JP2002369561A - Operation mechanism using shape memory alloy - Google Patents

Operation mechanism using shape memory alloy

Info

Publication number
JP2002369561A
JP2002369561A JP2001167478A JP2001167478A JP2002369561A JP 2002369561 A JP2002369561 A JP 2002369561A JP 2001167478 A JP2001167478 A JP 2001167478A JP 2001167478 A JP2001167478 A JP 2001167478A JP 2002369561 A JP2002369561 A JP 2002369561A
Authority
JP
Japan
Prior art keywords
memory alloy
shape memory
relay
unit
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001167478A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
均 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001167478A priority Critical patent/JP2002369561A/en
Priority to PCT/JP2002/002715 priority patent/WO2002098618A1/en
Publication of JP2002369561A publication Critical patent/JP2002369561A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1085Programme-controlled manipulators characterised by positioning means for manipulator elements positioning by means of shape-memory materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation mechanism that has a simple structure and is inexpensive. SOLUTION: The operation mechanism comprises an operation structure section, a sensor section, a control section, and a relay. The operation structure section consists of a shape memory alloy and an electrical resistor for heating the alloy, the sensor section consists of a means of detecting changes in the surrounding environment of the operation structure section, the control section consists of a computer, and the relay section consists of a relay. When the surrounding environment of the operation structure section changes, the change is detected by the sensor section for converting to an electrical signal, the electrical signal is received by the control unit, at the same time the relay section is operated based on a transmission signal from the control unit for allowing the electrical resistor at the operation structure section to generate heat, the shape memory alloy is heated by the generated heat, and an operation stored in the shape memory alloy is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形状記憶合金を用
いた作動機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating mechanism using a shape memory alloy.

【0002】[0002]

【従来の技術】ロボット等に見られるように、周囲環境
の変化に応じて、所定の機械的運動(動作)を行わせる
作動機構は知られている。しかしながら、従来の作動機
構によるその機械的運動は、マイクロモータ及びそれに
連動する多数の歯車等を用いることから、その構造は複
雑となり、また、そのコストも高いものであった。
2. Description of the Related Art As seen in a robot or the like, an operation mechanism for performing a predetermined mechanical movement (operation) according to a change in the surrounding environment is known. However, the mechanical movement by the conventional operating mechanism uses a micromotor and a number of gears interlocked with the micromotor, so that the structure is complicated and the cost is high.

【0003】[0003]

【発明が解決しようとする課題】本発明は、構造が簡単
でかつ低コストの作動機構を提供することをその課題と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple and low-cost operating mechanism.

【0004】[0004]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究を重ねた結果、本発明を完成するに
至った。即ち、本発明によれば、以下の発明が提供され
る。 (1)作動構造体部と、センサー部と、制御部と、継電
器部とからなり、該作動構造体部は、形状記憶合金と該
合金を加熱する電気抵抗体とから構成され、該センサー
部は該作動構造体部の周囲環境の変化を検知する手段か
ら構成され、該制御部はコンピューターから構成され、
該継電器部は継電器から構成される作動機構であって、
該作動構造体部の周囲環境に変化が生じたときに、この
変化を該センサー部に検知させて電気信号に変換させ、
この電気信号を該制御部に受信させるとともに、該制御
部からの発信信号に基づいて該継電器部を作動させて該
作動構造体部の電気抵抗体を発熱させ、該発熱により該
形状記憶合金を加熱して、該形状記憶合金にあらかじめ
記憶させた動作を行わせることを特徴とする形状記憶合
金を用いた作動機構。 (2)該センサー部が、該作動構造体部に配設させてい
る前記(1)の機構。 (3)該作動構造体部が、加熱により形状変化を生じる
半円弧状リング状体からなり、該リング状体は、(i)
該リングの周方向に沿って形状記憶合金を有すること、
(ii)該形状記憶合金は加熱によりその曲率半径が小さ
く又は大きくなるものであること、(iii)該合金を加
熱する電気抵抗体を有すること、を特徴とする前記
(1)〜(2)のいずれかの作動機構。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, the following inventions are provided. (1) An operating structure, a sensor, a controller, and a relay unit. The operating structure includes a shape memory alloy and an electric resistor for heating the alloy. Comprises a means for detecting a change in the surrounding environment of the operating structure, the control unit comprises a computer,
The relay unit is an operation mechanism including a relay,
When a change occurs in the surrounding environment of the operating structure, the sensor detects the change and converts the change into an electric signal;
The control unit receives the electric signal, and operates the relay unit based on the transmission signal from the control unit to generate heat in the electric resistor of the operating structure unit. An operation mechanism using a shape memory alloy, wherein the operation is performed by heating to cause the shape memory alloy to perform an operation stored in advance. (2) The mechanism according to (1), wherein the sensor section is disposed on the operating structure section. (3) The operating structure portion is formed of a semi-circular ring-shaped body that changes its shape by heating, and the ring-shaped body includes (i)
Having a shape memory alloy along the circumferential direction of the ring,
(Ii) The shape memory alloy has a radius of curvature that is reduced or increased by heating, and (iii) has an electric resistor that heats the alloy. Any of the operating mechanisms.

【0005】[0005]

【発明の実施の形態】本発明の作動機構は、作動構造体
部を有する。本発明の場合、この作動構造体部は、形状
記憶合金とそれを加熱する電気抵抗体からなり、電気抵
抗体に通電してこれを発熱させると、その形状記憶合金
は、加熱されて、あらかじめ記憶させた運動(動作)を
行う。この場合の形状記憶合金の運動には、伸び、短
縮、曲げ、曲率半径を大きく又は小さくする運動等が包
含される。形状記憶合金の形状は、それに記憶させる運
動に応じた適宜の形状であればよく、線状、帯状、リン
グ状、棒状、板状等が包含される。形状記憶合金の種類
としては、従来公知の各種のもの、例えば、Ti-Ni
合金等が用いられる。このような形状記憶合金は、それ
に記憶する運動や、その運動を開始させる温度等に応じ
て適宜のものが選択される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operating mechanism of the present invention has an operating structure. In the case of the present invention, the actuating structure comprises a shape memory alloy and an electric resistor for heating the shape memory alloy. When the electric resistor is energized to generate heat, the shape memory alloy is heated and Perform the stored exercise (motion). In this case, the motion of the shape memory alloy includes elongation, shortening, bending, motion for increasing or decreasing the radius of curvature, and the like. The shape of the shape memory alloy may be an appropriate shape according to the movement to be stored therein, and includes a linear shape, a band shape, a ring shape, a rod shape, a plate shape, and the like. Various types of conventionally known shape memory alloys, for example, Ti-Ni
An alloy or the like is used. As such a shape memory alloy, an appropriate one is selected according to the movement to be stored therein, the temperature at which the movement is started, and the like.

【0006】前記形状記憶合金は、弾性体に支持させて
用いるのが好ましい。この場合、その弾性支持体として
は、バネ、鋼、プラスチック、FRP等が用いられる。
電気抵抗体としては、ニッケル−クロム合金等の従来公
知のものが用いられる。その形状は、線状、細帯状等の
各種の形状であることができる。この電気抵抗体は、前
記形状記憶合金を加熱し得る位置、通常、その形状記憶
合金にラセン状に巻きつけたり、それに隣接して配設さ
れる。
It is preferable that the shape memory alloy is used while supported by an elastic body. In this case, a spring, steel, plastic, FRP, or the like is used as the elastic support.
As the electric resistor, a conventionally known one such as a nickel-chromium alloy is used. The shape can be various shapes such as a linear shape and a narrow band shape. The electric resistor is wound around the shape memory alloy in a position where the shape memory alloy can be heated, usually, or disposed adjacent to the shape memory alloy.

【0007】本発明の作動機構は、センサー部を有す
る。このセンサー部は、前記作動構造体部の周囲環境に
変化が生じたときに、その変化を電気信号として検知す
る手段から構成される。作動構造体部の周囲環境変化に
は各種の変化、例えば、温度、湿度、圧力等の大気や雰
囲気の変化の他、作動構造体部に対する物体の距離の変
化、例えば、その作動構造体部がボールを把持する場合
のそのボールと作動部との間の距離の変化、その作動構
造体部がそれに近づく物体をその反対方向に押し戻す場
合のその物体と作動構造体部との間の距離の変化等が包
含される。センサー部で用いるセンサーは、前記作動構
造体部の周囲環境変化を検知するものであればよく、従
来公知のものを用いることができる。例えば、作動構造
体部がその周囲温度に感応して一定の動作(伸び、短
縮、屈曲等)を行う場合には、サーミスター等の温度検
知器が用いられ、物体がその作動構造体部に所定距離近
づいた場合にその存在に感応して一定の動作を行うとき
には、その物体の存在を検知する光電センサーが用いら
れる。センサーの配設位置は、その作動構造体部の周囲
環境変化を検知し得る位置であればよいが、本発明の場
合、その作動構造体部とが周囲環境とが接触するその作
動構造体部の表面に位置させることが好ましい。
[0007] The operating mechanism of the present invention has a sensor unit. The sensor unit includes a unit that detects a change in the surrounding environment of the operation structure unit as an electric signal when the change occurs. There are various changes in the surrounding environment change of the operating structure, such as changes in the atmosphere and atmosphere such as temperature, humidity, pressure, etc., and changes in the distance of the object to the operating structure, such as the operating structure. Changes in the distance between the ball and the working part when gripping the ball, and changes in the distance between the working structure when the working structure pushes back an object approaching it in the opposite direction Etc. are included. The sensor used in the sensor section may be any sensor that detects a change in the surrounding environment of the operation structure section, and a conventionally known sensor can be used. For example, when the operating structure performs a certain operation (elongation, shortening, bending, etc.) in response to the ambient temperature, a temperature detector such as a thermistor is used, and an object is moved to the operating structure. When a certain operation is performed in response to the presence when approaching a predetermined distance, a photoelectric sensor that detects the presence of the object is used. The sensor may be disposed at any position as long as it can detect a change in the surrounding environment of the operating structure. In the case of the present invention, the operating structure is in contact with the surrounding environment. It is preferred to be located on the surface of the.

【0008】本発明の作動機構は、制御部を有する。こ
の制御部は、コンピュータ、例えば、PLC(プログラ
マブルコントローラ)等であることができる。前記制御
部は、センサー部からの電気信号を入力信号として作動
し、この入力信号に基づき、あらかじめプログラムされ
た電気信号を出力信号として発信する。この出力信号に
は、前記作動構造体部における電気抵抗体に電圧を印加
する信号、その電圧の印加時間を示す信号等が包含され
る。
[0008] The operating mechanism of the present invention has a control unit. This control unit can be a computer, for example, a PLC (programmable controller). The control unit operates by using an electric signal from the sensor unit as an input signal, and transmits a pre-programmed electric signal as an output signal based on the input signal. The output signal includes a signal for applying a voltage to the electric resistor in the operating structure, a signal indicating a time for applying the voltage, and the like.

【0009】本発明の作動機構は、継電器部を有する。
この継電器部は継電器(リレー)から構成される。この
継電器部は、前記制御部からの電気信号に基づいて作動
し、前記作動構造体部に配設されている電器抵抗体に所
定電位の電圧を、所定時間印加させる機能を有する。
The operating mechanism of the present invention has a relay section.
This relay section is composed of a relay. The relay unit operates based on an electric signal from the control unit, and has a function of applying a voltage of a predetermined potential to an electric resistor provided in the operation structure unit for a predetermined time.

【0010】図1に本発明の作動機構の1つの実施態様
についての概略図を示す。図1において、1は制御部を
示し、2は継電器部を示し、3は作動構造体部を示し、
4はセンサー部を示す。図1において、センサー部(例
えば、光電センサー等)4において作動構造体部3の周
囲環境変化(例えば、物品の検知等)が検知されたとき
には、そのセンサー部4から電気信号が発信される。こ
の信号はライン5を通して制御部(例えば、PLC等)
1に送られる。この信号を受信した制御部1は、その信
号に基づき、あらかじめプログラムされた信号を発信す
る。この信号は、ライン6を通って継電器部2に送ら
れ、その継電器部2を所定時間作動させた後、停止させ
る。この継電器部2の作動によって、ライン7を介し
て、作動構造体部3に対して、所定電圧が所定時間印加
される。この所定電圧を所定時間印加することに応じ
て、作動構造体部3の電気抵抗体は所定量の発熱を生
じ、そしてこの発熱により、作動構造体部3の形状記憶
合金は加熱される。そして、この加熱により、形状記憶
合金は、それに記憶された所定の運動を行う。
FIG. 1 shows a schematic diagram of one embodiment of the operating mechanism of the present invention. In FIG. 1, 1 indicates a control unit, 2 indicates a relay unit, 3 indicates an operation structure unit,
Reference numeral 4 denotes a sensor unit. In FIG. 1, when a change in the surrounding environment (for example, the detection of an article or the like) of the operating structure 3 is detected by a sensor unit (for example, a photoelectric sensor or the like) 4, an electric signal is transmitted from the sensor unit 4. This signal is sent to the control unit (eg, PLC, etc.) through line 5.
Sent to 1. The control unit 1 that has received this signal transmits a signal programmed in advance based on the signal. This signal is sent to the relay section 2 through the line 6, and the relay section 2 is operated for a predetermined time and then stopped. By the operation of the relay section 2, a predetermined voltage is applied to the operation structure section 3 via the line 7 for a predetermined time. In response to the application of the predetermined voltage for a predetermined time, the electric resistor of the operating structure 3 generates a predetermined amount of heat, and the generated heat heats the shape memory alloy of the operating structure 3. Then, by this heating, the shape memory alloy performs a predetermined motion stored therein.

【0011】次に、本発明で用いる作動構造体部を構成
する作動構造体の1例について図面を参照して説明す
る。図2はその作動構造体の説明図を示す。図2(a)
は、作動構造体の全体説明図を示す。この図において、
Rは半円弧状リング、Sはセンサー(光電センサー)、
Tは支持棒、Bはボールを示す。21はセンサーSに接
続する電線、22は電熱線Uに接続する電線を示す。図
2(b)は、半円孤状リングRの説明断面図を示す。こ
の図において、11は形状記憶合金(帯状、線状等)、
12は弾性体(帯状、線状等)、13は成形材料、Uは
形状記憶合金にラセン状に巻成された電熱線を示す。図
2(b)においては、リングRの断面形状は、長方形と
して示されているが、他の形状、例えば円形状や他の多
角形状等であることができる。
Next, an example of an operating structure constituting an operating structure used in the present invention will be described with reference to the drawings. FIG. 2 shows an explanatory view of the operation structure. FIG. 2 (a)
Shows an overall explanatory view of the operation structure. In this figure,
R is a semicircular ring, S is a sensor (photoelectric sensor),
T indicates a support rod, and B indicates a ball. 21 indicates an electric wire connected to the sensor S, and 22 indicates an electric wire connected to the heating wire U. FIG. 2B is an explanatory sectional view of the semicircular ring R. In this figure, 11 is a shape memory alloy (strip, linear, etc.),
Reference numeral 12 denotes an elastic body (a band shape, a linear shape, etc.), 13 denotes a molding material, and U denotes a heating wire wound spirally around a shape memory alloy. In FIG. 2B, the cross-sectional shape of the ring R is shown as a rectangle, but may be another shape, for example, a circular shape or another polygonal shape.

【0012】図2に示した半円孤状リングRは、ある曲
率半径aに形状記憶させた形状記憶合金11と、別な曲
率半径bに加工した帯状の弾性体(バネ、鋼、プラスチ
ック、FRP等の弾性体)12とを組合せて、成形材料
(樹脂、低融点合金等)13で一体化(複合化)させた
ものである。この場合、成形材料13は必ずしも必要と
されず、弾性体により一体化させることもできる。この
リングは、例えば、加熱時(高温時)には曲率半径a’
を有し、低温時(未加熱時)には曲率半径b’を有する
ように設計することができる。
The semicircular ring R shown in FIG. 2 has a shape memory alloy 11 having a shape radius of curvature a and a band-shaped elastic body (spring, steel, plastic, or the like) processed to another curvature radius b. An elastic body such as FRP) 12 is combined with a molding material (resin, low melting point alloy, etc.) 13 to be integrated (composite). In this case, the molding material 13 is not necessarily required, and can be integrated by an elastic body. This ring has, for example, a radius of curvature a ′ during heating (at high temperature).
It can be designed to have a radius of curvature b ′ at low temperature (when not heated).

【0013】形状記憶合金としては、通常、Ti−Ni
合金が用いられているが、形状記憶を有するもので、か
つ低温時と高温時の弾性率に差があるもの(タイリン
グ)であればよい。
[0013] As a shape memory alloy, Ti-Ni is usually used.
An alloy is used, but any material having shape memory and having a difference in elastic modulus between low temperature and high temperature (tiling) may be used.

【0014】前記曲率半径a、a’、b、b’におい
て、a>a’>b’>bの関係になるように設計すれ
ば、そのリングRは、高温時に半径が大きくなり、高温
時に曲率半径a’、低温時に曲率半径b’を有するリン
グ(タイリング)となる。
If the curvature radii a, a ', b, and b' are designed to satisfy the relationship of a> a '>b'> b, the ring R has a large radius at a high temperature, and has a large radius at a high temperature. A ring (tiling) having a radius of curvature a 'and a radius of curvature b' at a low temperature is obtained.

【0015】一方、曲率半径a、a’、b、b’におい
て、b>b’>a’>aの関係になるように設計すれ
ば、そのリングRは、低温時に半径が大きくなり、曲率
半径b’を有し、加熱時に半径が小さくなり、曲率半径
a’を有するリング(タイリング)となる。
On the other hand, if the curvature radii a, a ', b, and b' are designed to satisfy the relationship of b> b '>a'> a, the radius of the ring R becomes large at a low temperature, and the curvature R becomes large. A ring (tiling) having a radius b 'and having a smaller radius upon heating and having a radius of curvature a'.

【0016】リングRを加熱するためには、図2(b)
に示すように、リングRの形状記憶合金11に、電熱線
(ニクロム線等の電気抵抗体)を螺旋状に巻きつけるか
又はその近くに配置すればよい。
In order to heat the ring R, FIG.
As shown in (1), a heating wire (an electric resistor such as a nichrome wire) may be spirally wound around the shape memory alloy 11 of the ring R, or may be disposed near the heating wire.

【0017】高温時にその半径が大きくなるように設計
されたリングRは、その電熱線Uに通電して、そのリン
グ内の形状記憶合金11をその相変態点温度以上に加熱
すると、その半径は大きくなる。
When a ring R designed to have a large radius at a high temperature is energized by heating the heating wire U and the shape memory alloy 11 in the ring is heated to a temperature equal to or higher than the phase transformation point temperature, the radius becomes large. growing.

【0018】一方、高温時にその半径が小さくなるよう
に設計されたリングRは、その電熱線Uに通電して、そ
のリング内の形状合金11をその相変態点温度以上に加
熱すると、その半径は小さくなる。
On the other hand, when a ring R designed to have a small radius at high temperature is energized to the heating wire U and the shaped alloy 11 in the ring is heated to a temperature equal to or higher than the phase transformation point temperature, the radius becomes large. Becomes smaller.

【0019】図2に示した半円弧状リングRを、加熱に
よりその半径が小さくなるように設計することにより、
その半円弧状リング内に進入した物品をつかむことがで
きる。例えば、図2(a)において、ボールBが矢印方
向に進み、半円弧状リング内空間に入ると、それをセン
サーSが検知し、その電気信号を電線21を介して制御
部へ送る。そして、図1に示したように、この信号に基
づいて、継電器部を介して電熱線Uに所定電圧を所定時
間印加すると、その半円孤状リングRはその曲率半径を
小さくして、ボールBをつかむこととなる。この状態
は、電熱線Uに通電している間続く。電熱線Uへの通電
を停止し、形状記憶合金11が冷却されると、リングR
の半径が大きくなり、その結果、ボールBはそのリング
Rから放されることとなる。図2においては、作動構造
体部を構成する装置として、物体を握ったり、離したり
する装置を示したが、他の動きをする装置、例えば、伸
縮する作動構造体や、曲げやねじれを生じる作動構造体
等を用いることもできる。
By designing the semicircular ring R shown in FIG. 2 so that its radius is reduced by heating,
An article that has entered the semicircular ring can be grasped. For example, in FIG. 2A, when the ball B advances in the direction of the arrow and enters the inside of the semi-circular ring, the sensor S detects it and sends an electric signal to the control unit via the electric wire 21. Then, as shown in FIG. 1, when a predetermined voltage is applied to the heating wire U via the relay unit for a predetermined time based on this signal, the semi-circular ring R reduces its radius of curvature, and B will be grabbed. This state continues while the heating wire U is energized. When the energization of the heating wire U is stopped and the shape memory alloy 11 is cooled, the ring R
Is increased, and as a result, the ball B is released from the ring R. In FIG. 2, a device for grasping and releasing an object is shown as a device constituting the operation structure portion, but a device for performing another movement, for example, an expansion and contraction operation device, or a device that bends or twists. An actuation structure or the like can also be used.

【0020】[0020]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0021】実施例1 (1)作動構造体 図2において、弾性支持体12を省略するとともに、成
形材料13として弾性プラスチックを用いて、半円孤状
リングRを作製した。この場合、Ni−Ti合金11の
線径は1mmとし、そのリングRの高温時半径を25m
m及び低温時半径を26mmになるように設計した。前
記形状記憶合金の相変加点温度Asは、36.6℃であ
った。センサーSとしては、光電センサー(オムロン社
製、E32−DC200E)を用いた。 (2)作動機構の作製 前記作動構造体を用いて、図1に示す構成の作動機構を
作製した。この機構においては、その作動構造体として
の半円孤状リングRの空間内に物体(ボール)Bが進入
すると、これをセンサーSが検知し、制御装置[プログ
ラマブルコントローラ(PLC)、オムロン社製、CP
MZC]にそのセンサーSからの電気信号を伝え、この
PCLからの指令に基づいて継電器が所定時間閉じてリ
ングRに配設されている電熱線(ニクロム線)Uに所定
電圧を印加する。これによって電熱線Uは発熱し、その
発熱によって形状記憶合金は加熱され、その相変態点温
度As=36.6℃に達すると、リングRが閉じてその
ボールをつかむ。PCLにあらかじめプログラムされた
時間が経過すると、その指令により継電器が開き、形状
記憶合金への通電が停止され、その温度が下り、その結
果、リングRは開き、ボールが放される。
Example 1 (1) Working Structure In FIG. 2, the elastic support 12 was omitted, and a semicircular ring R was produced by using an elastic plastic as a molding material 13. In this case, the wire diameter of the Ni—Ti alloy 11 is 1 mm, and the high-temperature radius of the ring R is 25 m.
m and low-temperature radius were designed to be 26 mm. Phase change Additional temperature A s of the shape memory alloy was 36.6 ° C.. As the sensor S, a photoelectric sensor (E32-DC200E, manufactured by OMRON Corporation) was used. (2) Manufacture of Actuation Mechanism Using the actuation structure, an actuation mechanism having the configuration shown in FIG. 1 was produced. In this mechanism, when an object (ball) B enters the space of a semi-circular ring R as an operation structure thereof, a sensor S detects this, and a control device [programmable controller (PLC), manufactured by OMRON Corporation] , CP
MZC], an electric signal from the sensor S is transmitted to the relay, the relay closes for a predetermined time based on a command from the PCL, and applies a predetermined voltage to a heating wire (Nichrome wire) U disposed on the ring R. As a result, the heating wire U generates heat, and the generated heat heats the shape memory alloy. When the phase transformation point temperature A s = 36.6 ° C. is reached, the ring R closes to grip the ball. When the time preprogrammed in the PCL has elapsed, the relay is opened by the command, the power to the shape memory alloy is stopped, the temperature drops, and as a result, the ring R opens and the ball is released.

【0022】[0022]

【発明の効果】本発明によれば、作動構造体に対して、
形状記憶合金にあらかじめ記憶させた運動を行わせるこ
とから、マイクロモータや歯車等の使用は不要となり、
その結果、全体構造が簡便でかつ低コストの作動機構を
得ることができる。本発明の作動機構は、マニプレータ
等として用いられる。
According to the present invention, with respect to the working structure,
Since the shape memory alloy performs the motion stored in advance, the use of micromotors and gears is unnecessary,
As a result, it is possible to obtain a low-cost operating mechanism with a simple overall structure. The operating mechanism of the present invention is used as a manipulator or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の作動機構の概略説明図を示す。FIG. 1 is a schematic explanatory view of an operation mechanism of the present invention.

【図2】本発明で用いる作動構造体の1つの実施態様に
ついての説明図を示す。 (a):全体説明図 (b):リングRの説明断面図
FIG. 2 shows an illustration of one embodiment of the actuation structure used in the present invention. (A): Overall explanatory view (b): Explanatory sectional view of ring R

【符号の説明】[Explanation of symbols]

1 制御部 2 継電器部 3 センサー部 11 形状記憶合金 12 弾性体 13 成形材料 R 半円弧状リング S センサー T 支持棒 U 電熱線(電気抵抗体) B ボール DESCRIPTION OF SYMBOLS 1 Control part 2 Relay part 3 Sensor part 11 Shape memory alloy 12 Elastic body 13 Molding material R Semicircular ring S Sensor T Support rod U Heating wire (electrical resistance) B Ball

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 作動構造体部と、センサー部と、制御部
と、継電器部とからなり、該作動構造体部は、形状記憶
合金と該合金を加熱する電気抵抗体とから構成され、該
センサー部は該作動構造体部の周囲環境の変化を検知す
る手段から構成され、該制御部はコンピューターから構
成され、該継電器部は継電器から構成される作動機構で
あって、該作動構造体部の周囲環境に変化が生じたとき
に、この変化を該センサー部に検知させて電気信号に変
換させ、この電気信号を該制御部に受信させるととも
に、該制御部からの発信信号に基づいて該継電器部を作
動させて該作動構造体部の電気抵抗体を発熱させ、該発
熱により該形状記憶合金を加熱して、該形状記憶合金に
あらかじめ記憶させた動作を行わせることを特徴とする
形状記憶合金を用いた作動機構。
1. An operating structure unit, a sensor unit, a control unit, and a relay unit. The operating structure unit includes a shape memory alloy and an electric resistor for heating the alloy. The sensor unit comprises means for detecting a change in the surrounding environment of the operating structure unit, the control unit comprises a computer, and the relay unit comprises an operating mechanism comprising a relay; When a change occurs in the surrounding environment, the sensor unit detects the change and converts the change into an electric signal.The control unit receives the electric signal, and the control unit receives the electric signal based on a transmission signal from the control unit. A shape characterized by operating a relay unit to generate heat in an electric resistor of the operation structure unit, heating the shape memory alloy by the heat generation, and performing an operation previously stored in the shape memory alloy. Using memory alloy Actuation mechanism.
【請求項2】 該センサー部が、該作動構造体部に配設
させている請求項1の機構。
2. The mechanism of claim 1, wherein said sensor portion is disposed on said actuating structure portion.
【請求項3】 該作動構造体部が、加熱により形状変化
を生じる半円弧状リング状体からなり、該リング状体
は、(i)該リングの周方向に沿って形状記憶合金を有
すること、(ii)該形状記憶合金は加熱によりその曲率
半径が小さく又は大きくなるものであること、(iii)
該合金を加熱する電気抵抗体を有すること、を特徴とす
る請求項1〜2のいずれかの作動機構。
3. The actuating structure comprises a semi-circular ring-shaped body that changes its shape by heating, and the ring-shaped body has (i) a shape-memory alloy along a circumferential direction of the ring. (Ii) the radius of curvature of the shape memory alloy is reduced or increased by heating; (iii)
3. The operating mechanism according to claim 1, further comprising an electric resistor for heating the alloy.
JP2001167478A 2001-06-01 2001-06-01 Operation mechanism using shape memory alloy Pending JP2002369561A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001167478A JP2002369561A (en) 2001-06-01 2001-06-01 Operation mechanism using shape memory alloy
PCT/JP2002/002715 WO2002098618A1 (en) 2001-06-01 2002-03-20 Working mechanism using shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167478A JP2002369561A (en) 2001-06-01 2001-06-01 Operation mechanism using shape memory alloy

Publications (1)

Publication Number Publication Date
JP2002369561A true JP2002369561A (en) 2002-12-20

Family

ID=19009859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167478A Pending JP2002369561A (en) 2001-06-01 2001-06-01 Operation mechanism using shape memory alloy

Country Status (2)

Country Link
JP (1) JP2002369561A (en)
WO (1) WO2002098618A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068561B2 (en) * 2010-08-20 2015-06-30 Seidensha Corporation Impact drive type actuator
JP6714858B2 (en) 2016-09-12 2020-07-01 株式会社デンソー Actuator device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168891A (en) * 1981-04-06 1982-10-18 Mitsubishi Electric Corp Element for actuator
JPS57181592U (en) * 1981-05-12 1982-11-17
JPS5981084A (en) * 1982-11-01 1984-05-10 古河電気工業株式会社 Actuator element and robot hand
JPS60149313A (en) * 1984-01-11 1985-08-06 株式会社クボタ Robot hand for harvesting fruit
JPS60177159A (en) * 1984-02-23 1985-09-11 Toshiba Corp Shape memory element
JPS61146489A (en) * 1984-12-21 1986-07-04 株式会社日立製作所 Manipulator
JPH06339887A (en) * 1993-05-31 1994-12-13 Tokin Corp Actuator, articulated hand thereby, temperature switch, overcurrent switch and circuit changeover switch

Also Published As

Publication number Publication date
WO2002098618A1 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
US11471030B2 (en) Variable stiffness device, variable stiffness system, endoscope, and stiffness varying method
CN106687687B (en) Heat-sensitive actuator device
JP6568951B2 (en) Variable hardness actuator
WO2016189683A1 (en) Hardness-variable actuator
Wang et al. A lightweight soft gripper driven by self-sensing super-coiled polymer actuator
WO2018096679A1 (en) Variable rigidity device
JP6596077B2 (en) Thermal actuator device
US20020118090A1 (en) Shape memory alloy actuators activated by strain gradient variation during phase transformation
JP2002369561A (en) Operation mechanism using shape memory alloy
Liao et al. Variable stiffness actuators embedded with soft-bodied polycaprolactone and shape memory alloy wires
JPH06339887A (en) Actuator, articulated hand thereby, temperature switch, overcurrent switch and circuit changeover switch
JP3963021B2 (en) Actuator moving device
JPH01198564A (en) Catheter
JPS5875486A (en) Electric to dynamic energy converter
JP2002178289A (en) Switch
JPS61199477A (en) Shape deforming circuit and shape deforming member
RU1786530C (en) Maximal current releasing device
JPH03130577A (en) Combined unit of shape memory alloy
JPH09109320A (en) Shape recovery device
JPH07308884A (en) Tubular manipulator
JPS6247025Y2 (en)
Winzek et al. Smart motion control by phase-coupled shape memory composites
Ram et al. Sensorless Heating Control of SMA
JPH0323381A (en) Drive device for shape memory material and drive device for shape memory alloy
JP2943298B2 (en) Shape memory alloy device of continuous temperature memory type

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040813

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040910