JPH09109320A - Shape recovery device - Google Patents

Shape recovery device

Info

Publication number
JPH09109320A
JPH09109320A JP29749495A JP29749495A JPH09109320A JP H09109320 A JPH09109320 A JP H09109320A JP 29749495 A JP29749495 A JP 29749495A JP 29749495 A JP29749495 A JP 29749495A JP H09109320 A JPH09109320 A JP H09109320A
Authority
JP
Japan
Prior art keywords
shape
shape memory
recovery
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29749495A
Other languages
Japanese (ja)
Inventor
Keizo Higashiyama
恵三 東山
Takeshi Takubo
毅 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP29749495A priority Critical patent/JPH09109320A/en
Publication of JPH09109320A publication Critical patent/JPH09109320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape recovery device having bidirectional shape recovery actions and good responsibility to temperature by laminating a shape memory composite composed of a shape memory allay having a specified shape recovery temperature and generation force and shape memory polymer having memory of a shape in different direction from the recovery action of the alloy, a Peltier element, a radiator in sequence. SOLUTION: In a shape recovery device, a shape memory composite 3, a Peltier element 4, and a radiator 5 are laminated in sequence. The shape memory composite 3 is composed of a shape memory alloy 1 having memory of a shape recovery action and a shape memory polymer 2 having memory of a shape recovery action in different direction from the recovery action of the alloy 1. The shape recovery temperature (martensite reverse modification temperature Af) of the alloy 1 is made higher than the shape recovery temperature (glass transition temperature Tg) of the polymer 2. Besides, a temperature at which (recovery stress × cross section) or the generation force of the alloy 1 is equal to (recovery stress × cross section) of the polymer 2 is set up to come between Af and the martensite modification temperature (Mf) of the alloy 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二方向の形状回復
動作をもち、かつ、温度への応答性に優れた形状記憶複
合体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape memory composite having a bidirectional shape recovery operation and excellent in responsiveness to temperature.

【0002】[0002]

【従来技術および発明が解決しようとする課題】近年、
形状記憶合金(以下SMAという)や形状記憶ポリマー
(以下SMPという)の形状記憶材料を用いた駆動装置
が、各種の機械および装置のアクチュエータ等として利
用されている。これら形状記憶材料は、自然放冷にて冷
却される場合が多いが、その場合、冷却時の温度応答性
が悪いために形状回復動作に時間がかかり、また、形状
回復動作の制御が困難であるためにアクチュエータとし
ての機能は非常に制限されたものになるという問題があ
った。上記問題を解決するため、SMAの加熱及び冷却
にペルチェ素子を利用する駆動装置も提案されている
(特開昭61−14770)。しかし、上記ペルチェ素
子を利用した駆動装置のSMA、およびSMPの形状の
回復動作は一方向にのみ起こる一方向性(不可逆性)で
ある。SMAについては、特殊な熱処理あるいは加工条
件を施すことにより、二方向性(可逆性)を付与するこ
とも可能であるが、加熱時と冷却時とでは形状回復力が
大きく異なり、一度変形を起こしたものをもとどおりの
形状に戻すことは困難であった。つまり、それ自身で回
復前の形状に戻すことができないので、繰り返し駆動装
置として動作させるためには回復前の形状に戻す作用を
する部品を必要とし、装置の小型化及び軽量化の点で問
題があった。
BACKGROUND OF THE INVENTION In recent years,
Drive devices using shape memory materials such as shape memory alloys (hereinafter referred to as SMA) and shape memory polymers (hereinafter referred to as SMP) are used as actuators of various machines and devices. These shape memory materials are often cooled by natural cooling, but in that case, the shape recovery operation takes time because of poor temperature response during cooling, and it is difficult to control the shape recovery operation. Therefore, there is a problem that the function as an actuator is extremely limited. In order to solve the above problem, a drive device using a Peltier element for heating and cooling the SMA has also been proposed (Japanese Patent Laid-Open No. 61-14770). However, the SMA and SMP shape recovering operations of the driving device using the Peltier element are unidirectional (irreversible) occurring in only one direction. Regarding SMA, it is possible to impart bidirectionality (reversibility) by subjecting it to special heat treatment or processing conditions, but the shape recovery force during heating and cooling is significantly different and deformation occurs once. It was difficult to restore the original shape. In other words, since it cannot return to the shape before recovery by itself, in order to operate it as a repetitive drive device, a component that acts to restore the shape before recovery is required, which is a problem in terms of downsizing and weight saving of the device. was there.

【0003】本発明は、上記の問題を解決し、二方向の
形状回復動作をもち、かつ、温度への応答性に優れた形
状回復装置を提供することを目的としたものである。
An object of the present invention is to solve the above problems, and to provide a shape recovery device having a shape recovery operation in two directions and excellent in responsiveness to temperature.

【0004】[0004]

【課題を解決するための手段】本発明は、(1)ある形
状回復動作を記憶した形状記憶合金と、形状記憶合金の
回復動作と異なる方向の形状回復動作を記憶した形状記
憶ポリマーとからなり、形状記憶合金の形状回復温度
(マルテンサイト逆変態温度、Af)が形状記憶ポリマ
ーの形状回復温度(ガラス転移温度、Tg)より高く、
形状記憶合金の(回復応力×断面積)または発生力が
形状記憶ポリマーの(回復応力×断面積)と同じになる
温度を、Afと形状記憶合金のマルテンサイト変態温度
(Mf)の間にくるように設定し、該温度以上では形状
記憶合金の記憶した形状への回復動作によって形状記憶
合金が記憶した形状を保ち、該温度以下であってかつ形
状記憶ポリマーのTg以上の温度では形状記憶ポリマー
の記憶した形状への回復動作によって形状記憶ポリマー
が記憶した形状を保つ形状記憶複合体、 (2)ペルチェ素子、 (3)放熱体の順に積層されてなることを特徴とする形
状回復装置によって上記目的を達成するものである。
SUMMARY OF THE INVENTION The present invention comprises (1) a shape memory alloy that remembers a certain shape recovery motion, and a shape memory polymer that stores a shape recovery motion in a direction different from that of the shape memory alloy. , The shape recovery temperature (martensite reverse transformation temperature, Af) of the shape memory alloy is higher than the shape recovery temperature (glass transition temperature, Tg) of the shape memory polymer,
The temperature at which the (recovery stress x cross-sectional area) of the shape memory alloy or the generated force becomes the same as the (recovery stress x cross-sectional area) of the shape memory polymer falls between Af and the martensitic transformation temperature (Mf) of the shape memory alloy. The shape memory polymer retains the shape remembered by the shape memory alloy's recovery operation to the memorized shape above the temperature, and the shape memory polymer is maintained at a temperature below the temperature and above the Tg of the shape memory polymer. The shape-recovering device is characterized in that the shape-memory polymer retains the memorized shape by the recovery operation to the memorized shape, (2) a Peltier element, and (3) a heat radiator are laminated in this order. It achieves the purpose.

【0005】本発明で用いるSMPとしては、SMPと
して通常使用されるものであれば特に制限はなく、ポリ
ウレタン、ポリノルボルネン、ポリイソプレン、スチレ
ン−ブタジエン共重合体などが挙げられるが、形状回復
温度であるガラス転移温度(以下Tgという。)を任意
に設定できるという点から特にポリウレタンが好適であ
る。SMPとして通常使用されるポリウレタンは、ポリ
オール、ジイソシアネート、及び、短鎖グリコールやア
ミン類などの鎖延長剤からなるブロック共重合体であっ
て、これら構成成分のモル比を変えることによって、形
状回復温度であるTgを−30℃から60℃まで自由に
設定できる。なお、本発明において、TgはJIS K
7121に準拠して測定した値である。
The SMP used in the present invention is not particularly limited as long as it is usually used as SMP, and examples thereof include polyurethane, polynorbornene, polyisoprene, styrene-butadiene copolymer, etc., at the shape recovery temperature. Polyurethane is particularly preferable because a certain glass transition temperature (hereinafter referred to as Tg) can be arbitrarily set. Polyurethanes commonly used as SMP are block copolymers composed of polyols, diisocyanates, and chain extenders such as short chain glycols and amines, and the shape recovery temperature can be adjusted by changing the molar ratio of these constituents. Can be freely set from −30 ° C. to 60 ° C. In the present invention, Tg is JIS K
It is the value measured according to 7121.

【0006】本発明で用いるSMAとしては、SMAの
形状回復温度であるマルテンサイト逆変態温度(以下A
fという。)がSMPの成形温度(120〜200℃程
度)以下であるものが好ましく、中でも特に、AfがS
MPの成形温度よりかなり低いTi−Ni系SMAおよ
び銅系SMAが好適に使用される。Ti−Ni系SMA
としては、Ti−Ni二元合金、Ti−Ni−Cu合
金、Ti−Ni−Nb合金、Ti−Ni−Fe合金等が
挙げられ、これらTi−Ni系SMAのAfは−10℃
〜100℃である。また、銅系SMAとしてはCu−Z
n−Al合金、Cu−Al−Ni合金等が挙げられ、こ
れら銅系SMAのAfは−100℃〜100℃である。
The SMA used in the present invention is the martensite reverse transformation temperature (hereinafter referred to as A
It is called f. ) Is less than or equal to the SMP molding temperature (about 120 to 200 ° C.), and in particular, Af is S.
Ti-Ni-based SMA and copper-based SMA which are considerably lower than the molding temperature of MP are preferably used. Ti-Ni type SMA
Examples thereof include a Ti-Ni binary alloy, a Ti-Ni-Cu alloy, a Ti-Ni-Nb alloy, and a Ti-Ni-Fe alloy. These Ti-Ni-based SMAs have an Af of -10 ° C.
100100 ° C. Also, as a copper-based SMA, Cu-Z
Examples include n-Al alloys and Cu-Al-Ni alloys, and the Af of these copper-based SMAs is -100 ° C to 100 ° C.

【0007】SMAは、低温ではマルテンサイト相(以
下、M相という)の構造であり、ある温度以上で母相の
構造に相変態する材料である。形状回復効果はこの相変
態を利用している。M相のSMAを加熱していくと、徐
々に母相への変態(マルテンサイト逆変態)が発生し、
やがて完全な母相になる。一般に、この母相変態の終了
する温度をAf点と呼び、このAf点が形状記憶合金の
形状回復温度とされる。また、逆に、母相となっている
温度域から冷却していくと、徐々にマルテンサイト変態
が発生し、やがて完全なM相になる。マルテンサイト変
態の終了温度をMf点と呼ぶ。
SMA has a martensite phase (hereinafter referred to as M phase) structure at a low temperature, and is a material that undergoes phase transformation to a matrix phase structure at a certain temperature or higher. The shape recovery effect utilizes this phase transformation. When the M-phase SMA is heated, transformation to the parent phase (martensite reverse transformation) gradually occurs,
Eventually, he becomes a perfect mother. Generally, the temperature at which this parent phase transformation ends is called the Af point, and this Af point is the shape recovery temperature of the shape memory alloy. On the contrary, when cooling from the temperature range of the matrix phase, the martensitic transformation gradually occurs and eventually becomes a complete M phase. The end temperature of the martensitic transformation is called the Mf point.

【0008】本発明においては、上記のSMA、SMP
から任意に選んで組み合わせることができる。ただし、
SMAの形状回復時にはすでにSMPが軟化している必
要があることから、SMAのAf点がSMPのTgより
上であることが必要である。さらに、Af点より温度を
低下させたときに、SMPが硬化するまでの間にSMA
の形状回復力よりSMPの形状回復力が大きくなること
が必要であることから、SMPのTgはSMAのMf点
より低くなければならない。SMAとSMPの形状回復
温度の差は特に制限はないが、実用性を考慮すると、好
ましくはTgがMf点より10℃以上低い、より好まし
くはTgがMf点より20〜40℃以上低いものが良
い。好ましいSMAとSMPの組み合わせは、Tgが2
0〜40℃の形状記憶ポリウレタンと、Af点が50〜
80℃、Mf点が30〜60℃のTi−Ni系SMA、
特にTi−Ni二元合金、Ti−Ni−Cu系SMAが
挙げられる。
In the present invention, the above-mentioned SMA and SMP
It can be arbitrarily selected from and combined. However,
Since the SMP needs to be already softened when the shape of the SMA is recovered, it is necessary that the Af point of the SMA is higher than the Tg of the SMP. Further, when the temperature is lowered from the Af point, the SMA is not cured until the SMP is cured.
Since the shape recovery force of SMP must be larger than the shape recovery force of SMP, Tg of SMP must be lower than the Mf point of SMA. The difference in shape recovery temperature between SMA and SMP is not particularly limited, but considering practicality, Tg is preferably 10 ° C. or more lower than the Mf point, more preferably Tg is 20 to 40 ° C. or more lower than the Mf point. good. A preferred combination of SMA and SMP has a Tg of 2
Shape memory polyurethane of 0 ~ 40 ℃ and Af point of 50 ~
Ti-Ni SMA at 80 ° C and Mf point of 30 to 60 ° C,
In particular, a Ti-Ni binary alloy and a Ti-Ni-Cu based SMA can be mentioned.

【0009】上記したように、本発明に用いられる形状
記憶複合体は、高温(SMAのAf点以上)ではSMA
が記憶した形状を保っているが、低温(SMAのMf点
以下であってSMPのTg以上)では、SMPが、柔ら
かくなったSMAの形状保持力に打ち勝って自身の形状
にSMAを従わせる必要がある。このようにSMAとS
MPの形状回復力のバランスは、SMAの形状回復力、
すなわち(回復応力×断面積)あるいは発生力とSMP
の(回復応力×断面積)が等しくなる温度をSMAのA
f点とMf点の間に設定することによってとることがで
きる。上記温度がAf点より高いと、加熱時にSMAが
十分に形状回復した状態にならない場合があり、また上
記温度がMf点より低いと、冷却時にSMPが十分に形
状回復した状態にならない場合があり、形状記憶複合体
の変位量が低減あるいは二方向性が失われるので好まし
くない。
As described above, the shape memory composite used in the present invention is SMA at high temperature (above Af point of SMA).
Keeps the shape that it remembered, but at low temperature (below the Mf point of SMA and above Tg of SMP), SMP must overcome the shape retention of softened SMA and make SMA follow its own shape. There is. Thus SMA and S
The balance of the shape recovery power of MP is the shape recovery power of SMA,
That is, (recovery stress x sectional area) or generated force and SMP
The temperature at which (recovery stress x cross-sectional area) becomes equal to SMA A
It can be set by setting between the f point and the Mf point. If the temperature is higher than the Af point, the SMA may not be in a state where the shape is sufficiently recovered during heating, and if the temperature is lower than the Mf point, the SMP may not be in a state where the shape is sufficiently recovered during cooling. However, it is not preferable because the displacement of the shape memory composite is reduced or the bidirectionality is lost.

【0010】なお、本発明において、SMAをコイル状
に加工した場合、その形状回復力は(回復応力×断面
積)ではなくなるので、その場合には形状回復力を発生
力ということにする。例えば、Ti−Ni系SMAコイ
ル(素線の直径:0.2mm、コイル外径:0.8m
m)の発生力は、コイルの変位量50〜70%、Af点
で0.2〜0.3kgfである。これに対して、ポリウ
レタン系SMPの回復応力は、SMAと同じ変位量に対
してTgで約0.2〜0.3kgf/mm2 である。従
って、このSMAコイルをSMPシートで覆う場合のS
MPの断面積は1mm2 程度でよい。このように、SM
Aコイル等の素子にSMPを被覆する場合、SMAの発
生力を計算や測定により求めておき、SMPの(回復応
力×断面積)がその発生力と同等になる温度がSMAの
Af点とMf点の間になるように、SMPの種類、シー
トの厚さを決定すればよい。
In the present invention, when the SMA is processed into a coil shape, the shape recovery force is not (recovery stress × cross-sectional area), and in that case, the shape recovery force is referred to as a generating force. For example, Ti-Ni SMA coil (diameter of wire: 0.2 mm, coil outer diameter: 0.8 m
The generated force of m) is 50 to 70% of the amount of displacement of the coil and 0.2 to 0.3 kgf at the Af point. On the other hand, the recovery stress of the polyurethane SMP is about 0.2 to 0.3 kgf / mm 2 at Tg for the same displacement amount as SMA. Therefore, the S when the SMA coil is covered with the SMP sheet
The cross-sectional area of MP may be about 1 mm 2 . Thus, SM
When an element such as an A coil is coated with SMP, the generated force of SMA is obtained by calculation or measurement, and the temperature at which (recovery stress x sectional area) of SMP becomes equal to the generated force is the SMA Af point and Mf. The type of SMP and the thickness of the sheet may be determined so as to be between the points.

【0011】本発明で用いられる形状記憶複合体は以下
の種々の方法で製造される。まず、SMAを板状、線
材、コイル状等に加工し、その後、SMPを被覆する。
SMAの形状にとくに制限はないが、形状回復力の点か
ら特に、コイル状に加工することが好ましい。また、S
MPの被覆方法としては、SMAの表面に加熱溶融した
SMPを被覆する方法あるいは溶剤に溶解したSMPを
塗布して乾燥する方法、SMAの上にSMPを押出しコ
ートする方法あるいはホットプレスする方法等が挙げら
れ、さらに、SMA全体をSMPのシートで覆い、ホッ
トプレスする方法もある。なお、いずれの方法を採用す
る場合でも、SMPはSMAと異なった形状を記憶させ
ておく必要があるので、SMPの被覆前にSMAは自身
が記憶している形状とは異なる、即ち、SMPに記憶さ
せるべき形状に変形させておくことが必要である。ま
た、SMPを所望の形状に成型するために熱をかける場
合、400℃以上の熱をかけるとSMAの再記憶が起こ
る恐れがあるので、好ましくは300℃以下、さらに好
ましくは200℃以下の熱をかける。
The shape memory composite used in the present invention is manufactured by the following various methods. First, SMA is processed into a plate shape, a wire material, a coil shape, etc., and then SMP is coated.
The shape of the SMA is not particularly limited, but it is preferable to process it in a coil shape from the viewpoint of the shape recovery force. Also, S
As the coating method of MP, there are a method of coating the surface of SMA with heat-melted SMP, a method of coating SMP dissolved in a solvent and drying, a method of extrusion coating SMP on SMA, a method of hot pressing, etc. Further, there is a method of covering the entire SMA with a sheet of SMP and hot pressing. Whichever method is adopted, since the SMP needs to store a shape different from that of the SMA, the SMA has a shape different from that which the SMA remembers before the SMP is covered. It is necessary to transform it into a shape that should be remembered. Further, when heat is applied to mold the SMP into a desired shape, heat of 400 ° C. or higher may cause SMA re-memory, so heat of preferably 300 ° C. or lower, more preferably 200 ° C. or lower. multiply.

【0012】本発明の形状回復装置は、形状記憶複合
体、ペルチェ素子、放熱体の順に積層させてなり、ペル
チェ素子の吸熱面によって形状記憶複合体を冷却し、一
方、ペルチェ素子の発熱面は、放熱体によって放熱を促
進する。ペルチェ素子は、2種類の金属または半導体の
接合面を通じて電流を流すとき、その接合部には発熱ま
たは吸熱が生ずる現象を利用したものであり、電流を流
す方向によって吸熱面と発熱面が逆転するものである。
本発明で用いるペルチェ素子としては、通常使用される
ものであれば特に制限はないが、形状記憶複合体を冷却
する際に、該形状記憶複合体にペルチェ素子の吸熱面を
接触させるような電流方向にすることが必要である。ま
た、その時、ペルチェ素子の発熱面は放熱体に接してお
り、放熱体によってペルチェ素子の放熱を促進させる。
本発明で用いる放熱体としては、熱伝導率のよい材質で
あれば特に制限はなく、銅、銀、アルミニウム等を板
状、フィン状、ブレード状等の形状にして使用すればよ
い。
The shape recovery device of the present invention comprises a shape memory composite body, a Peltier element and a heat sink laminated in this order. The heat absorption surface of the Peltier element cools the shape memory composite body, while the heat generation surface of the Peltier element is , Promote heat dissipation by the radiator. The Peltier element utilizes a phenomenon in which heat is generated or absorbed at the junction when a current is passed through the junction between two kinds of metals or semiconductors, and the heat absorption surface and the heat generation surface are reversed depending on the direction of the current flow. It is a thing.
The Peltier element used in the present invention is not particularly limited as long as it is usually used, but when cooling the shape memory composite, a current such that the heat absorption surface of the Peltier element is brought into contact with the shape memory composite. Need to be directional. At that time, the heat generating surface of the Peltier element is in contact with the heat radiator, and the heat radiator accelerates the heat radiation of the Peltier element.
The radiator used in the present invention is not particularly limited as long as it has a good thermal conductivity, and copper, silver, aluminum or the like may be used in a plate shape, a fin shape, a blade shape or the like.

【0013】本発明においては、形状記憶複合体の変位
量を有効に生かすため、形状記憶複合体の一端をペルチ
ェ素子に対し固定させることが好ましい。固定方法は特
に制限はなく、例えば接着剤、針金等が挙げられる。ま
た、本発明においては、ペルチェ素子と放熱体とも固定
させることが好ましい。固定方法は特に制限はなく、例
えば、接着剤、針金、はんだ付け等が挙げられる。
In the present invention, it is preferable to fix one end of the shape memory composite to the Peltier element in order to effectively utilize the displacement amount of the shape memory composite. The fixing method is not particularly limited, and examples thereof include an adhesive and a wire. Further, in the present invention, it is preferable to fix both the Peltier element and the radiator. The fixing method is not particularly limited, and examples thereof include adhesive, wire, and soldering.

【0014】形状記憶複合体は加熱、冷却によって変位
させるものであり、本発明においてはペルチェ素子によ
って冷却を行うが、形状記憶複合体の加熱方法は特に制
限はなく、従来の方法が使用でき、例えば、温水による
加熱、通電加熱、レーザー等の熱線照射による加熱など
が挙げられる。また、冷却に用いるペルチェ素子を電流
を流す方向を変えることによって、加熱に用いることも
可能である。
The shape memory composite is displaced by heating and cooling. In the present invention, the Peltier element is used for cooling. However, the method for heating the shape memory composite is not particularly limited, and conventional methods can be used. For example, heating with hot water, electric heating, heating by irradiation with heat rays such as laser, etc. may be mentioned. Further, the Peltier element used for cooling can be used for heating by changing the direction of current flow.

【0015】[0015]

【発明の実施の形態】本発明の形状回復装置は、エアコ
ンの吹き出し口風向偏向フラップ駆動機構、胃カメラや
工業用エンドスコープ等の内視鏡の屈曲機構の駆動用ア
クチュエータ、電磁調理器の温度表示用アクチュエー
タ、自動車燃料蒸発ガス排出防止装置のバルブ切換用ア
クチュエータ、サイフォン式コーヒーメーカの調圧アク
チュエータ、オートデシケータのドライユニットのシャ
ッター開閉用アクチュエータ、防火ダンパーのダンパー
切換用アクチュエータ等に適用される。
BEST MODE FOR CARRYING OUT THE INVENTION The shape recovering apparatus of the present invention is used for a blower wind direction deflecting flap drive mechanism of an air conditioner, an actuator for driving a bending mechanism of an endoscope such as a gastric camera or an industrial end scope, and a temperature of an electromagnetic cooker. It is applied to display actuators, valve switching actuators for automobile fuel evaporative emission control devices, pressure regulator actuators for siphon coffee makers, shutter opening / closing actuators for auto desiccator dry units, and damper switching actuators for fireproof dampers.

【0016】図1に本発明の形状回復装置の一実施態様
を示す。断面積1.0mm2 のTi−Ni二元合金のS
MA線材(Af点:80℃、Mf点:50℃)を熱処理
して図1のような折り曲げた形状を記憶させた。このS
MA線材を伸長して直線状態にし、その上にポリウレタ
ン系SMP(Tg:30℃)を厚さ4.5mmになるよ
うに被覆した。成型温度は200℃である。その後、形
状記憶複合体、ペルチェ素子、放熱体の順に積層させ、
形状記憶複合体の一端をペルチェ素子に固定し、ペルチ
ェ素子と放熱体とも固定した。この直線状態の形状記憶
複合体を加熱したところ、70℃付近から徐々に変形し
始め、80℃以上でほぼSMAの記憶している折れ曲が
った形状となった。これをペルチェ素子に電流を流し
て、形状記憶複合体に接している面に吸熱させ、形状記
憶複合体を冷却すると、60℃付近から徐々に伸び始
め、50℃以下でほぼ直線形状、すなわちSMPが記憶
した形状になった。この動作を100回繰り返したが、
変位量の低下はほとんど見られなかった。
FIG. 1 shows an embodiment of the shape recovery device of the present invention. S of Ti-Ni binary alloy with a cross-sectional area of 1.0 mm 2.
The MA wire (Af point: 80 ° C., Mf point: 50 ° C.) was heat-treated to memorize the bent shape as shown in FIG. This S
The MA wire was stretched into a linear state, and polyurethane SMP (Tg: 30 ° C.) was coated thereon to a thickness of 4.5 mm. The molding temperature is 200 ° C. After that, the shape memory composite, the Peltier element, and the radiator are laminated in this order,
One end of the shape memory composite was fixed to the Peltier device, and the Peltier device and the heat radiator were also fixed. When this linear shape memory composite was heated, it gradually began to deform at around 70 ° C., and at about 80 ° C. or higher, it became a bent shape almost memorized by SMA. When a current is passed through the Peltier element to cause the surface contacting the shape memory composite to absorb heat and the shape memory composite is cooled, the shape memory composite gradually begins to expand at around 60 ° C. Became the shape that I remembered. This operation was repeated 100 times,
Almost no decrease in displacement was observed.

【0017】図2に本発明の形状回復装置の別の一実施
態様を示す。断面積0.3mm2 のTi−Ni−Cu合
金のSMA線材(Af点:70℃、Mf点:58℃)
を、外径1.2mmの粗巻き状コイルにした状態で、形
状記憶熱処理を行った。このコイルを圧縮(密巻き)
し、その状態でその周りにポリウレタン系SMP(T
g:40℃)のシート(厚さ:0.2mm)を図2のよ
うに円筒状になるように巻き付け、加熱してこの形状で
被覆した。成型温度は200℃である。その後、形状記
憶複合体、ペルチェ素子、放熱体の順に積層させ、形状
記憶複合体の一端をペルチェ素子に固定し、ペルチェ素
子と放熱体とも固定した。この状態の形状記憶複合体を
加熱したところ、70℃まで加熱するとSMAコイルの
形状回復により形状記憶複合体が伸長した。これをペル
チェ素子に電流を流して、形状記憶複合体に接している
面に吸熱させ、形状記憶複合体を冷却すると、形状記憶
複合体の温度が徐々に低下してくると共に収縮しはじ
め、50℃付近でSMPが記憶した形状になり、その後
温度を下げ続けてもこの形状を保った。この動作を10
0回繰り返したが、変位量の低下はほとんど見られなか
った。
FIG. 2 shows another embodiment of the shape recovery device of the present invention. SMA wire rod of Ti-Ni-Cu alloy with a cross-sectional area of 0.3 mm 2 (Af point: 70 ° C, Mf point: 58 ° C)
Was subjected to shape memory heat treatment in a state where the coil was a roughly wound coil having an outer diameter of 1.2 mm. Compress this coil (close winding)
Then, in that state, the polyurethane-based SMP (T
A sheet (g: 40 ° C.) (thickness: 0.2 mm) was wound into a cylindrical shape as shown in FIG. 2, heated and covered with this shape. The molding temperature is 200 ° C. After that, the shape memory composite, the Peltier element, and the radiator were laminated in this order, one end of the shape memory composite was fixed to the Peltier element, and the Peltier element and the radiator were also fixed. When the shape memory composite in this state was heated, when heated to 70 ° C., the shape memory composite expanded due to the shape recovery of the SMA coil. When a current is passed through the Peltier element to cause the surface contacting the shape memory composite to absorb heat and the shape memory composite is cooled, the temperature of the shape memory composite gradually decreases and begins to contract. The shape was memorized by SMP at around 0 ° C, and this shape was maintained even if the temperature was continuously lowered thereafter. This operation 10
Repeated 0 times, but almost no decrease in displacement was observed.

【0018】[0018]

【効果】本発明の形状回復装置は、(1)ある形状回復
動作を記憶した形状記憶合金と、形状記憶合金の回復動
作と異なる方向の形状回復動作を記憶した形状記憶ポリ
マーとからなり、形状記憶合金の形状回復温度(マル
テンサイト逆変態温度、Af)が形状記憶ポリマーの形
状回復温度(ガラス転移温度、Tg)より高く、形状
記憶合金の(回復応力×断面積)または発生力が形状記
憶ポリマーの(回復応力×断面積)と同じになる温度
を、Afと形状記憶合金のマルテンサイト変態温度(M
f)の間にくるように設定し、該温度以上では形状記憶
合金の記憶した形状への回復動作によって形状記憶合金
が記憶した形状を保ち、該温度以下であってかつ形状記
憶ポリマーのTg以上の温度では形状記憶ポリマーの記
憶した形状への回復動作によって形状記憶ポリマーが記
憶した形状を保つ形状記憶複合体、 (2)ペルチェ素子、 (3)放熱体の順に積層されてなることによって、2方
向性であり、かつ、温度応答性に優れる。よって、元の
形状に戻す部材を必要としないため、素子の小型化、軽
量化が図ることができ、かつ、冷却時の形状回復動作が
早くなるため、形状記憶複合体の記憶ぼけを防止でき、
繰り返しの使用に耐え得る。また、冷却時の形状回復動
作の制御も容易になるため、アクチュエータとしての機
能が向上する。また、SMPをポリウレタン、ポリノル
ボルネン、ポリイソプレンおよびスチレン−ブタジエン
共重合体から選ばれるポリマーとすることによって、形
状回復温度の設定が容易となる。また、SMAをTi−
Ni系SMAまたは銅系SMAとすることによって、A
f点がSMPの成形温度よりかなり低いため、形状記憶
複合体の製造が容易になる。さらに、SMAをSMPで
被覆することにより、耐食性、絶縁性にも優れるため、
医療用など用途の幅が広がる。また、SMAのコイルの
外周をSMPで囲うことにより、より形状回復力に優れ
た形状回復装置を得ることができる。
The shape recovery device of the present invention comprises (1) a shape memory alloy that stores a certain shape recovery operation, and a shape memory polymer that stores a shape recovery operation in a direction different from that of the shape memory alloy. The shape recovery temperature (martensite reverse transformation temperature, Af) of the memory alloy is higher than the shape recovery temperature (glass transition temperature, Tg) of the shape memory polymer, and the (recovery stress x cross-sectional area) or generated force of the shape memory alloy is shape memory. The temperature at which the (recovery stress x cross-sectional area) of the polymer is the same as that of Af and the martensitic transformation temperature (M
f), the shape memory alloy retains the shape remembered by the shape memory alloy's recovery operation to the remembered shape above the temperature, and is below the temperature and above the Tg of the shape memory polymer. At the temperature of 2, the shape memory polymer retains the memorized shape by the recovery operation of the shape memory polymer to the memorized shape, (2) the Peltier element, and (3) the radiator is laminated in this order, It is directional and has excellent temperature responsiveness. Therefore, since a member for returning to the original shape is not required, the size and weight of the element can be reduced, and the shape recovery operation at the time of cooling becomes faster, so that the memory blur of the shape memory composite can be prevented. ,
Can withstand repeated use. In addition, since the shape recovery operation during cooling is also easily controlled, the function as an actuator is improved. Further, by using SMP as a polymer selected from polyurethane, polynorbornene, polyisoprene, and styrene-butadiene copolymer, it becomes easy to set the shape recovery temperature. In addition, SMA is Ti-
By using Ni-based SMA or copper-based SMA,
Since the f-point is considerably lower than the molding temperature of SMP, the shape memory composite is easily manufactured. Furthermore, by coating SMA with SMP, it has excellent corrosion resistance and insulation,
Wide range of applications such as medical applications. Further, by surrounding the outer circumference of the SMA coil with SMP, it is possible to obtain a shape recovery device having a better shape recovery force.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の形状回復装置の一実施態様を示した図
である。
FIG. 1 is a diagram showing an embodiment of a shape recovery device of the present invention.

【図2】本発明の形状回復装置の別の一実施態様を示し
た図である。
FIG. 2 is a view showing another embodiment of the shape recovery device of the invention.

【符号の説明】[Explanation of symbols]

1:形状記憶合金 2:形状記憶ポリマー 3:形状記憶複合体 4:ペルチェ素子 5:放熱体 1: Shape memory alloy 2: Shape memory polymer 3: Shape memory composite 4: Peltier element 5: Heat radiator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (1)ある形状回復動作を記憶した形状
記憶合金と、形状記憶合金の回復動作と異なる方向の形
状回復動作を記憶した形状記憶ポリマーとからなり、
形状記憶合金の形状回復温度(マルテンサイト逆変態温
度、Af)が形状記憶ポリマーの形状回復温度(ガラス
転移温度、Tg)より高く、形状記憶合金の(回復応
力×断面積)または発生力が形状記憶ポリマーの(回復
応力×断面積)と同じになる温度を、Afと形状記憶合
金のマルテンサイト変態温度(Mf)の間にくるように
設定し、該温度以上では形状記憶合金の記憶した形状へ
の回復動作によって形状記憶合金が記憶した形状を保
ち、該温度以下であってかつ形状記憶ポリマーのTg以
上の温度では形状記憶ポリマーの記憶した形状への回復
動作によって形状記憶ポリマーが記憶した形状を保つ形
状記憶複合体、 (2)ペルチェ素子、 (3)放熱体の順に積層されてなることを特徴とする形
状回復装置。
1. A shape memory alloy that stores a shape recovery motion, and a shape memory polymer that stores a shape recovery motion in a direction different from the recovery motion of the shape memory alloy.
The shape memory alloy has a shape recovery temperature (martensite reverse transformation temperature, Af) higher than the shape memory polymer's shape recovery temperature (glass transition temperature, Tg), and the shape memory alloy's (recovery stress x cross-sectional area) or generated force is a shape. The temperature at which (recovery stress x cross-sectional area) of the memory polymer is set to be between Af and the martensitic transformation temperature (Mf) of the shape memory alloy, and above that temperature, the shape remembered by the shape memory alloy is set. The shape remembered by the shape memory alloy by the recovery operation to the shape memory polymer, and the shape remembered by the shape memory polymer by the recovery operation of the shape memory polymer at the temperature below the temperature and above the Tg of the shape memory polymer. A shape recovery device comprising: a shape memory composite for maintaining the above; (2) a Peltier element; and (3) a heat radiator laminated in this order.
【請求項2】 形状記憶ポリマーが、ポリウレタン、ポ
リノルボルネン、ポリイソプレンおよびスチレン−ブタ
ジエン共重合体から選ばれるポリマーである請求項1記
載の形状回復装置。
2. The shape recovery device according to claim 1, wherein the shape memory polymer is a polymer selected from polyurethane, polynorbornene, polyisoprene, and styrene-butadiene copolymer.
【請求項3】 形状記憶合金が、Ti−Ni系形状記憶
合金または銅系形状記憶合金である請求項1または請求
項2記載の形状回復装置。
3. The shape recovery device according to claim 1, wherein the shape memory alloy is a Ti—Ni-based shape memory alloy or a copper-based shape memory alloy.
【請求項4】 形状記憶複合体が、形状記憶合金に形状
記憶ポリマーを被覆してなる請求項1〜3いずれかに記
載の形状回復装置。
4. The shape recovery device according to claim 1, wherein the shape memory composite is formed by coating a shape memory alloy with a shape memory polymer.
【請求項5】 形状記憶複合体が、形状記憶合金のコイ
ルの外周を形状記憶ポリマーで囲ってなる請求項1〜4
いずれかに記載の形状回復装置。
5. The shape memory composite comprises a shape memory alloy coil surrounded by a shape memory polymer.
The shape recovery device according to any one of claims.
JP29749495A 1995-10-20 1995-10-20 Shape recovery device Pending JPH09109320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29749495A JPH09109320A (en) 1995-10-20 1995-10-20 Shape recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29749495A JPH09109320A (en) 1995-10-20 1995-10-20 Shape recovery device

Publications (1)

Publication Number Publication Date
JPH09109320A true JPH09109320A (en) 1997-04-28

Family

ID=17847241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29749495A Pending JPH09109320A (en) 1995-10-20 1995-10-20 Shape recovery device

Country Status (1)

Country Link
JP (1) JPH09109320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872433B2 (en) 2001-03-27 2005-03-29 The Regents Of The University Of California Shape memory alloy/shape memory polymer tools
EP1460284A3 (en) * 2003-01-28 2006-07-05 C.R.F. Società Consortile per Azioni An actuator device with shape-memory flexible cable
WO2020262802A1 (en) * 2019-06-24 2020-12-30 한국기계연구원 Soft actuator comprising cooler, wearable robot comprising same, massage device comprising same, and method for controlling same
KR20210000142A (en) * 2019-06-24 2021-01-04 한국기계연구원 Flexible actuator including cooling device, wearable robot including the same, and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872433B2 (en) 2001-03-27 2005-03-29 The Regents Of The University Of California Shape memory alloy/shape memory polymer tools
EP1460284A3 (en) * 2003-01-28 2006-07-05 C.R.F. Società Consortile per Azioni An actuator device with shape-memory flexible cable
WO2020262802A1 (en) * 2019-06-24 2020-12-30 한국기계연구원 Soft actuator comprising cooler, wearable robot comprising same, massage device comprising same, and method for controlling same
KR20210000142A (en) * 2019-06-24 2021-01-04 한국기계연구원 Flexible actuator including cooling device, wearable robot including the same, and control method thereof

Similar Documents

Publication Publication Date Title
CN106687687B (en) Heat-sensitive actuator device
US4829843A (en) Apparatus for rocking a crank
KR101183650B1 (en) Fabrication method of unique two way shape memory coil spring and unique two way shape memory coil spring fabricated by using the same
EP3191710B1 (en) Heat sensitive actuator device
JPH09109320A (en) Shape recovery device
US6006522A (en) Translational actuator
JPH08199080A (en) Shape-memory composite
JP2001003850A (en) Shape memory alloy actuator
Bacciotti et al. On the use of shape memory alloys for deployable passive heat radiators in space satellites
JPH09123330A (en) Shape-recovery device
JPS6321367A (en) Shape memory alloy device
JP2019089306A (en) Shape memory composite
US4990883A (en) Actuator which can be locked when exposed to a high temperature
CN106368918B (en) A kind of displacement drive enlarger and application
Wen et al. A study of NiTi shape memory alloy springs and its application in a new robotic actuator
JPS59170247A (en) Manufacture of niti type shape memory material
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
Carnier et al. Deployment of a CubeSat radiative surface through an autonomous torsional SMA actuator
JPS60166766A (en) Heat-sensitive actuator
JPS5862445A (en) Louver device
JPH06123276A (en) Thermal and mechanical energy transducing type driving element
Uchil et al. Simple thermal actuator using R-phase transformation of Nitinol
JPH051396B2 (en)
JPH06292375A (en) Motor employing thermoelement and shape-memory material
JPH0660628B2 (en) Thermo-mechanical energy converter