A1 (fr) Micro-organismes utiles a echelle industrielles
CN109790557A (zh) 控制生物膜分散以产生氨基酸或氨基酸衍生产物
KR102608905B1 (ko) 노난디오산을 생산하는 형질전환 미생물 및 이를 이용한 노난디오산 생산방법
KR20230005137A (ko) 헤파로산의 제조 방법 및 헤파로산 생산능을 갖는 에스케리키아 속의 세균
KR20200093274A (ko) 최소 유전체를 갖는 신규 미생물 및 이의 제조 방법
WO2002097089A1 (fr) Micro-organismes utiles pour la production industrielle
US20240254435A1 (en) Variant bacterial strains and processes for protein or biomass production
JP2007312794A (ja) 工業的生産に有用な微生物
JP2005500852A (ja) ビタミンb12を製造する方法
EP4269574A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
EP4269575A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
US20240060103A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003502196

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase