明細書 Specification
形状記憶合金を用いた作動機構 技術分野 . Actuation mechanism using shape memory alloy.
本発明は、 形状記憶合金を用 、た作動機構に関するものである。 背景技術 The present invention relates to an operation mechanism using a shape memory alloy. Background art
ロボット等に見られるように、 周囲環境の変化に応じて、 所定の機械的運動 ( 動作) を行わせる作動機構は知られている。 As seen in a robot or the like, an operation mechanism for performing a predetermined mechanical movement (operation) in accordance with a change in the surrounding environment is known.
しかしながら、 従来の作動機構によるその機械的運動は、 マイクロモータ及び それに連動する多数の歯車等を用いることから、 その構造は複雑となり、 また、 そのコストも高いものであった。 However, the mechanical movement by the conventional operation mechanism uses a micromotor and a number of gears interlocked with the micromotor, so that the structure is complicated and the cost is high.
本発明は、 構造が簡単でかつ低コストの作動機構を提供することをその課題と する。 発明の開示 An object of the present invention is to provide a low-cost operating mechanism having a simple structure. Disclosure of the invention
本発明者は、 前記課題を解決すべく鋭意研究を重ねた結果、 本発明を完成する に至った。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention.
即ち、 本発明によれば、 以下に示す作動機構が提供される。 That is, according to the present invention, the following operating mechanism is provided.
( 1 ) 作動構造体部と、 センサー部と、 制御部と、 継電器部とからなり、 該作動 構造体部は、 形状記憶合金と該合金を加熱する電気抵抗体とから構成され、 該セ ンサ一部は該作動構造体部の周囲環境の変化を検知する手段から構成され、 該制 御部はコンピューターから構成され、 該継電器部は継電器から構成される作動機 構であって、 該作動構造体部の周囲環境に変化が生じたときに、 この変化を該セ ンサ一部に検知させて電気信号に変換させ、 この電気信号を該制御部に受信させ るとともに、 該制御部からの発信信号に基づいて該継電器部を作動させて該作動 構造体部の電気抵抗体を発熱させ、 該発熱により該形状記憶合金を加熱して、 該 形状記憶合金にあらかじめ記憶させた動作を行わせることを特徴とする形状記憶 合金を用いた作動機構。
( 2 ) 該センサー部が、 該作動構造体部に配設させている前記 (1 ) の機構。 (1) An operating structure portion, a sensor portion, a control portion, and a relay portion. The operating structure portion includes a shape memory alloy and an electric resistor for heating the alloy. A part is constituted by means for detecting a change in the surrounding environment of the actuation structure, the control unit is constituted by a computer, and the relay unit is an actuation mechanism constituted by a relay. When a change occurs in the surrounding environment of the body, this change is detected by a part of the sensor and converted into an electric signal, and the electric signal is received by the control unit and transmitted from the control unit. Operating the relay section based on the signal to generate heat in the electrical resistor of the operating structure section, heating the shape memory alloy by the generated heat, and performing an operation previously stored in the shape memory alloy. Shape memory alloy characterized by Actuating mechanism was used. (2) The mechanism according to (1), wherein the sensor section is disposed on the operating structure section.
( 3 ) 該作動構造体部が、 加熱により形状変化を生じる半円弧状リング状体から なり、 該リング状体は、 (3) The actuating structure comprises a semicircular ring-shaped body that changes its shape by heating, and the ring-shaped body is
( i ) 該リングの周方向に沿って形状記憶合金を有すること、 (i) having a shape memory alloy along the circumferential direction of the ring,
(ii) 該形状記憶合金は加熱によりその曲率半径が小さく又は大きくなるもので あること、 (ii) the radius of curvature of the shape memory alloy is reduced or increased by heating;
(iii) 該合金を加熱する電気抵抗体を有すること、 (iii) having an electrical resistor for heating the alloy;
を特徴とする前記 (1 ) 〜 (2 ) のいずれかの作動機構。 図面の簡単な説明 The operation mechanism according to any one of the above (1) to (2), characterized in that: BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の作動機構の概略説明図を示す。 FIG. 1 is a schematic explanatory view of the operation mechanism of the present invention.
図 2は、 本発明で用いる作動構造体の 1つの実施態様についての説明図を示す 図 2 ( a ) は、 全体説明図を示す。 FIG. 2 shows an explanatory view of one embodiment of the working structure used in the present invention. FIG. 2 (a) shows an overall explanatory view.
図 2 ( b ) は、 リング Rの説明断面図を示す。 発明を実施するための最良の形態 FIG. 2B is an explanatory sectional view of the ring R. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の作動機構は、 作動構造体部を有する。 本発明の場合、 この作動構造体 部は、 形状記憶合金とそれを加熱する電気抵抗体からなり、 電気抵抗体に通電し てこれを発熱させると、 その形状記憶合金は、 加熱されて、 あらかじめ記憶させ た運動 (動作) を行う。 この場合の形状記憶合金の運動には、 伸び、 短縮、 曲げ 、 曲率半径を大きく又は小さくする運動等が包含される。 The actuation mechanism of the present invention has an actuation structure. In the case of the present invention, the actuating structure comprises a shape memory alloy and an electric resistor for heating the shape memory alloy. When the electric resistor is energized to generate heat, the shape memory alloy is heated and Perform the memorized exercise (motion). The motion of the shape memory alloy in this case includes elongation, shortening, bending, and motion for increasing or decreasing the radius of curvature.
形状記憶合金の形状は、 それに記憶させる運動に応じた適宜の形状であればよ く、 線状、 帯状、 リング状、 棒状、 板状等が包含される。 The shape of the shape memory alloy may be any appropriate shape according to the movement to be stored in the shape memory alloy, and includes a linear shape, a band shape, a ring shape, a rod shape, a plate shape and the like.
形状記憶合金の種類としては、従来公知の各種のもの、例えば、 T i -N i合金 等が用いられる。 このような形状記憶合金は、 それに記憶する運動や、 その運動 を開始させる温度等に応じて適宜のものが選択される。 Various types of conventionally known shape memory alloys, for example, Ti-Ni alloy and the like are used. As such a shape memory alloy, an appropriate one is selected according to the movement to be stored therein, the temperature at which the movement is started, and the like.
前記形状記憶合金は、 弾性体に支持させて用いるのが好ましい。 この場合、 そ の弾性支持体としては、 パネ、 鋼、 プラスチック、 F R P等が用いられる。
電気抵抗体としては、 ニッケル一クロム合金等の従来公知のものが用いられる 。 その形状は、 線状、 細帯状等の各種の形状であることができる。 この電気抵抗 体は、 前記形状記憶合金を加熱し得る位置、 通常、 その形状記憶合金にラセン状 に卷きつけたり、 それに隣接して配設される。 It is preferable that the shape memory alloy is used by being supported by an elastic body. In this case, panel, steel, plastic, FRP, or the like is used as the elastic support. As the electric resistor, a conventionally known one such as a nickel-chromium alloy is used. The shape can be various shapes such as a linear shape and a narrow band shape. This electric resistor is wound at a position where the shape memory alloy can be heated, usually in a spiral shape around the shape memory alloy, or disposed adjacent thereto.
本発明の作動機構は、 センサー部を有する。 このセンサー部は、 前記作動構造 体部の周囲環境に変化が生じたときに、 その変化を電気信号として検知する手段 から構成される。 作動構造体部の周囲環境変化には各種の変化、 例えば、 温度、 湿度、 圧力等の大気や雰囲気の変化の他、 作動構造体部に対する物体の距離の変 化、 例えば、 その作動構造体部がボールを把持する場合のそのポールと作動部と の間の距離の変化、 その作動構造体部がそれに近づく物体をその反対方向に押し 戻す場合のその物体と作動構造体部との間の距離の変化等が包含される。 The operating mechanism of the present invention has a sensor unit. The sensor unit is configured to detect a change as an electric signal when a change occurs in the surrounding environment of the operation structure. Various changes in the surrounding environment of the operating structure include changes in the atmosphere and atmosphere such as temperature, humidity, and pressure, as well as changes in the distance of the object to the operating structure, such as the operating structure. Change in the distance between the pole and the working part when the player grips the ball, and the distance between the working structure and the object when the working structure pushes the approaching object back in the opposite direction And the like.
センサー部で用いるセンサーは、 前記作動構造体部の周囲環境変化を検知する ものであればよく、 従来公知のものを用いることができる。 例えば、 作動構造体 部がその周囲温度に感応して一定の動作 (伸び、 短縮、 屈曲等) を行う場合には 、 サーミスター等の温度検知器が用いられ、 物体がその作動構造体部に所定距離 近づいた場合にその存在に感応して一定の動作を行うときには、 その物体の存在 を検知する光電センサーが用いられる。 The sensor used in the sensor section only needs to detect a change in the surrounding environment of the operation structure section, and a conventionally known sensor can be used. For example, when the operating structure performs a certain operation (elongation, shortening, bending, etc.) in response to the ambient temperature, a temperature detector such as a thermistor is used, and an object is moved to the operating structure. When a certain distance is approached and a certain operation is performed in response to its presence, a photoelectric sensor that detects the presence of the object is used.
センサーの配設位置は、 その作動構造体部の周囲環境変化を検知し得る位置で あればよいが、 本発明の場合、 その作動構造体部とが周囲環境とが接触するその 作動構造体部の表面に位置させることが好ましい。 The sensor may be disposed at any position that can detect a change in the surrounding environment of the operating structure. In the case of the present invention, the operating structure is in contact with the surrounding environment. It is preferred to be located on the surface of the.
本発明の作動機構は、 制御部を有する。 この制御部は、 コンピュータ、 例えば 、 P L C (プログラマブルコントローラ) 等であることができる。 The operating mechanism of the present invention has a control unit. This control unit can be a computer, for example, a PLC (programmable controller) or the like.
前記制御部は、 センサー部からの電気信号を入力信号として作動し、 この入力 信号に基づき、 あらかじめプログラムされた電気信号を出力信号として発信する 。 この出力信号には、 前記作動構造体部における電気抵抗体に電圧を印加する信 号、 その電圧の印加時間を示す信号等が包含される。 The control unit operates using an electric signal from the sensor unit as an input signal, and transmits a pre-programmed electric signal as an output signal based on the input signal. The output signal includes a signal for applying a voltage to the electric resistor in the operation structure, a signal indicating a time for applying the voltage, and the like.
本発明の作動機構は、 継電器部を有する。 この継電器部は継電器 (リレー) か ら構成される。 この継電器部は、 前記制御部からの電気信号に基づいて作動し、 前記作動構造体部に配設されている電器抵抗体に所定電位の電圧を、 所定時間印
加させる機能を有する。 The operating mechanism of the present invention has a relay section. This relay section is composed of relays. The relay unit operates based on an electric signal from the control unit, and applies a voltage of a predetermined potential to an electric resistor provided in the operation structure unit for a predetermined time. It has a function to add.
図 1に本発明の作動機構の 1つの実施態様についての概略図を示す。 FIG. 1 shows a schematic view of one embodiment of the operating mechanism of the present invention.
図 1において、 1は制御部を示し、 2は継電器部を示し、 3は作動構造体部を 示し、 4はセンサー部を示す。 In FIG. 1, 1 indicates a control unit, 2 indicates a relay unit, 3 indicates an operation structure unit, and 4 indicates a sensor unit.
図 1において、 センサー部 (例えば、 光電センサー等) 4において作動構造体 部 3の周囲環境変化 (例えば、 物品の検知等) が検知されたときには、 そのセン サ一部 4から電気信号が発信される。 この信号はライン 5を通して制御部 (例え ば、 P L C等) 1に送られる。 この信号を受信した制御部 1は、 その信号に基づ き、 あらかじめプログラムされた信号を発信する。 この信号は、 ライン 6を通つ て継電器部 2に送られ、 その継電器部 2を所定時間作動させた後、 停止させる。 この継電器部 2の作動によって、 ライン 7を介して、 作動構造体部 3に対して、 所定電圧が所定時間印加される。 この所定電圧を所定時間印加することに応じて 、 作動構造体部 3の電気抵抗体は所定量の発熱を生じ、 そしてこの発熱により、 作動構造体部 3の形状記憶合金は加熱される。 そして、 この加熱により、 形状記 憶合金は、 それに記憶された所定の運動を行う。 In FIG. 1, when a change in the surrounding environment of the operating structure 3 (for example, detection of an article) is detected in the sensor unit (for example, a photoelectric sensor) 4, an electric signal is transmitted from the sensor part 4. You. This signal is sent to the control unit (for example, PLC, etc.) 1 via line 5. The control unit 1 that has received this signal transmits a pre-programmed signal based on the signal. This signal is sent to the relay section 2 via the line 6, and the relay section 2 is operated for a predetermined time and then stopped. By the operation of the relay section 2, a predetermined voltage is applied to the operation structure section 3 via the line 7 for a predetermined time. When the predetermined voltage is applied for a predetermined time, the electric resistor of the operating structure 3 generates a predetermined amount of heat, and the heat is generated, thereby heating the shape memory alloy of the operating structure 3. The heating causes the shape memory alloy to perform a predetermined motion stored in the shape memory alloy.
次に、 本発明で用いる作動構造体部を構成する作動構造体の 1例について図面 を参照して説明する。 Next, an example of an operation structure constituting the operation structure used in the present invention will be described with reference to the drawings.
図 2はその作動構造体の説明図を示す。 FIG. 2 shows an explanatory view of the operation structure.
図 2 ( a ) は、 作動構造体の全体説明図を示す。 FIG. 2 (a) shows a general explanatory view of the working structure.
この図において、 Rは半円弧状リング、 Sはセンサー (光電センサー) 、 Tは 支持棒、 Bはボールを示す。 2 1はセンサー Sに接続する電線、 2 2は電熱線 U に接続する電線を示す。 In this figure, R indicates a semicircular ring, S indicates a sensor (photoelectric sensor), T indicates a support rod, and B indicates a ball. 21 denotes an electric wire connected to the sensor S, and 22 denotes an electric wire connected to the heating wire U.
図 2 ( b ) は、 半円孤状リング Rの説明断面図を示す。 FIG. 2 (b) shows an explanatory sectional view of the semicircular ring R.
この図において、 1 1は形状記憶合金 (帯状、 線状等) 、 1 2は弾性体 (帯状 、 線状等) 、 1 3は成形材料、 Uは形状記憶合金にラセン状に卷成された電熱線 を示す。 In this figure, 11 is a shape memory alloy (strip, linear, etc.), 12 is an elastic body (strip, linear, etc.), 13 is a molding material, and U is spirally wound on the shape memory alloy. Indicates heating wire.
図 2 ( b ) においては、 リング Rの断面形状は、 長方形として示されているが 、 他の形状、 例えば円形状や他の多角形状等であることができる。 In FIG. 2 (b), the cross-sectional shape of the ring R is shown as a rectangle, but may be another shape, for example, a circular shape or another polygonal shape.
図 2に示した半円孤状リング Rは、 ある曲率半径 aに形状記憶させた形状記憶
合金 1 1と、 別な曲率半径 bに加工した帯状の弾性体 (パネ、 鋼、 プラスチック 、 F R P等の弾性体) 1 2とを組合せて、 成形材料 (樹脂、 低融点合金等) 1 3 で一体化 (複合化) させたものである。 この場合、 成形材料 1 3は必ずしも必要 とされず、 弾性体により一体化させることもできる。 このリングは、 例えば、 加 熱時 (高温時) には曲率半径 a ' を有し、 低温時 (未加熱時) には曲率半径 b ' を有するように設計することができる。 The semicircular ring R shown in Fig. 2 has a shape memory with a certain radius of curvature a. Combining alloy 11 with a band-shaped elastic body (elastic body such as panel, steel, plastic, FRP, etc.) 12 processed to another radius of curvature b It is integrated (composite). In this case, the molding material 13 is not necessarily required, and can be integrated by an elastic body. This ring can be designed, for example, to have a radius of curvature a 'when heated (high temperature) and a radius b' when cold (unheated).
形状記憶合金としては、 通常、 T i一 N i合金が用いられているが、 形状記憶 を有するもので、 かつ低温時と高温時の弾性率に差があるもの (タイリング) で あればよい。 - 前記曲率半径 a、 a ' 、 b、 b ' において、 a > a ' > b ' > bの関係になる ように設計すれば、 そのリング Rは、 高温時に半径が大きくなり、 高温時に曲率 半径 a ' 、 低温時に曲率半径 b ' を有するリング (タイリング) となる。 As a shape memory alloy, a Ti-Ni alloy is usually used, but any alloy having shape memory and having a difference in elastic modulus between a low temperature and a high temperature (tiling) may be used. . -If the radius of curvature a, a ', b, b' is designed so that a> a '>b'> b, the radius of the ring R becomes large at high temperature and the radius of curvature at high temperature a ′, a ring (tiling) with a radius of curvature b ′ at low temperatures.
一方、 曲率半径 a、 a ' 、 b、 b ' において、 b > b, > a ' > aの関係にな るように設計すれば、 そのリング Rは、 低温時に半径が大きくなり、 曲率半径 b ' を有し、 加熱時に半径が小さくなり、 曲率半径 a ' を有するリング (タイリン グ) となる。 On the other hand, if the radius of curvature a, a ', b, b' is designed so that b> b,> a '> a, the radius of the ring R becomes large at low temperatures and the radius of curvature b ', The radius decreases when heated, resulting in a ring (tiling) with a radius of curvature a'.
リング Rを加熱するためには、 図 2 ( b ) に示すように、 リング Rの形状記憶 合金 1 1に、 電熱線 (ニクロム線等の電気抵抗体) を螺旋状に卷きつけるか又は その近くに配置すればよい。 In order to heat the ring R, as shown in Fig. 2 (b), a heating wire (electric resistance body such as a nichrome wire) is spirally wound around or near the shape memory alloy 11 of the ring R. Should be placed at
高温時にその半径が大きくなるように設計されたリング Rは、 その電熱線 Uに 通電して、 そのリング内の形状記憶合金 1 1をその相変態点温度以上に加熱する と、 その半径は大きくなる。 A ring R designed to have a large radius at high temperature has a large radius when the heating wire U is energized and the shape memory alloy 11 in the ring is heated above its phase transformation point temperature. Become.
一方、 高温時にその半径が小さくなるように設計されたリング Rは、 その電熱 線 Uに通電して、 そのリング内の形状合金 1 1をその相変態点温度以上に加熱す ると、 その半径は小さくなる。 On the other hand, a ring R designed to have a smaller radius at high temperatures, when a current is applied to the heating wire U and the shaped alloy 11 in the ring is heated to a temperature equal to or higher than its phase transformation point, the radius becomes larger. Becomes smaller.
図 2に示した半円弧状リング Rを、 加熱によりその半径が小さくなるように設 計することにより、 その半円弧状リング内に進入した物品をつかむことができる 例えば、 図 2 ( a ) において、 ポール Bが矢印方向に進み、 半円弧状リング内
空間に入ると、 それをセンサー Sが検知し、 その電気信号を電線 21を介して制 御部へ送る。 そして、 図 1に示したように、 この信号に基づいて、 継電器部を介 して電熱線 Uに所定電圧を所定時間印加すると、 その半円孤状リング Rはその曲 率半径を小さくして、 ポール Bをつかむこととなる。 この状態は、 電熱線 Uに通 電している間続く。 電熱線 Uへの通電を停止し、 形状記憶合金 11が冷却される と、 リング Rの半径が大きくなり、 その結果、 ボール Bはそのリング Rから放さ れることとなる。 By designing the semi-circular ring R shown in Fig. 2 so that its radius is reduced by heating, it is possible to grasp an article that has entered the semi-circular ring.For example, in Fig. 2 (a) , Paul B moves in the direction of the arrow, inside the semicircular ring When entering the space, the sensor S detects it and sends the electric signal to the control unit via the electric wire 21. Then, as shown in FIG. 1, when a predetermined voltage is applied to the heating wire U via the relay section for a predetermined time based on this signal, the semicircular ring R reduces its radius of curvature. , You will grab Paul B. This state continues as long as the heating wire U is energized. When the energization of the heating wire U is stopped and the shape memory alloy 11 is cooled, the radius of the ring R increases, and as a result, the ball B is released from the ring R.
図 2においては、 作動構造体部を構成する装置として、 物体を握ったり、 離し たりする装置を示したが、 他の動きをする装置、 例えば、 伸縮する作動構造体や 、 曲げやねじれを生じる作動構造体等を用いることもできる。 実施例 In Fig. 2, the device that composes and releases the object is shown as a device that constitutes the operating structure, but other devices that move, such as an expanding and contracting operating structure, bending or twisting are generated. An actuation structure or the like can also be used. Example
次に本発明を実施例によりさらに詳細に説明する。 実施例 1 Next, the present invention will be described in more detail with reference to examples. Example 1
(1) 作動構造体 (1) Working structure
図 2において、 弾性支持体 12を省略するとともに、 成形材料 13として弹性 プラスチックを用いて、 半円孤状リング Rを作製した。 In FIG. 2, a semi-circular ring R was produced using the elastic plastic 12 as the molding material 13 while omitting the elastic support 12.
この場合、 N i— T i合金 11の線径は 1 mmとし、 そのリング Rの高温時半 径を 25 mm及び低温時半径を 26 mmになるように設計した。 In this case, the wire diameter of the Ni—Ti alloy 11 was set to 1 mm, and the ring R was designed so that the high-temperature radius was 25 mm and the low-temperature radius was 26 mm.
前記形状記憶合金の相変加点温度 Asは、 36. 6°Cであった。 Phase change Additional temperature A s of the shape memory alloy was 36. 6 ° C.
センサー Sとしては、 光電センサー (オムロン社製、 E 32-DC 200 E) を用いた。 As the sensor S, a photoelectric sensor (manufactured by OMRON, E32-DC200E) was used.
(2) 作動機構の作製 , (2) Manufacture of the operating mechanism,
前記作動構造体を用いて、 図 1に示す構成の作動機構を作製した。 An operating mechanism having the configuration shown in FIG. 1 was manufactured using the operating structure.
この機構においては、 その作動構造体としての半円孤状リング Rの空間内に物 体 (ボール) Bが進入すると、 これをセンサー Sが検知し、 制御装置 [プロダラ マブルコントローラ (PLC) 、 オムロン社製、 CPMZC] にそのセンサー S からの電気信号を伝え、 この P C Lからの指令に基づいて継電器が所定時間閉じ
てリング Rに配設されている電熱線 (ニクロム線) Uに所定電圧を印加する。 こ れによって電熱線 Uは発熱し、 その発熱によって形状記憶合金は加熱され、 その 相変態点温度 As= 3 6 . 6 °Cに達すると、 リング Rが閉じてそのポールをつかむ In this mechanism, when an object (ball) B enters the space of the semi-circular ring R as its operating structure, the sensor S detects this and the control device [producer mable controller (PLC), OMRON, CPMZC] to transmit the electric signal from the sensor S, and the relay closes for a predetermined time based on the command from the PCL. A predetermined voltage is applied to the heating wire (Nichrome wire) U arranged on the ring R. The heating wire U generates heat by this, the shape memory alloy by the heat generation is heated, reaches its phase transformation temperature A s = 3 6. 6 ° C, grab the pole is closed ring R
P C Lにあらかじめプログラムされた時間が経過すると、 その指令により継電 器が開き、 形状記憶合金への通電が停止され、 その温度が下り、 その結果、 リン グ Rは開き、 ボールが放される。 産業上の利用可能性 When the pre-programmed time in the PCL has elapsed, the relay is opened by the command, the power to the shape memory alloy is stopped, the temperature drops, and as a result, the ring R opens and the ball is released. Industrial applicability
本発明によれば、 作動構造体に対して、 形状記憶合金にあらかじめ記憶させた 運動を行わせることから、 マイクロモータや歯車等の使用は不要となり、 その結 果、 全体構造が簡便でかつ低コストの作動機構を得ることができる。 本発明の作 動機構は、 マユプレータ等として用いられる。
According to the present invention, since the motion stored in the shape memory alloy is performed in advance on the working structure, the use of a micromotor, gears, and the like is unnecessary, and as a result, the overall structure is simple and low A costly actuation mechanism can be obtained. The operation mechanism of the present invention is used as a manipulator or the like.